Datasets:
File size: 5,906 Bytes
21d0735 a700b16 21d0735 03eaf4b 21d0735 480e6d9 0df42ba b5de354 a7d831c 14710f7 480e6d9 a7d831c b5de354 c5e78ac a7d831c c5b215d 06f1e71 480e6d9 0426bdf c5b215d 06f1e71 c5b215d ce5ad74 ccb1d9f 06f1e71 ce5ad74 c5b215d 9a1a8f1 a7d831c a88d41c ed2900e a88d41c ce5ad74 ed2900e e37cd9e a7d831c bfd26ae a7d831c e37cd9e a7d831c b48785d e37cd9e b48785d 808b60d b48785d a7d831c b48785d e37cd9e 6236c91 d2f6d2d ce5ad74 6236c91 d2f6d2d c749ff7 d2f6d2d 1fffd96 757d41f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
license: cc-by-nc-4.0
task_categories:
- image-segmentation
language:
- en
tags:
- medical
- image
- segmentation
- MRI
- knee
- cartilage
pretty_name: oaizib-cm
size_categories:
- n<1K
dataset_info:
features:
- name: image_path
dtype: string
- name: mask_path
dtype: string
splits:
- name: train
num_bytes: 137764
num_examples: 404
- name: test
num_bytes: 35123
num_examples: 103
download_size: 12652471789
dataset_size: 172887
---

## Data
| Source | link |
| ------------ | ------------------------------------------------------------ |
| Huggingface | [main](https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/tree/main) |
| | [load_dataset-support](https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/tree/load_dataset-support) |
| Zenodo | [here](https://zenodo.org/records/14934086)
| Google Drive | [here](https://drive.google.com/drive/folders/13_afAKSH7ZMOI_Nk2gfoihbJKwafw1l9?usp=share_link) |
- Huggingface Dataset Branch:
- `main`: The main branch contains the same files as those in Zenodo and Google Drive
- `load_dataset-support`: We added HF `load_dataset()` support in this branch
## About
This is the official release of **OAIZIB-CM** dataset
- OAIZIB-CM is based on the OAIZIB dataset
- OAIZIB paper: [Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative](https://doi.org/10.1016/j.media.2018.11.009)
- In OAIZIB-CM, tibial cartilage is split into medial and lateral tibial cartilages.
- OAIZIB-CM includes [CLAIR-Knee-103R](https://github.com/YongchengYAO/CartiMorph/blob/main/Documents/TemplateAtlas.md), consisting of
- a template image learned from 103 MR images of subjects without radiographic OA
- corresponding 5-ROI segmentation mask for cartilages and bones
- corresponding 20-ROI atlas for articular cartilages
- It is compulsory to cite the paper if you use the dataset
- [CartiMorph: A framework for automated knee articular cartilage morphometrics](https://doi.org/10.1016/j.media.2023.103035)
## Changelog 🔥
- [22 Mar, 2025] Add HF `load_dataset()` support in the `load_dataset-support` branch.
- [27 Feb, 2025] Add the template and atlas [CLAIR-Knee-103R](https://github.com/YongchengYAO/CartiMorph/blob/main/Documents/TemplateAtlas.md)
- [26 Feb, 2025] Update compulsory citation ([CartiMorph](https://doi.org/10.1016/j.media.2023.103035)) for the dataset
- [15 Feb, 2025] Update file `imagesTs/oaizib_454_0000.nii.gz`
- [14 Feb, 2025] Identify corrupted files: case 454
## Files
Images & Labels
- imagesTr: training images (#404)
- labelsTr: training segmentation masks (#404)
- imagesTs: testing images (#103)
- labelsTs: testing segmentation masks (#103)
Data Split & Info
- `subInfo_train`: list of training data
- `subInfo_test`: list of testing data
- `kneeSideInfo`: a file containing knee side information, used in CartiMorph Toolbox
## Intended Usage
### 1. Download Files from the `main` or `load_dataset-support` Branch
```bash
#!/bin/bash
pip install --upgrade huggingface-hub[cli]
huggingface-cli login --token $HF_TOKEN
```
```python
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder")
```
```python
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', revision="load_dataset-support", local_dir="/your/local/folder")
```
### 2. Load `Dataset` or `IterableDataset` from the `load_dataset-support` Branch
```python
>>> from datasets import load_dataset
# Load Dataset
>>> dataset_test = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, split="test")
>>> type(dataset_test)
<class 'datasets.arrow_dataset.Dataset'>
# Convert Dataset to IterableDataset: use .to_iterable_dataset()
>>> iterdataset_test = dataset_test.to_iterable_dataset()
>>> type(iterdataset_test)
<class 'datasets.iterable_dataset.IterableDataset'>
# Load IteravleDataset: add streaming=True
>>> iterdataset_train = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, streaming=True, split="train")
>>> type(iterdataset_train)
<class 'datasets.iterable_dataset.IterableDataset'>
```
- 🔥 [Differences between Dataset and IterableDataset](https://huggingface.co/docs/datasets/about_mapstyle_vs_iterable#downloading-and-streaming)
## Segmentation Labels
```python
labels_map = {
"1": "Femur",
"2": "Femoral Cartilage",
"3": "Tibia",
"4": "Medial Tibial Cartilage",
"5": "Lateral Tibial Cartilage",
}
```
## Citations
The dataset originates from these projects:
- CartiMorph: https://github.com/YongchengYAO/CartiMorph
- CartiMorph Toolbox:
- https://github.com/YongchengYAO/CartiMorph-Toolbox
- https://github.com/YongchengYAO/CMT-AMAI24paper
```
@article{YAO2024103035,
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},
journal = {Medical Image Analysis},
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},
volume = {91},
pages = {103035},
year = {2024},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2023.103035}
}
```
```
@InProceedings{10.1007/978-3-031-82007-6_16,
author="Yao, Yongcheng
and Chen, Weitian",
editor="Wu, Shandong
and Shabestari, Behrouz
and Xing, Lei",
title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics",
booktitle="Applications of Medical Artificial Intelligence",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="162--172"
}
```
## License
This dataset is released under the `CC BY-NC 4.0` license.
|