File size: 5,906 Bytes
21d0735
 
 
 
 
 
 
 
 
a700b16
 
 
 
21d0735
 
 
03eaf4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d0735
 
480e6d9
0df42ba
 
 
b5de354
a7d831c
 
14710f7
 
480e6d9
a7d831c
b5de354
 
 
c5e78ac
a7d831c
c5b215d
 
 
 
06f1e71
480e6d9
 
 
 
0426bdf
c5b215d
06f1e71
c5b215d
 
ce5ad74
ccb1d9f
06f1e71
ce5ad74
c5b215d
9a1a8f1
a7d831c
a88d41c
 
 
 
 
 
ed2900e
a88d41c
ce5ad74
 
 
ed2900e
 
e37cd9e
 
a7d831c
 
bfd26ae
a7d831c
 
 
 
 
 
 
e37cd9e
 
 
 
 
a7d831c
b48785d
e37cd9e
b48785d
808b60d
 
b48785d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d831c
b48785d
e37cd9e
6236c91
 
 
 
 
 
 
 
 
 
d2f6d2d
ce5ad74
6236c91
 
 
 
 
 
d2f6d2d
 
 
 
 
 
 
 
 
 
 
 
 
c749ff7
 
 
 
 
 
 
 
 
 
 
 
d2f6d2d
1fffd96
 
 
757d41f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
license: cc-by-nc-4.0
task_categories:
- image-segmentation
language:
- en
tags:
- medical
- image
- segmentation
- MRI
- knee
- cartilage
pretty_name: oaizib-cm
size_categories:
- n<1K
dataset_info:
  features:
  - name: image_path
    dtype: string
  - name: mask_path
    dtype: string
  splits:
  - name: train
    num_bytes: 137764
    num_examples: 404
  - name: test
    num_bytes: 35123
    num_examples: 103
  download_size: 12652471789
  dataset_size: 172887
---


![HF-OAIZIB-CM](HF-OAIZIB-CM.png)


## Data
| Source       | link                                                         |
| ------------ | ------------------------------------------------------------ |
| Huggingface  | [main](https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/tree/main) |
|              | [load_dataset-support](https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/tree/load_dataset-support) | 
| Zenodo       | [here](https://zenodo.org/records/14934086)
| Google Drive | [here](https://drive.google.com/drive/folders/13_afAKSH7ZMOI_Nk2gfoihbJKwafw1l9?usp=share_link) |
- Huggingface Dataset Branch:
  - `main`: The main branch contains the same files as those in Zenodo and Google Drive
  - `load_dataset-support`: We added HF `load_dataset()` support in this branch


## About
This is the official release of **OAIZIB-CM** dataset 
- OAIZIB-CM is based on the OAIZIB dataset
  - OAIZIB paper: [Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative](https://doi.org/10.1016/j.media.2018.11.009)
- In OAIZIB-CM, tibial cartilage is split into medial and lateral tibial cartilages.
- OAIZIB-CM includes [CLAIR-Knee-103R](https://github.com/YongchengYAO/CartiMorph/blob/main/Documents/TemplateAtlas.md), consisting of 
  - a template image learned from 103 MR images of subjects without radiographic OA
  - corresponding 5-ROI segmentation mask for cartilages and bones
  - corresponding 20-ROI atlas for articular cartilages
- It is compulsory to cite the paper if you use the dataset
  - [CartiMorph: A framework for automated knee articular cartilage morphometrics](https://doi.org/10.1016/j.media.2023.103035)


## Changelog 🔥
- [22 Mar, 2025] Add HF `load_dataset()` support in the `load_dataset-support` branch.
- [27 Feb, 2025] Add the template and atlas [CLAIR-Knee-103R](https://github.com/YongchengYAO/CartiMorph/blob/main/Documents/TemplateAtlas.md)
- [26 Feb, 2025] Update compulsory citation ([CartiMorph](https://doi.org/10.1016/j.media.2023.103035)) for the dataset
- [15 Feb, 2025] Update file `imagesTs/oaizib_454_0000.nii.gz`
- [14 Feb, 2025] Identify corrupted files: case 454


## Files
Images & Labels
- imagesTr: training images (#404)
- labelsTr: training segmentation masks (#404) 
- imagesTs: testing images (#103)
- labelsTs: testing segmentation masks (#103) 

Data Split & Info
- `subInfo_train`: list of training data
- `subInfo_test`: list of testing data
- `kneeSideInfo`: a file containing knee side information, used in CartiMorph Toolbox


## Intended Usage
### 1. Download Files from the `main` or `load_dataset-support` Branch
```bash
#!/bin/bash
pip install --upgrade huggingface-hub[cli]
huggingface-cli login --token $HF_TOKEN
```
```python
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder")
```
```python
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', revision="load_dataset-support", local_dir="/your/local/folder")
```


### 2. Load `Dataset` or `IterableDataset` from the `load_dataset-support` Branch
```python
>>> from datasets import load_dataset

# Load Dataset
>>> dataset_test = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, split="test")
>>> type(dataset_test)
<class 'datasets.arrow_dataset.Dataset'>

# Convert Dataset to IterableDataset: use .to_iterable_dataset()
>>> iterdataset_test = dataset_test.to_iterable_dataset()
>>> type(iterdataset_test)
<class 'datasets.iterable_dataset.IterableDataset'>

# Load IteravleDataset: add streaming=True
>>> iterdataset_train = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, streaming=True, split="train")
>>> type(iterdataset_train)
<class 'datasets.iterable_dataset.IterableDataset'>
```
- 🔥 [Differences between Dataset and IterableDataset](https://huggingface.co/docs/datasets/about_mapstyle_vs_iterable#downloading-and-streaming)


## Segmentation Labels
```python
labels_map = {
    "1": "Femur",
    "2": "Femoral Cartilage",
    "3": "Tibia",
    "4": "Medial Tibial Cartilage",
    "5": "Lateral Tibial Cartilage",
}
```


## Citations
The dataset originates from these projects:
- CartiMorph: https://github.com/YongchengYAO/CartiMorph
- CartiMorph Toolbox:
  - https://github.com/YongchengYAO/CartiMorph-Toolbox
  - https://github.com/YongchengYAO/CMT-AMAI24paper

```
@article{YAO2024103035,
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},
journal = {Medical Image Analysis},
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},
volume = {91},
pages = {103035},
year = {2024},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2023.103035}
}
```
```
@InProceedings{10.1007/978-3-031-82007-6_16,
author="Yao, Yongcheng
and Chen, Weitian",
editor="Wu, Shandong
and Shabestari, Behrouz
and Xing, Lei",
title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics",
booktitle="Applications of Medical Artificial Intelligence",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="162--172"
}
```

## License
This dataset is released under the `CC BY-NC 4.0` license.