|
--- |
|
license: cc-by-nc-4.0 |
|
task_categories: |
|
- image-segmentation |
|
language: |
|
- en |
|
tags: |
|
- medical |
|
- image |
|
- segmentation |
|
- MRI |
|
- knee |
|
- cartilage |
|
pretty_name: oaizib-cm |
|
size_categories: |
|
- n<1K |
|
dataset_info: |
|
features: |
|
- name: image_path |
|
dtype: string |
|
- name: mask_path |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 137764 |
|
num_examples: 404 |
|
- name: test |
|
num_bytes: 35123 |
|
num_examples: 103 |
|
download_size: 12652471789 |
|
dataset_size: 172887 |
|
--- |
|
|
|
|
|
 |
|
|
|
|
|
## Data |
|
| Source | link | |
|
| ------------ | ------------------------------------------------------------ | |
|
| Huggingface | [main](https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/tree/main) | |
|
| | [load_dataset-support](https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/tree/load_dataset-support) | |
|
| Zenodo | [here](https://zenodo.org/records/14934086) |
|
| Google Drive | [here](https://drive.google.com/drive/folders/13_afAKSH7ZMOI_Nk2gfoihbJKwafw1l9?usp=share_link) | |
|
- Huggingface Dataset Branch: |
|
- `main`: The main branch contains the same files as those in Zenodo and Google Drive |
|
- `load_dataset-support`: We added HF `load_dataset()` support in this branch |
|
|
|
|
|
## About |
|
This is the official release of **OAIZIB-CM** dataset |
|
- OAIZIB-CM is based on the OAIZIB dataset |
|
- OAIZIB paper: [Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative](https://doi.org/10.1016/j.media.2018.11.009) |
|
- In OAIZIB-CM, tibial cartilage is split into medial and lateral tibial cartilages. |
|
- OAIZIB-CM includes [CLAIR-Knee-103R](https://github.com/YongchengYAO/CartiMorph/blob/main/Documents/TemplateAtlas.md), consisting of |
|
- a template image learned from 103 MR images of subjects without radiographic OA |
|
- corresponding 5-ROI segmentation mask for cartilages and bones |
|
- corresponding 20-ROI atlas for articular cartilages |
|
- It is compulsory to cite the paper if you use the dataset |
|
- [CartiMorph: A framework for automated knee articular cartilage morphometrics](https://doi.org/10.1016/j.media.2023.103035) |
|
|
|
|
|
## Changelog 🔥 |
|
- [22 Mar, 2025] Add HF `load_dataset()` support in the `load_dataset-support` branch. |
|
- [27 Feb, 2025] Add the template and atlas [CLAIR-Knee-103R](https://github.com/YongchengYAO/CartiMorph/blob/main/Documents/TemplateAtlas.md) |
|
- [26 Feb, 2025] Update compulsory citation ([CartiMorph](https://doi.org/10.1016/j.media.2023.103035)) for the dataset |
|
- [15 Feb, 2025] Update file `imagesTs/oaizib_454_0000.nii.gz` |
|
- [14 Feb, 2025] Identify corrupted files: case 454 |
|
|
|
|
|
## Files |
|
Images & Labels |
|
- imagesTr: training images (#404) |
|
- labelsTr: training segmentation masks (#404) |
|
- imagesTs: testing images (#103) |
|
- labelsTs: testing segmentation masks (#103) |
|
|
|
Data Split & Info |
|
- `subInfo_train`: list of training data |
|
- `subInfo_test`: list of testing data |
|
- `kneeSideInfo`: a file containing knee side information, used in CartiMorph Toolbox |
|
|
|
|
|
## Intended Usage |
|
### 1. Download Files from the `main` or `load_dataset-support` Branch |
|
```bash |
|
#!/bin/bash |
|
pip install --upgrade huggingface-hub[cli] |
|
huggingface-cli login --token $HF_TOKEN |
|
``` |
|
```python |
|
# python |
|
from huggingface_hub import snapshot_download |
|
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder") |
|
``` |
|
```python |
|
# python |
|
from huggingface_hub import snapshot_download |
|
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', revision="load_dataset-support", local_dir="/your/local/folder") |
|
``` |
|
|
|
|
|
### 2. Load `Dataset` or `IterableDataset` from the `load_dataset-support` Branch |
|
```python |
|
>>> from datasets import load_dataset |
|
|
|
# Load Dataset |
|
>>> dataset_test = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, split="test") |
|
>>> type(dataset_test) |
|
<class 'datasets.arrow_dataset.Dataset'> |
|
|
|
# Convert Dataset to IterableDataset: use .to_iterable_dataset() |
|
>>> iterdataset_test = dataset_test.to_iterable_dataset() |
|
>>> type(iterdataset_test) |
|
<class 'datasets.iterable_dataset.IterableDataset'> |
|
|
|
# Load IteravleDataset: add streaming=True |
|
>>> iterdataset_train = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, streaming=True, split="train") |
|
>>> type(iterdataset_train) |
|
<class 'datasets.iterable_dataset.IterableDataset'> |
|
``` |
|
- 🔥 [Differences between Dataset and IterableDataset](https://huggingface.co/docs/datasets/about_mapstyle_vs_iterable#downloading-and-streaming) |
|
|
|
|
|
## Segmentation Labels |
|
```python |
|
labels_map = { |
|
"1": "Femur", |
|
"2": "Femoral Cartilage", |
|
"3": "Tibia", |
|
"4": "Medial Tibial Cartilage", |
|
"5": "Lateral Tibial Cartilage", |
|
} |
|
``` |
|
|
|
|
|
## Citations |
|
The dataset originates from these projects: |
|
- CartiMorph: https://github.com/YongchengYAO/CartiMorph |
|
- CartiMorph Toolbox: |
|
- https://github.com/YongchengYAO/CartiMorph-Toolbox |
|
- https://github.com/YongchengYAO/CMT-AMAI24paper |
|
|
|
``` |
|
@article{YAO2024103035, |
|
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics}, |
|
journal = {Medical Image Analysis}, |
|
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen}, |
|
volume = {91}, |
|
pages = {103035}, |
|
year = {2024}, |
|
issn = {1361-8415}, |
|
doi = {https://doi.org/10.1016/j.media.2023.103035} |
|
} |
|
``` |
|
``` |
|
@InProceedings{10.1007/978-3-031-82007-6_16, |
|
author="Yao, Yongcheng |
|
and Chen, Weitian", |
|
editor="Wu, Shandong |
|
and Shabestari, Behrouz |
|
and Xing, Lei", |
|
title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics", |
|
booktitle="Applications of Medical Artificial Intelligence", |
|
year="2025", |
|
publisher="Springer Nature Switzerland", |
|
address="Cham", |
|
pages="162--172" |
|
} |
|
``` |
|
|
|
## License |
|
This dataset is released under the `CC BY-NC 4.0` license. |
|
|