id
stringlengths
14
28
title
stringclasses
18 values
content
stringlengths
2
999
contents
stringlengths
19
1.02k
Cell_Biology_Alberts_210
Cell_Biology_Alberts
In each water molecule (H2O) the two H atoms are linked to the O atom by covalent bonds. The two bonds are highly polar because the O is strongly attractive for electrons, whereas the H is only weakly attractive. Consequently, there is an unequal distribution of electrons in a water molecule, with a preponderance of positive charge on the two H atoms and of negative charge on the O. When a positively charged region of one water molecule (that is, one of its H atoms) approaches a negatively charged region (that is, the O) of a second water molecule, the electrical attraction between them can result in a hydrogen bond. These bonds are much weaker than covalent bonds and are easily broken by the random thermal motions that reflect the heat energy of the molecules. Thus, each bond lasts only a short time. But the combined effect of many weak bonds can be profound. For example, each water molecule can form hydrogen bonds through its two H atoms to two other water molecules, producing a
Cell_Biology_Alberts. In each water molecule (H2O) the two H atoms are linked to the O atom by covalent bonds. The two bonds are highly polar because the O is strongly attractive for electrons, whereas the H is only weakly attractive. Consequently, there is an unequal distribution of electrons in a water molecule, with a preponderance of positive charge on the two H atoms and of negative charge on the O. When a positively charged region of one water molecule (that is, one of its H atoms) approaches a negatively charged region (that is, the O) of a second water molecule, the electrical attraction between them can result in a hydrogen bond. These bonds are much weaker than covalent bonds and are easily broken by the random thermal motions that reflect the heat energy of the molecules. Thus, each bond lasts only a short time. But the combined effect of many weak bonds can be profound. For example, each water molecule can form hydrogen bonds through its two H atoms to two other water molecules, producing a
Cell_Biology_Alberts_211
Cell_Biology_Alberts
a short time. But the combined effect of many weak bonds can be profound. For example, each water molecule can form hydrogen bonds through its two H atoms to two other water molecules, producing a network in which hydrogen bonds are being continually broken and formed. It is only because of the hydrogen bonds that link water molecules together that water is a liquid at room temperature—with a high boiling point and high surface tension—rather than a gas.
Cell_Biology_Alberts. a short time. But the combined effect of many weak bonds can be profound. For example, each water molecule can form hydrogen bonds through its two H atoms to two other water molecules, producing a network in which hydrogen bonds are being continually broken and formed. It is only because of the hydrogen bonds that link water molecules together that water is a liquid at room temperature—with a high boiling point and high surface tension—rather than a gas.
Cell_Biology_Alberts_212
Cell_Biology_Alberts
Molecules, such as alcohols, that contain polar bonds and that can form hydrogen bonds with water dissolve readily in water. Molecules carrying charges (ions) likewise interact favorably with water. Such molecules are termed hydrophilic, meaning that they are water-loving. Many of the molecules in the aqueous environment of a cell necessarily fall into this category, including sugars, DNA, RNA, and most proteins. Hydrophobic (water-hating) molecules, by contrast, are uncharged and form few or no hydrogen bonds, and so do not dissolve in water. Hydrocarbons are an important example. In these molecules all of the H atoms are covalently linked to C atoms by a largely nonpolar bond; thus they cannot form effective hydrogen bonds to other molecules (see Panel 2–1, p. 90). This makes the hydrocarbon as a whole hydrophobic—a property that is exploited in cells, whose membranes are constructed from molecules that have long hydrocarbon tails, as we see in Chapter 10.
Cell_Biology_Alberts. Molecules, such as alcohols, that contain polar bonds and that can form hydrogen bonds with water dissolve readily in water. Molecules carrying charges (ions) likewise interact favorably with water. Such molecules are termed hydrophilic, meaning that they are water-loving. Many of the molecules in the aqueous environment of a cell necessarily fall into this category, including sugars, DNA, RNA, and most proteins. Hydrophobic (water-hating) molecules, by contrast, are uncharged and form few or no hydrogen bonds, and so do not dissolve in water. Hydrocarbons are an important example. In these molecules all of the H atoms are covalently linked to C atoms by a largely nonpolar bond; thus they cannot form effective hydrogen bonds to other molecules (see Panel 2–1, p. 90). This makes the hydrocarbon as a whole hydrophobic—a property that is exploited in cells, whose membranes are constructed from molecules that have long hydrocarbon tails, as we see in Chapter 10.
Cell_Biology_Alberts_213
Cell_Biology_Alberts
four Types of noncovalent attractions help Bring molecules Together in Cells Much of biology depends on the specific binding of different molecules caused by three types of noncovalent bonds: electrostatic attractions (ionic bonds), hydrogen bonds, and van der Waals attractions; and on a fourth factor that can push molecules together: the hydrophobic force. The properties of the four types of noncovalent attractions are presented in Panel 2–3 (pp. 94–95). Although each
Cell_Biology_Alberts. four Types of noncovalent attractions help Bring molecules Together in Cells Much of biology depends on the specific binding of different molecules caused by three types of noncovalent bonds: electrostatic attractions (ionic bonds), hydrogen bonds, and van der Waals attractions; and on a fourth factor that can push molecules together: the hydrophobic force. The properties of the four types of noncovalent attractions are presented in Panel 2–3 (pp. 94–95). Although each
Cell_Biology_Alberts_214
Cell_Biology_Alberts
Figure 2–2 Some energies important for cells. a crucial property of any bond— covalent or noncovalent—is its strength. Bond strength is measured by the amount of energy that must be supplied to break it, expressed in units of either kilojoules per mole (kJ/mole) or kilocalories per mole (kcal/mole). Thus if 100 kJ of energy must be supplied to break 6 × 1023 bonds of a specific type (that is, 1 mole of these bonds), then the strength of that bond is 100 kJ/mole. note that, in this diagram, energies are compared on a logarithmic scale. Typical strengths and lengths of the main classes of chemical bonds are given in Table 2–1.
Cell_Biology_Alberts. Figure 2–2 Some energies important for cells. a crucial property of any bond— covalent or noncovalent—is its strength. Bond strength is measured by the amount of energy that must be supplied to break it, expressed in units of either kilojoules per mole (kJ/mole) or kilocalories per mole (kcal/mole). Thus if 100 kJ of energy must be supplied to break 6 × 1023 bonds of a specific type (that is, 1 mole of these bonds), then the strength of that bond is 100 kJ/mole. note that, in this diagram, energies are compared on a logarithmic scale. Typical strengths and lengths of the main classes of chemical bonds are given in Table 2–1.
Cell_Biology_Alberts_215
Cell_Biology_Alberts
one joule (J) is the amount of energy required to move an object a distance of one meter against a force of one newton. This measure of energy is derived from the si units (système internationale d’Unités) universally employed by physical scientists. a second unit of energy, often used by cell biologists, is the kilocalorie (kcal); one calorie is the amount of energy needed to raise the temperature of 1 gram of water by 1°C. one kJ is equal to 0.239 kcal (1 kcal = 4.18 kJ). Figure 2–3 Schematic indicating how two macromolecules with complementary surfaces can bind tightly to one another through noncovalent interactions. noncovalent chemical bonds have less than 1/20 the strength of a covalent bond. They are able to produce tight binding only when many of them are formed simultaneously. although only electrostatic attractions are illustrated here, in reality all four noncovalent forces often contribute to holding two macromolecules together (Movie 2.1).
Cell_Biology_Alberts. one joule (J) is the amount of energy required to move an object a distance of one meter against a force of one newton. This measure of energy is derived from the si units (système internationale d’Unités) universally employed by physical scientists. a second unit of energy, often used by cell biologists, is the kilocalorie (kcal); one calorie is the amount of energy needed to raise the temperature of 1 gram of water by 1°C. one kJ is equal to 0.239 kcal (1 kcal = 4.18 kJ). Figure 2–3 Schematic indicating how two macromolecules with complementary surfaces can bind tightly to one another through noncovalent interactions. noncovalent chemical bonds have less than 1/20 the strength of a covalent bond. They are able to produce tight binding only when many of them are formed simultaneously. although only electrostatic attractions are illustrated here, in reality all four noncovalent forces often contribute to holding two macromolecules together (Movie 2.1).
Cell_Biology_Alberts_216
Cell_Biology_Alberts
individual noncovalent attraction would be much too weak to be effective in the face of thermal motions, their energies can sum to create a strong force between two separate molecules. Thus sets of noncovalent attractions often allow the complementary surfaces of two macromolecules to hold those two macromolecules together (Figure 2–3). Table 2–1 compares noncovalent bond strengths to that of a typical covalent bond, both in the presence and in the absence of water. Note that, by forming competing interactions with the involved molecules, water greatly reduces the strength of both electrostatic attractions and hydrogen bonds.
Cell_Biology_Alberts. individual noncovalent attraction would be much too weak to be effective in the face of thermal motions, their energies can sum to create a strong force between two separate molecules. Thus sets of noncovalent attractions often allow the complementary surfaces of two macromolecules to hold those two macromolecules together (Figure 2–3). Table 2–1 compares noncovalent bond strengths to that of a typical covalent bond, both in the presence and in the absence of water. Note that, by forming competing interactions with the involved molecules, water greatly reduces the strength of both electrostatic attractions and hydrogen bonds.
Cell_Biology_Alberts_217
Cell_Biology_Alberts
The structure of a typical hydrogen bond is illustrated in Figure 2–4. This bond represents a special form of polar interaction in which an electropositive hydrogen atom is shared by two electronegative atoms. Its hydrogen can be viewed as a proton that has partially dissociated from a donor atom, allowing it to be shared by a second acceptor atom. Unlike a typical electrostatic interaction, this bond is highly directional—being strongest when a straight line can be drawn between all three of the involved atoms.
Cell_Biology_Alberts. The structure of a typical hydrogen bond is illustrated in Figure 2–4. This bond represents a special form of polar interaction in which an electropositive hydrogen atom is shared by two electronegative atoms. Its hydrogen can be viewed as a proton that has partially dissociated from a donor atom, allowing it to be shared by a second acceptor atom. Unlike a typical electrostatic interaction, this bond is highly directional—being strongest when a straight line can be drawn between all three of the involved atoms.
Cell_Biology_Alberts_218
Cell_Biology_Alberts
The fourth effect that often brings molecules together in water is not, strictly speaking, a bond at all. However, a very important hydrophobic force is caused by a pushing of nonpolar surfaces out of the hydrogen-bonded water network, where they would otherwise physically interfere with the highly favorable interactions between water molecules. Bringing any two nonpolar surfaces together reduces their contact with water; in this sense, the force is nonspecific. Nevertheless, we shall see in Chapter 3 that hydrophobic forces are central to the proper folding of protein molecules.
Cell_Biology_Alberts. The fourth effect that often brings molecules together in water is not, strictly speaking, a bond at all. However, a very important hydrophobic force is caused by a pushing of nonpolar surfaces out of the hydrogen-bonded water network, where they would otherwise physically interfere with the highly favorable interactions between water molecules. Bringing any two nonpolar surfaces together reduces their contact with water; in this sense, the force is nonspecific. Nevertheless, we shall see in Chapter 3 that hydrophobic forces are central to the proper folding of protein molecules.
Cell_Biology_Alberts_219
Cell_Biology_Alberts
One of the simplest kinds of chemical reaction, and one that has profound significance in cells, takes place when a molecule containing a highly polar covalent bond between a hydrogen and another atom dissolves in water. The hydrogen atom in such a molecule has given up its electron almost entirely to the companion atom, and so exists as an almost naked positively charged hydrogen nucleus—in *an ionic bond is an electrostatic attraction between two fully charged atoms. **Values in parentheses are kcal/mole. 1 kJ = 0.239 kcal and 1 kcal = 4.18 kJ. (A) hydrogen bond ~0.3 nm long covalent bond ~0.1 nm long Figure 2–4 Hydrogen bonds. (a) Ball-andstick model of a typical hydrogen bond. The distance between the hydrogen and the oxygen atom here is less than the sum of their van der Waals radii, indicating a partial sharing of electrons. (B) The most common hydrogen bonds in cells.
Cell_Biology_Alberts. One of the simplest kinds of chemical reaction, and one that has profound significance in cells, takes place when a molecule containing a highly polar covalent bond between a hydrogen and another atom dissolves in water. The hydrogen atom in such a molecule has given up its electron almost entirely to the companion atom, and so exists as an almost naked positively charged hydrogen nucleus—in *an ionic bond is an electrostatic attraction between two fully charged atoms. **Values in parentheses are kcal/mole. 1 kJ = 0.239 kcal and 1 kcal = 4.18 kJ. (A) hydrogen bond ~0.3 nm long covalent bond ~0.1 nm long Figure 2–4 Hydrogen bonds. (a) Ball-andstick model of a typical hydrogen bond. The distance between the hydrogen and the oxygen atom here is less than the sum of their van der Waals radii, indicating a partial sharing of electrons. (B) The most common hydrogen bonds in cells.
Cell_Biology_Alberts_220
Cell_Biology_Alberts
H2O H2O molecule to H3O+ OH– the other hydronium hydroxyl(B) ion ion other words, a proton (H+). When the polar molecule becomes surrounded by water molecules, the proton will be attracted to the partial negative charge on the O atom of an adjacent water molecule. This proton can easily dissociate from its original partner and associate instead with the oxygen atom of the water molecule, generating a hydronium ion (H3O+) (Figure 2–5A). The reverse reaction also takes place very readily, so in the aqueous solution protons are constantly flitting to and fro between one molecule and another.
Cell_Biology_Alberts. H2O H2O molecule to H3O+ OH– the other hydronium hydroxyl(B) ion ion other words, a proton (H+). When the polar molecule becomes surrounded by water molecules, the proton will be attracted to the partial negative charge on the O atom of an adjacent water molecule. This proton can easily dissociate from its original partner and associate instead with the oxygen atom of the water molecule, generating a hydronium ion (H3O+) (Figure 2–5A). The reverse reaction also takes place very readily, so in the aqueous solution protons are constantly flitting to and fro between one molecule and another.
Cell_Biology_Alberts_221
Cell_Biology_Alberts
Substances that release protons when they dissolve in water, thus forming H3O+, are termed acids. The higher the concentration of H3O+, the more acidic the solution. H3O+ is present even in pure water, at a concentration of 10–7 M, as a result of the movement of protons from one water molecule to another (Figure 2–5B). By convention, the H3O+ concentration is usually referred to as the H+ concentration, even though most protons in an aqueous solution are present as H3O+. To avoid the use of unwieldy numbers, the concentration of H3O+ is expressed using a logarithmic scale called the pH scale. Pure water has a pH of 7.0 and is said to be neutral—that is, neither acidic (pH <7) nor basic (pH >7).
Cell_Biology_Alberts. Substances that release protons when they dissolve in water, thus forming H3O+, are termed acids. The higher the concentration of H3O+, the more acidic the solution. H3O+ is present even in pure water, at a concentration of 10–7 M, as a result of the movement of protons from one water molecule to another (Figure 2–5B). By convention, the H3O+ concentration is usually referred to as the H+ concentration, even though most protons in an aqueous solution are present as H3O+. To avoid the use of unwieldy numbers, the concentration of H3O+ is expressed using a logarithmic scale called the pH scale. Pure water has a pH of 7.0 and is said to be neutral—that is, neither acidic (pH <7) nor basic (pH >7).
Cell_Biology_Alberts_222
Cell_Biology_Alberts
Acids are characterized as being strong or weak, depending on how readily they give up their protons to water. Strong acids, such as hydrochloric acid (HCl), lose their protons quickly. Acetic acid, on the other hand, is a weak acid because it holds on to its proton more tightly when dissolved in water. Many of the acids important in the cell—such as molecules containing a carboxyl (COOH) group— are weak acids (see Panel 2–2, pp. 92–93). Because the proton of a hydronium ion can be passed readily to many types of molecules in cells, altering their character, the concentration of H3O+ inside a cell (the acidity) must be closely regulated. Acids—especially weak acids—will give up their protons more readily if the concentration of H3O+ in solution is low and will tend to receive them back if the concentration in solution is high.
Cell_Biology_Alberts. Acids are characterized as being strong or weak, depending on how readily they give up their protons to water. Strong acids, such as hydrochloric acid (HCl), lose their protons quickly. Acetic acid, on the other hand, is a weak acid because it holds on to its proton more tightly when dissolved in water. Many of the acids important in the cell—such as molecules containing a carboxyl (COOH) group— are weak acids (see Panel 2–2, pp. 92–93). Because the proton of a hydronium ion can be passed readily to many types of molecules in cells, altering their character, the concentration of H3O+ inside a cell (the acidity) must be closely regulated. Acids—especially weak acids—will give up their protons more readily if the concentration of H3O+ in solution is low and will tend to receive them back if the concentration in solution is high.
Cell_Biology_Alberts_223
Cell_Biology_Alberts
The opposite of an acid is a base. Any molecule capable of accepting a proton from a water molecule is called a base. Sodium hydroxide (NaOH) is basic (the term alkaline is also used) because it dissociates readily in aqueous solution to form Na+ ions and OH– ions. Because of this property, NaOH is called a strong base. More important in living cells, however, are the weak bases—those that have a weak tendency to reversibly accept a proton from water. Many biologically important molecules contain an amino (NH2) group. This group is a weak base that can generate OH– by taking a proton from water: –NH2 + H2O →–NH3+ + OH– (see Panel 2–2, pp. 92–93).
Cell_Biology_Alberts. The opposite of an acid is a base. Any molecule capable of accepting a proton from a water molecule is called a base. Sodium hydroxide (NaOH) is basic (the term alkaline is also used) because it dissociates readily in aqueous solution to form Na+ ions and OH– ions. Because of this property, NaOH is called a strong base. More important in living cells, however, are the weak bases—those that have a weak tendency to reversibly accept a proton from water. Many biologically important molecules contain an amino (NH2) group. This group is a weak base that can generate OH– by taking a proton from water: –NH2 + H2O →–NH3+ + OH– (see Panel 2–2, pp. 92–93).
Cell_Biology_Alberts_224
Cell_Biology_Alberts
Because an OH– ion combines with a H3O+ ion to form two water molecules, an increase in the OH– concentration forces a decrease in the concentration of H3O+, and vice versa. A pure solution of water contains an equal concentration (10–7 M) of both ions, rendering it neutral. The interior of a cell is also kept close to neutrality by the presence of buffers: weak acids and bases that can release or take up protons near pH 7, keeping the environment of the cell relatively constant under a variety of conditions. Figure 2–5 Protons readily move in aqueous solutions. (a) The reaction that takes place when a molecule of acetic acid dissolves in water. at ph 7, nearly all of the acetic acid is present as acetate ion. (B) Water molecules are continuously exchanging protons with each other to form hydronium and hydroxyl ions. These ions in turn rapidly recombine to form water molecules. a Cell is formed from Carbon Compounds
Cell_Biology_Alberts. Because an OH– ion combines with a H3O+ ion to form two water molecules, an increase in the OH– concentration forces a decrease in the concentration of H3O+, and vice versa. A pure solution of water contains an equal concentration (10–7 M) of both ions, rendering it neutral. The interior of a cell is also kept close to neutrality by the presence of buffers: weak acids and bases that can release or take up protons near pH 7, keeping the environment of the cell relatively constant under a variety of conditions. Figure 2–5 Protons readily move in aqueous solutions. (a) The reaction that takes place when a molecule of acetic acid dissolves in water. at ph 7, nearly all of the acetic acid is present as acetate ion. (B) Water molecules are continuously exchanging protons with each other to form hydronium and hydroxyl ions. These ions in turn rapidly recombine to form water molecules. a Cell is formed from Carbon Compounds
Cell_Biology_Alberts_225
Cell_Biology_Alberts
a Cell is formed from Carbon Compounds Having reviewed the ways atoms combine into molecules and how these molecules behave in an aqueous environment, we now examine the main classes of small molecules found in cells. We shall see that a few categories of molecules, formed from a handful of different elements, give rise to all the extraordinary richness of form and behavior shown by living things.
Cell_Biology_Alberts. a Cell is formed from Carbon Compounds Having reviewed the ways atoms combine into molecules and how these molecules behave in an aqueous environment, we now examine the main classes of small molecules found in cells. We shall see that a few categories of molecules, formed from a handful of different elements, give rise to all the extraordinary richness of form and behavior shown by living things.
Cell_Biology_Alberts_226
Cell_Biology_Alberts
If we disregard water and inorganic ions such as potassium, nearly all the molecules in a cell are based on carbon. Carbon is outstanding among all the elements in its ability to form large molecules; silicon is a poor second. Because carbon is small and has four electrons and four vacancies in its outermost shell, a carbon atom can form four covalent bonds with other atoms. Most important, one carbon atom can join to other carbon atoms through highly stable covalent C–C bonds to form chains and rings and hence generate large and complex molecules with no obvious upper limit to their size. The carbon compounds made by cells are called organic molecules. In contrast, all other molecules, including water, are said to be inorganic.
Cell_Biology_Alberts. If we disregard water and inorganic ions such as potassium, nearly all the molecules in a cell are based on carbon. Carbon is outstanding among all the elements in its ability to form large molecules; silicon is a poor second. Because carbon is small and has four electrons and four vacancies in its outermost shell, a carbon atom can form four covalent bonds with other atoms. Most important, one carbon atom can join to other carbon atoms through highly stable covalent C–C bonds to form chains and rings and hence generate large and complex molecules with no obvious upper limit to their size. The carbon compounds made by cells are called organic molecules. In contrast, all other molecules, including water, are said to be inorganic.
Cell_Biology_Alberts_227
Cell_Biology_Alberts
Certain combinations of atoms, such as the methyl (–CH3), hydroxyl (–OH), carboxyl (–COOH), carbonyl (–C=O), phosphate (–PO32–), sulfhydryl (–SH), and amino (–NH2) groups, occur repeatedly in the molecules made by cells. Each such chemical group has distinct chemical and physical properties that influence the behavior of the molecule in which the group occurs. The most common chemical groups and some of their properties are summarized in Panel 2–1, pp. 90–91. Cells Contain four major families of small organic molecules
Cell_Biology_Alberts. Certain combinations of atoms, such as the methyl (–CH3), hydroxyl (–OH), carboxyl (–COOH), carbonyl (–C=O), phosphate (–PO32–), sulfhydryl (–SH), and amino (–NH2) groups, occur repeatedly in the molecules made by cells. Each such chemical group has distinct chemical and physical properties that influence the behavior of the molecule in which the group occurs. The most common chemical groups and some of their properties are summarized in Panel 2–1, pp. 90–91. Cells Contain four major families of small organic molecules
Cell_Biology_Alberts_228
Cell_Biology_Alberts
Cells Contain four major families of small organic molecules The small organic molecules of the cell are carbon-based compounds that have molecular weights in the range of 100–1000 and contain up to 30 or so carbon atoms. They are usually found free in solution and have many different fates. Some are used as monomer subunits to construct giant polymeric macromolecules— proteins, nucleic acids, and large polysaccharides. Others act as energy sources and are broken down and transformed into other small molecules in a maze of intracellular metabolic pathways. Many small molecules have more than one role in the cell—for example, acting both as a potential subunit for a macromolecule and as an energy source. Small organic molecules are much less abundant than the organic macromolecules, accounting for only about one-tenth of the total mass of organic matter in a cell. As a rough guess, there may be a thousand different kinds of these small molecules in a typical cell.
Cell_Biology_Alberts. Cells Contain four major families of small organic molecules The small organic molecules of the cell are carbon-based compounds that have molecular weights in the range of 100–1000 and contain up to 30 or so carbon atoms. They are usually found free in solution and have many different fates. Some are used as monomer subunits to construct giant polymeric macromolecules— proteins, nucleic acids, and large polysaccharides. Others act as energy sources and are broken down and transformed into other small molecules in a maze of intracellular metabolic pathways. Many small molecules have more than one role in the cell—for example, acting both as a potential subunit for a macromolecule and as an energy source. Small organic molecules are much less abundant than the organic macromolecules, accounting for only about one-tenth of the total mass of organic matter in a cell. As a rough guess, there may be a thousand different kinds of these small molecules in a typical cell.
Cell_Biology_Alberts_229
Cell_Biology_Alberts
All organic molecules are synthesized from and are broken down into the same set of simple compounds. As a consequence, the compounds in a cell are chemically related and most can be classified into a few distinct families. Broadly speaking, cells contain four major families of small organic molecules: the sugars, the fatty acids, the nucleotides, and the amino acids (Figure 2–6). Although many compounds present in cells do not fit into these categories, these four families of small organic molecules, together with the macromolecules made by linking them into long chains, account for a large fraction of the cell mass. Amino acids and the proteins that they form will be the subject of Chapter 3. A summary of the structures and properties of the remaining three families— sugars, fatty acids, and nucleotides—is presented in Panels 2–4, 2–5, and 2–6, respectively (see pages 96–101). The Chemistry of Cells is Dominated by macromolecules with Remarkable properties
Cell_Biology_Alberts. All organic molecules are synthesized from and are broken down into the same set of simple compounds. As a consequence, the compounds in a cell are chemically related and most can be classified into a few distinct families. Broadly speaking, cells contain four major families of small organic molecules: the sugars, the fatty acids, the nucleotides, and the amino acids (Figure 2–6). Although many compounds present in cells do not fit into these categories, these four families of small organic molecules, together with the macromolecules made by linking them into long chains, account for a large fraction of the cell mass. Amino acids and the proteins that they form will be the subject of Chapter 3. A summary of the structures and properties of the remaining three families— sugars, fatty acids, and nucleotides—is presented in Panels 2–4, 2–5, and 2–6, respectively (see pages 96–101). The Chemistry of Cells is Dominated by macromolecules with Remarkable properties
Cell_Biology_Alberts_230
Cell_Biology_Alberts
The Chemistry of Cells is Dominated by macromolecules with Remarkable properties By weight, macromolecules are the most abundant carbon-containing molecules in a living cell (Figure 2–7). They are the principal building blocks from which a cell is constructed and also the components that confer the most distinctive properties of living things. The macromolecules in cells are polymers that are constructed by covalently linking small organic molecules (called monomers) into of the cell of the cell SUGARS FATTY ACIDS POLYSACCHARIDES AMINO ACIDS NUCLEOTIDES PROTEINS FATS, LIPIDS, MEMBRANES NUCLEIC ACIDS
Cell_Biology_Alberts. The Chemistry of Cells is Dominated by macromolecules with Remarkable properties By weight, macromolecules are the most abundant carbon-containing molecules in a living cell (Figure 2–7). They are the principal building blocks from which a cell is constructed and also the components that confer the most distinctive properties of living things. The macromolecules in cells are polymers that are constructed by covalently linking small organic molecules (called monomers) into of the cell of the cell SUGARS FATTY ACIDS POLYSACCHARIDES AMINO ACIDS NUCLEOTIDES PROTEINS FATS, LIPIDS, MEMBRANES NUCLEIC ACIDS
Cell_Biology_Alberts_231
Cell_Biology_Alberts
SUGARS FATTY ACIDS POLYSACCHARIDES AMINO ACIDS NUCLEOTIDES PROTEINS FATS, LIPIDS, MEMBRANES NUCLEIC ACIDS Figure 2–6 The four main families of small organic molecules in cells. These small molecules form the monomeric building blocks, or subunits, for most of the macromolecules and other assemblies of the cell. some, such as the sugars and the fatty acids, are also energy sources. Their structures are outlined here and shown in more detail in the panels at the end of this chapter and in Chapter 3. long chains (Figure 2–8). They have remarkable properties that could not have been predicted from their simple constituents.
Cell_Biology_Alberts. SUGARS FATTY ACIDS POLYSACCHARIDES AMINO ACIDS NUCLEOTIDES PROTEINS FATS, LIPIDS, MEMBRANES NUCLEIC ACIDS Figure 2–6 The four main families of small organic molecules in cells. These small molecules form the monomeric building blocks, or subunits, for most of the macromolecules and other assemblies of the cell. some, such as the sugars and the fatty acids, are also energy sources. Their structures are outlined here and shown in more detail in the panels at the end of this chapter and in Chapter 3. long chains (Figure 2–8). They have remarkable properties that could not have been predicted from their simple constituents.
Cell_Biology_Alberts_232
Cell_Biology_Alberts
long chains (Figure 2–8). They have remarkable properties that could not have been predicted from their simple constituents. Proteins are abundant and spectacularly versatile, performing thousands of distinct functions in cells. Many proteins serve as enzymes, the catalysts that facilitate the many covalent bond-making and bond-breaking reactions that the cell needs. Enzymes catalyze all of the reactions whereby cells extract energy from food molecules, for example, and an enzyme called ribulose bisphosphate carboxylase helps to convert CO2 to sugars in photosynthetic organisms, producing most of the organic matter needed for life on Earth. Other proteins are used to build structural components, such as tubulin, a protein that self-assembles to make the cell’s long microtubules, or histones, proteins that compact the DNA in chromosomes. Yet other proteins act as molecular motors to produce force and
Cell_Biology_Alberts. long chains (Figure 2–8). They have remarkable properties that could not have been predicted from their simple constituents. Proteins are abundant and spectacularly versatile, performing thousands of distinct functions in cells. Many proteins serve as enzymes, the catalysts that facilitate the many covalent bond-making and bond-breaking reactions that the cell needs. Enzymes catalyze all of the reactions whereby cells extract energy from food molecules, for example, and an enzyme called ribulose bisphosphate carboxylase helps to convert CO2 to sugars in photosynthetic organisms, producing most of the organic matter needed for life on Earth. Other proteins are used to build structural components, such as tubulin, a protein that self-assembles to make the cell’s long microtubules, or histones, proteins that compact the DNA in chromosomes. Yet other proteins act as molecular motors to produce force and
Cell_Biology_Alberts_233
Cell_Biology_Alberts
Figure 2–7 The distribution of molecules in cells. The approximate composition of a bacterial cell is shown by weight. The composition of an animal cell is similar, even though its volume is roughly 1000 times greater. note that macromolecules dominate. The major inorganic ions include na+, K+, mg2+, Ca2+, and Cl–. movement, as for myosin in muscle. Proteins perform many other functions, and we shall examine the molecular basis for many of them later in this book.
Cell_Biology_Alberts. Figure 2–7 The distribution of molecules in cells. The approximate composition of a bacterial cell is shown by weight. The composition of an animal cell is similar, even though its volume is roughly 1000 times greater. note that macromolecules dominate. The major inorganic ions include na+, K+, mg2+, Ca2+, and Cl–. movement, as for myosin in muscle. Proteins perform many other functions, and we shall examine the molecular basis for many of them later in this book.
Cell_Biology_Alberts_234
Cell_Biology_Alberts
Although the chemical reactions for adding subunits to each polymer are different in detail for proteins, nucleic acids, and polysaccharides, they share important features. Each polymer grows by the addition of a monomer onto the end of a growing chain in a condensation reaction, in which one molecule of water is lost with each subunit added (Figure 2–9). The stepwise polymerization of monomers into a long chain is a simple way to manufacture a large, complex molecule, since the subunits are added by the same reaction performed over and over again by the same set of enzymes. Apart from some of the polysaccharides, most macromolecules are made from a limited set of monomers that are slightly different from one another—for example, the 20 different amino acids from which proteins are made. It is critical to life that the polymer chain is not assembled at random from these subunits; instead the subunits are added in a precise order, or sequence. The elaborate mechanisms that allow
Cell_Biology_Alberts. Although the chemical reactions for adding subunits to each polymer are different in detail for proteins, nucleic acids, and polysaccharides, they share important features. Each polymer grows by the addition of a monomer onto the end of a growing chain in a condensation reaction, in which one molecule of water is lost with each subunit added (Figure 2–9). The stepwise polymerization of monomers into a long chain is a simple way to manufacture a large, complex molecule, since the subunits are added by the same reaction performed over and over again by the same set of enzymes. Apart from some of the polysaccharides, most macromolecules are made from a limited set of monomers that are slightly different from one another—for example, the 20 different amino acids from which proteins are made. It is critical to life that the polymer chain is not assembled at random from these subunits; instead the subunits are added in a precise order, or sequence. The elaborate mechanisms that allow
Cell_Biology_Alberts_235
Cell_Biology_Alberts
made. It is critical to life that the polymer chain is not assembled at random from these subunits; instead the subunits are added in a precise order, or sequence. The elaborate mechanisms that allow enzymes to accomplish this task are described in detail in Chapters 5 and 6.
Cell_Biology_Alberts. made. It is critical to life that the polymer chain is not assembled at random from these subunits; instead the subunits are added in a precise order, or sequence. The elaborate mechanisms that allow enzymes to accomplish this task are described in detail in Chapters 5 and 6.
Cell_Biology_Alberts_236
Cell_Biology_Alberts
noncovalent Bonds specify Both the precise shape of a macromolecule and its Binding to other molecules Most of the covalent bonds in a macromolecule allow rotation of the atoms they join, giving the polymer chain great flexibility. In principle, this allows a macromolecule to adopt an almost unlimited number of shapes, or conformations, as random thermal energy causes the polymer chain to writhe and rotate. However, the shapes of most biological macromolecules are highly constrained because of the many weak noncovalent bonds that form between different parts of the same molecule. If these noncovalent bonds are formed in sufficient numbers, the polymer chain can strongly prefer one particular conformation, determined by the linear sequence of monomers in its chain. Most protein molecules and many of the small RNA molecules found in cells fold tightly into a highly preferred conformation in this way (Figure 2–10).
Cell_Biology_Alberts. noncovalent Bonds specify Both the precise shape of a macromolecule and its Binding to other molecules Most of the covalent bonds in a macromolecule allow rotation of the atoms they join, giving the polymer chain great flexibility. In principle, this allows a macromolecule to adopt an almost unlimited number of shapes, or conformations, as random thermal energy causes the polymer chain to writhe and rotate. However, the shapes of most biological macromolecules are highly constrained because of the many weak noncovalent bonds that form between different parts of the same molecule. If these noncovalent bonds are formed in sufficient numbers, the polymer chain can strongly prefer one particular conformation, determined by the linear sequence of monomers in its chain. Most protein molecules and many of the small RNA molecules found in cells fold tightly into a highly preferred conformation in this way (Figure 2–10).
Cell_Biology_Alberts_237
Cell_Biology_Alberts
The four types of noncovalent interactions important in biological molecules were presented earlier, and they are discussed further in Panel 2–3 (pp. 94–95). In addition to folding biological macromolecules into unique shapes, they can also add up to create a strong attraction between two different molecules (see Figure 2–3). This form of molecular interaction provides for great specificity, inasmuch as the close multipoint contacts required for strong binding make it possible for a macromolecule to select out—through binding—just one of the many thousands of other types of molecules present inside a cell. Moreover, because the strength of the binding depends on the number of noncovalent bonds that are formed, interactions of almost any affinity are possible—allowing rapid dissociation where appropriate.
Cell_Biology_Alberts. The four types of noncovalent interactions important in biological molecules were presented earlier, and they are discussed further in Panel 2–3 (pp. 94–95). In addition to folding biological macromolecules into unique shapes, they can also add up to create a strong attraction between two different molecules (see Figure 2–3). This form of molecular interaction provides for great specificity, inasmuch as the close multipoint contacts required for strong binding make it possible for a macromolecule to select out—through binding—just one of the many thousands of other types of molecules present inside a cell. Moreover, because the strength of the binding depends on the number of noncovalent bonds that are formed, interactions of almost any affinity are possible—allowing rapid dissociation where appropriate.
Cell_Biology_Alberts_238
Cell_Biology_Alberts
As we discuss next, binding of this type underlies all biological catalysis, making it possible for proteins to function as enzymes. In addition, noncovalent interactions allow macromolecules to be used as building blocks for the formation of Figure 2–8 Three families of macromolecules. each is a polymer formed from small molecules (called monomers) linked together by covalent bonds. Figure 2–9 Condensation and hydrolysis as opposite reactions. The macromolecules of the cell are polymers that are formed from subunits (or monomers) by a condensation reaction, and they are broken down by hydrolysis. The condensation reactions are all energetically unfavorable; thus polymer formation requires an energy input, as will be described in the text.
Cell_Biology_Alberts. As we discuss next, binding of this type underlies all biological catalysis, making it possible for proteins to function as enzymes. In addition, noncovalent interactions allow macromolecules to be used as building blocks for the formation of Figure 2–8 Three families of macromolecules. each is a polymer formed from small molecules (called monomers) linked together by covalent bonds. Figure 2–9 Condensation and hydrolysis as opposite reactions. The macromolecules of the cell are polymers that are formed from subunits (or monomers) by a condensation reaction, and they are broken down by hydrolysis. The condensation reactions are all energetically unfavorable; thus polymer formation requires an energy input, as will be described in the text.
Cell_Biology_Alberts_239
Cell_Biology_Alberts
Figure 2–10 The folding of proteins and RNa molecules into a particularly stable three-dimensional shape, or conformation. if the noncovalent bonds maintaining the stable conformation are disrupted, the molecule becomes a flexible chain that loses its biological activity. larger structures, thereby forming intricate machines with multiple moving parts that perform such complex tasks as DNA replication and protein synthesis (Figure 2–11).
Cell_Biology_Alberts. Figure 2–10 The folding of proteins and RNa molecules into a particularly stable three-dimensional shape, or conformation. if the noncovalent bonds maintaining the stable conformation are disrupted, the molecule becomes a flexible chain that loses its biological activity. larger structures, thereby forming intricate machines with multiple moving parts that perform such complex tasks as DNA replication and protein synthesis (Figure 2–11).
Cell_Biology_Alberts_240
Cell_Biology_Alberts
Living organisms are autonomous, self-propagating chemical systems. They are formed from a distinctive and restricted set of small carbon-based molecules that are essentially the same for every living species. Each of these small molecules is composed of a small set of atoms linked to each other in a precise configuration through covalent bonds. The main categories are sugars, fatty acids, amino acids, and nucleotides. Sugars are a primary source of chemical energy for cells and can be incorporated into polysaccharides for energy storage. Fatty acids are also important for energy storage, but their most critical function is in the formation of cell membranes. Long chains of amino acids form the remarkably diverse and versatile macromolecules known as proteins. Nucleotides play a central part in energy transfer, while also serving as the subunits for the informational macromolecules, RNA and DNA.
Cell_Biology_Alberts. Living organisms are autonomous, self-propagating chemical systems. They are formed from a distinctive and restricted set of small carbon-based molecules that are essentially the same for every living species. Each of these small molecules is composed of a small set of atoms linked to each other in a precise configuration through covalent bonds. The main categories are sugars, fatty acids, amino acids, and nucleotides. Sugars are a primary source of chemical energy for cells and can be incorporated into polysaccharides for energy storage. Fatty acids are also important for energy storage, but their most critical function is in the formation of cell membranes. Long chains of amino acids form the remarkably diverse and versatile macromolecules known as proteins. Nucleotides play a central part in energy transfer, while also serving as the subunits for the informational macromolecules, RNA and DNA.
Cell_Biology_Alberts_241
Cell_Biology_Alberts
Most of the dry mass of a cell consists of macromolecules that have been produced as linear polymers of amino acids (proteins) or nucleotides (DNA and RNA), covalently linked to each other in an exact order. Most of the protein molecules and many of the RNAs fold into a unique conformation that is determined by their sequence of subunits. This folding process creates unique surfaces, and it depends on a large set of weak attractions produced by noncovalent forces between atoms. e.g., sugars, amino acids, and nucleotides e.g., globular proteins and RNA e.g., ribosome Figure 2–11 Small molecules become covalently linked to form macromolecules, which in turn assemble through noncovalent interactions to form large complexes. small molecules, proteins, and a ribosome are drawn approximately to scale. Ribosomes are a central part of the machinery that the cell uses to make proteins: each ribosome is formed as a complex of about 90 macromolecules (protein and Rna molecules).
Cell_Biology_Alberts. Most of the dry mass of a cell consists of macromolecules that have been produced as linear polymers of amino acids (proteins) or nucleotides (DNA and RNA), covalently linked to each other in an exact order. Most of the protein molecules and many of the RNAs fold into a unique conformation that is determined by their sequence of subunits. This folding process creates unique surfaces, and it depends on a large set of weak attractions produced by noncovalent forces between atoms. e.g., sugars, amino acids, and nucleotides e.g., globular proteins and RNA e.g., ribosome Figure 2–11 Small molecules become covalently linked to form macromolecules, which in turn assemble through noncovalent interactions to form large complexes. small molecules, proteins, and a ribosome are drawn approximately to scale. Ribosomes are a central part of the machinery that the cell uses to make proteins: each ribosome is formed as a complex of about 90 macromolecules (protein and Rna molecules).
Cell_Biology_Alberts_242
Cell_Biology_Alberts
These forces are of four types: electrostatic attractions, hydrogen bonds, van der Waals attractions, and an interaction between nonpolar groups caused by their hydrophobic expulsion from water. The same set of weak forces governs the specific binding of other molecules to macromolecules, making possible the myriad associations between biological molecules that produce the structure and the chemistry of a cell. CaTalYsis anD The Use of eneRGY BY Cells
Cell_Biology_Alberts. These forces are of four types: electrostatic attractions, hydrogen bonds, van der Waals attractions, and an interaction between nonpolar groups caused by their hydrophobic expulsion from water. The same set of weak forces governs the specific binding of other molecules to macromolecules, making possible the myriad associations between biological molecules that produce the structure and the chemistry of a cell. CaTalYsis anD The Use of eneRGY BY Cells
Cell_Biology_Alberts_243
Cell_Biology_Alberts
CaTalYsis anD The Use of eneRGY BY Cells One property of living things above all makes them seem almost miraculously different from nonliving matter: they create and maintain order, in a universe that is tending always to greater disorder (Figure 2–12). To create this order, the cells in a living organism must perform a never-ending stream of chemical reactions. In some of these reactions, small organic molecules—amino acids, sugars, nucleotides, and lipids—are being taken apart or modified to supply the many other small molecules that the cell requires. In other reactions, small molecules are being used to construct an enormously diverse range of proteins, nucleic acids, and other macromolecules that endow living systems with all of their most distinctive properties. Each cell can be viewed as a tiny chemical factory, performing many millions of reactions every second. Cell metabolism is organized by enzymes
Cell_Biology_Alberts. CaTalYsis anD The Use of eneRGY BY Cells One property of living things above all makes them seem almost miraculously different from nonliving matter: they create and maintain order, in a universe that is tending always to greater disorder (Figure 2–12). To create this order, the cells in a living organism must perform a never-ending stream of chemical reactions. In some of these reactions, small organic molecules—amino acids, sugars, nucleotides, and lipids—are being taken apart or modified to supply the many other small molecules that the cell requires. In other reactions, small molecules are being used to construct an enormously diverse range of proteins, nucleic acids, and other macromolecules that endow living systems with all of their most distinctive properties. Each cell can be viewed as a tiny chemical factory, performing many millions of reactions every second. Cell metabolism is organized by enzymes
Cell_Biology_Alberts_244
Cell_Biology_Alberts
Cell metabolism is organized by enzymes The chemical reactions that a cell carries out would normally occur only at much higher temperatures than those existing inside cells. For this reason, each reaction requires a specific boost in chemical reactivity. This requirement is crucial, because it allows the cell to control its chemistry. The control is exerted through specialized biological catalysts. These are almost always proteins called enzymes, although RNA catalysts also exist, called ribozymes. Each enzyme accelerates, or catalyzes, just one of the many possible kinds of reactions that a particular molecule might undergo. Enzyme-catalyzed reactions are connected in series, so that the product of one reaction becomes the starting material, or substrate, for the next (Figure 2–13). Long linear reaction pathways are in turn linked to one another, forming a maze of interconnected reactions that enable the cell to survive, grow, and reproduce.
Cell_Biology_Alberts. Cell metabolism is organized by enzymes The chemical reactions that a cell carries out would normally occur only at much higher temperatures than those existing inside cells. For this reason, each reaction requires a specific boost in chemical reactivity. This requirement is crucial, because it allows the cell to control its chemistry. The control is exerted through specialized biological catalysts. These are almost always proteins called enzymes, although RNA catalysts also exist, called ribozymes. Each enzyme accelerates, or catalyzes, just one of the many possible kinds of reactions that a particular molecule might undergo. Enzyme-catalyzed reactions are connected in series, so that the product of one reaction becomes the starting material, or substrate, for the next (Figure 2–13). Long linear reaction pathways are in turn linked to one another, forming a maze of interconnected reactions that enable the cell to survive, grow, and reproduce.
Cell_Biology_Alberts_245
Cell_Biology_Alberts
Two opposing streams of chemical reactions occur in cells: (1) the catabolic pathways break down foodstuffs into smaller molecules, thereby generating both a useful form of energy for the cell and some of the small molecules that the cell needs as building blocks, and (2) the anabolic, or biosynthetic, pathways use the 20 nm 50 nm 10 µm 0.5 mm 20 mm
Cell_Biology_Alberts. Two opposing streams of chemical reactions occur in cells: (1) the catabolic pathways break down foodstuffs into smaller molecules, thereby generating both a useful form of energy for the cell and some of the small molecules that the cell needs as building blocks, and (2) the anabolic, or biosynthetic, pathways use the 20 nm 50 nm 10 µm 0.5 mm 20 mm
Cell_Biology_Alberts_246
Cell_Biology_Alberts
Figure 2–12 biological structures are highly ordered. Well-defined, ornate, and beautiful spatial patterns can be found at every level of organization in living organisms. in order of increasing size: (a) protein molecules in the coat of a virus (a parasite that, although not technically alive, contains the same types of molecules as those found in living cells); (B) the regular array of microtubules seen in a cross section of a sperm tail; (C) surface contours of a pollen grain (a single cell); (D) cross section of a fern stem, showing the patterned arrangement of cells; and (e) a spiral arrangement of leaves in a succulent plant. (a, courtesy of Robert Grant, stéphane Crainic, and James m. hogle; B, courtesy of lewis Tilney; C, courtesy of Colin macfarlane and Chris Jeffree; D, courtesy of Jim haseloff.)
Cell_Biology_Alberts. Figure 2–12 biological structures are highly ordered. Well-defined, ornate, and beautiful spatial patterns can be found at every level of organization in living organisms. in order of increasing size: (a) protein molecules in the coat of a virus (a parasite that, although not technically alive, contains the same types of molecules as those found in living cells); (B) the regular array of microtubules seen in a cross section of a sperm tail; (C) surface contours of a pollen grain (a single cell); (D) cross section of a fern stem, showing the patterned arrangement of cells; and (e) a spiral arrangement of leaves in a succulent plant. (a, courtesy of Robert Grant, stéphane Crainic, and James m. hogle; B, courtesy of lewis Tilney; C, courtesy of Colin macfarlane and Chris Jeffree; D, courtesy of Jim haseloff.)
Cell_Biology_Alberts_247
Cell_Biology_Alberts
Figure 2–13 How a set of enzyme-catalyzed reactions generates a metabolic pathway. each enzyme catalyzes a particular chemical reaction, leaving the enzyme unchanged. in this example, a set of enzymes acting in series converts molecule a to molecule f, forming a metabolic pathway. (for a diagram of many of the reactions in a human cell, abbreviated as shown, see figure 2–63.) small molecules and the energy harnessed by catabolism to drive the synthesis of the many other molecules that form the cell. Together these two sets of reactions constitute the metabolism of the cell (Figure 2–14). The details of cell metabolism form the traditional subject of biochemistry and most of them need not concern us here. But the general principles by which cells obtain energy from their environment and use it to create order are central to cell biology. We begin with a discussion of why a constant input of energy is needed to sustain all living things.
Cell_Biology_Alberts. Figure 2–13 How a set of enzyme-catalyzed reactions generates a metabolic pathway. each enzyme catalyzes a particular chemical reaction, leaving the enzyme unchanged. in this example, a set of enzymes acting in series converts molecule a to molecule f, forming a metabolic pathway. (for a diagram of many of the reactions in a human cell, abbreviated as shown, see figure 2–63.) small molecules and the energy harnessed by catabolism to drive the synthesis of the many other molecules that form the cell. Together these two sets of reactions constitute the metabolism of the cell (Figure 2–14). The details of cell metabolism form the traditional subject of biochemistry and most of them need not concern us here. But the general principles by which cells obtain energy from their environment and use it to create order are central to cell biology. We begin with a discussion of why a constant input of energy is needed to sustain all living things.
Cell_Biology_Alberts_248
Cell_Biology_Alberts
Biological order is made possible by the Release of heat energy from Cells The universal tendency of things to become disordered is a fundamental law of physics—the second law of thermodynamics—which states that in the universe, or in any isolated system (a collection of matter that is completely isolated from the rest of the universe), the degree of disorder always increases. This law has such profound implications for life that we will restate it in several ways.
Cell_Biology_Alberts. Biological order is made possible by the Release of heat energy from Cells The universal tendency of things to become disordered is a fundamental law of physics—the second law of thermodynamics—which states that in the universe, or in any isolated system (a collection of matter that is completely isolated from the rest of the universe), the degree of disorder always increases. This law has such profound implications for life that we will restate it in several ways.
Cell_Biology_Alberts_249
Cell_Biology_Alberts
For example, we can present the second law in terms of probability by stating that systems will change spontaneously toward those arrangements that have the greatest probability. If we consider a box of 100 coins all lying heads up, a series of accidents that disturbs the box will tend to move the arrangement toward a mixture of 50 heads and 50 tails. The reason is simple: there is a huge number of possible arrangements of the individual coins in the mixture that can achieve the 50–50 result, but only one possible arrangement that keeps all of the coins oriented heads up. Because the 50–50 mixture is therefore the most probable, we say that it is more “disordered.” For the same reason, it is a common experience that one’s living space will become increasingly disordered without intentional effort: the movement toward disorder is a spontaneous process, requiring a periodic effort to reverse it (Figure 2–15).
Cell_Biology_Alberts. For example, we can present the second law in terms of probability by stating that systems will change spontaneously toward those arrangements that have the greatest probability. If we consider a box of 100 coins all lying heads up, a series of accidents that disturbs the box will tend to move the arrangement toward a mixture of 50 heads and 50 tails. The reason is simple: there is a huge number of possible arrangements of the individual coins in the mixture that can achieve the 50–50 result, but only one possible arrangement that keeps all of the coins oriented heads up. Because the 50–50 mixture is therefore the most probable, we say that it is more “disordered.” For the same reason, it is a common experience that one’s living space will become increasingly disordered without intentional effort: the movement toward disorder is a spontaneous process, requiring a periodic effort to reverse it (Figure 2–15).
Cell_Biology_Alberts_250
Cell_Biology_Alberts
The amount of disorder in a system can be quantified and expressed as the entropy of the system: the greater the disorder, the greater the entropy. Thus, another way to express the second law of thermodynamics is to say that systems will change spontaneously toward arrangements with greater entropy.
Cell_Biology_Alberts. The amount of disorder in a system can be quantified and expressed as the entropy of the system: the greater the disorder, the greater the entropy. Thus, another way to express the second law of thermodynamics is to say that systems will change spontaneously toward arrangements with greater entropy.
Cell_Biology_Alberts_251
Cell_Biology_Alberts
Living cells—by surviving, growing, and forming complex organisms—are generating order and thus might appear to defy the second law of thermodynamics. How is this possible? The answer is that a cell is not an isolated system: it takes in energy from its environment in the form of food, or as photons from the sun (or even, as in some chemosynthetic bacteria, from inorganic molecules alone). It then uses this energy to generate order within itself. In the course of the chemical reactions that generate order, the cell converts part of the energy it uses into heat. The heat is discharged into the cell’s environment and disorders the surroundings. As a result, the total entropy—that of the cell plus its surroundings—increases, as demanded by the second law of thermodynamics.
Cell_Biology_Alberts. Living cells—by surviving, growing, and forming complex organisms—are generating order and thus might appear to defy the second law of thermodynamics. How is this possible? The answer is that a cell is not an isolated system: it takes in energy from its environment in the form of food, or as photons from the sun (or even, as in some chemosynthetic bacteria, from inorganic molecules alone). It then uses this energy to generate order within itself. In the course of the chemical reactions that generate order, the cell converts part of the energy it uses into heat. The heat is discharged into the cell’s environment and disorders the surroundings. As a result, the total entropy—that of the cell plus its surroundings—increases, as demanded by the second law of thermodynamics.
Cell_Biology_Alberts_252
Cell_Biology_Alberts
To understand the principles governing these energy conversions, think of a cell surrounded by a sea of matter representing the rest of the universe. As the cell lives and grows, it creates internal order. But it constantly releases heat energy as it synthesizes molecules and assembles them into cell structures. Heat is energy in its most disordered form—the random jostling of molecules. When food the many molecules molecules that form the cell Figure 2–14 Schematic representation of the relationship between catabolic and anabolic pathways in metabolism. as suggested in this diagram, a major portion of the energy stored in the chemical bonds of food molecules is dissipated as heat. in addition, the mass of food required by any organism that derives all of its energy from catabolism is much greater than the mass of the molecules that it can produce by anabolism.
Cell_Biology_Alberts. To understand the principles governing these energy conversions, think of a cell surrounded by a sea of matter representing the rest of the universe. As the cell lives and grows, it creates internal order. But it constantly releases heat energy as it synthesizes molecules and assembles them into cell structures. Heat is energy in its most disordered form—the random jostling of molecules. When food the many molecules molecules that form the cell Figure 2–14 Schematic representation of the relationship between catabolic and anabolic pathways in metabolism. as suggested in this diagram, a major portion of the energy stored in the chemical bonds of food molecules is dissipated as heat. in addition, the mass of food required by any organism that derives all of its energy from catabolism is much greater than the mass of the molecules that it can produce by anabolism.
Cell_Biology_Alberts_253
Cell_Biology_Alberts
the cell releases heat to the sea, it increases the intensity of molecular motions there (thermal motion)—thereby increasing the randomness, or disorder, of the sea. The second law of thermodynamics is satisfied because the increase in the amount of order inside the cell is always more than compensated for by an even greater decrease in order (increase in entropy) in the surrounding sea of matter (Figure 2–16).
Cell_Biology_Alberts. the cell releases heat to the sea, it increases the intensity of molecular motions there (thermal motion)—thereby increasing the randomness, or disorder, of the sea. The second law of thermodynamics is satisfied because the increase in the amount of order inside the cell is always more than compensated for by an even greater decrease in order (increase in entropy) in the surrounding sea of matter (Figure 2–16).
Cell_Biology_Alberts_254
Cell_Biology_Alberts
Where does the heat that the cell releases come from? Here we encounter another important law of thermodynamics. The first law of thermodynamics states that energy can be converted from one form to another, but that it cannot be created or destroyed. Figure 2–17 illustrates some interconversions between different forms of energy. The amount of energy in different forms will change as a result of the chemical reactions inside the cell, but the first law tells us that the total amount of energy must always be the same. For example, an animal cell takes in foodstuffs and converts some of the energy present in the chemical bonds between the atoms of these food molecules (chemical-bond energy) into the random thermal motion of molecules (heat energy).
Cell_Biology_Alberts. Where does the heat that the cell releases come from? Here we encounter another important law of thermodynamics. The first law of thermodynamics states that energy can be converted from one form to another, but that it cannot be created or destroyed. Figure 2–17 illustrates some interconversions between different forms of energy. The amount of energy in different forms will change as a result of the chemical reactions inside the cell, but the first law tells us that the total amount of energy must always be the same. For example, an animal cell takes in foodstuffs and converts some of the energy present in the chemical bonds between the atoms of these food molecules (chemical-bond energy) into the random thermal motion of molecules (heat energy).
Cell_Biology_Alberts_255
Cell_Biology_Alberts
The cell cannot derive any benefit from the heat energy it releases unless the heat-generating reactions inside the cell are directly linked to the processes that generate molecular order. It is the tight coupling of heat production to an increase sea of matter cell Figure 2–15 an everyday illustration of the spontaneous drive toward disorder. Reversing this tendency toward disorder requires an intentional effort and an input of energy: it is not spontaneous. in fact, from the second law of thermodynamics, we can be certain that the human intervention required will release enough heat to the environment to more than compensate for the reordering of the items in this room.
Cell_Biology_Alberts. The cell cannot derive any benefit from the heat energy it releases unless the heat-generating reactions inside the cell are directly linked to the processes that generate molecular order. It is the tight coupling of heat production to an increase sea of matter cell Figure 2–15 an everyday illustration of the spontaneous drive toward disorder. Reversing this tendency toward disorder requires an intentional effort and an input of energy: it is not spontaneous. in fact, from the second law of thermodynamics, we can be certain that the human intervention required will release enough heat to the environment to more than compensate for the reordering of the items in this room.
Cell_Biology_Alberts_256
Cell_Biology_Alberts
Figure 2–16 a simple thermodynamic analysis of a living cell. in the diagram on the left, the molecules of both the cell and the rest of the universe (the sea of matter) are depicted in a relatively disordered state. in the diagram on the right, the cell has taken in energy from food molecules and released heat through reactions that order the molecules the cell contains. The heat released increases the disorder in the environment around the cell (depicted by jagged arrows and distorted molecules, indicating increased molecular motions caused by heat). as a result, the second law of thermodynamics—which states that the amount of disorder in the universe must always increase—is satisfied as the cell grows and divides. for a detailed discussion, see panel 2–7 (pp. 102–103).
Cell_Biology_Alberts. Figure 2–16 a simple thermodynamic analysis of a living cell. in the diagram on the left, the molecules of both the cell and the rest of the universe (the sea of matter) are depicted in a relatively disordered state. in the diagram on the right, the cell has taken in energy from food molecules and released heat through reactions that order the molecules the cell contains. The heat released increases the disorder in the environment around the cell (depicted by jagged arrows and distorted molecules, indicating increased molecular motions caused by heat). as a result, the second law of thermodynamics—which states that the amount of disorder in the universe must always increase—is satisfied as the cell grows and divides. for a detailed discussion, see panel 2–7 (pp. 102–103).
Cell_Biology_Alberts_257
Cell_Biology_Alberts
heat is released to pull of the foor 1 potential energy due to position kinetic energy heat energy two hydrogen oxygen gas rapid vibrations and heat dispersed to gas molecules molecule rotations of two newly surroundings formed water molecules in order that distinguishes the metabolism of a cell from the wasteful burning of fuel in a fire. Later, we illustrate how this coupling occurs. For now, it is sufficient to recognize that a direct linkage of the “controlled burning” of food molecules to the generation of biological order is required for cells to create and maintain an island of order in a universe tending toward chaos. Cells obtain energy by the oxidation of organic molecules
Cell_Biology_Alberts. heat is released to pull of the foor 1 potential energy due to position kinetic energy heat energy two hydrogen oxygen gas rapid vibrations and heat dispersed to gas molecules molecule rotations of two newly surroundings formed water molecules in order that distinguishes the metabolism of a cell from the wasteful burning of fuel in a fire. Later, we illustrate how this coupling occurs. For now, it is sufficient to recognize that a direct linkage of the “controlled burning” of food molecules to the generation of biological order is required for cells to create and maintain an island of order in a universe tending toward chaos. Cells obtain energy by the oxidation of organic molecules
Cell_Biology_Alberts_258
Cell_Biology_Alberts
Cells obtain energy by the oxidation of organic molecules All animal and plant cells are powered by energy stored in the chemical bonds of organic molecules, whether they are sugars that a plant has photosynthesized as food for itself or the mixture of large and small molecules that an animal has eaten. Organisms must extract this energy in usable form to live, grow, and reproduce. In both plants and animals, energy is extracted from food molecules by a process of gradual oxidation, or controlled burning. The Earth’s atmosphere contains a great deal of oxygen, and in the presence of oxygen the most energetically stable form of carbon is CO2 and that of hydrogen Figure 2–17 Some interconversions between different forms of energy.
Cell_Biology_Alberts. Cells obtain energy by the oxidation of organic molecules All animal and plant cells are powered by energy stored in the chemical bonds of organic molecules, whether they are sugars that a plant has photosynthesized as food for itself or the mixture of large and small molecules that an animal has eaten. Organisms must extract this energy in usable form to live, grow, and reproduce. In both plants and animals, energy is extracted from food molecules by a process of gradual oxidation, or controlled burning. The Earth’s atmosphere contains a great deal of oxygen, and in the presence of oxygen the most energetically stable form of carbon is CO2 and that of hydrogen Figure 2–17 Some interconversions between different forms of energy.
Cell_Biology_Alberts_259
Cell_Biology_Alberts
Figure 2–17 Some interconversions between different forms of energy. all energy forms are, in principle, interconvertible. in all these processes the total amount of energy is conserved. Thus, for example, from the height and weight of the brick in (1), we can predict exactly how much heat will be released when it hits the floor. in (2), note that the large amount of chemical-bond energy released when water is formed is initially converted to very rapid thermal motions in the two new water molecules; but collisions with other molecules almost instantaneously spread this kinetic energy evenly throughout the surroundings (heat transfer), making the new molecules indistinguishable from all the rest. is H2O. A cell is therefore able to obtain energy from sugars or other organic molecules by allowing their carbon and hydrogen atoms to combine with oxygen to produce CO2 and H2O, respectively—a process called aerobic respiration.
Cell_Biology_Alberts. Figure 2–17 Some interconversions between different forms of energy. all energy forms are, in principle, interconvertible. in all these processes the total amount of energy is conserved. Thus, for example, from the height and weight of the brick in (1), we can predict exactly how much heat will be released when it hits the floor. in (2), note that the large amount of chemical-bond energy released when water is formed is initially converted to very rapid thermal motions in the two new water molecules; but collisions with other molecules almost instantaneously spread this kinetic energy evenly throughout the surroundings (heat transfer), making the new molecules indistinguishable from all the rest. is H2O. A cell is therefore able to obtain energy from sugars or other organic molecules by allowing their carbon and hydrogen atoms to combine with oxygen to produce CO2 and H2O, respectively—a process called aerobic respiration.
Cell_Biology_Alberts_260
Cell_Biology_Alberts
Photosynthesis (discussed in detail in Chapter 14) and respiration are complementary processes (Figure 2–18). This means that the transactions between plants and animals are not all one way. Plants, animals, and microorganisms have existed together on this planet for so long that many of them have become an essential part of the others’ environments. The oxygen released by photosynthesis is consumed in the combustion of organic molecules during aerobic respiration. And some of the CO2 molecules that are fixed today into organic molecules by photosynthesis in a green leaf were yesterday released into the atmosphere by the respiration of an animal—or by the respiration of a fungus or bacterium decomposing dead organic matter. We therefore see that carbon utilization forms a huge cycle that involves the biosphere (all of the living organisms on Earth) as a whole (Figure 2–19). Similarly, atoms of nitrogen, phosphorus, and sulfur move between the living and nonliving worlds in cycles that
Cell_Biology_Alberts. Photosynthesis (discussed in detail in Chapter 14) and respiration are complementary processes (Figure 2–18). This means that the transactions between plants and animals are not all one way. Plants, animals, and microorganisms have existed together on this planet for so long that many of them have become an essential part of the others’ environments. The oxygen released by photosynthesis is consumed in the combustion of organic molecules during aerobic respiration. And some of the CO2 molecules that are fixed today into organic molecules by photosynthesis in a green leaf were yesterday released into the atmosphere by the respiration of an animal—or by the respiration of a fungus or bacterium decomposing dead organic matter. We therefore see that carbon utilization forms a huge cycle that involves the biosphere (all of the living organisms on Earth) as a whole (Figure 2–19). Similarly, atoms of nitrogen, phosphorus, and sulfur move between the living and nonliving worlds in cycles that
Cell_Biology_Alberts_261
Cell_Biology_Alberts
the biosphere (all of the living organisms on Earth) as a whole (Figure 2–19). Similarly, atoms of nitrogen, phosphorus, and sulfur move between the living and nonliving worlds in cycles that involve plants, animals, fungi, and bacteria.
Cell_Biology_Alberts. the biosphere (all of the living organisms on Earth) as a whole (Figure 2–19). Similarly, atoms of nitrogen, phosphorus, and sulfur move between the living and nonliving worlds in cycles that involve plants, animals, fungi, and bacteria.
Cell_Biology_Alberts_262
Cell_Biology_Alberts
The cell does not oxidize organic molecules in one step, as occurs when organic material is burned in a fire. Through the use of enzyme catalysts, metabolism takes these molecules through a large number of reactions that only rarely involve the direct addition of oxygen. Before we consider some of these reactions and their purpose, we discuss what is meant by the process of oxidation.
Cell_Biology_Alberts. The cell does not oxidize organic molecules in one step, as occurs when organic material is burned in a fire. Through the use of enzyme catalysts, metabolism takes these molecules through a large number of reactions that only rarely involve the direct addition of oxygen. Before we consider some of these reactions and their purpose, we discuss what is meant by the process of oxidation.
Cell_Biology_Alberts_263
Cell_Biology_Alberts
Figure 2–18 Photosynthesis and respiration as complementary processes in the living world. photosynthesis converts the electromagnetic energy in sunlight into chemical-bond energy in sugars and other organic molecules. plants, algae, and cyanobacteria obtain the carbon atoms that they need for this purpose from atmospheric Co2 and the hydrogen from water, releasing o2 gas as a by-product. The organic molecules produced by photosynthesis in turn serve as food for other organisms. many of these organisms carry out aerobic respiration, a process that uses o2 to form Co2 from the same carbon atoms that had been taken up as Co2 and converted into sugars by photosynthesis. in the process, the organisms that respire obtain the chemical-bond energy that they need to survive.
Cell_Biology_Alberts. Figure 2–18 Photosynthesis and respiration as complementary processes in the living world. photosynthesis converts the electromagnetic energy in sunlight into chemical-bond energy in sugars and other organic molecules. plants, algae, and cyanobacteria obtain the carbon atoms that they need for this purpose from atmospheric Co2 and the hydrogen from water, releasing o2 gas as a by-product. The organic molecules produced by photosynthesis in turn serve as food for other organisms. many of these organisms carry out aerobic respiration, a process that uses o2 to form Co2 from the same carbon atoms that had been taken up as Co2 and converted into sugars by photosynthesis. in the process, the organisms that respire obtain the chemical-bond energy that they need to survive.
Cell_Biology_Alberts_264
Cell_Biology_Alberts
The first cells on the earth are thought to have been capable of neither photosynthesis nor respiration (discussed in Chapter 14). however, photosynthesis must have preceded respiration on the earth, since there is strong evidence that billions of years of photosynthesis were required before o2 had been released in sufficient quantity to create an atmosphere rich in this gas. (The earth’s atmosphere currently contains 20% o2.) HUMUS AND DISSOLVED ORGANIC MATTER SEDIMENTS AND FOSSIL FUELS RESPIRATION PHOTOSYNTHESIS FOOD CHAIN CO2 IN ATMOSPHERE AND WATER PLANTS, ALGAE, BACTERIA ANIMALS Figure 2–19 The carbon cycle. individual carbon atoms are incorporated into organic molecules of the living world by the photosynthetic activity of bacteria, algae, and plants. They pass to animals, microorganisms, and organic material in soil and oceans in cyclic paths. Co2 is restored to the atmosphere when organic molecules are oxidized by cells or burned by humans as fuels.
Cell_Biology_Alberts. The first cells on the earth are thought to have been capable of neither photosynthesis nor respiration (discussed in Chapter 14). however, photosynthesis must have preceded respiration on the earth, since there is strong evidence that billions of years of photosynthesis were required before o2 had been released in sufficient quantity to create an atmosphere rich in this gas. (The earth’s atmosphere currently contains 20% o2.) HUMUS AND DISSOLVED ORGANIC MATTER SEDIMENTS AND FOSSIL FUELS RESPIRATION PHOTOSYNTHESIS FOOD CHAIN CO2 IN ATMOSPHERE AND WATER PLANTS, ALGAE, BACTERIA ANIMALS Figure 2–19 The carbon cycle. individual carbon atoms are incorporated into organic molecules of the living world by the photosynthetic activity of bacteria, algae, and plants. They pass to animals, microorganisms, and organic material in soil and oceans in cyclic paths. Co2 is restored to the atmosphere when organic molecules are oxidized by cells or burned by humans as fuels.
Cell_Biology_Alberts_265
Cell_Biology_Alberts
Chapter 2: Cell Chemistry and Bioenergetics enzymes lower the activation-energy Barriers That Block Chemical Reactions
Cell_Biology_Alberts. Chapter 2: Cell Chemistry and Bioenergetics enzymes lower the activation-energy Barriers That Block Chemical Reactions
Cell_Biology_Alberts_266
Cell_Biology_Alberts
Consider the reaction paper + O2→ smoke + ashes + heat + CO2 + H2O Once ignited, the paper burns readily, releasing to the atmosphere both energy as heat and water and carbon dioxide as gases. The reaction is irreversible, since the smoke and ashes never spontaneously retrieve these entities from the heated atmosphere and reconstitute themselves into paper. When the paper burns, its chemical energy is dissipated as heat—not lost from the universe, since energy can never be created or destroyed, but irretrievably dispersed in the chaotic random thermal motions of molecules. At the same time, the atoms and molecules of the paper become dispersed and disordered. In the language of thermodynamics, there has been a loss of free energy; that is, of energy that can be harnessed to do work or drive chemical reactions. This loss reflects a reduction of orderliness in the way the energy and molecules were stored in the paper. We shall discuss free energy in more detail shortly, but the general
Cell_Biology_Alberts. Consider the reaction paper + O2→ smoke + ashes + heat + CO2 + H2O Once ignited, the paper burns readily, releasing to the atmosphere both energy as heat and water and carbon dioxide as gases. The reaction is irreversible, since the smoke and ashes never spontaneously retrieve these entities from the heated atmosphere and reconstitute themselves into paper. When the paper burns, its chemical energy is dissipated as heat—not lost from the universe, since energy can never be created or destroyed, but irretrievably dispersed in the chaotic random thermal motions of molecules. At the same time, the atoms and molecules of the paper become dispersed and disordered. In the language of thermodynamics, there has been a loss of free energy; that is, of energy that can be harnessed to do work or drive chemical reactions. This loss reflects a reduction of orderliness in the way the energy and molecules were stored in the paper. We shall discuss free energy in more detail shortly, but the general
Cell_Biology_Alberts_267
Cell_Biology_Alberts
chemical reactions. This loss reflects a reduction of orderliness in the way the energy and molecules were stored in the paper. We shall discuss free energy in more detail shortly, but the general principle is clear enough intuitively: chemical reactions proceed spontaneously only in the direction that leads to a loss of free energy. In other words, the spontaneous direction for any reaction is the direction that goes “downhill,” where a “downhill” reaction is one that is energetically favorable. Although the most energetically favorable form of carbon under ordinary conditions is CO2, and that of hydrogen is H2O, a living organism does not disappear in a puff of smoke, and the paper book in your hands does not burst into flames. This is because the molecules both in the living organism and in the book are in a relatively stable state, and they cannot be changed to a state of lower energy without an input of energy: in other words, a molecule requires activation energy—a kick over an
Cell_Biology_Alberts. chemical reactions. This loss reflects a reduction of orderliness in the way the energy and molecules were stored in the paper. We shall discuss free energy in more detail shortly, but the general principle is clear enough intuitively: chemical reactions proceed spontaneously only in the direction that leads to a loss of free energy. In other words, the spontaneous direction for any reaction is the direction that goes “downhill,” where a “downhill” reaction is one that is energetically favorable. Although the most energetically favorable form of carbon under ordinary conditions is CO2, and that of hydrogen is H2O, a living organism does not disappear in a puff of smoke, and the paper book in your hands does not burst into flames. This is because the molecules both in the living organism and in the book are in a relatively stable state, and they cannot be changed to a state of lower energy without an input of energy: in other words, a molecule requires activation energy—a kick over an
Cell_Biology_Alberts_268
Cell_Biology_Alberts
in the book are in a relatively stable state, and they cannot be changed to a state of lower energy without an input of energy: in other words, a molecule requires activation energy—a kick over an energy barrier—before it can undergo a chemical reaction that leaves it in a more stable state (Figure 2–21). In the case of a burning book, the activation energy can be provided by the heat of a lighted match. For the molecules in the watery solution inside a cell, the kick is delivered by an unusually energetic random collision with surrounding molecules—collisions that become more violent as the temperature is raised. The chemistry in a living cell is tightly controlled, because the kick over energy barriers is greatly aided by a specialized class of proteins—the enzymes. Each enzyme binds tightly to one or more molecules, called substrates, and holds them in a way that greatly reduces the activation energy of a particular chemical reaction that the bound substrates can undergo. A
Cell_Biology_Alberts. in the book are in a relatively stable state, and they cannot be changed to a state of lower energy without an input of energy: in other words, a molecule requires activation energy—a kick over an energy barrier—before it can undergo a chemical reaction that leaves it in a more stable state (Figure 2–21). In the case of a burning book, the activation energy can be provided by the heat of a lighted match. For the molecules in the watery solution inside a cell, the kick is delivered by an unusually energetic random collision with surrounding molecules—collisions that become more violent as the temperature is raised. The chemistry in a living cell is tightly controlled, because the kick over energy barriers is greatly aided by a specialized class of proteins—the enzymes. Each enzyme binds tightly to one or more molecules, called substrates, and holds them in a way that greatly reduces the activation energy of a particular chemical reaction that the bound substrates can undergo. A
Cell_Biology_Alberts_269
Cell_Biology_Alberts
tightly to one or more molecules, called substrates, and holds them in a way that greatly reduces the activation energy of a particular chemical reaction that the bound substrates can undergo. A substance that can lower the activation energy of a reaction is termed a catalyst; catalysts increase the rate of chemical reactions because they allow a much larger proportion of the random collisions with surrounding molecules to kick the substrates over the energy barrier, as illustrated in Figure 2–22. Enzymes are among the most effective catalysts
Cell_Biology_Alberts. tightly to one or more molecules, called substrates, and holds them in a way that greatly reduces the activation energy of a particular chemical reaction that the bound substrates can undergo. A substance that can lower the activation energy of a reaction is termed a catalyst; catalysts increase the rate of chemical reactions because they allow a much larger proportion of the random collisions with surrounding molecules to kick the substrates over the energy barrier, as illustrated in Figure 2–22. Enzymes are among the most effective catalysts
Cell_Biology_Alberts_270
Cell_Biology_Alberts
Figure 2–21 The important principle of activation energy. (a) Compound Y (a reactant) is in a relatively stable state, and energy is required to convert it to compound X (a product), even though X is at a lower overall energy level than Y. This conversion will not take place, therefore, unless compound Y can acquire enough activation energy (energy a minus energy b) from its surroundings to undergo the reaction that converts it into compound X. This energy may be provided by means of an unusually energetic collision with other molecules. for the reverse reaction, X → Y, the activation energy will be d more rarely. activation energies are always positive; note, however, that the total energy change for the energetically known: some are capable of speeding up reactions by factors of 1014 or more. Enzymes thereby allow reactions that would not otherwise occur to proceed rapidly at normal temperatures.
Cell_Biology_Alberts. Figure 2–21 The important principle of activation energy. (a) Compound Y (a reactant) is in a relatively stable state, and energy is required to convert it to compound X (a product), even though X is at a lower overall energy level than Y. This conversion will not take place, therefore, unless compound Y can acquire enough activation energy (energy a minus energy b) from its surroundings to undergo the reaction that converts it into compound X. This energy may be provided by means of an unusually energetic collision with other molecules. for the reverse reaction, X → Y, the activation energy will be d more rarely. activation energies are always positive; note, however, that the total energy change for the energetically known: some are capable of speeding up reactions by factors of 1014 or more. Enzymes thereby allow reactions that would not otherwise occur to proceed rapidly at normal temperatures.
Cell_Biology_Alberts_271
Cell_Biology_Alberts
An enzyme cannot change the equilibrium point for a reaction. The reason is simple: when an enzyme (or any catalyst) lowers the activation energy for the reaction Y → X, of necessity it also lowers the activation energy for the reaction X → Y by exactly the same amount (see Figure 2–21). The forward and backward reactions will therefore be accelerated by the same factor by an enzyme, and the equilibrium point for the reaction will be unchanged (Figure 2–23). Thus no matter how much an enzyme speeds up a reaction, it cannot change its direction.
Cell_Biology_Alberts. An enzyme cannot change the equilibrium point for a reaction. The reason is simple: when an enzyme (or any catalyst) lowers the activation energy for the reaction Y → X, of necessity it also lowers the activation energy for the reaction X → Y by exactly the same amount (see Figure 2–21). The forward and backward reactions will therefore be accelerated by the same factor by an enzyme, and the equilibrium point for the reaction will be unchanged (Figure 2–23). Thus no matter how much an enzyme speeds up a reaction, it cannot change its direction.
Cell_Biology_Alberts_272
Cell_Biology_Alberts
Despite the above limitation, enzymes steer all of the reactions in cells through specific reaction paths. This is because enzymes are both highly selective and very precise, usually catalyzing only one particular reaction. In other words, each enzyme selectively lowers the activation energy of only one of the several possible chemical reactions that its bound substrate molecules could undergo. In this way, sets of enzymes can direct each of the many different molecules in a cell along a particular reaction pathway (Figure 2–24). The success of living organisms is attributable to a cell’s ability to make enzymes of many types, each with precisely specified properties. Each enzyme
Cell_Biology_Alberts. Despite the above limitation, enzymes steer all of the reactions in cells through specific reaction paths. This is because enzymes are both highly selective and very precise, usually catalyzing only one particular reaction. In other words, each enzyme selectively lowers the activation energy of only one of the several possible chemical reactions that its bound substrate molecules could undergo. In this way, sets of enzymes can direct each of the many different molecules in a cell along a particular reaction pathway (Figure 2–24). The success of living organisms is attributable to a cell’s ability to make enzymes of many types, each with precisely specified properties. Each enzyme
Cell_Biology_Alberts_273
Cell_Biology_Alberts
The success of living organisms is attributable to a cell’s ability to make enzymes of many types, each with precisely specified properties. Each enzyme Figure 2–23 enzymes cannot change the equilibrium point for reactions. enzymes, like all catalysts, speed up the forward and backward rates of a reaction by the same factor. Therefore, for both the catalyzed and the uncatalyzed reactions shown here, the number of molecules undergoing the transition X → Y is equal to the number of molecules undergoing the transition Y → X when the ratio of Y molecules to X molecules is 3 to 1. in other words, the two reactions reach equilibrium at exactly the same point.
Cell_Biology_Alberts. The success of living organisms is attributable to a cell’s ability to make enzymes of many types, each with precisely specified properties. Each enzyme Figure 2–23 enzymes cannot change the equilibrium point for reactions. enzymes, like all catalysts, speed up the forward and backward rates of a reaction by the same factor. Therefore, for both the catalyzed and the uncatalyzed reactions shown here, the number of molecules undergoing the transition X → Y is equal to the number of molecules undergoing the transition Y → X when the ratio of Y molecules to X molecules is 3 to 1. in other words, the two reactions reach equilibrium at exactly the same point.
Cell_Biology_Alberts_274
Cell_Biology_Alberts
Figure 2–22 lowering the activation energy greatly increases the probability of a reaction. at any given instant, a population of identical substrate molecules will have a range of energies, distributed as shown on the graph. The varying energies come from collisions with surrounding molecules, which make the substrate molecules jiggle, vibrate, and spin. for a molecule to undergo a chemical reaction, the energy of the molecule must exceed the activation-energy barrier for that reaction (dashed lines). for most biological reactions, this almost never happens without enzyme catalysis. even with enzyme catalysis, the substrate molecules must experience a particularly energetic collision to react (red shaded area). Raising the temperature will also increase the number of molecules with sufficient energy to overcome the activation energy needed for a reaction; but in marked contrast to enzyme catalysis, this effect is nonselective, speeding up all reactions (Movie 2.2).
Cell_Biology_Alberts. Figure 2–22 lowering the activation energy greatly increases the probability of a reaction. at any given instant, a population of identical substrate molecules will have a range of energies, distributed as shown on the graph. The varying energies come from collisions with surrounding molecules, which make the substrate molecules jiggle, vibrate, and spin. for a molecule to undergo a chemical reaction, the energy of the molecule must exceed the activation-energy barrier for that reaction (dashed lines). for most biological reactions, this almost never happens without enzyme catalysis. even with enzyme catalysis, the substrate molecules must experience a particularly energetic collision to react (red shaded area). Raising the temperature will also increase the number of molecules with sufficient energy to overcome the activation energy needed for a reaction; but in marked contrast to enzyme catalysis, this effect is nonselective, speeding up all reactions (Movie 2.2).
Cell_Biology_Alberts_275
Cell_Biology_Alberts
Figure 2–24 Directing substrate molecules through a specific reaction pathway by enzyme catalysis. a substrate molecule in a cell (green ball) is converted into a different molecule (blue ball) by means of a series of enzyme-catalyzed reactions. as indicated (yellow box), several reactions are energetically favorable at each step, but only one is catalyzed by each enzyme. sets of enzymes thereby determine the exact reaction pathway that is followed by each molecule inside the cell. has a unique shape containing an active site, a pocket or groove in the enzyme into which only particular substrates will fit (Figure 2–25). Like all other catalysts, enzyme molecules themselves remain unchanged after participating in a reaction and therefore can function over and over again. In Chapter 3, we discuss further how enzymes work. how enzymes find Their substrates: The enormous Rapidity of molecular motions
Cell_Biology_Alberts. Figure 2–24 Directing substrate molecules through a specific reaction pathway by enzyme catalysis. a substrate molecule in a cell (green ball) is converted into a different molecule (blue ball) by means of a series of enzyme-catalyzed reactions. as indicated (yellow box), several reactions are energetically favorable at each step, but only one is catalyzed by each enzyme. sets of enzymes thereby determine the exact reaction pathway that is followed by each molecule inside the cell. has a unique shape containing an active site, a pocket or groove in the enzyme into which only particular substrates will fit (Figure 2–25). Like all other catalysts, enzyme molecules themselves remain unchanged after participating in a reaction and therefore can function over and over again. In Chapter 3, we discuss further how enzymes work. how enzymes find Their substrates: The enormous Rapidity of molecular motions
Cell_Biology_Alberts_276
Cell_Biology_Alberts
how enzymes find Their substrates: The enormous Rapidity of molecular motions An enzyme will often catalyze the reaction of thousands of substrate molecules every second. This means that it must be able to bind a new substrate molecule in a fraction of a millisecond. But both enzymes and their substrates are present in relatively small numbers in a cell. How do they find each other so fast? Rapid binding is possible because the motions caused by heat energy are enormously fast at the molecular level. These molecular motions can be classified broadly into three kinds: (1) the movement of a molecule from one place to another (translational motion), (2) the rapid back-and-forth movement of covalently linked atoms with respect to one another (vibrations), and (3) rotations. All of these motions help to bring the surfaces of interacting molecules together.
Cell_Biology_Alberts. how enzymes find Their substrates: The enormous Rapidity of molecular motions An enzyme will often catalyze the reaction of thousands of substrate molecules every second. This means that it must be able to bind a new substrate molecule in a fraction of a millisecond. But both enzymes and their substrates are present in relatively small numbers in a cell. How do they find each other so fast? Rapid binding is possible because the motions caused by heat energy are enormously fast at the molecular level. These molecular motions can be classified broadly into three kinds: (1) the movement of a molecule from one place to another (translational motion), (2) the rapid back-and-forth movement of covalently linked atoms with respect to one another (vibrations), and (3) rotations. All of these motions help to bring the surfaces of interacting molecules together.
Cell_Biology_Alberts_277
Cell_Biology_Alberts
The rates of molecular motions can be measured by a variety of spectroscopic techniques. A large globular protein is constantly tumbling, rotating about its axis about a million times per second. Molecules are also in constant translational motion, which causes them to explore the space inside the cell very efficiently by wandering through it—a process called diffusion. In this way, every molecule in a cell collides with a huge number of other molecules each second. As the molecules in a liquid collide and bounce off one another, an individual molecule moves first one way and then another, its path constituting a random walk (Figure 2–26). In such a walk, the average net distance that each molecule travels (as the “crow flies”) from its starting point is proportional to the square root of the time involved: that is, if it takes a molecule 1 second on average to travel 1 μm, it takes 4 seconds to travel 2 μm, 100 seconds to travel 10 μm, and so on.
Cell_Biology_Alberts. The rates of molecular motions can be measured by a variety of spectroscopic techniques. A large globular protein is constantly tumbling, rotating about its axis about a million times per second. Molecules are also in constant translational motion, which causes them to explore the space inside the cell very efficiently by wandering through it—a process called diffusion. In this way, every molecule in a cell collides with a huge number of other molecules each second. As the molecules in a liquid collide and bounce off one another, an individual molecule moves first one way and then another, its path constituting a random walk (Figure 2–26). In such a walk, the average net distance that each molecule travels (as the “crow flies”) from its starting point is proportional to the square root of the time involved: that is, if it takes a molecule 1 second on average to travel 1 μm, it takes 4 seconds to travel 2 μm, 100 seconds to travel 10 μm, and so on.
Cell_Biology_Alberts_278
Cell_Biology_Alberts
The inside of a cell is very crowded (Figure 2–27). Nevertheless, experiments in which fluorescent dyes and other labeled molecules are injected into cells show that small organic molecules diffuse through the watery gel of the cytosol nearly Figure 2–25 How enzymes work. each enzyme has an active site to which one or more substrate molecules bind, forming an enzyme–substrate complex. a reaction occurs at the active site, producing an enzyme–product complex. The product is then released, allowing the enzyme to bind further substrate molecules. as rapidly as they do through water. A small organic molecule, for example, takes only about one-fifth of a second on average to diffuse a distance of 10 μm. Diffusion is therefore an efficient way for small molecules to move the limited distances in the cell (a typical animal cell is 15 μm in diameter).
Cell_Biology_Alberts. The inside of a cell is very crowded (Figure 2–27). Nevertheless, experiments in which fluorescent dyes and other labeled molecules are injected into cells show that small organic molecules diffuse through the watery gel of the cytosol nearly Figure 2–25 How enzymes work. each enzyme has an active site to which one or more substrate molecules bind, forming an enzyme–substrate complex. a reaction occurs at the active site, producing an enzyme–product complex. The product is then released, allowing the enzyme to bind further substrate molecules. as rapidly as they do through water. A small organic molecule, for example, takes only about one-fifth of a second on average to diffuse a distance of 10 μm. Diffusion is therefore an efficient way for small molecules to move the limited distances in the cell (a typical animal cell is 15 μm in diameter).
Cell_Biology_Alberts_279
Cell_Biology_Alberts
Since enzymes move more slowly than substrates in cells, we can think of them as sitting still. The rate of encounter of each enzyme molecule with its substrate will depend on the concentration of the substrate molecule. For example, some abundant substrates are present at a concentration of 0.5 mM. Since pure water is 55.5 M, there is only about one such substrate molecule in the cell for every 105 water molecules. Nevertheless, the active site on an enzyme molecule that binds this substrate will be bombarded by about 500,000 random collisions with the substrate molecule per second. (For a substrate concentration tenfold lower, the number of collisions drops to 50,000 per second, and so on.) A random collision between the active site of an enzyme and the matching surface of its substrate molecule often leads immediately to the formation of an enzyme–substrate complex. A reaction in which a covalent bond is broken or formed can now occur extremely rapidly. When one appreciates how
Cell_Biology_Alberts. Since enzymes move more slowly than substrates in cells, we can think of them as sitting still. The rate of encounter of each enzyme molecule with its substrate will depend on the concentration of the substrate molecule. For example, some abundant substrates are present at a concentration of 0.5 mM. Since pure water is 55.5 M, there is only about one such substrate molecule in the cell for every 105 water molecules. Nevertheless, the active site on an enzyme molecule that binds this substrate will be bombarded by about 500,000 random collisions with the substrate molecule per second. (For a substrate concentration tenfold lower, the number of collisions drops to 50,000 per second, and so on.) A random collision between the active site of an enzyme and the matching surface of its substrate molecule often leads immediately to the formation of an enzyme–substrate complex. A reaction in which a covalent bond is broken or formed can now occur extremely rapidly. When one appreciates how
Cell_Biology_Alberts_280
Cell_Biology_Alberts
molecule often leads immediately to the formation of an enzyme–substrate complex. A reaction in which a covalent bond is broken or formed can now occur extremely rapidly. When one appreciates how quickly molecules move and react, the observed rates of enzymatic catalysis do not seem so amazing.
Cell_Biology_Alberts. molecule often leads immediately to the formation of an enzyme–substrate complex. A reaction in which a covalent bond is broken or formed can now occur extremely rapidly. When one appreciates how quickly molecules move and react, the observed rates of enzymatic catalysis do not seem so amazing.
Cell_Biology_Alberts_281
Cell_Biology_Alberts
Two molecules that are held together by noncovalent bonds can also dissociate. The multiple weak noncovalent bonds that they form with each other will persist until random thermal motion causes the two molecules to separate. In general, the stronger the binding of the enzyme and substrate, the slower their rate of dissociation. In contrast, whenever two colliding molecules have poorly matching surfaces, they form few noncovalent bonds and the total energy of association will be negligible compared with that of thermal motion. In this case, the two molecules dissociate as rapidly as they come together, preventing incorrect and unwanted associations between mismatched molecules, such as between an enzyme and the wrong substrate. The free-energy Change for a Reaction, ∆G, Determines Whether it Can occur spontaneously
Cell_Biology_Alberts. Two molecules that are held together by noncovalent bonds can also dissociate. The multiple weak noncovalent bonds that they form with each other will persist until random thermal motion causes the two molecules to separate. In general, the stronger the binding of the enzyme and substrate, the slower their rate of dissociation. In contrast, whenever two colliding molecules have poorly matching surfaces, they form few noncovalent bonds and the total energy of association will be negligible compared with that of thermal motion. In this case, the two molecules dissociate as rapidly as they come together, preventing incorrect and unwanted associations between mismatched molecules, such as between an enzyme and the wrong substrate. The free-energy Change for a Reaction, ∆G, Determines Whether it Can occur spontaneously
Cell_Biology_Alberts_282
Cell_Biology_Alberts
The free-energy Change for a Reaction, ∆G, Determines Whether it Can occur spontaneously Although enzymes speed up reactions, they cannot by themselves force energetically unfavorable reactions to occur. In terms of a water analogy, enzymes by themselves cannot make water run uphill. Cells, however, must do just that in order to grow and divide: they must build highly ordered and energy-rich molecules from small and simple ones. We shall see that this is done through enzymes that directly couple energetically favorable reactions, which release energy and produce heat, to energetically unfavorable reactions, which produce biological order.
Cell_Biology_Alberts. The free-energy Change for a Reaction, ∆G, Determines Whether it Can occur spontaneously Although enzymes speed up reactions, they cannot by themselves force energetically unfavorable reactions to occur. In terms of a water analogy, enzymes by themselves cannot make water run uphill. Cells, however, must do just that in order to grow and divide: they must build highly ordered and energy-rich molecules from small and simple ones. We shall see that this is done through enzymes that directly couple energetically favorable reactions, which release energy and produce heat, to energetically unfavorable reactions, which produce biological order.
Cell_Biology_Alberts_283
Cell_Biology_Alberts
What do cell biologists mean by the term “energetically favorable,” and how can this be quantified? According to the second law of thermodynamics the universe tends toward maximum disorder (largest entropy or greatest probability). Thus, a chemical reaction can proceed spontaneously only if it results in a net increase in the disorder of the universe (see Figure 2–16). This disorder of the universe can be expressed most conveniently in terms of the free energy of a system, a concept we touched on earlier. Free energy, G, is an expression of the energy available to do work—for example, the work of driving chemical reactions. The value of G is of interest only when a system undergoes a change, denoted ∆G (delta G). The change in G is critical because, as explained in Panel 2–7 (pp. 102–103), ∆G is a direct measure of the
Cell_Biology_Alberts. What do cell biologists mean by the term “energetically favorable,” and how can this be quantified? According to the second law of thermodynamics the universe tends toward maximum disorder (largest entropy or greatest probability). Thus, a chemical reaction can proceed spontaneously only if it results in a net increase in the disorder of the universe (see Figure 2–16). This disorder of the universe can be expressed most conveniently in terms of the free energy of a system, a concept we touched on earlier. Free energy, G, is an expression of the energy available to do work—for example, the work of driving chemical reactions. The value of G is of interest only when a system undergoes a change, denoted ∆G (delta G). The change in G is critical because, as explained in Panel 2–7 (pp. 102–103), ∆G is a direct measure of the
Cell_Biology_Alberts_284
Cell_Biology_Alberts
Figure 2–27 The structure of the cytoplasm. The drawing is approximately to scale and emphasizes the crowding in the cytoplasm. only the macromolecules are shown: Rnas are shown in blue, ribosomes in green, and proteins in red. enzymes and other macromolecules diffuse relatively slowly in the cytoplasm, in part because they interact with many other macromolecules; small molecules, by contrast, diffuse nearly as rapidly as they do in water (Movie 2.4). (adapted from D.s. Goodsell, Trends Biochem. Sci. 16:203–206, 1991. With permission from elsevier.) Figure 2–26 a random walk. molecules in solution move in a random fashion as a result of the continual buffeting they receive in collisions with other molecules. This movement allows small molecules to diffuse rapidly from one part of the cell to another, as described in the text (Movie 2.3).
Cell_Biology_Alberts. Figure 2–27 The structure of the cytoplasm. The drawing is approximately to scale and emphasizes the crowding in the cytoplasm. only the macromolecules are shown: Rnas are shown in blue, ribosomes in green, and proteins in red. enzymes and other macromolecules diffuse relatively slowly in the cytoplasm, in part because they interact with many other macromolecules; small molecules, by contrast, diffuse nearly as rapidly as they do in water (Movie 2.4). (adapted from D.s. Goodsell, Trends Biochem. Sci. 16:203–206, 1991. With permission from elsevier.) Figure 2–26 a random walk. molecules in solution move in a random fashion as a result of the continual buffeting they receive in collisions with other molecules. This movement allows small molecules to diffuse rapidly from one part of the cell to another, as described in the text (Movie 2.3).
Cell_Biology_Alberts_285
Cell_Biology_Alberts
amount of disorder created in the universe when a reaction takes place. Energetically favorable reactions, by definition, are those that decrease free energy; in other words, they have a negative ∆G and disorder the universe (Figure 2–28). An example of an energetically favorable reaction on a macroscopic scale is the “reaction” by which a compressed spring relaxes to an expanded state, releasing its stored elastic energy as heat to its surroundings; an example on a microscopic scale is salt dissolving in water. Conversely, energetically unfavorable reactions with a positive ∆G—such as the joining of two amino acids to form a peptide bond—by themselves create order in the universe. Therefore, these reactions can take place only if they are coupled to a second reaction with a negative ∆G so large that the ∆G of the overall process is negative (Figure 2–29). The Concentration of Reactants influences the free-energy Change and a Reaction’s Direction
Cell_Biology_Alberts. amount of disorder created in the universe when a reaction takes place. Energetically favorable reactions, by definition, are those that decrease free energy; in other words, they have a negative ∆G and disorder the universe (Figure 2–28). An example of an energetically favorable reaction on a macroscopic scale is the “reaction” by which a compressed spring relaxes to an expanded state, releasing its stored elastic energy as heat to its surroundings; an example on a microscopic scale is salt dissolving in water. Conversely, energetically unfavorable reactions with a positive ∆G—such as the joining of two amino acids to form a peptide bond—by themselves create order in the universe. Therefore, these reactions can take place only if they are coupled to a second reaction with a negative ∆G so large that the ∆G of the overall process is negative (Figure 2–29). The Concentration of Reactants influences the free-energy Change and a Reaction’s Direction
Cell_Biology_Alberts_286
Cell_Biology_Alberts
The Concentration of Reactants influences the free-energy Change and a Reaction’s Direction As we have just described, a reaction Y ↔ X will go in the direction Y →X when the associated free-energy change, ∆G, is negative, just as a tensed spring left to itself will relax and lose its stored energy to its surroundings as heat. For a chemical reaction, however, ∆G depends not only on the energy stored in each individual molecule, but also on the concentrations of the molecules in the reaction mixture. Remember that ∆G reflects the degree to which a reaction creates a more disordered—in other words, a more probable—state of the universe. Recalling our coin analogy, it is very likely that a coin will flip from a head to a tail orientation if a jiggling box contains 90 heads and 10 tails, but this is a less probable event if the box has 10 heads and 90 tails.
Cell_Biology_Alberts. The Concentration of Reactants influences the free-energy Change and a Reaction’s Direction As we have just described, a reaction Y ↔ X will go in the direction Y →X when the associated free-energy change, ∆G, is negative, just as a tensed spring left to itself will relax and lose its stored energy to its surroundings as heat. For a chemical reaction, however, ∆G depends not only on the energy stored in each individual molecule, but also on the concentrations of the molecules in the reaction mixture. Remember that ∆G reflects the degree to which a reaction creates a more disordered—in other words, a more probable—state of the universe. Recalling our coin analogy, it is very likely that a coin will flip from a head to a tail orientation if a jiggling box contains 90 heads and 10 tails, but this is a less probable event if the box has 10 heads and 90 tails.
Cell_Biology_Alberts_287
Cell_Biology_Alberts
The same is true for a chemical reaction. For a reversible reaction Y ↔ X, a large excess of Y over X will tend to drive the reaction in the direction Y → X. Therefore, as the ratio of Y to X increases, the ∆G becomes more negative for the transition Y → X (and more positive for the transition X → Y). The amount of concentration difference that is needed to compensate for a given decrease in chemical-bond energy (and accompanying heat release) is not intuitively obvious. In the late nineteenth century, the relationship was determined through a thermodynamic analysis that makes it possible to separate the concentration-dependent and the concentration-independent parts of the free-energy change, as we describe next. The standard free-energy Change, ∆G°, makes it possible to Compare the energetics of Different Reactions
Cell_Biology_Alberts. The same is true for a chemical reaction. For a reversible reaction Y ↔ X, a large excess of Y over X will tend to drive the reaction in the direction Y → X. Therefore, as the ratio of Y to X increases, the ∆G becomes more negative for the transition Y → X (and more positive for the transition X → Y). The amount of concentration difference that is needed to compensate for a given decrease in chemical-bond energy (and accompanying heat release) is not intuitively obvious. In the late nineteenth century, the relationship was determined through a thermodynamic analysis that makes it possible to separate the concentration-dependent and the concentration-independent parts of the free-energy change, as we describe next. The standard free-energy Change, ∆G°, makes it possible to Compare the energetics of Different Reactions
Cell_Biology_Alberts_288
Cell_Biology_Alberts
The standard free-energy Change, ∆G°, makes it possible to Compare the energetics of Different Reactions Because ∆G depends on the concentrations of the molecules in the reaction mixture at any given time, it is not a particularly useful value for comparing the relative energies of different types of reactions. To place reactions on a comparable basis, we need to turn to the standard free-energy change of a reaction, ∆G°. The ∆G° is the change in free energy under a standard condition, defined as that where the concentrations of all the reactants are set to the same fixed value of 1 mole/liter. Defined in this way, ∆G° depends only on the intrinsic characters of the reacting molecules.
Cell_Biology_Alberts. The standard free-energy Change, ∆G°, makes it possible to Compare the energetics of Different Reactions Because ∆G depends on the concentrations of the molecules in the reaction mixture at any given time, it is not a particularly useful value for comparing the relative energies of different types of reactions. To place reactions on a comparable basis, we need to turn to the standard free-energy change of a reaction, ∆G°. The ∆G° is the change in free energy under a standard condition, defined as that where the concentrations of all the reactants are set to the same fixed value of 1 mole/liter. Defined in this way, ∆G° depends only on the intrinsic characters of the reacting molecules.
Cell_Biology_Alberts_289
Cell_Biology_Alberts
For the simple reaction Y → X at 37°C, ∆G° is related to ∆G as follows: where ∆G is in kilojoules per mole, [Y] and [X] denote the concentrations of Y and X in moles/liter, ln is the natural logarithm, and RT is the product of the gas constant, R, and the absolute temperature, T. At 37°C, RT = 2.58 J mole–1. (A mole is 6 × 1023 molecules of a substance.) A large body of thermodynamic data has been collected that has made it possible to determine the standard free-energy change, ∆G°, for the important metabolic reactions of a cell. Given these ∆G° values, combined with additional information about metabolite concentrations and reaction pathways, it is possible to quantitatively predict the course of most biological reactions. The free energy of Y is greater than the free energy of X. Therefore ˜G < 0, and the disorderENERGETICALLY of the universe increasesFAVORABLE during the reactionREACTION Y X. If the reaction X Y occurred, ˜G would be > 0, and theENERGETICALLY universe would
Cell_Biology_Alberts. For the simple reaction Y → X at 37°C, ∆G° is related to ∆G as follows: where ∆G is in kilojoules per mole, [Y] and [X] denote the concentrations of Y and X in moles/liter, ln is the natural logarithm, and RT is the product of the gas constant, R, and the absolute temperature, T. At 37°C, RT = 2.58 J mole–1. (A mole is 6 × 1023 molecules of a substance.) A large body of thermodynamic data has been collected that has made it possible to determine the standard free-energy change, ∆G°, for the important metabolic reactions of a cell. Given these ∆G° values, combined with additional information about metabolite concentrations and reaction pathways, it is possible to quantitatively predict the course of most biological reactions. The free energy of Y is greater than the free energy of X. Therefore ˜G < 0, and the disorderENERGETICALLY of the universe increasesFAVORABLE during the reactionREACTION Y X. If the reaction X Y occurred, ˜G would be > 0, and theENERGETICALLY universe would
Cell_Biology_Alberts_290
Cell_Biology_Alberts
X. If the reaction X Y occurred, ˜G would be > 0, and theENERGETICALLY universe would REACTION ordered. this reaction can occur only if it is coupled to a second, energetically favorable reaction Figure 2–28 The distinction between energetically favorable and energetically unfavorable reactions. the energetically unfavorable reaction X Y is driven by the energetically favorable reaction C D, because the net free-energy change for the pair of coupled reactions is less than zero Figure 2–29 How reaction coupling is used to drive energetically unfavorable reactions. FOR THE ENERGETICALLY FAVORABLE REACTION Y °X, Figure 2–30 Chemical equilibrium. When a reaction reaches equilibrium, the forward and backward fluxes of reacting molecules are equal and opposite.
Cell_Biology_Alberts. X. If the reaction X Y occurred, ˜G would be > 0, and theENERGETICALLY universe would REACTION ordered. this reaction can occur only if it is coupled to a second, energetically favorable reaction Figure 2–28 The distinction between energetically favorable and energetically unfavorable reactions. the energetically unfavorable reaction X Y is driven by the energetically favorable reaction C D, because the net free-energy change for the pair of coupled reactions is less than zero Figure 2–29 How reaction coupling is used to drive energetically unfavorable reactions. FOR THE ENERGETICALLY FAVORABLE REACTION Y °X, Figure 2–30 Chemical equilibrium. When a reaction reaches equilibrium, the forward and backward fluxes of reacting molecules are equal and opposite.
Cell_Biology_Alberts_291
Cell_Biology_Alberts
FOR THE ENERGETICALLY FAVORABLE REACTION Y °X, Figure 2–30 Chemical equilibrium. When a reaction reaches equilibrium, the forward and backward fluxes of reacting molecules are equal and opposite. when X and Y are at equal concentrations, [Y] = [X], the formation of X is energetically favored. In other words, the ˜G of Y °X is negative and the ˜G of X °Y is positive. But because of thermal bombardments, there will always be some X converting to Y. THUS, FOR EACH INDIVIDUAL MOLECULE, conversion of Y to X will occur often. Conversion of X to Y will occur less often than the transition Y °X, because it requires a more energetic collision. Therefore the ratio of X to Y molecules will increase with time
Cell_Biology_Alberts. FOR THE ENERGETICALLY FAVORABLE REACTION Y °X, Figure 2–30 Chemical equilibrium. When a reaction reaches equilibrium, the forward and backward fluxes of reacting molecules are equal and opposite. when X and Y are at equal concentrations, [Y] = [X], the formation of X is energetically favored. In other words, the ˜G of Y °X is negative and the ˜G of X °Y is positive. But because of thermal bombardments, there will always be some X converting to Y. THUS, FOR EACH INDIVIDUAL MOLECULE, conversion of Y to X will occur often. Conversion of X to Y will occur less often than the transition Y °X, because it requires a more energetic collision. Therefore the ratio of X to Y molecules will increase with time
Cell_Biology_Alberts_292
Cell_Biology_Alberts
Conversion of X to Y will occur less often than the transition Y °X, because it requires a more energetic collision. Therefore the ratio of X to Y molecules will increase with time EVENTUALLY, there will be a large enough excess of X over Y to just compensate for the slow rate of X °Y, such that the number of Y molecules being converted to X molecules each second is exactly equal to the number of X molecules being converted to Y molecules each second. At this point, the reaction will be at equilibrium. AT EQUILIBRIUM, there is no net change in the ratio of Y to X, and the ˜G for both forward and backward reactions is zero. The equilibrium Constant and ∆G° are Readily Derived from each other
Cell_Biology_Alberts. Conversion of X to Y will occur less often than the transition Y °X, because it requires a more energetic collision. Therefore the ratio of X to Y molecules will increase with time EVENTUALLY, there will be a large enough excess of X over Y to just compensate for the slow rate of X °Y, such that the number of Y molecules being converted to X molecules each second is exactly equal to the number of X molecules being converted to Y molecules each second. At this point, the reaction will be at equilibrium. AT EQUILIBRIUM, there is no net change in the ratio of Y to X, and the ˜G for both forward and backward reactions is zero. The equilibrium Constant and ∆G° are Readily Derived from each other
Cell_Biology_Alberts_293
Cell_Biology_Alberts
The equilibrium Constant and ∆G° are Readily Derived from each other Inspection of the above equation reveals that the ∆G equals the value of ∆G° when the concentrations of Y and X are equal. But as any favorable reaction proceeds, the concentrations of the products will increase as the concentration of the substrates decreases. This change in relative concentrations will cause [X]/[Y] to become increasingly large, making the initially favorable ∆G less and less negative (the logarithm of a number x is positive for x > 1, negative for x < 1, and zero for x =1). Eventually, when ∆G = 0, a chemical equilibrium will be attained; here there is no net change in free energy to drive the reaction in either direction, inasmuch as the concentration effect just balances the push given to the reaction by ∆G°. As a result, the ratio of product to substrate reaches a constant value at chemical equilibrium (Figure 2–30).
Cell_Biology_Alberts. The equilibrium Constant and ∆G° are Readily Derived from each other Inspection of the above equation reveals that the ∆G equals the value of ∆G° when the concentrations of Y and X are equal. But as any favorable reaction proceeds, the concentrations of the products will increase as the concentration of the substrates decreases. This change in relative concentrations will cause [X]/[Y] to become increasingly large, making the initially favorable ∆G less and less negative (the logarithm of a number x is positive for x > 1, negative for x < 1, and zero for x =1). Eventually, when ∆G = 0, a chemical equilibrium will be attained; here there is no net change in free energy to drive the reaction in either direction, inasmuch as the concentration effect just balances the push given to the reaction by ∆G°. As a result, the ratio of product to substrate reaches a constant value at chemical equilibrium (Figure 2–30).
Cell_Biology_Alberts_294
Cell_Biology_Alberts
We can define the equilibrium constant, K, for the reaction Y →X as where [X] is the concentration of the product and [Y] is the concentration of the reactant at equilibrium. Remembering that ∆G = ∆G° + RT ln [X]/[Y], and that ∆G = 0 at equilibrium, we see that At 37°C, where RT = 2.58, the equilibrium equation is therefore: ∆G° = –2.58 ln K
Cell_Biology_Alberts. We can define the equilibrium constant, K, for the reaction Y →X as where [X] is the concentration of the product and [Y] is the concentration of the reactant at equilibrium. Remembering that ∆G = ∆G° + RT ln [X]/[Y], and that ∆G = 0 at equilibrium, we see that At 37°C, where RT = 2.58, the equilibrium equation is therefore: ∆G° = –2.58 ln K
Cell_Biology_Alberts_295
Cell_Biology_Alberts
At 37°C, where RT = 2.58, the equilibrium equation is therefore: ∆G° = –2.58 ln K Converting this equation from the natural logarithm (ln) to the more commonly used base 10 logarithm (log), we get ∆G° = –5.94 log K The above equation reveals how the equilibrium ratio of X to Y (expressed as the equilibrium constant, K) depends on the intrinsic character of the molecules, (as expressed in the value of ∆G° in kilojoules per mole). Note that for every 5.94 kJ/mole difference in free energy at 37°C, the equilibrium constant changes by a factor of 10 (Table 2–2). Thus, the more energetically favorable a reaction, the more product will accumulate if the reaction proceeds to equilibrium. More generally, for a reaction that has multiple reactants and products, such as A + B → C + D,
Cell_Biology_Alberts. At 37°C, where RT = 2.58, the equilibrium equation is therefore: ∆G° = –2.58 ln K Converting this equation from the natural logarithm (ln) to the more commonly used base 10 logarithm (log), we get ∆G° = –5.94 log K The above equation reveals how the equilibrium ratio of X to Y (expressed as the equilibrium constant, K) depends on the intrinsic character of the molecules, (as expressed in the value of ∆G° in kilojoules per mole). Note that for every 5.94 kJ/mole difference in free energy at 37°C, the equilibrium constant changes by a factor of 10 (Table 2–2). Thus, the more energetically favorable a reaction, the more product will accumulate if the reaction proceeds to equilibrium. More generally, for a reaction that has multiple reactants and products, such as A + B → C + D,
Cell_Biology_Alberts_296
Cell_Biology_Alberts
The concentrations of the two reactants and the two products are multiplied because the rate of the forward reaction depends on the collision of A and B and the rate of the backward reaction depends on the collision of C and D. Thus, at 37°C, ∆G° = –5.94 log where ∆G° is in kilojoules per mole, and [A], [B], [C], and [D] denote the concentrations of the reactants and products in moles/liter. The free-energy Changes of Coupled Reactions are additive We have pointed out that unfavorable reactions can be coupled to favorable ones to drive the unfavorable ones forward (see Figure 2–29). In thermodynamic terms, this is possible because the overall free-energy change for a set of coupled reactions is the sum of the free-energy changes in each of its component steps. Consider, as a simple example, two sequential reactions
Cell_Biology_Alberts. The concentrations of the two reactants and the two products are multiplied because the rate of the forward reaction depends on the collision of A and B and the rate of the backward reaction depends on the collision of C and D. Thus, at 37°C, ∆G° = –5.94 log where ∆G° is in kilojoules per mole, and [A], [B], [C], and [D] denote the concentrations of the reactants and products in moles/liter. The free-energy Changes of Coupled Reactions are additive We have pointed out that unfavorable reactions can be coupled to favorable ones to drive the unfavorable ones forward (see Figure 2–29). In thermodynamic terms, this is possible because the overall free-energy change for a set of coupled reactions is the sum of the free-energy changes in each of its component steps. Consider, as a simple example, two sequential reactions
Cell_Biology_Alberts_297
Cell_Biology_Alberts
X →Y and Y →Z whose ∆G° values are +5 and –13 kJ/mole, respectively. If these two reactions occur sequentially, the ∆G° for the coupled reaction will be –8 kJ/mole. This means that, with appropriate conditions, the unfavorable reaction X → Y can be driven by the favorable reaction Y → Z, provided that this second reaction follows the first. For example, several of the reactions in the long pathway that converts sugars into CO2 and H2O have positive ∆G° values. But the pathway nevertheless proceeds because the total ∆G° for the series of sequential reactions has a large negative value. Forming a sequential pathway is not adequate for many purposes. Often the desired pathway is simply X → Y, without further conversion of Y to some other product. Fortunately, there are other more general ways of using enzymes to couple reactions together. These often involve the activated carrier molecules that we discuss next. activated Carrier molecules are essential for Biosynthesis
Cell_Biology_Alberts. X →Y and Y →Z whose ∆G° values are +5 and –13 kJ/mole, respectively. If these two reactions occur sequentially, the ∆G° for the coupled reaction will be –8 kJ/mole. This means that, with appropriate conditions, the unfavorable reaction X → Y can be driven by the favorable reaction Y → Z, provided that this second reaction follows the first. For example, several of the reactions in the long pathway that converts sugars into CO2 and H2O have positive ∆G° values. But the pathway nevertheless proceeds because the total ∆G° for the series of sequential reactions has a large negative value. Forming a sequential pathway is not adequate for many purposes. Often the desired pathway is simply X → Y, without further conversion of Y to some other product. Fortunately, there are other more general ways of using enzymes to couple reactions together. These often involve the activated carrier molecules that we discuss next. activated Carrier molecules are essential for Biosynthesis
Cell_Biology_Alberts_298
Cell_Biology_Alberts
activated Carrier molecules are essential for Biosynthesis The energy released by the oxidation of food molecules must be stored temporarily before it can be channeled into the construction of the many other molecules needed by the cell. In most cases, the energy is stored as chemical-bond energy in a small set of activated “carrier molecules,” which contain one or more energy-rich covalent bonds. These molecules diffuse rapidly throughout the cell and thereby carry their bond energy from sites of energy generation to the sites where the energy will be used for biosynthesis and other cell activities (Figure 2–31).
Cell_Biology_Alberts. activated Carrier molecules are essential for Biosynthesis The energy released by the oxidation of food molecules must be stored temporarily before it can be channeled into the construction of the many other molecules needed by the cell. In most cases, the energy is stored as chemical-bond energy in a small set of activated “carrier molecules,” which contain one or more energy-rich covalent bonds. These molecules diffuse rapidly throughout the cell and thereby carry their bond energy from sites of energy generation to the sites where the energy will be used for biosynthesis and other cell activities (Figure 2–31).
Cell_Biology_Alberts_299
Cell_Biology_Alberts
The activated carriers store energy in an easily exchangeable form, either as a readily transferable chemical group or as electrons held at a high energy level, and they can serve a dual role as a source of both energy and chemical groups in biosynthetic reactions. For historical reasons, these molecules are also sometimes referred to as coenzymes. The most important of the activated carrier molecules are ATP and two molecules that are closely related to each other, NADH and NADPH. Cells use such activated carrier molecules like money to pay for reactions that otherwise could not take place. The formation of an activated Carrier is Coupled to an energetically favorable Reaction
Cell_Biology_Alberts. The activated carriers store energy in an easily exchangeable form, either as a readily transferable chemical group or as electrons held at a high energy level, and they can serve a dual role as a source of both energy and chemical groups in biosynthetic reactions. For historical reasons, these molecules are also sometimes referred to as coenzymes. The most important of the activated carrier molecules are ATP and two molecules that are closely related to each other, NADH and NADPH. Cells use such activated carrier molecules like money to pay for reactions that otherwise could not take place. The formation of an activated Carrier is Coupled to an energetically favorable Reaction
Cell_Biology_Alberts_300
Cell_Biology_Alberts
Coupling mechanisms require enzymes and are fundamental to all the energy transactions of the cell. The nature of a coupled reaction is illustrated by a mechanical analogy in Figure 2–32, in which an energetically favorable chemical reaction is represented by rocks falling from a cliff. The energy of falling rocks would normally be entirely wasted in the form of heat generated by friction when the rocks hit the ground (see the falling-brick diagram in Figure 2–17). By careful design, however, part of this energy could be used instead to drive a paddle wheel that lifts a bucket of water (Figure 2–32B). Because the rocks can now reach the ground only after moving the paddle wheel, we say that the energetically favorable reaction of rock falling has been directly coupled to the energetically unfavorable reaction of lifting the bucket of water. Note that because part of the energy is used to do work in Figure 2–32B, the rocks hit the ground with less velocity than in Figure 2–32A, and
Cell_Biology_Alberts. Coupling mechanisms require enzymes and are fundamental to all the energy transactions of the cell. The nature of a coupled reaction is illustrated by a mechanical analogy in Figure 2–32, in which an energetically favorable chemical reaction is represented by rocks falling from a cliff. The energy of falling rocks would normally be entirely wasted in the form of heat generated by friction when the rocks hit the ground (see the falling-brick diagram in Figure 2–17). By careful design, however, part of this energy could be used instead to drive a paddle wheel that lifts a bucket of water (Figure 2–32B). Because the rocks can now reach the ground only after moving the paddle wheel, we say that the energetically favorable reaction of rock falling has been directly coupled to the energetically unfavorable reaction of lifting the bucket of water. Note that because part of the energy is used to do work in Figure 2–32B, the rocks hit the ground with less velocity than in Figure 2–32A, and
Cell_Biology_Alberts_301
Cell_Biology_Alberts
unfavorable reaction of lifting the bucket of water. Note that because part of the energy is used to do work in Figure 2–32B, the rocks hit the ground with less velocity than in Figure 2–32A, and correspondingly less energy is dissipated as heat.
Cell_Biology_Alberts. unfavorable reaction of lifting the bucket of water. Note that because part of the energy is used to do work in Figure 2–32B, the rocks hit the ground with less velocity than in Figure 2–32A, and correspondingly less energy is dissipated as heat.
Cell_Biology_Alberts_302
Cell_Biology_Alberts
Similar processes occur in cells, where enzymes play the role of the paddle wheel. By mechanisms that we discuss later in this chapter, enzymes couple an Figure 2–31 energy transfer and the role of activated carriers in metabolism. By serving as energy shuttles, activated carrier molecules perform their function as go-betweens that link the breakdown of food molecules and the release of energy (catabolism) to the energy-requiring biosynthesis of small and large organic molecules (anabolism).
Cell_Biology_Alberts. Similar processes occur in cells, where enzymes play the role of the paddle wheel. By mechanisms that we discuss later in this chapter, enzymes couple an Figure 2–31 energy transfer and the role of activated carriers in metabolism. By serving as energy shuttles, activated carrier molecules perform their function as go-betweens that link the breakdown of food molecules and the release of energy (catabolism) to the energy-requiring biosynthesis of small and large organic molecules (anabolism).
Cell_Biology_Alberts_303
Cell_Biology_Alberts
Figure 2–32 a mechanical model illustrating the principle of coupled chemical reactions. The spontaneous reaction shown in (a) could serve as an analogy for the direct oxidation of glucose to Co2 and h2o, which produces heat only. in (B), the same reaction is coupled to a second reaction; this second reaction is analogous to the synthesis of activated carrier molecules. The energy produced in (B) is in a more useful form than in (a) and can be used to drive a variety of otherwise energetically unfavorable reactions (C).
Cell_Biology_Alberts. Figure 2–32 a mechanical model illustrating the principle of coupled chemical reactions. The spontaneous reaction shown in (a) could serve as an analogy for the direct oxidation of glucose to Co2 and h2o, which produces heat only. in (B), the same reaction is coupled to a second reaction; this second reaction is analogous to the synthesis of activated carrier molecules. The energy produced in (B) is in a more useful form than in (a) and can be used to drive a variety of otherwise energetically unfavorable reactions (C).
Cell_Biology_Alberts_304
Cell_Biology_Alberts
energetically favorable reaction, such as the oxidation of foodstuffs, to an energetically unfavorable reaction, such as the generation of an activated carrier molecule. In this example, the amount of heat released by the oxidation reaction is reduced by exactly the amount of energy stored in the energy-rich covalent bonds of the activated carrier molecule. And the activated carrier molecule picks up a packet of energy of a size sufficient to power a chemical reaction elsewhere in the cell. aTp is the most Widely Used activated Carrier molecule
Cell_Biology_Alberts. energetically favorable reaction, such as the oxidation of foodstuffs, to an energetically unfavorable reaction, such as the generation of an activated carrier molecule. In this example, the amount of heat released by the oxidation reaction is reduced by exactly the amount of energy stored in the energy-rich covalent bonds of the activated carrier molecule. And the activated carrier molecule picks up a packet of energy of a size sufficient to power a chemical reaction elsewhere in the cell. aTp is the most Widely Used activated Carrier molecule
Cell_Biology_Alberts_305
Cell_Biology_Alberts
aTp is the most Widely Used activated Carrier molecule The most important and versatile of the activated carriers in cells is ATP (adenosine triphosphate). Just as the energy stored in the raised bucket of water in Figure 2–32B can drive a wide variety of hydraulic machines, ATP is a convenient and versatile store, or currency, of energy used to drive a variety of chemical reactions in cells. ATP is synthesized in an energetically unfavorable phosphorylation reaction in which a phosphate group is added to ADP (adenosine diphosphate). When required, ATP gives up its energy packet through its energetically favorable hydrolysis to ADP and inorganic phosphate (Figure 2–33). The regenerated ADP is then available to be used for another round of the phosphorylation reaction that forms ATP.
Cell_Biology_Alberts. aTp is the most Widely Used activated Carrier molecule The most important and versatile of the activated carriers in cells is ATP (adenosine triphosphate). Just as the energy stored in the raised bucket of water in Figure 2–32B can drive a wide variety of hydraulic machines, ATP is a convenient and versatile store, or currency, of energy used to drive a variety of chemical reactions in cells. ATP is synthesized in an energetically unfavorable phosphorylation reaction in which a phosphate group is added to ADP (adenosine diphosphate). When required, ATP gives up its energy packet through its energetically favorable hydrolysis to ADP and inorganic phosphate (Figure 2–33). The regenerated ADP is then available to be used for another round of the phosphorylation reaction that forms ATP.
Cell_Biology_Alberts_306
Cell_Biology_Alberts
The energetically favorable reaction of ATP hydrolysis is coupled to many otherwise unfavorable reactions through which other molecules are synthesized. Many of these coupled reactions involve the transfer of the terminal phosphate in ATP to another molecule, as illustrated by the phosphorylation reaction in Figure 2–34. As the most abundant activated carrier in cells, ATP is the principle energy currency. To give just two examples, it supplies energy for many of the pumps that transport substances into and out of the cell (discussed in Chapter 11), and it powers the molecular motors that enable muscle cells to contract and nerve cells to transport materials from one end of their long axons to another (discussed in Chapter 16). energy stored in aTp is often harnessed to Join Two molecules Together
Cell_Biology_Alberts. The energetically favorable reaction of ATP hydrolysis is coupled to many otherwise unfavorable reactions through which other molecules are synthesized. Many of these coupled reactions involve the transfer of the terminal phosphate in ATP to another molecule, as illustrated by the phosphorylation reaction in Figure 2–34. As the most abundant activated carrier in cells, ATP is the principle energy currency. To give just two examples, it supplies energy for many of the pumps that transport substances into and out of the cell (discussed in Chapter 11), and it powers the molecular motors that enable muscle cells to contract and nerve cells to transport materials from one end of their long axons to another (discussed in Chapter 16). energy stored in aTp is often harnessed to Join Two molecules Together
Cell_Biology_Alberts_307
Cell_Biology_Alberts
energy stored in aTp is often harnessed to Join Two molecules Together We have previously discussed one way in which an energetically favorable reaction can be coupled to an energetically unfavorable reaction, X → Y, so as to enable it to occur. In that scheme, a second enzyme catalyzes the energetically favorable reaction Y → Z, pulling all of the X to Y in the process. But when the required product is Y and not Z, this mechanism is not useful.
Cell_Biology_Alberts. energy stored in aTp is often harnessed to Join Two molecules Together We have previously discussed one way in which an energetically favorable reaction can be coupled to an energetically unfavorable reaction, X → Y, so as to enable it to occur. In that scheme, a second enzyme catalyzes the energetically favorable reaction Y → Z, pulling all of the X to Y in the process. But when the required product is Y and not Z, this mechanism is not useful.
Cell_Biology_Alberts_308
Cell_Biology_Alberts
Figure 2–33 The hydrolysis of aTP to aDP and inorganic phosphate. The two outermost phosphates in aTp are held to the rest of the molecule by high-energy phosphoanhydride bonds and are readily transferred. as indicated, water can be added to aTp to form aDp and inorganic phosphate (pi). hydrolysis of the terminal phosphate of aTp yields between 46 and 54 kJ/mole of usable energy, depending on the intracellular conditions. The large negative ΔG of this reaction arises from several factors: release of the terminal phosphate group removes an unfavorable repulsion between adjacent negative charges, and the inorganic phosphate ion (pi) released is stabilized by resonance and by favorable hydrogen-bond formation with water.
Cell_Biology_Alberts. Figure 2–33 The hydrolysis of aTP to aDP and inorganic phosphate. The two outermost phosphates in aTp are held to the rest of the molecule by high-energy phosphoanhydride bonds and are readily transferred. as indicated, water can be added to aTp to form aDp and inorganic phosphate (pi). hydrolysis of the terminal phosphate of aTp yields between 46 and 54 kJ/mole of usable energy, depending on the intracellular conditions. The large negative ΔG of this reaction arises from several factors: release of the terminal phosphate group removes an unfavorable repulsion between adjacent negative charges, and the inorganic phosphate ion (pi) released is stabilized by resonance and by favorable hydrogen-bond formation with water.
Cell_Biology_Alberts_309
Cell_Biology_Alberts
Figure 2–34 an example of a phosphate transfer reaction. Because an energy-rich phosphoanhydride bond in aTp is converted to a phosphoester bond, this reaction is energetically favorable, having a large negative ΔG. Reactions of this type are involved in the synthesis of phospholipids and in the initial steps of reactions that catabolize sugars. A typical biosynthetic reaction is one in which two molecules, A and B, are joined together to produce A–B in the energetically unfavorable condensation reaction There is an indirect pathway that allows A–H and B–OH to form A–B, in which a coupling to ATP hydrolysis makes the reaction go. Here, energy from ATP hydrolysis is first used to convert B–OH to a higher-energy intermediate compound, which then reacts directly with A–H to give A–B. The simplest possible mechanism involves the transfer of a phosphate from ATP to B–OH to make B–O–PO3, in which case the reaction pathway contains only two steps: 1. 2.
Cell_Biology_Alberts. Figure 2–34 an example of a phosphate transfer reaction. Because an energy-rich phosphoanhydride bond in aTp is converted to a phosphoester bond, this reaction is energetically favorable, having a large negative ΔG. Reactions of this type are involved in the synthesis of phospholipids and in the initial steps of reactions that catabolize sugars. A typical biosynthetic reaction is one in which two molecules, A and B, are joined together to produce A–B in the energetically unfavorable condensation reaction There is an indirect pathway that allows A–H and B–OH to form A–B, in which a coupling to ATP hydrolysis makes the reaction go. Here, energy from ATP hydrolysis is first used to convert B–OH to a higher-energy intermediate compound, which then reacts directly with A–H to give A–B. The simplest possible mechanism involves the transfer of a phosphate from ATP to B–OH to make B–O–PO3, in which case the reaction pathway contains only two steps: 1. 2.