Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

HF-OAIZIB-CM

Summary 🌟

OAIZIB-CM: 507 knee MRIs and segmentation masks of 5 ROIs

Data

Source link
Huggingface main
load_dataset-support
Zenodo here
Google Drive here
  • Huggingface Dataset Branch:
    • main: The main branch contains the same files as those in Zenodo and Google Drive
    • load_dataset-support: We added HF load_dataset() support in this branch (ref: intended usage 2)

About

This is the official release of OAIZIB-CM dataset

Changelog πŸ”₯

  • [22 Mar, 2025] Add HF load_dataset() support in the load_dataset-support branch.
  • [27 Feb, 2025] Add the template and atlas CLAIR-Knee-103R
  • [26 Feb, 2025] Update compulsory citation (CartiMorph) for the dataset
  • [15 Feb, 2025] Update file imagesTs/oaizib_454_0000.nii.gz
  • [14 Feb, 2025] Identify corrupted files: case 454

Files

Images & Labels

  • imagesTr: training images (#404)
  • labelsTr: training segmentation masks (#404)
  • imagesTs: testing images (#103)
  • labelsTs: testing segmentation masks (#103)

Data Split & Info

  • subInfo_train: list of training data
  • subInfo_test: list of testing data
  • kneeSideInfo: a file containing knee side information, used in CartiMorph Toolbox

Intended Usage

1. Download Files from the main or load_dataset-support Branch

#!/bin/bash
pip install --upgrade huggingface-hub[cli]
huggingface-cli login --token $HF_TOKEN
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder")
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', revision="load_dataset-support", local_dir="/your/local/folder")

2. Load Dataset or IterableDataset from the load_dataset-support Branch ‼️

>>> from datasets import load_dataset

# Load Dataset
>>> dataset_test = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, split="test")
>>> type(dataset_test)
<class 'datasets.arrow_dataset.Dataset'>

# Convert Dataset to IterableDataset: use .to_iterable_dataset()
>>> iterdataset_test = dataset_test.to_iterable_dataset()
>>> type(iterdataset_test)
<class 'datasets.iterable_dataset.IterableDataset'>

# Load IteravleDataset: add streaming=True
>>> iterdataset_train = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, streaming=True, split="train")
>>> type(iterdataset_train)
<class 'datasets.iterable_dataset.IterableDataset'>

Segmentation Labels

labels_map = {
    "1": "Femur",
    "2": "Femoral Cartilage",
    "3": "Tibia",
    "4": "Medial Tibial Cartilage",
    "5": "Lateral Tibial Cartilage",
}

Citations

The dataset originates from these projects:

@article{YAO2024103035,
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},
journal = {Medical Image Analysis},
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},
volume = {91},
pages = {103035},
year = {2024},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2023.103035}
}
@InProceedings{10.1007/978-3-031-82007-6_16,
author="Yao, Yongcheng
and Chen, Weitian",
editor="Wu, Shandong
and Shabestari, Behrouz
and Xing, Lei",
title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics",
booktitle="Applications of Medical Artificial Intelligence",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="162--172"
}

License

This dataset is released under the CC BY-NC 4.0 license.

Downloads last month
2,549