Datasets:
Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
Summary π
OAIZIB-CM: 507 knee MRIs and segmentation masks of 5 ROIs
Data
Source | link |
---|---|
Huggingface | main |
load_dataset-support | |
Zenodo | here |
Google Drive | here |
- Huggingface Dataset Branch:
main
: The main branch contains the same files as those in Zenodo and Google Driveload_dataset-support
: We added HFload_dataset()
support in this branch (ref: intended usage 2)
About
This is the official release of OAIZIB-CM dataset
- OAIZIB-CM is based on the OAIZIB dataset
- In OAIZIB-CM, tibial cartilage is split into medial and lateral tibial cartilages.
- OAIZIB-CM includes CLAIR-Knee-103R, consisting of
- a template image learned from 103 MR images of subjects without radiographic OA
- corresponding 5-ROI segmentation mask for cartilages and bones
- corresponding 20-ROI atlas for articular cartilages
- It is compulsory to cite the paper if you use the dataset
Changelog π₯
- [22 Mar, 2025] Add HF
load_dataset()
support in theload_dataset-support
branch. - [27 Feb, 2025] Add the template and atlas CLAIR-Knee-103R
- [26 Feb, 2025] Update compulsory citation (CartiMorph) for the dataset
- [15 Feb, 2025] Update file
imagesTs/oaizib_454_0000.nii.gz
- [14 Feb, 2025] Identify corrupted files: case 454
Files
Images & Labels
- imagesTr: training images (#404)
- labelsTr: training segmentation masks (#404)
- imagesTs: testing images (#103)
- labelsTs: testing segmentation masks (#103)
Data Split & Info
subInfo_train
: list of training datasubInfo_test
: list of testing datakneeSideInfo
: a file containing knee side information, used in CartiMorph Toolbox
Intended Usage
1. Download Files from the main
or load_dataset-support
Branch
#!/bin/bash
pip install --upgrade huggingface-hub[cli]
huggingface-cli login --token $HF_TOKEN
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder")
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', revision="load_dataset-support", local_dir="/your/local/folder")
2. Load Dataset
or IterableDataset
from the load_dataset-support
Branch βΌοΈ
>>> from datasets import load_dataset
# Load Dataset
>>> dataset_test = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, split="test")
>>> type(dataset_test)
<class 'datasets.arrow_dataset.Dataset'>
# Convert Dataset to IterableDataset: use .to_iterable_dataset()
>>> iterdataset_test = dataset_test.to_iterable_dataset()
>>> type(iterdataset_test)
<class 'datasets.iterable_dataset.IterableDataset'>
# Load IteravleDataset: add streaming=True
>>> iterdataset_train = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, streaming=True, split="train")
>>> type(iterdataset_train)
<class 'datasets.iterable_dataset.IterableDataset'>
Segmentation Labels
labels_map = {
"1": "Femur",
"2": "Femoral Cartilage",
"3": "Tibia",
"4": "Medial Tibial Cartilage",
"5": "Lateral Tibial Cartilage",
}
Citations
The dataset originates from these projects:
- CartiMorph: https://github.com/YongchengYAO/CartiMorph
- CartiMorph Toolbox:
@article{YAO2024103035,
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},
journal = {Medical Image Analysis},
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},
volume = {91},
pages = {103035},
year = {2024},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2023.103035}
}
@InProceedings{10.1007/978-3-031-82007-6_16,
author="Yao, Yongcheng
and Chen, Weitian",
editor="Wu, Shandong
and Shabestari, Behrouz
and Xing, Lei",
title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics",
booktitle="Applications of Medical Artificial Intelligence",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="162--172"
}
License
This dataset is released under the CC BY-NC 4.0
license.
- Downloads last month
- 2,549