uuid
stringlengths
36
36
file_name
stringlengths
5
50
repo_name
stringclasses
110 values
file_path
stringlengths
7
112
commit_hash
stringclasses
110 values
starcount
int64
0
0
input
stringlengths
39
33.8k
category
dict
licenses
sequencelengths
1
2
github_url
stringlengths
94
193
84f5d3ce-86d9-4bd2-8886-537018fb3ecc
linear.py
neuro-ml/kerops
kerops/kernels/linear.py
735336775e825d5cb06b8850d25423661b12d1ac
0
@triton.jit def _ReLULinearAdd(input_ptr, weight_ptr, add_ptr, output_ptr, numel_no_channels, in_channels: tl.constexpr, out_channels: tl. constexpr, D_block: tl.constexpr, _ILP: tl.constexpr): pid = tl.program_id(0) input_ptr += pid * _ILP * in_channels * D_block add_ptr += pid * _ILP * out_channels * D_block output_ptr += pid * _ILP * out_channels * D_block in_channels_offset = tl.arange(0, in_channels) out_channels_offset = tl.arange(0, out_channels) d_offset = tl.arange(0, D_block) in_offset = d_offset[:, None] * in_channels + in_channels_offset[None, :] out_offset = d_offset[:, None] * out_channels + out_channels_offset[None, : ] weight_offset = in_channels_offset[:, None ] * out_channels + out_channels_offset[None, :] weight = tl.load(weight_ptr + weight_offset) for i in tl.static_range(0, _ILP): mask = d_offset[:, None] < numel_no_channels - (pid * _ILP + i ) * D_block x = tl.load(input_ptr + in_offset, mask=mask, other=0) add = tl.load(add_ptr + out_offset, mask=mask, other=0) x = tl.maximum(x, 0.0).to(tl.float16) output = tl.dot(x, weight, out_dtype=tl.float32, allow_tf32=True).to(tl .float16) + add tl.store(output_ptr + out_offset, output, mask=mask) input_ptr += in_channels * D_block output_ptr += out_channels * D_block add_ptr += out_channels * D_block
{ "Data Type": [ "fp16" ], "Functionality": [ "Activation Functions", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/linear.py
84cd1cd2-9462-473a-bb44-5b276d47af20
bgmv_shrink.py
IBM/vllm
vllm/lora/ops/bgmv_shrink.py
99523dd62be2ecf6c6db15e8133aaaf7855e7e86
0
@triton.jit def _bgmv_shrink_kernel(input_ptr, lora_ptr, out_ptr, N, K, lora_indices, scaling, xm_stride, xk_stride, l0_stride, lora_k_stride, lora_n_stride, cm_stride, cn_stride, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, SPLIT_K: tl.constexpr): """ GroupGEMV, additionally, introducing SPLIT-K can improve large hidden_size's performance """ pid_sk = tl.program_id(axis=0) cur_batch = tl.program_id(axis=1) lora_index = tl.load(lora_indices + cur_batch) if lora_index == -1: return offset_n = tl.arange(0, BLOCK_N) offset_k = tl.arange(0, BLOCK_K) + pid_sk * BLOCK_K a_ptr = input_ptr + cur_batch * xm_stride b_ptr = lora_ptr + l0_stride * lora_index accumulator = tl.zeros((BLOCK_N,), dtype=tl.float32) for k in range(0, K, BLOCK_K * SPLIT_K): current_k = k + offset_k current_k_c = tl.max_contiguous(current_k, BLOCK_K) tiled_a = tl.load(a_ptr + current_k_c, mask=current_k < K, other=0.0) b_ptr_mask = (offset_n[:, None] < N) & (current_k[None, :] < K) tiled_b = tl.load(b_ptr + offset_n[:, None] * lora_k_stride + current_k[None, :] * lora_n_stride, mask=b_ptr_mask, other=0.0) accumulator += tl.sum(tiled_a * tiled_b, 1) accumulator *= scaling offset_cn = tl.arange(0, BLOCK_N) c_ptr = out_ptr + cur_batch * cm_stride + offset_cn * cn_stride c_mask = offset_cn < N if SPLIT_K == 1: tl.store(c_ptr, accumulator, mask=c_mask) else: tl.atomic_add(c_ptr, accumulator, mask=c_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/lora/ops/bgmv_shrink.py
7aa394e6-e22f-4bc1-adb7-e9d132c66ff6
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gated_delta_rule/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [2, 4]], key=['BT', 'BK', 'BV']) @triton.jit def chunk_gated_delta_rule_fwd_kernel_prepare_dv(q, k, g, do, dv, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_A += tl.dot(b_k, b_q, allow_tf32=False) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT, ), (0,)) else: p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) b_g = tl.load(p_g, boundary_check=(0,)) b_A = b_A * tl.exp(b_g[None, :] - b_g[:, None]) * scale b_A = tl.where(tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :], b_A, 0).to(do.dtype.element_ty) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dv = tl.dot(b_A, b_do, allow_tf32=False) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp16", "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Strided Access", "Transposed Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/chunk.py
9945be86-5f3d-4188-944a-1ea2180faf6f
RzLinearForward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearForward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def rz_linear_forward_kernel_tf32(a_ptr, b_ptr, c_ptr, init_factor, M, N, K, H, stride_am, stride_ak, stride_cm, stride_cn, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_M: tl. constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): rz_linear_forward_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr=c_ptr, init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am=stride_am, stride_ak=stride_ak, stride_cm=stride_cm, stride_cn=stride_cn, allow_tf32=True, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1=R1, R0=R0, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearForward.py
7c4f95a3-8744-4afb-a957-f1b3a27eedcc
gemm_streamk_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32)], key=['M', 'N', 'K']) @triton.jit def full_tiles(a_ptr, b_ptr, c_ptr, M: tl.constexpr, N: tl.constexpr, K: tl .constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl.constexpr, stride_cm: tl.constexpr, stride_cn: tl.constexpr, streamk_tiles, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): tile_id = tl.program_id(axis=0) + streamk_tiles if GROUP_SIZE_M > 0: pid_m, pid_n = swizzle_tile(tile_id, M, N, K, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, GROUP_SIZE_M) else: pid_m, pid_n = linear_tile(tile_id, M, N, K, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, GROUP_SIZE_M) a_block_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=( stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0)) b_block_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=( stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0)) acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for _ in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_block_ptr, boundary_check=(0, 1)) b = tl.load(b_block_ptr, boundary_check=(0, 1)) acc += tl.dot(a, b) a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K)) b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0)) c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=( stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0)) tl.store(c_block_ptr, acc, boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py
f6db9b7b-2ee0-44bc-9725-7ba9d1cba3c0
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8)], key=['BK', 'BT']) @triton.jit def chunk_gla_fwd_A_kernel_intra_sub_intra(q, k, g, A, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl. constexpr, BC: tl.constexpr, BK: tl.constexpr, USE_OFFSETS: tl. constexpr, HEAD_FIRST: tl.constexpr): i_t, i_i, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H i_j = i_i if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if i_t * BT + i_i * BC >= T: return o_i = tl.arange(0, BC) o_k = tl.arange(0, BK) m_k = o_k < K m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T if HEAD_FIRST: o_A = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC) ) * BT + i_j * BC p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_g = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_k = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) p_gk = tl.max_contiguous(tl.multiple_of(g + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) else: o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC) ) * H * BT + i_h * BT + i_j * BC p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_g = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_k = tl.max_contiguous(tl.multiple_of(k + (bos + i_t * BT + i_j * BC) * H * K + i_h * K + o_k, BK), BK) p_gk = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_j * BC) * H * K + i_h * K + o_k, BK), BK) b_q = tl.load(p_q, boundary_check=(0, 1)) b_g = tl.load(p_g, boundary_check=(0, 1)) for j in range(0, min(BC, T - i_t * BT - i_i * BC)): b_k = tl.load(p_k, mask=m_k, other=0).to(tl.float32) b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32) b_A = tl.sum(b_q * b_k[None, :] * tl.exp(b_g - b_gk[None, :]), 1) b_A = tl.where(o_i >= j, b_A * scale, 0.0) tl.store(A + o_A + j, b_A, mask=m_A) p_k += K if HEAD_FIRST else H * K p_gk += K if HEAD_FIRST else H * K
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py
3db707e0-ddf4-4545-8ffd-260cfb5291c6
RzLinearBackward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearBackward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32}, num_stages=2, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def rz_linear_backward_input_grad_kernel_tf32(a_ptr, b_ptr, c_ptr, init_factor, M, N, K, H, stride_am, stride_an, stride_cm, stride_ck, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): rz_linear_backward_input_grad_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr= c_ptr, init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am= stride_am, stride_an=stride_an, stride_cm=stride_cm, stride_ck= stride_ck, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1=R1, R0=R0, allow_tf32=True, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N= BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearBackward.py
c3518964-a1ec-4489-8219-cf05cf366207
fused_softmax.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/fused_softmax.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'threads_per_warp': 32}, num_warps =32), triton.Config({'threads_per_warp': 32}, num_warps=16), triton. Config({'threads_per_warp': 32}, num_warps=8), triton.Config({ 'threads_per_warp': 32}, num_warps=4), triton.Config({ 'threads_per_warp': 16}, num_warps=64), triton.Config({ 'threads_per_warp': 16}, num_warps=32), triton.Config({ 'threads_per_warp': 16}, num_warps=16), triton.Config({ 'threads_per_warp': 16}, num_warps=8), triton.Config({ 'threads_per_warp': 16}, num_warps=4)], key=['BLOCK_SIZE_X', 'BLOCK_SIZE_Y']) @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_cols, BLOCK_SIZE_X: tl.constexpr, BLOCK_SIZE_Y: tl .constexpr): row_idx = tl.program_id(0) * BLOCK_SIZE_Y row_start_ptr = input_ptr + row_idx * input_row_stride col_offsets = tl.arange(0, BLOCK_SIZE_X) row_offsets = tl.arange(0, BLOCK_SIZE_Y) offsets = col_offsets[None, :] + row_offsets[:, None] * input_row_stride input_ptrs = row_start_ptr + offsets mask = col_offsets[None, :] < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) row_minus_max = row - tl.max(row, axis=1)[:, None] numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=1)[:, None] softmax_output = numerator / denominator output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + offsets tl.store(output_ptrs, softmax_output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/fused_softmax.py
faeab38a-3414-4adf-b42a-0d11426d5131
test_triton.py
apd10/RzLinear
python/tests/test_triton.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.jit def triton_tn_kernel(a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bm, stride_bn, stride_ck, stride_cn, allow_tf32: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): """Kernel for computing the matmul C = A^T x B. A has shape (M, K), B has shape (M, N) and C has shape (K, N) """ pid = tl.program_id(axis=0) num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_k = pid // num_pid_n pid_n = pid % num_pid_n offs_ak = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) offs_am = tl.arange(0, BLOCK_SIZE_M) a_ptrs = a_ptr + offs_ak[:, None] * stride_am + offs_am[None, : ] * stride_ak offs_bm = tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) b_ptrs = b_ptr + offs_bm[:, None] * stride_bm + offs_bn[None, : ] * stride_bn c = tl.zeros((BLOCK_SIZE_K, BLOCK_SIZE_N), dtype=tl.float32) for _ in range(0, M // BLOCK_SIZE_M): a = tl.load(a_ptrs) b = tl.load(b_ptrs) c += tl.dot(a, b, allow_tf32=allow_tf32) a_ptrs += BLOCK_SIZE_M * stride_ak b_ptrs += BLOCK_SIZE_M * stride_bm offs_ck = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_ck * offs_ck[:, None] + stride_cn * offs_cn[None, : ] c_mask = (offs_ck[:, None] < K) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/tests/test_triton.py
d0b8c6a2-7f55-44e6-9e98-4a7950d8a027
k_layer_norm.py
cpuhrsch/torchfused
torchfused/triton/k_layer_norm.py
6c40ed160dcecbe7825f268f7c86bccd359e0ebf
0
@triton.jit def _store(y, Y, stride, N, META): row = tl.program_id(0) cols = tl.arange(0, META['BLOCK_SIZE_N']) y_ptrs = Y + row * stride + cols tl.store(y_ptrs, y, mask=cols < N)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Low Latency" ] }
[ "BSD" ]
https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py
3a7b1bd1-f3ca-43bf-a7b4-0c9a9351f847
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_self_substraction_jagged_out_kernel(a_ptr, b_ptr, a_offsets_ptr, b_offsets_ptr, max_seq_len, BLOCK_SIZE: tl.constexpr): pid_batch = tl.program_id(0) pid_index = tl.program_id(1) a_offset = tl.load(a_offsets_ptr + pid_batch) a_length = tl.load(a_offsets_ptr + pid_batch + 1) - a_offset a_length = tl.minimum(a_length, max_seq_len + 1) if a_length <= 1: return N = a_length - 1 if pid_index >= N: return a_cur = tl.load(a_ptr + a_offset + pid_index) offs = tl.arange(0, BLOCK_SIZE) mask = offs < N a_row = tl.load(a_ptr + a_offset + offs + 1, mask=mask) b = a_cur - a_row b_offset = tl.load(b_offsets_ptr + pid_batch) tl.store(b_ptr + b_offset + pid_index * N + offs, b, mask=mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
1785486b-2352-41b5-af96-46f69ff6c60e
mamba_ssm.py
Charlie-XIAO/sparse-vllm
vllm/model_executor/layers/mamba/ops/mamba_ssm.py
d228909a30b0c245c35417fb7d2acdf9a3690042
0
@triton.jit def softplus(dt): dt = tl.where(dt <= 20.0, tl.math.log(tl.math.exp(dt) + 1), dt) return dt
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [ "Low Latency" ] }
[ "Apache" ]
https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/model_executor/layers/mamba/ops/mamba_ssm.py
dcc18d2e-fcbe-411e-948a-c0bd4f7e40c3
softmax_online_v2_spec.py
iclementine/optimize_softmax
softmax_online_v2_spec.py
6ddeee3481dd5e63f4a30b946c417e97bc4494bf
0
@triton.jit def softmax_kernel_online_v2(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr ): pid_m = tl.program_id(0) m = tl.full((TILE_N,), value=-float('inf'), dtype=output_ptr.dtype. element_ty) z = tl.full((TILE_N,), value=0, dtype=output_ptr.dtype.element_ty) prev_multiple = prev_multiple_of(N, TILE_N) for start_n in range(0, prev_multiple, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset inp = tl.load(input_ptrs).to(output_ptr.dtype.element_ty) new_m = tl.maximum(m, inp) new_z = tl.exp(m - new_m) * z + tl.exp(inp - new_m) m = new_m z = new_z for start_n in range(prev_multiple, N, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) new_m = tl.maximum(m, inp) new_z = tl.exp(m - new_m) * z + tl.exp(inp - new_m) m = new_m z = new_z final_m = tl.max(m, 0) z = tl.sum(tl.exp(m - final_m) * z) m = final_m prev_multiple = prev_multiple_of(N, TILE_N) for start_n in range(0, prev_multiple, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset inp = tl.load(input_ptrs).to(output_ptr.dtype.element_ty) e = tl.exp(inp - m) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out) for start_n in range(prev_multiple, N, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) e = tl.exp(inp - m) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_online_v2_spec.py
4d7c81d2-85d8-4a4f-9e51-fda6146986f7
lightning_attn2.py
OpenNLPLab/lightning-attention
lightning_attn/ops/triton/lightning_attn2.py
d7439519541e966084eeaaf3ffd63eecc216f414
0
@triton.jit def _bwd_inter_kernel(Q, K, V, S, DO, DQ, DK, DV, b: tl.constexpr, h: tl. constexpr, n: tl.constexpr, d: tl.constexpr, e: tl.constexpr, BLOCK: tl .constexpr, NUM_BLOCK: tl.constexpr, CBLOCK: tl.constexpr, NUM_CBLOCK: tl.constexpr): off_bh = tl.program_id(0) off_h = off_bh % h qk_offset = off_bh * n * d v_offset = off_bh * n * e o_offset = off_bh * n * e S_block_ptr = S + off_h DQ_block_ptr = DQ + qk_offset + tl.arange(0, CBLOCK)[:, None ] * d + tl.arange(0, d)[None, :] K_block_ptr = K + qk_offset + tl.arange(0, CBLOCK)[:, None ] * d + tl.arange(0, d)[None, :] V_trans_block_ptr = V + v_offset + tl.arange(0, CBLOCK)[None, : ] * e + tl.arange(0, e)[:, None] DO_block_ptr = DO + o_offset + tl.arange(0, CBLOCK)[:, None ] * e + tl.arange(0, e)[None, :] off_block1 = tl.arange(0, CBLOCK) off_block2 = tl.arange(0, CBLOCK) c_array = tl.arange(0, CBLOCK) s = tl.load(S_block_ptr) block_decay = tl.exp(-s.to(tl.float32) * BLOCK) kv_trans = tl.zeros([e, d], dtype=tl.float32) for i in range(NUM_BLOCK): for j in range(NUM_CBLOCK): if i > 0: q_decay = tl.exp(-s.to(tl.float32) * (j * CBLOCK + c_array[ :, None])) do = tl.load(DO_block_ptr, mask=off_block1[:, None] < n, other=0.0).to(tl.float32) dq_inter = tl.dot(do, kv_trans) * q_decay dq = dq_inter + tl.load(DQ_block_ptr, mask=off_block1[:, None] < n, other=0.0) tl.store(DQ_block_ptr, dq.to(DQ_block_ptr.dtype.element_ty), mask=off_block1[:, None] < n) DQ_block_ptr += CBLOCK * d DO_block_ptr += CBLOCK * e off_block1 += CBLOCK kv_trans_current = tl.zeros([e, d], dtype=tl.float32) for j in range(NUM_CBLOCK): v_trans = tl.load(V_trans_block_ptr, mask=off_block2[None, :] < n, other=0.0).to(tl.float32) k = tl.load(K_block_ptr, mask=off_block2[:, None] < n, other=0.0 ).to(tl.float32) k_decay = tl.exp(-s.to(tl.float32) * (BLOCK - (j * CBLOCK + c_array[:, None]))) kv_trans_current += tl.dot(v_trans, k * k_decay) K_block_ptr += CBLOCK * d V_trans_block_ptr += CBLOCK * e off_block2 += CBLOCK kv_trans = block_decay * kv_trans + kv_trans_current m = NUM_BLOCK * BLOCK off_block1 = m + tl.arange(0, CBLOCK) off_block2 = m + tl.arange(0, CBLOCK) Q_trans_block_ptr = Q + qk_offset + m * d + tl.arange(0, CBLOCK)[None, : ] * d + tl.arange(0, d)[:, None] K_block_ptr = K + qk_offset + m * d + tl.arange(0, CBLOCK)[:, None ] * d + tl.arange(0, d)[None, :] V_trans_block_ptr = V + v_offset + m * e + tl.arange(0, CBLOCK)[None, : ] * e + tl.arange(0, e)[:, None] DK_trans_block_ptr = DK + qk_offset + m * d + tl.arange(0, CBLOCK)[None, : ] * d + tl.arange(0, d)[:, None] DV_block_ptr = DV + v_offset + m * e + tl.arange(0, CBLOCK)[:, None ] * e + tl.arange(0, e)[None, :] DO_block_ptr = DO + o_offset + m * e + tl.arange(0, CBLOCK)[:, None ] * e + tl.arange(0, e)[None, :] dkv = tl.zeros([d, e], dtype=tl.float32) for i in range(NUM_BLOCK - 1, -1, -1): for j in range(NUM_CBLOCK - 1, -1, -1): K_block_ptr -= CBLOCK * d V_trans_block_ptr -= CBLOCK * e DK_trans_block_ptr -= CBLOCK * d DV_block_ptr -= CBLOCK * e off_block1 -= CBLOCK if i < NUM_BLOCK - 1: k = tl.load(K_block_ptr, mask=off_block1[:, None] < n, other=0.0).to(tl.float32) v_trans = tl.load(V_trans_block_ptr, mask=off_block1[None, :] < n, other=0.0).to(tl.float32) k_decay_trans = tl.exp(-s.to(tl.float32) * (BLOCK - (j * CBLOCK + c_array[None, :]))) k_decay = tl.exp(-s.to(tl.float32) * (BLOCK - (j * CBLOCK + c_array[:, None]))) dk_inter_trans = tl.dot(dkv, v_trans) * k_decay_trans dv_inter = tl.dot(k, dkv) * k_decay dk_trans = dk_inter_trans + tl.load(DK_trans_block_ptr, mask=off_block1[None, :] < n, other=0.0) dv = dv_inter + tl.load(DV_block_ptr, mask=off_block1[:, None] < n, other=0.0) tl.store(DK_trans_block_ptr, dk_trans.to(DK_trans_block_ptr .dtype.element_ty), mask=off_block1[None, :] < n) tl.store(DV_block_ptr, dv.to(DV_block_ptr.dtype.element_ty), mask=off_block1[:, None] < n) dkv_current = tl.zeros([d, e], dtype=tl.float32) for j in range(NUM_CBLOCK - 1, -1, -1): DO_block_ptr -= CBLOCK * e Q_trans_block_ptr -= CBLOCK * d off_block2 -= CBLOCK do = tl.load(DO_block_ptr, mask=off_block2[:, None] < n, other=0.0 ).to(tl.float32) q_trans = tl.load(Q_trans_block_ptr, mask=off_block2[None, :] < n, other=0.0).to(tl.float32) q_decay_trans = tl.exp(-s.to(tl.float32) * (j * CBLOCK + c_array[None, :])) dkv_current += tl.dot(q_trans * q_decay_trans, do) dkv = block_decay * dkv + dkv_current
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/OpenNLPLab/lightning-attention/blob/d7439519541e966084eeaaf3ffd63eecc216f414/lightning_attn/ops/triton/lightning_attn2.py
a120d48c-11cf-4fd5-a8e7-b007acd4cd2e
softmax_kernels.py
BobMcDear/attorch
attorch/softmax_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'feat_dim']) @triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic, 'BLOCK_SIZE_FEAT': lambda args: next_power_of_2(args['feat_dim'])}) @triton.jit def softmax_forward_kernel(input_pointer, output_pointer, batch_dim, feat_dim, input_batch_stride, input_feat_stride, output_batch_stride, output_feat_stride, log: tl.constexpr, BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_FEAT: tl.constexpr): """ Normalizes the input using softmax. Args: input_pointer: Pointer to the input to normalize. The input must be of shape [batch_dim, feat_dim]. output_pointer: Pointer to a container the result is written to. The container must be of shape [batch_dim, feat_dim]. batch_dim: Batch dimension. feat_dim: Dimensionality of the features. input_batch_stride: Stride necessary to jump one element along the input's batch dimension. input_feat_stride: Stride necessary to jump one element along the input's feature dimension. output_batch_stride: Stride necessary to jump one element along the output container's batch dimension. output_feat_stride: Stride necessary to jump one element along the output container's feature dimension. log: Flag for indicating if the log of softmax should be taken. BLOCK_SIZE_BATCH: Block size across the batch dimension. BLOCK_SIZE_FEAT: Block size across the feature dimension. """ batch_pid = tl.program_id(axis=0) batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH ) feat_offset = tl.arange(0, BLOCK_SIZE_FEAT) batch_mask = batch_offset < batch_dim feat_mask = feat_offset < feat_dim input_pointer += input_batch_stride * batch_offset[:, None ] + input_feat_stride * feat_offset[None, :] output_pointer += output_batch_stride * batch_offset[:, None ] + output_feat_stride * feat_offset[None, :] input = tl.load(input_pointer, mask=batch_mask[:, None] & feat_mask[ None, :], other=-float('inf')).to(tl.float32) input -= tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator tl.store(output_pointer, output, mask=batch_mask[:, None] & feat_mask[ None, :])
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/softmax_kernels.py
5d6d3565-d6b7-4e2c-9a44-573d03809ba0
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gsa/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [2, 4, 8]], key=['BT']) @triton.jit def chunk_gsa_bwd_k_kernel_dA(v, g, do, dA, indices, offsets, scale, B: tl. constexpr, T: tl.constexpr, HQ: tl.constexpr, H: tl.constexpr, V: tl. constexpr, BT: tl.constexpr, BC: tl.constexpr, BV: tl.constexpr, NC: tl .constexpr, NG: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl .constexpr): i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_bg = i_bh // NG i_b, i_hq = i_bh // HQ, i_bh % HQ i_h = i_hq // NG i_t, i_i, i_j = i_c // (NC * NC), i_c % (NC * NC) // NC, i_c % (NC * NC ) % NC if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) all = T T = eos - bos else: bos, eos = i_b * T, i_b * T + T all = B * T o_v = i_v * BV + tl.arange(0, BV) m_v = o_v < V if i_t * BT + i_i * BC > T: return if HEAD_FIRST: p_dA = tl.make_block_ptr(dA + (i_v * B * H + i_bh) * T * BT, (T, BT ), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) else: p_dA = tl.make_block_ptr(dA + ((i_v * all + bos) * HQ + i_hq) * BT, (T, BT), (HQ * BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC ), (1, 0)) b_dA = tl.zeros([BC, BC], dtype=tl.float32) if i_i > i_j: if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bg * T * V, (V, T), (1, V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1)) p_gv = tl.make_block_ptr(g + i_bg * T * V, (V, T), (1, V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1)) p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + (i_t * BT + i_i * BC) * V + o_v, BV), BV) p_g = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (V, T), (1, H * V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1)) p_gv = tl.make_block_ptr(g + (bos * H + i_h) * V, (V, T), (1, H * V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1)) p_gn = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_i * BC) * H * V + i_h * V + o_v, BV), BV) p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), ( HQ * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) b_gn = tl.load(p_gn, mask=m_v, other=0.0) b_g = tl.load(p_g, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_do = (b_do * tl.exp(b_g - b_gn[None, :]) * scale).to(b_do.dtype) b_v = tl.load(p_v, boundary_check=(0, 1)) b_gv = tl.load(p_gv, boundary_check=(0, 1)) b_vg = (b_v * tl.exp(b_gn[:, None] - b_gv)).to(b_v.dtype) b_dA = tl.dot(b_do, b_vg) elif i_i == i_j: if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_v = tl.max_contiguous(tl.multiple_of(v + i_bg * T * V + (i_t * BT + i_j * BC) * V + o_v, BV), BV) p_gv = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + (i_t * BT + i_j * BC) * V + o_v, BV), BV) else: p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), ( HQ * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_v = tl.max_contiguous(tl.multiple_of(v + (bos + i_t * BT + i_j * BC) * H * V + i_h * V + o_v, BV), BV) p_gv = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_j * BC) * H * V + i_h * V + o_v, BV), BV) b_g = tl.load(p_g, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) * scale m_v = o_v < V o_i = tl.arange(0, BC) m_dA = o_i[:, None] >= o_i[None, :] for j in range(0, min(BC, T - i_t * BT - i_j * BC)): b_v = tl.load(p_v, mask=m_v, other=0).to(tl.float32) b_gv = tl.load(p_gv, mask=m_v, other=0).to(tl.float32) b_dAj = tl.sum(b_do * b_v[None, :] * tl.exp(b_g - b_gv[None, :]), 1 ) b_dA = tl.where((o_i == j)[None, :], b_dAj[:, None], b_dA) p_v += (1 if HEAD_FIRST else H) * V p_gv += (1 if HEAD_FIRST else H) * V b_dA = tl.where(m_dA, b_dA, 0.0) tl.store(p_dA, b_dA.to(dA.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gsa/chunk.py
735b3e92-e000-4d97-b785-9e46514b0726
dropout_rng.py
ROCm/aotriton
tritonsrc/dropout_rng.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def debug_fill_dropout_rng_tensor(R, stride_rz, stride_rh, stride_rm, stride_rn, seqlen_q, seqlen_k, philox_seed_ptr, philox_offset_base_ptr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): philox_seed = tl.load(philox_seed_ptr) philox_offset_base = tl.load(philox_offset_base_ptr) debug_fill_dropout_rng(R, stride_rz, stride_rh, stride_rm, stride_rn, seqlen_q, seqlen_k, philox_seed, philox_offset_base, BLOCK_M, BLOCK_N)
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/dropout_rng.py
0f4487e2-762b-4302-8603-dbcd1043dab6
dequant_kernel.py
drisspg/transformer_nuggets
transformer_nuggets/quant/dequant_kernel.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def dequantize_scalers(quantized_scalers_ptr, quantization_factor_ptr, scaler_mean_ptr, block_size, scaler_block_size): """Dequantizes the quantized scalers to bfloat16 Args: quantized_scalers_ptr: Pointer to the quantized scalers quantization_factor_ptr: Pointer to the quantization factor scaler_mean_ptr: Pointer to the scaler mean block_size: Size of the block scaler_block_size: Size of the scaler block """ block_idx = tl.program_id(0) quantization_factor_idx = block_idx // scaler_block_size scaler_quantization_factor = tl.load(quantization_factor_ptr + quantization_factor_idx) block_scaler = tl.load(quantized_scalers_ptr + block_idx) scaler_mean = tl.load(scaler_mean_ptr) dequantized_block_scaler = (block_scaler / scaler_quantization_factor).to( tl.bfloat16) dequantized_block_scaler = dequantized_block_scaler + scaler_mean return dequantized_block_scaler
{ "Data Type": [ "bf16", "int8" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/quant/dequant_kernel.py
f6685121-0e40-477c-b66b-4993da0134fc
chunk_h_parallel.py
sustcsonglin/flash-linear-attention
fla/ops/common/chunk_h_parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0' ] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64, 128] for BV in [32, 64, 128] for num_warps in [2, 4, 8, 16] for num_stages in [2, 3]], key= ['BT', 'USE_G', 'USE_GK', 'USE_GV']) @triton.jit def chunk_bwd_kernel_dh_reduction(g, gk, gv, dh, doq0, dh0, offsets, chunk_offsets, T: tl.constexpr, HQ: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NG: tl.constexpr, USE_G: tl.constexpr, USE_GK: tl. constexpr, USE_GV: tl.constexpr, STORE_INITIAL_STATE_GRADIENT: tl. constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_bg = i_nh // NG i_n, i_hq = i_nh // HQ, i_nh % HQ i_h = i_hq // NG if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT b_dh = tl.zeros([BK, BV], dtype=tl.float32) for i_t in range(NT - 1, -1, -1): if HEAD_FIRST: p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_dh = tl.make_block_ptr(dh + ((boh + i_t) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dh, boundary_check=(0, 1)).to(tl.float32) if i_t < NT - 1: tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=( 0, 1)) last_idx = min(i_t * BT + BT, T) - 1 if USE_G: if HEAD_FIRST: b_g_last = tl.load(g + i_bg * T + last_idx) else: b_g_last = tl.load(g + (bos + last_idx) * H + i_h) b_dh *= tl.exp(b_g_last) if USE_GK: if HEAD_FIRST: p_gk_last = gk + (i_bg * T + last_idx ) * K + i_k * BK + tl.arange(0, BK) else: p_gk_last = gk + (bos + last_idx ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK) b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) < K, other=0.0) b_dh *= tl.exp(b_gk_last)[:, None] if USE_GV: if HEAD_FIRST: p_gv_last = gv + (i_bg * T + last_idx ) * V + i_v * BV + tl.arange(0, BV) else: p_gv_last = gv + (bos + last_idx ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV) b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) < V, other=0.0) b_dh *= tl.exp(b_gv_last)[None, :] if STORE_INITIAL_STATE_GRADIENT: p_doq0 = tl.make_block_ptr(doq0 + i_nh * K * V, (K, V), (V, 1), ( i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_doq0, boundary_check=(0, 1)).to(tl.float32) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_parallel.py
06154394-82a9-4d57-b6ed-f27fc9bbaca5
flash_attention.py
falkaer/multi-scale-music
seq/flash_attention.py
a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d
0
@triton.jit def _bwd_preprocess(Out, DO, NDO, L, Delta, M_Q, stride_oz, stride_oh, stride_om, stride_od, stride_doz, stride_doh, stride_dom, stride_dod, stride_ndoz, stride_ndoh, stride_ndom, stride_ndod, stride_lz, stride_lh, stride_lm, stride_dz, stride_dh, stride_dm, BLOCK_DMODEL: tl .constexpr, BLOCK_M: tl.constexpr, EVEN_M: tl.constexpr): off_h = tl.program_id(1) off_z = tl.program_id(2) offs_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_DMODEL) Out = Out + off_z * stride_oz + off_h * stride_oh + offs_m[:, None ] * stride_om + offs_d[None, :] * stride_od DO = DO + off_z * stride_doz + off_h * stride_doh + offs_m[:, None ] * stride_dom + offs_d[None, :] * stride_dod NDO = NDO + off_z * stride_ndoz + off_h * stride_ndoh + offs_m[:, None ] * stride_ndom + offs_d[None, :] * stride_ndod L = L + off_z * stride_lz + off_h * stride_lh + offs_m * stride_lm Delta = Delta + off_z * stride_dz + off_h * stride_dh + offs_m * stride_dm if EVEN_M: o = tl.load(Out).to(tl.float32) do = tl.load(DO).to(tl.float32) denom = tl.load(L).to(tl.float32) else: o = tl.load(Out, mask=offs_m[:, None] < M_Q).to(tl.float32) do = tl.load(DO, mask=offs_m[:, None] < M_Q).to(tl.float32) denom = tl.load(L, mask=offs_m < M_Q).to(tl.float32) do = do / denom[:, None] delta = tl.sum(o * do, axis=1) if EVEN_M: tl.store(NDO, do) tl.store(Delta, delta) else: tl.store(NDO, do, mask=offs_m[:, None] < M_Q) tl.store(Delta, delta, mask=offs_m < M_Q)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py
e5746bd4-5ff0-429c-abaa-ebb35c0d4af0
fused_norm_gate.py
sustcsonglin/flash-linear-attention
fla/modules/fused_norm_gate.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32)], key=['N', 'HAS_RESIDUAL', 'STORE_RESIDUAL_OUT', 'IS_RMS_NORM', 'HAS_BIAS']) @triton.jit def layer_norm_fwd_kernel(X, O, Y, W, B, RESIDUAL, RESIDUAL_OUT, Mean, Rstd, stride_x_row, stride_y_row, stride_res_row, stride_res_out_row, N, eps, IS_RMS_NORM: tl.constexpr, BLOCK_N: tl.constexpr, HAS_RESIDUAL: tl. constexpr, STORE_RESIDUAL_OUT: tl.constexpr, HAS_WEIGHT: tl.constexpr, HAS_BIAS: tl.constexpr): row = tl.program_id(0) X += row * stride_x_row Y += row * stride_y_row O += row * stride_x_row if HAS_RESIDUAL: RESIDUAL += row * stride_res_row if STORE_RESIDUAL_OUT: RESIDUAL_OUT += row * stride_res_out_row cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) if HAS_RESIDUAL: residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl .float32) x += residual if STORE_RESIDUAL_OUT: tl.store(RESIDUAL_OUT + cols, x, mask=cols < N) if not IS_RMS_NORM: mean = tl.sum(x, axis=0) / N tl.store(Mean + row, mean) xbar = tl.where(cols < N, x - mean, 0.0) var = tl.sum(xbar * xbar, axis=0) / N else: xbar = tl.where(cols < N, x, 0.0) var = tl.sum(xbar * xbar, axis=0) / N rstd = 1 / tl.sqrt(var + eps) tl.store(Rstd + row, rstd) mask = cols < N if HAS_WEIGHT: w = tl.load(W + cols, mask=mask).to(tl.float32) if HAS_BIAS: b = tl.load(B + cols, mask=mask).to(tl.float32) x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd y = x_hat * w if HAS_WEIGHT else x_hat if HAS_BIAS: y = y + b o = tl.load(O + cols, mask=cols < N, other=0.0).to(tl.float32) y = y * o * tl.sigmoid(o) tl.store(Y + cols, y, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/fused_norm_gate.py
1867f9a5-2505-4dea-85b4-7eec68d369de
nll_loss_kernels.py
BobMcDear/attorch
attorch/nll_loss_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'spatial_dim']) @triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic, 'BLOCK_SIZE_SPATIAL': lambda args: next_power_of_2(args['spatial_dim'])}) @triton.jit def nll_loss_backward_kernel(output_grad_pointer, target_pointer, weight_pointer, sum_weights_pointer, input_grad_pointer, batch_dim, spatial_dim, output_grad_batch_stride, output_grad_feat_stride, target_batch_stride, target_spatial_stride, input_grad_batch_stride, input_grad_feat_stride, input_grad_spatial_stride, reduction: tl. constexpr, weighted: tl.constexpr, BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_SPATIAL: tl.constexpr): """ Calculates the input gradient of negative log likelihood loss. Args: output_grad_pointer: Pointer to the loss's output gradients. The output gradients must be of shape [batch_dim, spatial_dim] if reduction is 'none', and otherwise [batch_dim/BLOCK_SIZE_BATCH]. target_pointer: Pointer to the target. The target must be of shape [batch_dim, spatial_dim]. weight_pointer: Pointer to an optional class weight vector. The class weight vector, if provided, must be of shape [feat_dim]. sum_weights_pointer: Pointer to the sum of the class weights if the classes were weighed. The sum of weights must be a scalar. input_grad_pointer: Pointer to a container the input's gradients are written to. The container must be of shape [batch_dim, feat_dim, spatial_dim] and zeroed. batch_dim: Batch dimension. spatial_dim: Spatial dimension. output_grad_batch_stride: Stride necessary to jump one element along the output gradients' batch dimension. output_grad_feat_stride: Stride necessary to jump one element along the output gradients' feature dimension. input_spatial_stride: Stride necessary to jump one element along the input's spatial dimension. target_batch_stride: Stride necessary to jump one element along the target's batch dimension. target_spatial_stride: Stride necessary to jump one element along the target's spatial dimension. input_grad_batch_stride: Stride necessary to jump one element along the input gradient container's batch dimension. input_grad_feat_stride: Stride necessary to jump one element along the input gradient container's feature dimension. input_grad_spatial_stride: Stride necessary to jump one element along the input gradient container's spatial dimension. reduction: Reduction strategy for the output whose gradient is calculated. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. weighted: Flag for weighing each class. BLOCK_SIZE_BATCH: Block size across the batch dimension. BLOCK_SIZE_SPATIAL: Block size across the spatial dimension. """ batch_pid = tl.program_id(axis=0) batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH ) spatial_offset = tl.arange(0, BLOCK_SIZE_SPATIAL) batch_mask = batch_offset < batch_dim spatial_mask = spatial_offset < spatial_dim output_grad_mask = None if reduction == 'none': output_grad_pointer += output_grad_batch_stride * batch_offset[:, None ] + output_grad_feat_stride * spatial_offset[None, :] output_grad_mask = batch_mask[:, None] & spatial_mask[None, :] output_grad = tl.load(output_grad_pointer, mask=output_grad_mask).to(tl .float32) input_grad = -output_grad target_pointer += target_batch_stride * batch_offset[:, None ] + target_spatial_stride * spatial_offset[None, :] target = tl.load(target_pointer, mask=batch_mask[:, None] & spatial_mask[None, :]) if weighted: weight = tl.load(weight_pointer + target, mask=batch_mask[:, None] & spatial_mask[None, :]).to(tl.float32) input_grad *= weight if reduction == 'mean': input_grad /= tl.load(sum_weights_pointer) elif reduction == 'mean': input_grad /= batch_dim * spatial_dim input_grad_pointer += (input_grad_feat_stride * target + input_grad_batch_stride * batch_offset[:, None] + input_grad_spatial_stride * spatial_offset[None, :]) tl.store(input_grad_pointer, input_grad, mask=batch_mask[:, None] & spatial_mask[None, :])
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/nll_loss_kernels.py
13add3b4-2ac9-4b8e-9860-79b4012d9a64
RzLinearBackward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearBackward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.jit def rz_linear_backward_weight_grad_core(a_ptr, b_ptr, c_ptr, init_factor, M, N, K, H, stride_am, stride_ak, stride_bm, stride_bn, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, allow_tf32: tl. constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): """Kernel for computing the matmul C = A^T x B. A has shape (M, K), B has shape (M, N) and C has shape (K, N) """ pid = tl.program_id(axis=0) num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE * num_pid_n group_id = pid // num_pid_in_group first_pid_k = group_id * GROUP_SIZE group_size_k = min(num_pid_k - first_pid_k, GROUP_SIZE) pid_k = first_pid_k + pid % group_size_k pid_n = pid % num_pid_in_group // group_size_k offs_ak = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) offs_am = tl.arange(0, BLOCK_SIZE_M) a_ptrs = a_ptr + offs_ak[:, None] * stride_am + offs_am[None, : ] * stride_ak offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_bm = tl.arange(0, BLOCK_SIZE_M) b_ptrs = b_ptr + offs_bm[:, None] * stride_bm + offs_bn[None, : ] * stride_bn offs_ck = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) a_zero = tl.zeros((BLOCK_SIZE_K, BLOCK_SIZE_M), dtype=tl.float32) b_zero = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) c = tl.zeros((BLOCK_SIZE_K, BLOCK_SIZE_N), dtype=tl.float32) for m in range(0, tl.cdiv(M, BLOCK_SIZE_M)): offs_m = m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) a_mask = (offs_ck[:, None] < K) & (offs_m[None, :] < M) b_mask = (offs_m[:, None] < M) & (offs_cn[None, :] < N) a = tl.load(a_ptrs, mask=a_mask, other=a_zero) b = tl.load(b_ptrs, mask=b_mask, other=b_zero) c += tl.dot(a, b, allow_tf32=allow_tf32) a_ptrs += BLOCK_SIZE_M * stride_ak b_ptrs += BLOCK_SIZE_M * stride_bm c_offset = c_ptr + tl.arange(0, BLOCK_SIZE_K)[:, None ] * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] c_ptrs = c_offset + ((pid_k * R3 + pid_n * R2 + R1) % R0 * R0 + (pid_k * R7 + pid_n * R5 + R4) % R0) % (H - BLOCK_SIZE_K * BLOCK_SIZE_N) tl.atomic_add(c_ptrs, c * init_factor)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearBackward.py
74718d3f-c518-4407-8ec5-e202d737b762
chunk_fuse.py
elephantmipt/rebased_minimal
flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py
e7b945509972fab9f9c1c7be431abf7d6bf62c95
0
@triton.jit def chunk_abc_fwd_kernel_s(q, k, s, rk, ck, pk, s_qk_h, s_qk_t, s_qk_d, s_sk_h, s_sk_t, s_sk_m, T, scale, BT: tl.constexpr, BK: tl.constexpr, BM: tl.constexpr, DK: tl.constexpr, DM: tl.constexpr, NT: tl.constexpr): i_m, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) n_bh = tl.num_programs(2) p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), ( 0, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), ( i_k * BK, 0), (BK, BT), (0, 1)) p_s = tl.make_block_ptr(s + (i_k * n_bh + i_bh) * s_sk_h, (T, DM), ( s_sk_t, s_sk_m), (0, i_m * BM), (BT, BM), (1, 0)) p_rk = tl.make_block_ptr(rk + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m,), (i_m * BM,), (BM,), (0,)) p_ck = tl.make_block_ptr(ck + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m), (0, i_m * BM), (BT, BM), (1, 0)) p_pk = tl.make_block_ptr(pk + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m), (0, i_m * BM), (BT, BM), (1, 0)) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_hk = tl.zeros([BK, BM], dtype=tl.float32) for _ in range(NT): b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) b_rk = tl.load(p_rk, boundary_check=(0,)) b_ck = tl.load(p_ck, boundary_check=(0, 1)) b_pk = tl.load(p_pk, boundary_check=(0, 1)) b_inter = tl.dot(b_q, b_hk.to(b_q.dtype), allow_tf32=False) * b_rk[ None, :] b_intra = tl.dot(tl.where(m_s, tl.dot(b_q, b_k, allow_tf32=False), 0).to(b_q.dtype), b_ck, allow_tf32=False) b_s = (b_inter + b_intra) * b_pk b_hk = b_hk * b_rk[None, :] + tl.dot(b_k, b_ck, allow_tf32=False) tl.store(p_s, b_s.to(p_s.dtype.element_ty), boundary_check=(0, 1)) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_s = tl.advance(p_s, (BT, 0)) p_rk = tl.advance(p_rk, (DM,)) p_ck = tl.advance(p_ck, (BT, 0)) p_pk = tl.advance(p_pk, (BT, 0))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py
0d55d92f-0a9b-4b89-9f91-5898bd40e024
geglu.py
Kitsunetic/kitsu
kitsu/nn/geglu.py
826967a493c89753ac2cf1e28b52b79998fc9076
0
@triton.jit def geglu_forward_kernel(x_ptr, y_ptr, N, C, C2, BLK_C: tl.constexpr, BLK_N: tl.constexpr): pid_n = tl.program_id(0) pid_c = tl.program_id(1) offs_n = pid_n * BLK_N + tl.arange(0, BLK_N) offs_c = pid_c * BLK_C + tl.arange(0, BLK_C) mask_n = offs_n < N mask_c = offs_c < C2 mask = mask_n[:, None] & mask_c[None, :] x_ptrs = x_ptr + offs_n[:, None] * C + offs_c[None, :] x1 = tl.load(x_ptrs, mask=mask) x2 = tl.load(x_ptrs + C2, mask=mask) y = x1 * gelu_forward(x2) y_ptrs = y_ptr + offs_n[:, None] * C2 + offs_c[None, :] tl.store(y_ptrs, y, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/Kitsunetic/kitsu/blob/826967a493c89753ac2cf1e28b52b79998fc9076/kitsu/nn/geglu.py
eca0e629-398b-4f13-a441-1f45f6e88d23
stats.py
neuro-ml/kerops
kerops/kernels/stats.py
735336775e825d5cb06b8850d25423661b12d1ac
0
@triton.jit def _Stats_cl3d_backward_impl(X_ptr, Meangrad_ptr, Sqmeangrad_ptr, Outputgrad_ptr, numel_no_channels, num_channels: tl.constexpr, block_other: tl.constexpr): pid = tl.program_id(0) X_ptr += pid * num_channels * block_other Outputgrad_ptr += pid * num_channels * block_other channels_offset = tl.arange(0, num_channels) other_offset = tl.arange(0, block_other) offset = other_offset[:, None] * num_channels + channels_offset[None, :] mask = other_offset[:, None] < numel_no_channels - pid * block_other x = tl.load(X_ptr + offset, mask=mask, other=0.0).to(tl.float32) mean_grad = tl.load(Meangrad_ptr + channels_offset) sqmean_grad = tl.load(Sqmeangrad_ptr + channels_offset) grad = (2 * x * sqmean_grad / numel_no_channels + mean_grad / numel_no_channels) tl.store(Outputgrad_ptr + offset, grad, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Normalization" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/stats.py
10275dc6-1d3c-4562-9324-771303bd1166
sb_varlen_bwd.py
shawntan/stickbreaking-attention
stickbreaking_attention/sb_varlen/sb_varlen_bwd.py
8dd32ad5e58f0ee0232fd4782dc53d354ff8d283
0
@triton.autotune(configs=get_configs(), key=['token_size', 'head_size'], reset_to_zero=['DK_ptr', 'DV_ptr']) @triton.jit def _backward(DO_ptr, stride_doh: tl.constexpr, stride_dom, stride_dod: tl. constexpr, DR_ptr, stride_drh, stride_drm, A_ptr, stride_ah, stride_am, Q_ptr, stride_qh: tl.constexpr, stride_qm, stride_qd: tl.constexpr, K_ptr, stride_kh: tl.constexpr, stride_kn, stride_kd: tl.constexpr, V_ptr, stride_vh: tl.constexpr, stride_vn, stride_vd: tl.constexpr, DQ_ptr, stride_dqh: tl.constexpr, stride_dqm, stride_dqd: tl.constexpr, DK_ptr, stride_dkh: tl.constexpr, stride_dkn, stride_dkd: tl.constexpr, DV_ptr, stride_dvh: tl.constexpr, stride_dvn, stride_dvd: tl.constexpr, KV_Lock_ptr, KV_Count_ptr, stride_kvs, stride_kvh, CSL_ptr, logit_scale, batch_size, token_size, head_size: tl.constexpr, num_heads: tl. constexpr, BLOCK_D: tl.constexpr, BLOCK_CSL: tl.constexpr, NO_D_MASK: tl.constexpr, NO_M_MASK: tl.constexpr, NO_N_MASK: tl.constexpr, ALLOW_TF32: tl.constexpr, inv_log2: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, acc_dtype: tl.constexpr=tl.float32, attend_current: tl.constexpr=False): tl.static_assert(BLOCK_M % BLOCK_N == 0) seq_id = tl.program_id(0) fhead_id = tl.program_id(1) seq_alloc_prog_id = tl.program_id(2) num_seq_alloc_progs = tl.num_programs(2) if seq_id == 0: seq_start_offset = 0 else: seq_start_offset = tl.load(CSL_ptr + seq_id - 1).to(tl.int32) seq_end_offset = tl.load(CSL_ptr + seq_id).to(tl.int32) seq_length = seq_end_offset - seq_start_offset num_seq_blocks = tl.cdiv(seq_length, BLOCK_M) seq_a_block_id = num_seq_blocks - seq_alloc_prog_id - 1 seq_b_block_id = seq_alloc_prog_id - (num_seq_alloc_progs - num_seq_blocks) if seq_a_block_id >= 0 or seq_b_block_id >= 0: qk_scale = inv_log2 * logit_scale M_range = tl.arange(0, BLOCK_M) N_range = tl.arange(0, BLOCK_N) D_range = tl.arange(0, BLOCK_D) D_mask = D_range < head_size cm = tl.where(N_range[:, None] >= N_range[None, :], 1.0, 0.0).to(Q_ptr .type.element_ty) if seq_a_block_id >= 0: head_id = fhead_id * 2 DO_head_seq_ptr = (DO_ptr + stride_doh * head_id + stride_dom * seq_start_offset) DR_head_seq_ptr = (DR_ptr + stride_drh * head_id + stride_drm * seq_start_offset) A_head_seq_ptr = (A_ptr + stride_ah * head_id + stride_am * seq_start_offset) Q_head_seq_ptr = (Q_ptr + stride_qh * head_id + stride_qm * seq_start_offset) K_head_seq_ptr = (K_ptr + stride_kh * head_id + stride_kn * seq_start_offset) V_head_seq_ptr = (V_ptr + stride_vh * head_id + stride_vn * seq_start_offset) DQ_head_seq_ptr = (DQ_ptr + stride_dqh * head_id + stride_dqm * seq_start_offset) DK_head_seq_ptr = (DK_ptr + stride_dkh * head_id + stride_dkn * seq_start_offset) DV_head_seq_ptr = (DV_ptr + stride_dvh * head_id + stride_dvn * seq_start_offset) KV_Lock_head_seq_ptr = (KV_Lock_ptr + stride_kvs * seq_id + stride_kvh * head_id) KV_Count_head_seq_ptr = (KV_Count_ptr + stride_kvs * seq_id + stride_kvh * head_id) _backward_one_row(seq_a_block_id, seq_length, qk_scale, M_range, N_range, D_range, D_mask, cm, DO_head_seq_ptr, stride_dom, stride_dod, DR_head_seq_ptr, stride_drm, A_head_seq_ptr, stride_am, Q_head_seq_ptr, stride_qm, stride_qd, K_head_seq_ptr, stride_kn, stride_kd, V_head_seq_ptr, stride_vn, stride_vd, DQ_head_seq_ptr, stride_dqm, stride_dqd, DK_head_seq_ptr, stride_dkn, stride_dkd, DV_head_seq_ptr, stride_dvn, stride_dvd, KV_Lock_head_seq_ptr, KV_Count_head_seq_ptr, logit_scale, BLOCK_D, NO_D_MASK, NO_M_MASK, ALLOW_TF32, BLOCK_M, BLOCK_N, acc_dtype, attend_current=attend_current) if seq_b_block_id >= 0 and fhead_id * 2 + 1 < num_heads: head_id = fhead_id * 2 + 1 DO_head_seq_ptr = (DO_ptr + stride_doh * head_id + stride_dom * seq_start_offset) DR_head_seq_ptr = (DR_ptr + stride_drh * head_id + stride_drm * seq_start_offset) A_head_seq_ptr = (A_ptr + stride_ah * head_id + stride_am * seq_start_offset) Q_head_seq_ptr = (Q_ptr + stride_qh * head_id + stride_qm * seq_start_offset) K_head_seq_ptr = (K_ptr + stride_kh * head_id + stride_kn * seq_start_offset) V_head_seq_ptr = (V_ptr + stride_vh * head_id + stride_vn * seq_start_offset) DQ_head_seq_ptr = (DQ_ptr + stride_dqh * head_id + stride_dqm * seq_start_offset) DK_head_seq_ptr = (DK_ptr + stride_dkh * head_id + stride_dkn * seq_start_offset) DV_head_seq_ptr = (DV_ptr + stride_dvh * head_id + stride_dvn * seq_start_offset) KV_Lock_head_seq_ptr = (KV_Lock_ptr + stride_kvs * seq_id + stride_kvh * head_id) KV_Count_head_seq_ptr = (KV_Count_ptr + stride_kvs * seq_id + stride_kvh * head_id) _backward_one_row(seq_b_block_id, seq_length, qk_scale, M_range, N_range, D_range, D_mask, cm, DO_head_seq_ptr, stride_dom, stride_dod, DR_head_seq_ptr, stride_drm, A_head_seq_ptr, stride_am, Q_head_seq_ptr, stride_qm, stride_qd, K_head_seq_ptr, stride_kn, stride_kd, V_head_seq_ptr, stride_vn, stride_vd, DQ_head_seq_ptr, stride_dqm, stride_dqd, DK_head_seq_ptr, stride_dkn, stride_dkd, DV_head_seq_ptr, stride_dvn, stride_dvd, KV_Lock_head_seq_ptr, KV_Count_head_seq_ptr, logit_scale, BLOCK_D, NO_D_MASK, NO_M_MASK, ALLOW_TF32, BLOCK_M, BLOCK_N, acc_dtype, attend_current=attend_current)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_bwd.py
07efee37-5fc4-487f-907f-99cc5df92ca4
chunk_fuse.py
elephantmipt/rebased_minimal
flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py
e7b945509972fab9f9c1c7be431abf7d6bf62c95
0
@triton.jit def chunk_abc_bwd_kernel_rcum(s, r, c, o, s_sk_h, s_sk_t, s_sk_m, T, BT: tl .constexpr, BM: tl.constexpr, DM: tl.constexpr, NT: tl.constexpr): i_m, i_bh = tl.program_id(0), tl.program_id(1) p_s = tl.make_block_ptr(s + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m), ( (NT - 1) * BT, i_m * BM), (BT, BM), (1, 0)) p_c = tl.make_block_ptr(c + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m), ( (NT - 1) * BT, i_m * BM), (BT, BM), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m), ( (NT - 1) * BT, i_m * BM), (BT, BM), (1, 0)) o_i = tl.arange(0, BT) m_t = tl.where(o_i[:, None] <= o_i[None, :], 1.0, 0.0) b_z = tl.zeros([BM], dtype=tl.float32) for i in range(NT): p_r = tl.make_block_ptr(r + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m ,), ((NT - i) % NT * DM + i_m * BM,), (BM,), (0,)) b_s = tl.load(p_s, boundary_check=(0, 1)) b_r = tl.load(p_r, boundary_check=(0,)) b_c = tl.load(p_c, boundary_check=(0, 1)) b_o = tl.load(p_o, boundary_check=(0, 1)) b_z = b_z * b_r b_o -= b_c * (b_z[None, :] + tl.dot(m_t.to(b_s.dtype), b_s, allow_tf32=False)) b_z += tl.sum(b_s, 0) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_s = tl.advance(p_s, (-BT, 0)) p_c = tl.advance(p_c, (-BT, 0)) p_o = tl.advance(p_o, (-BT, 0))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py
67e4c93c-b727-4fc8-a953-27e3c96d1539
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4)], key=['BT', 'K', 'V']) @triton.jit def chunk_transform_qk_fwd_kernel(q, k, v, beta, o, A, q_new, k_new, A_local, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, T: tl. constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl. constexpr, BT: tl.constexpr, OUTPUT_ATTENTIONS: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, 0), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, 0), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, 0), (BT, BV), (1, 0)) b_q = (tl.load(p_q, boundary_check=(0, 1)) * scale).to(p_q.dtype.element_ty ) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) p_T = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_T = tl.load(p_T, boundary_check=(0, 1)) o_i = tl.arange(0, BT) m_t = o_i[:, None] >= o_i[None, :] b_qk = tl.where(m_t, tl.dot(b_q, tl.trans(b_k), allow_tf32=False), 0).to( b_q.dtype) m_t = o_i[:, None] > o_i[None, :] b_kk = tl.where(m_t, tl.dot(b_k, tl.trans(b_k), allow_tf32=False), 0).to( b_k.dtype) p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), ( BT,), (0,)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype) b_qkT = tl.dot(b_qk, b_T, allow_tf32=False).to(b_k.dtype) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(A_local + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) tl.store(p_a, b_qkT.to(p_a.dtype.element_ty), boundary_check=(0, 1)) b_kkT = tl.dot(b_kk, b_T, allow_tf32=False).to(b_k.dtype) p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, 0), (BT, BV), (1, 0)) tl.store(p_o, tl.dot(b_qkT, b_v).to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_q_new = tl.make_block_ptr(q_new + i_bh * s_k_h, (T, K), (s_k_t, s_k_d ), (i_t * BT, 0), (BT, BK), (1, 0)) tl.store(p_q_new, (b_q - tl.dot(b_qkT, b_k_beta, allow_tf32=False)).to( p_q_new.dtype.element_ty), boundary_check=(0, 1)) p_k_new = tl.make_block_ptr(k_new + i_bh * s_k_h, (T, K), (s_k_t, s_k_d ), (i_t * BT, 0), (BT, BK), (1, 0)) tl.store(p_k_new, (b_k - tl.dot(tl.trans(b_kkT), b_k_beta, allow_tf32= False)).to(p_k_new.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/parallel.py
f9c0d792-543f-40b9-b98d-def82c9bbbb9
sb_varlen_fwd.py
shawntan/stickbreaking-attention
stickbreaking_attention/sb_varlen/sb_varlen_fwd.py
8dd32ad5e58f0ee0232fd4782dc53d354ff8d283
0
@triton.autotune(configs=get_configs(), key=['head_size']) @triton.jit def _forward(Q_ptr, stride_qh: tl.constexpr, stride_qm, stride_qd: tl. constexpr, K_ptr, stride_kh: tl.constexpr, stride_kn, stride_kd: tl. constexpr, V_ptr, stride_vh: tl.constexpr, stride_vn, stride_vd: tl. constexpr, O_ptr, stride_oh: tl.constexpr, stride_om, stride_od: tl. constexpr, R_ptr, stride_rh, stride_rm: tl.constexpr, A_ptr, stride_ah, stride_am: tl.constexpr, W_ptr, stride_wh, stride_wm, stride_wn, CSL_ptr, logit_scale: tl.constexpr, batch_size, token_size, head_size: tl.constexpr, num_heads: tl.constexpr, BLOCK_D: tl.constexpr, NO_D_MASK: tl.constexpr, NO_M_MASK: tl.constexpr, NO_N_MASK: tl.constexpr, ALLOW_TF32: tl.constexpr, inv_log2: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, no_grad: tl.constexpr=False, acc_dtype: tl. constexpr=tl.float32, return_attention: tl.constexpr=False, use_cumsum: tl.constexpr=False, attend_current: tl.constexpr=False): tl.static_assert(BLOCK_M % BLOCK_N == 0) seq_id = tl.program_id(0) fhead_id = tl.program_id(1) seq_alloc_prog_id = tl.program_id(2) num_seq_alloc_progs = tl.num_programs(2) if seq_id == 0: seq_start_offset = 0 else: seq_start_offset = tl.load(CSL_ptr + seq_id - 1).to(tl.int32) seq_end_offset = tl.load(CSL_ptr + seq_id).to(tl.int32) seq_length = seq_end_offset - seq_start_offset num_seq_blocks = tl.cdiv(seq_length, BLOCK_M) seq_a_block_id = num_seq_blocks - seq_alloc_prog_id - 1 seq_b_block_id = seq_alloc_prog_id - (num_seq_alloc_progs - num_seq_blocks) if seq_a_block_id >= 0 or seq_b_block_id >= 0: qk_scale = inv_log2 * logit_scale M_range = tl.arange(0, BLOCK_M) N_range = tl.arange(0, BLOCK_N) D_range = tl.arange(0, BLOCK_D) D_mask = D_range < head_size if not use_cumsum: cm = tl.where(N_range[:, None] >= N_range[None, :], 1.0, 0.0).to( Q_ptr.type.element_ty) else: cm = None if seq_a_block_id >= 0: head_id = fhead_id * 2 Q_head_seq_ptr = (Q_ptr + stride_qh * head_id + stride_qm * seq_start_offset) K_head_seq_ptr = (K_ptr + stride_kh * head_id + stride_kn * seq_start_offset) V_head_seq_ptr = (V_ptr + stride_vh * head_id + stride_vn * seq_start_offset) O_head_seq_ptr = (O_ptr + stride_oh * head_id + stride_om * seq_start_offset) R_head_seq_ptr = (R_ptr + stride_rh * head_id + stride_rm * seq_start_offset) A_head_seq_ptr = (A_ptr + stride_ah * head_id + stride_am * seq_start_offset) W_head_seq_ptr = (W_ptr + stride_wh * head_id + stride_am * seq_start_offset) _forward_one_row(seq_a_block_id, seq_length, qk_scale, M_range, N_range, D_range, D_mask, cm, Q_head_seq_ptr, stride_qm, stride_qd, K_head_seq_ptr, stride_kn, stride_kd, V_head_seq_ptr, stride_vn, stride_vd, O_head_seq_ptr, stride_om, stride_od, R_head_seq_ptr, stride_rm, A_head_seq_ptr, stride_am, W_head_seq_ptr, stride_wm, stride_wn, BLOCK_D, NO_D_MASK, NO_M_MASK, NO_N_MASK, ALLOW_TF32, BLOCK_M, BLOCK_N, no_grad, acc_dtype, return_attention, use_cumsum=use_cumsum, attend_current= attend_current) if seq_b_block_id >= 0 and fhead_id * 2 + 1 < num_heads: head_id = fhead_id * 2 + 1 Q_head_seq_ptr = (Q_ptr + stride_qh * head_id + stride_qm * seq_start_offset) K_head_seq_ptr = (K_ptr + stride_kh * head_id + stride_kn * seq_start_offset) V_head_seq_ptr = (V_ptr + stride_vh * head_id + stride_vn * seq_start_offset) O_head_seq_ptr = (O_ptr + stride_oh * head_id + stride_om * seq_start_offset) R_head_seq_ptr = (R_ptr + stride_rh * head_id + stride_rm * seq_start_offset) A_head_seq_ptr = (A_ptr + stride_ah * head_id + stride_am * seq_start_offset) W_head_seq_ptr = (W_ptr + stride_wh * head_id + stride_am * seq_start_offset) _forward_one_row(seq_b_block_id, seq_length, qk_scale, M_range, N_range, D_range, D_mask, cm, Q_head_seq_ptr, stride_qm, stride_qd, K_head_seq_ptr, stride_kn, stride_kd, V_head_seq_ptr, stride_vn, stride_vd, O_head_seq_ptr, stride_om, stride_od, R_head_seq_ptr, stride_rm, A_head_seq_ptr, stride_am, W_head_seq_ptr, stride_wm, stride_wn, BLOCK_D, NO_D_MASK, NO_M_MASK, NO_N_MASK, ALLOW_TF32, BLOCK_M, BLOCK_N, no_grad, acc_dtype, return_attention, use_cumsum=use_cumsum, attend_current= attend_current)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_fwd.py
fdbc848d-92d3-499e-a813-fa9e22d5993a
l2norm.py
sustcsonglin/flash-linear-attention
fla/modules/l2norm.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16, 32]], key=['N']) @triton.jit def l2norm_bwd_kernel(X, DY, DX, stride_x_row, N, eps, BLOCK_N: tl.constexpr): row = tl.program_id(0) X += row * stride_x_row DX += row * stride_x_row DY += row * stride_x_row cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) x = tl.where(cols < N, x, 0.0) var = tl.sum(x * x) rstd = 1 / tl.sqrt(var + eps) mask = cols < N dy = tl.load(DY + cols, mask=cols < N, other=0.0).to(tl.float32) dy = tl.where(cols < N, dy, 0.0) dx = dy * rstd - tl.sum(dy * x) * (1 / (var + eps)) * rstd * x tl.store(DX + cols, dx, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/l2norm.py
e3c53215-9ddd-4e38-942f-2dfc120fb36c
shape.py
2niuhe/triton_utils
src/triton_utils/shape.py
6184906ac3b86dac3ccbfac128ec393ccecde5df
0
@triton.jit def load_full_1d(ptr, sz: tl.constexpr, stride=1): """Load 1d block [0,...,sz-1]""" offs = get_1d_offest(sz) mask = get_1d_mask(offs, sz) return tl.load(ptr + offs, mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py
78bedff7-31b2-401f-b494-a038e6470b98
glu_kernels.py
BobMcDear/attorch
attorch/glu_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=element_wise_kernel_configs(), key=['size']) @triton.jit def glu_forward_kernel(input1_pointer, input2_pointer, output_pointer, size, param, act_func: tl.constexpr, BLOCK_SIZE: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1_pointer: Pointer to the first half of the input to gate. The first half must be contiguous and contain size elements. input2_pointer: Pointer to the second half of the input to gate. The second half must be contiguous and contain size elements. output_pointer: Pointer to a container the result is written to. The container must be contiguous and contain size elements. size: Number of elements in each half of the input. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardswish', 'selu', 'mish', and 'leaky_relu'. BLOCK_SIZE: Block size. """ pid = tl.program_id(axis=0) offset = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offset < size input1 = tl.load(input1_pointer + offset, mask=mask) input2 = tl.load(input2_pointer + offset, mask=mask) output = input1 * apply_act_func(input2, None, None, None, param, act_func, False) tl.store(output_pointer + offset, output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/glu_kernels.py
87d0765e-cecf-486a-95fb-7d23c0b6a3f0
bucketed_argmax.py
graphcore-research/pytorch-approx-topk
approx_topk/experimental/bucketed_argmax.py
339eea971f17bf810e2eec746a06b9c93dc4cce0
0
@triton.jit def _topk_triton_kernel__parallel_bk(xs_ptr, values_out_ptr, indices_out_ptr, b: int, k: int, n: int, n_chunk: int, xs_stride: int, BLOCK_SIZE: tl.constexpr, PAD_VALUE: tl.constexpr, INTERLEAVED: tl. constexpr): pidx = tl.program_id(axis=0).to(tl.int64) bk_idx = BLOCK_SIZE * pidx + tl.arange(0, BLOCK_SIZE) b_idx, k_idx = bk_idx // k, bk_idx % k xs_ptr += b_idx * xs_stride if INTERLEAVED: k_stride, i_stride = 1, k else: k_stride, i_stride = n_chunk, 1 mask = (b_idx < b) & (k_idx * k_stride < n) max_value = tl.load(xs_ptr + k_idx * k_stride, mask=mask, other=PAD_VALUE) max_i = tl.zeros((BLOCK_SIZE,), tl.int64) for i in tl.range(1, n_chunk): mask = (b_idx < b) & (k_idx * k_stride + i * i_stride < n) block = tl.load(xs_ptr + k_idx * k_stride + i * i_stride, mask=mask, other=PAD_VALUE) mask &= max_value < block max_value = tl.where(mask, block, max_value) max_i = tl.where(mask, i, max_i) max_index = k_idx * k_stride + max_i * i_stride tl.store(values_out_ptr + b_idx * k + k_idx, max_value, mask=b_idx < b) tl.store(indices_out_ptr + b_idx * k + k_idx, max_index, mask=b_idx < b)
{ "Data Type": [ "fp32" ], "Functionality": [ "Top-K Selection" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/graphcore-research/pytorch-approx-topk/blob/339eea971f17bf810e2eec746a06b9c93dc4cce0/approx_topk/experimental/bucketed_argmax.py
c66dd256-37a5-4e14-9622-5ef0661c9e4c
decay.py
huyz2023/2by4-pretrain
sparse/decay.py
9e330125dea71e5a3dee235f4efb8869f9e4cdd0
0
@triton.jit def masked_add_kernel(grad_ptr, p_ptr, p_mask_ptr, n_elements, alpha, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements p_mask = tl.load(p_mask_ptr + offsets, mask=mask).to(tl.int1) mask = mask & ~p_mask p = tl.load(p_ptr + offsets, mask=mask) grad = tl.load(grad_ptr + offsets, mask=mask) grad += p * alpha tl.store(grad_ptr + offsets, grad, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/decay.py
64df009f-59cf-495e-b5c2-0456d955bdc3
linear.py
ai-compiler-study/triton-kernels
triton_kernels/kernels/linear.py
2308e5e9d965059fe2d19b4d535debac4970b69e
0
@triton.jit def gelu(x): c = 0.7978845608028654 x_cubed = x * x * x tanh_arg = c * (x + 0.044715 * x_cubed) tanh_result = tanh(tanh_arg) return 0.5 * x * (1 + tanh_result)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/kernels/linear.py
e786250d-5d3e-44b4-8ec6-304092edb0a2
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/linear_attn/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_chunk_linear_attn_bwd_kernel(q, k, v, do, dq, dk, dv, h0, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B, H, T, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, CHECK: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) for i in range(0, tl.cdiv(T, BT)): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), ( i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v * B * H) * s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_ds = tl.dot(b_do, b_v, allow_tf32=False) b_ds = tl.where(m_s, b_ds, 0) b_dq = tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False) if CHECK and i == 0: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False) else: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False) b_dq *= scale tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) b_h = None tl.debug_barrier() b_dh = tl.zeros([BK, BV], dtype=tl.float32) m_s = o_i[:, None] <= o_i[None, :] for i in range(1, tl.cdiv(T, BT) + 1): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), ( i_k * BK, T - i * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * s_k_h, (T, K), (s_k_t, s_k_d), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_s = tl.dot(b_k, b_q, allow_tf32=False) b_s = tl.where(m_s, b_s, 0).to(b_q.dtype) b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) b_ds = tl.where(m_s, b_ds, 0).to(b_q.dtype) b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False) b_dv = tl.dot(b_s, b_do, allow_tf32=False) if CHECK and i == 1: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) b_dh += tl.dot(b_q, b_do, allow_tf32=False) else: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) b_dh += tl.dot(b_q, b_do, allow_tf32=False) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "bf16", "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/fused_chunk.py
36a84d74-811a-47c3-b0f6-b6e9716f4768
partition_k.py
pytorch-labs/tritonbench
tritonbench/operators/gemm/partition_k.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.jit def _reduce(c_ptr, c_buf_ptr, M, N, stride_cm, stride_cn, stride_cb_m, stride_cb_n, stride_cb_k, PK: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): pid = tl.program_id(0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_m pid_n = pid % num_pid_n offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, PK) c_buf_ptrs = c_buf_ptr + (offs_m[:, None, None] * stride_cb_m + offs_n[ None, :, None] * stride_cb_n + offs_k[None, None, :] * stride_cb_k) c_buf = tl.load(c_buf_ptrs) reduced_k = tl.sum(c_buf, axis=2) c_ptrs = c_ptr + (offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn ) tl.store(c_ptrs, reduced_k)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/gemm/partition_k.py
d0677865-01e5-4cad-8f2a-27ff2419f1c7
_semi_structured_conversions.py
huyz2023/2by4-pretrain
sparse/_semi_structured_conversions.py
9e330125dea71e5a3dee235f4efb8869f9e4cdd0
0
@triton.jit def _MVUE24_approx(x0, x1, x2, x3, random0, random1): eps = 1.19209e-07 a0 = tl.abs(x0) + eps a1 = tl.abs(x1) + eps a2 = tl.abs(x2) + eps a3 = tl.abs(x3) + eps sum = a0 + a1 + a2 + a3 t0 = a0 / sum t1 = a1 / sum t2 = a2 / sum t3 = a3 / sum s0 = sum - a0 s1 = sum - a1 s2 = sum - a2 s3 = sum - a3 k0 = t0 / s0 k1 = t1 / s1 k2 = t2 / s2 k3 = t3 / s3 k = k0 + k1 + k2 + k3 p0 = t0 + a0 * (k - k0) p1 = t1 + a1 * (k - k1) p2 = t2 + a2 * (k - k2) p3 = t3 + a3 * (k - k3) m0 = random0 <= t0 m1 = (random0 <= t0 + t1) & ~m0 m2 = (random0 <= t0 + t1 + t2) & ~m1 & ~m0 m3 = ~m2 & ~m1 & ~m0 d_a0 = ~m0 * a0 d_a1 = ~m1 * a1 d_a2 = ~m2 * a2 d_a3 = ~m3 * a3 d_sum = d_a0 + d_a1 + d_a2 + d_a3 t = random1 * d_sum d_m0 = t <= d_a0 d_m1 = (t <= d_a0 + d_a1) & ~d_m0 d_m2 = (t <= d_a0 + d_a1 + d_a2) & ~d_m1 & ~d_m0 d_m3 = ~d_m2 & ~d_m1 & ~d_m0 m0, m1, m2, m3 = m0 | d_m0, m1 | d_m1, m2 | d_m2, m3 | d_m3 a0 = x0 / p0 a1 = x1 / p1 a2 = x2 / p2 a3 = x3 / p3 return a0, a1, a2, a3, m0, m1, m2, m3
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/_semi_structured_conversions.py
ccc604f8-18e9-45f5-b245-d3cc28061db6
wy_fast.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/wy_fast.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8]], key=['BT', 'BK', 'BV']) @triton.jit def fwd_recompute_w_u_kernel(k, v, beta, w, u, A, offsets, indices, T: tl. constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl. constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl. constexpr, HEAD_FIRST: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_A = tl.load(p_A, boundary_check=(0, 1)) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_u = tl.make_block_ptr(u + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_u = tl.make_block_ptr(u + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_vb = (b_v * b_beta[:, None]).to(b_v.dtype) b_u = tl.dot(b_A.to(b_vb.dtype), b_vb, allow_tf32=False) tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1)) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_kb = (b_k * b_beta[:, None]).to(b_k.dtype) b_w = tl.dot(b_A.to(b_kb.dtype), b_kb, allow_tf32=False) tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32", "bf16" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/wy_fast.py
326e20e4-4217-4f1d-919d-85d0480d4692
test_triton.py
pytorch/xla
test/test_triton.py
40efdb7b6571ce92797b5ba42619b79c1b147b3e
0
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, qk_scale, BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl. constexpr, STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl. constexpr, N_CTX: tl.constexpr, fp8_v: tl.constexpr): if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) else: lo, hi = 0, N_CTX K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) k = tl.load(K_block_ptr) qk = tl.dot(q, k) if STAGE == 2: mask = offs_m[:, None] >= start_n + offs_n[None, :] qk = qk * qk_scale + tl.where(mask, 0, -1000000.0) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale) qk = qk * qk_scale - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij acc = acc * alpha[:, None] v = tl.load(V_block_ptr) if fp8_v: p = p.to(tl.float8e5) else: p = p.to(tl.float16) acc = tl.dot(p, v, acc) m_i = m_ij V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i
{ "Data Type": [ "fp16" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch/xla/blob/40efdb7b6571ce92797b5ba42619b79c1b147b3e/test/test_triton.py
49f3c6b9-1c5a-473c-9559-2dfc1c27c665
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_chunk_gla_fwd_kernel(q, k, v, g, o, h0, ht, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, CHECK: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) b_h = tl.zeros([BK, BV], dtype=tl.float32) p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0, i_k * BK), (BT, BK), (1, 0)) p_db = g + i_bh * s_k_h + (BT - 1) * s_k_t + i_k * BK + tl.arange(0, BK) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (i_bh + i_k * B * H) * s_v_h, (T, V), ( s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) mask = i_k * BK + tl.arange(0, BK) < K for i in range(0, tl.cdiv(T, BT)): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_q = tl.load(p_q, boundary_check=(0, 1)) d_b = tl.load(p_db, mask=mask, other=0).to(tl.float32) if CHECK and i == 0: b_o = tl.dot(b_q.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False ) b_h = b_h * tl.exp(d_b)[:, None] + tl.dot(b_k.to(b_v.dtype), b_v, allow_tf32=False) else: b_o = tl.dot(b_q.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False ) b_h = b_h * tl.exp(d_b)[:, None] + tl.dot(b_k.to(b_v.dtype), b_v, allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_v = tl.advance(p_v, (BT, 0)) p_o = tl.advance(p_o, (BT, 0)) p_db += BT * K if STORE_FINAL_STATE: p_final = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_final, b_h.to(p_final.dtype.element_ty), boundary_check= (0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/fused_chunk.py
9e707ccc-8655-4571-8d88-7225cd973c4c
triton_kernel.py
yann-Choho/projet_PPML
notebooks/triton_kernel.py
9274e0561443b01f029ee6e0737f922f71d2da39
0
@triton.autotune(configs=get_autotune_config(), key=['M', 'N', 'K']) @triton.jit def ff_llama_with_rmsnorm(a_ptr, w1_ptr, w3_ptr, out_ptr, rms_w_ptr, M, N, K, stride_am, stride_ak, stride_w1k, stride_w1n, stride_w3k, stride_w3n, stride_outm, stride_outn, stride_rms_w, USE_FP8: tl.constexpr, EPS: tl. constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): """ A Triton kernel for performing feed-forward operations in a LLaMA model. This kernel computes the feed-forward transformation using the following operations: w1 and w3 are weights (linear layers) F.silu(w1(x)) * w3(x) Args: a_ptr: Pointer to the input tensor. w1_ptr: Pointer to the first weight tensor. w3_ptr: Pointer to the third weight tensor. out_ptr: Pointer to the output tensor. rms_w_ptr: Pointer to the RMS normalization weights. M: Number of rows in the input tensor. N: Number of columns in the weight tensors. K: Number of columns in the input tensor. stride_am: Stride of the input tensor in the first dimension. stride_ak: Stride of the input tensor in the second dimension. stride_w1k: Stride of the first weight tensor in the first dimension. stride_w1n: Stride of the first weight tensor in the second dimension. stride_w3k: Stride of the third weight tensor in the first dimension. stride_w3n: Stride of the third weight tensor in the second dimension. stride_outm: Stride of the output tensor in the first dimension. stride_outn: Stride of the output tensor in the second dimension. stride_rms_w: Stride of the RMS normalization weights. USE_FP8: Constant specifying whether to use FP8 precision. EPS: Constant epsilon value for numerical stability in RMS normalization. BLOCK_SIZE_M: Constant block size in the M dimension. BLOCK_SIZE_N: Constant block size in the N dimension. BLOCK_SIZE_K: Constant block size in the K dimension. """ pid = tl.program_id(axis=0) pid_m = pid // tl.cdiv(N, BLOCK_SIZE_N) pid_n = pid % tl.cdiv(N, BLOCK_SIZE_N) offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) w1_ptrs = w1_ptr + (offs_k[:, None] * stride_w1k + offs_bn[None, :] * stride_w1n) w3_ptrs = w3_ptr + (offs_k[:, None] * stride_w3k + offs_bn[None, :] * stride_w3n) acc1 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) acc2 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) rms_w_ptrs = rms_w_ptr + tl.arange(0, BLOCK_SIZE_K)[None, :] * stride_rms_w a_sum = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32) for _ in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs) a_sum += tl.math.pow(a.to(tl.float32), 2) rms_w = tl.load(rms_w_ptrs) if USE_FP8: rms_w = rms_w.to(tl.float8e5, bitcast=True) rms_w = rms_w.to(tl.float16) a = a * rms_w b = tl.load(w1_ptrs) if USE_FP8: b = b.to(tl.float8e5, bitcast=True) b = b.to(tl.float32) b = b.to(tl.float16) acc1 += tl.dot(a, b) c = tl.load(w3_ptrs) if USE_FP8: c = c.to(tl.float8e5, bitcast=True) c = c.to(tl.float32) c = c.to(tl.float16) acc2 += tl.dot(a, c) a_ptrs += BLOCK_SIZE_K * stride_ak w1_ptrs += BLOCK_SIZE_K * stride_w1k w3_ptrs += BLOCK_SIZE_K * stride_w3k rms_w_ptrs += BLOCK_SIZE_K * stride_rms_w a_mean = tl.sum(a_sum, axis=1) / K + EPS a_norm = tl.math.rsqrt(a_mean) acc1 = acc1 * a_norm[:, None] acc2 = acc2 * a_norm[:, None] accumulator = acc1 * tl.sigmoid(acc1) * acc2 offs_outm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_outn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) out_ptrs = out_ptr + (stride_outm * offs_outm[:, None] + stride_outn * offs_outn[None, :]) out_mask = (offs_outm[:, None] < M) & (offs_outn[None, :] < N) tl.store(out_ptrs, accumulator, mask=out_mask)
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Matrix Multiplication", "Normalization", "Activation Functions" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/yann-Choho/projet_PPML/blob/9274e0561443b01f029ee6e0737f922f71d2da39/notebooks/triton_kernel.py
2f039813-0a4f-434e-8684-dfa2962e6c20
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/rebased/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def parallel_rebased_bwd_kernel(q, k, v, do, dz, dq, dk, dv, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BTL: tl.constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr): i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) NV = tl.cdiv(V, BV) i_k = i_kv // NV i_v = i_kv % NV i_h = i_bh % H _parallel_rebased_bwd_dq(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dq, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B=B, H=H, T=T, K=K, V=V, BTL=BTL, BTS=BTS, BK=BK, BV=BV) tl.debug_barrier() _parallel_rebased_bwd_dkv(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dk, dv, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B=B, H=H, T=T, K=K, V=V, BTL=BTL, BTS=BTS, BK=BK, BV=BV)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rebased/parallel.py
fb256f38-277f-4402-8b55-cf02270b1533
mlstm_matmul.py
LukasBluebaum/xLSTM-Triton-CUDA-Implementation
mlstm_matmul.py
6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b
0
@triton.jit def matrix_mult(x, y, B): return tl.dot(x, y) if B >= 16 else tl.sum(x[:, :, None] * y, 1)
{ "Data Type": [ "fp32", "int8" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_matmul.py
c186aa78-7e7f-494d-bcc8-d002861dceb2
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/rwkv6/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8)], key=['BK', 'BT']) @triton.jit def chunk_rwkv6_fwd_A_kernel_intra_sub_intra(q, k, gi, ge, u, A, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, USE_OFFSETS: tl. constexpr, HEAD_FIRST: tl.constexpr): i_t, i_i, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H i_j = i_i if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if i_t * BT + i_i * BC >= T: return o_i = tl.arange(0, BC) o_k = tl.arange(0, BK) m_k = o_k < K m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T if HEAD_FIRST: o_A = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC) ) * BT + i_j * BC p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_g = tl.make_block_ptr(ge + i_bh * T * K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) p_gk = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) else: o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC) ) * H * BT + i_h * BT + i_j * BC p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_g = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H * K, 1 ), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) p_qj = tl.max_contiguous(tl.multiple_of(q + (bos + i_t * BT + i_j * BC) * H * K + i_h * K + o_k, BK), BK) p_kj = tl.max_contiguous(tl.multiple_of(k + (bos + i_t * BT + i_j * BC) * H * K + i_h * K + o_k, BK), BK) p_gk = tl.max_contiguous(tl.multiple_of(gi + (bos + i_t * BT + i_j * BC) * H * K + i_h * K + o_k, BK), BK) b_q = tl.load(p_q, boundary_check=(0, 1)) b_g = tl.load(p_g, boundary_check=(0, 1)) p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), (0,), (BK,), (0,)) b_u = tl.load(p_u, boundary_check=(0,)) for j in range(0, min(BC, T - i_t * BT - i_i * BC)): b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32) b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32) b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32) b_A = tl.sum(b_q * b_kj[None, :] * tl.exp(b_g - b_gk[None, :]), 1) b_A = tl.where(o_i > j, b_A * scale, 0.0) b_A = tl.where(o_i != j, b_A, tl.sum(b_qj * b_kj * b_u * scale)) tl.store(A + o_A + j, b_A, mask=m_A) p_qj += K if HEAD_FIRST else H * K p_kj += K if HEAD_FIRST else H * K p_gk += K if HEAD_FIRST else H * K
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/chunk.py
48379ee8-f2ff-4497-a0e7-85d8537a7560
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4]], key=['BT', 'BK', 'BV']) @triton.jit def chunk_delta_rule_fwd_kernel_o(q, k, v, h, o, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl .constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl. constexpr, HEAD_FIRST: tl.constexpr): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_o = tl.zeros([BT, BV], dtype=tl.float32) b_s = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (K, V), ( V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)) b_o += tl.dot(b_q, b_h, allow_tf32=False) b_s += tl.dot(b_q, b_k, allow_tf32=False) b_s = tl.where(m_s, b_s, 0) if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/chunk.py
beebe0e4-2407-465c-b381-0707292d593f
conv_kernels.py
BobMcDear/attorch
attorch/conv_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=[conv2d_forward_config(128, 32, 128, n_warps=8, n_stages=2), conv2d_forward_config(256, 32, 64, n_warps=8, n_stages=2), conv2d_forward_config(256, 32, 32, n_warps=4, n_stages=4), conv2d_forward_config(256, 64, 32, n_warps=4, n_stages=4), conv2d_forward_config(256, 32, 16, n_warps=2, n_stages=4), conv2d_forward_config(64, 32, 128, n_warps=8, n_stages=4), conv2d_forward_config(128, 32, 64, n_warps=4, n_stages=4), conv2d_forward_config(64, 32, 64, n_warps=4, n_stages=4), conv2d_forward_config(128, 32, 16, n_warps=4, n_stages=4), conv2d_forward_config(128, 128, 128, n_warps=8, n_stages=3), conv2d_forward_config(256, 128, 64, n_warps=8, n_stages=3), conv2d_forward_config(256, 128, 32, n_warps=4, n_stages=4), conv2d_forward_config(64, 128, 128, n_warps=4, n_stages=4), conv2d_forward_config(128, 128, 64, n_warps=4, n_stages=4), conv2d_forward_config(128, 64, 32, n_warps=2, n_stages=4), conv2d_forward_config(64, 64, 64, n_warps=2, n_stages=4)], key=[ 'batch_dim', 'in_feat_dim', 'in_height', 'in_width', 'out_feat_dim', 'out_height', 'out_width', 'kernel_height', 'kernel_width', 'stride_height', 'stride_width', 'padding_height', 'padding_width', 'groups', 'fp16']) @triton.heuristics({'tf32': lambda _: allow_tf32()}) @triton.jit def conv2d_forward_kernel(input_pointer, weight_pointer, output_pointer, batch_dim, in_feat_dim, in_height, in_width, out_feat_dim, out_height, out_width, input_batch_stride, input_in_feat_stride, input_height_stride, input_width_stride, weight_out_feat_stride, weight_in_feat_stride, weight_height_stride, weight_width_stride, output_batch_stride, output_out_feat_stride, output_height_stride, output_width_stride, kernel_height: tl.constexpr, kernel_width: tl. constexpr, stride_height: tl.constexpr, stride_width: tl.constexpr, padding_height: tl.constexpr, padding_width: tl.constexpr, groups: tl. constexpr, fp16: tl.constexpr, tf32: tl.constexpr, BLOCK_SIZE_BATCH_HEIGHT_WIDTH: tl.constexpr, BLOCK_SIZE_IN_FEAT: tl. constexpr, BLOCK_SIZE_OUT_FEAT: tl.constexpr): """ 2D-convolves over the input using weights. Args: input_pointer: Pointer to the input to convolve over. The input must be of shape [batch_dim, in_feat_dim, in_height, in_width]. weight_pointer: Pointer to the weights input is convolved over by. The weights must be of shape [out_feat_dim, in_feat_dim, kernel_height, kernel_width]. output_pointer: Pointer to a container the result is written to. The container must be of shape [batch_dim, out_feat_dim, out_height, out_width]. batch_dim: Batch dimension of the input and output. in_feat_dim: Dimensionality of the input features. in_height: Input height. in_width: Input width. out_feat_dim: Dimensionality of the output features. out_height: Output height. out_width: Output width. input_batch_stride: Stride necessary to jump one element along the input's batch dimension. input_in_feat_stride: Stride necessary to jump one element along the input's feature dimension. input_height_stride: Stride necessary to jump one element along the input's height dimension. input_width_stride: Stride necessary to jump one element along the input's width dimension. weight_out_feat_stride: Stride necessary to jump one element along the weights' output feature dimension. weight_in_feat_stride: Stride necessary to jump one element along the weights' input feature dimension. weight_height_stride: Stride necessary to jump one element along the weights' height dimension. weight_width_stride: Stride necessary to jump one element along the weights' width dimension. output_batch_stride: Stride necessary to jump one element along the output's batch dimension. output_out_feat_stride: Stride necessary to jump one element along the output's feature dimension. output_height_stride: Stride necessary to jump one element along the output's height dimension. output_width_stride: Stride necessary to jump one element along the output's width dimension. kernel_height: Kernel height. kernel_width: Kernel width. stride_height: Stride of kernel across the height dimension. stride_width: Stride of kernel across the width dimension. padding_height: Padding applied to the input across the height dimension. padding_width: Padding applied to the input across the width dimension. groups: Number of groups for the convolution. fp16: Flag for loading the input and weights in FP16. tf32: Flag for performing matrix products in TF32. BLOCK_SIZE_BATCH_HEIGHT_WIDTH: Block size across the batch, height, and width dimensions. BLOCK_SIZE_IN_FEAT: Block size across the input feature dimension. BLOCK_SIZE_OUT_FEAT: Block size across the output feature dimension. """ batch_height_width_pid = tl.program_id(0) out_feat_pid = tl.program_id(1) group_pid = tl.program_id(2) in_group_dim = in_feat_dim // groups out_group_dim = out_feat_dim // groups batch_height_width_offset = (batch_height_width_pid * BLOCK_SIZE_BATCH_HEIGHT_WIDTH + tl.arange(0, BLOCK_SIZE_BATCH_HEIGHT_WIDTH)) batch_height_offset = batch_height_width_offset // out_width batch_offset = batch_height_offset // out_height output_feat_offset = out_feat_pid * BLOCK_SIZE_OUT_FEAT + tl.arange(0, BLOCK_SIZE_OUT_FEAT) output_height_offset = batch_height_offset % out_height output_width_offset = batch_height_width_offset % out_width input_pointer += (input_batch_stride * batch_offset + input_in_feat_stride * group_pid * in_group_dim)[:, None] weight_pointer += (weight_out_feat_stride * output_feat_offset + weight_out_feat_stride * group_pid * out_group_dim)[None, :] accum = tl.zeros((BLOCK_SIZE_BATCH_HEIGHT_WIDTH, BLOCK_SIZE_OUT_FEAT), dtype=tl.float32) for h in range(kernel_height): for w in range(kernel_width): for c in range(0, in_group_dim, BLOCK_SIZE_IN_FEAT): input_feat_offset = c + tl.arange(0, BLOCK_SIZE_IN_FEAT) input_height_offset = (h - padding_height + stride_height * output_height_offset) input_width_offset = (w - padding_width + stride_width * output_width_offset) curr_input_pointer = input_pointer + (input_in_feat_stride * input_feat_offset)[None, :] + (input_height_stride * input_height_offset)[:, None] + (input_width_stride * input_width_offset)[:, None] curr_weight_pointer = weight_pointer + (weight_in_feat_stride * input_feat_offset)[:, None ] + weight_height_stride * h + weight_width_stride * w input_mask = (batch_offset < batch_dim)[:, None] & ( input_feat_offset < in_group_dim)[None, :] & (0 <= input_height_offset)[:, None] & (input_height_offset < in_height)[:, None] & (0 <= input_width_offset)[:, None ] & (input_width_offset < in_width)[:, None] weight_mask = (input_feat_offset < in_group_dim)[:, None] & ( output_feat_offset < out_group_dim)[None, :] input_block = tl.load(curr_input_pointer, mask=input_mask) weight_block = tl.load(curr_weight_pointer, mask=weight_mask) if fp16: input_block = input_block.to(tl.float16) weight_block = weight_block.to(tl.float16) accum += tl.dot(input_block, weight_block, allow_tf32=tf32) output_pointer += (output_batch_stride * batch_offset)[:, None] + ( output_out_feat_stride * (group_pid * out_group_dim + output_feat_offset))[None, :] + (output_height_stride * output_height_offset)[:, None] + (output_width_stride * output_width_offset)[:, None] output_mask = (batch_offset < batch_dim)[:, None] & (output_feat_offset < out_group_dim)[None, :] & (output_height_offset < out_height)[:, None ] & (output_width_offset < out_width)[:, None] tl.store(output_pointer, accum, mask=output_mask)
{ "Data Type": [ "fp16" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/conv_kernels.py
54b68535-dd6a-428b-ba2c-aacf68f8e026
triton_rms_norm.py
vladmandic/dcae
dcae/nn/triton_rms_norm.py
5223970c7e6c6acfe282e18be7e3821b61511673
0
@triton.jit def _rms_norm_2d_fwd_fused(X, Y, W, B, Rrms, M, C, N, num_blocks, eps, BLOCK_SIZE: tl.constexpr): m_n = tl.program_id(0) m, n = m_n // num_blocks, m_n % num_blocks Y += m * C * N X += m * C * N cols = n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = cols < N x_sum_square = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, C): x = tl.load(X + off * N + cols, mask=mask, other=0.0).to(tl.float32) x_sum_square += x * x mean_square = x_sum_square / C rrms = 1 / tl.sqrt(mean_square + eps) tl.store(Rrms + m * N + cols, rrms, mask=mask) for off in range(0, C): pos = off * N + cols w = tl.load(W + off) b = tl.load(B + off) x = tl.load(X + pos, mask=mask, other=0.0).to(tl.float32) x_hat = x * rrms y = x_hat * w + b tl.store(Y + pos, y, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/vladmandic/dcae/blob/5223970c7e6c6acfe282e18be7e3821b61511673/dcae/nn/triton_rms_norm.py
01a67365-f163-429d-bbd8-8c27946656e2
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/generalized_delta_rule/iplr/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_recurrent_bwd_kernel(q, k, v, alpha, beta, ha, dht, dh0, do, dq, dk, dv, dalpha, dbeta, dha, h0, s_k_h, s_v_h, NK, scale, B, H, T, K: tl .constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_DH0: tl.constexpr, USE_DHT: tl. constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) mask_bk = i_k * BK + tl.arange(0, BK) < K mask_bv = i_v * BV + tl.arange(0, BV) < V p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V p_ha = ha + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V p_alpha = alpha + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K p_beta = beta + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K p_dbeta = dbeta + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK ) + (T - 1) * K p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V p_dha = dha + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV ) + (T - 1) * V d_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_DHT: p_ht = dht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) d_h += tl.load(p_ht, mask=mask_bk[:, None] & mask_bv[None, :], other=0 ).to(tl.float32) for _ in range(T): b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) b_beta = tl.load(p_beta, mask=mask_bk, other=0).to(tl.float32) b_alpha = tl.load(p_alpha, mask=mask_bk, other=0).to(tl.float32) b_ha = tl.load(p_ha, mask=mask_bv, other=0).to(tl.float32) d_h += b_q[:, None] * b_do[None, :] d_k = tl.sum(d_h * b_v[None, :], axis=1) d_v = tl.sum(d_h * b_k[:, None], axis=0) tl.store(p_dk, d_k.to(p_dk.dtype.element_ty), mask=mask_bk) tl.store(p_dv, d_v.to(p_dv.dtype.element_ty), mask=mask_bv) b_dha = tl.sum(d_h * b_beta[:, None], axis=0) tl.store(p_dha, b_dha.to(p_dha.dtype.element_ty), mask=mask_bv) b_dbeta = tl.sum(d_h * b_ha[None, :], axis=1) tl.store(p_dbeta, b_dbeta.to(p_dbeta.dtype.element_ty), mask=mask_bk) d_h += b_dha[None, :] * b_alpha[:, None] p_do -= V p_q -= K p_k -= K p_v -= V p_dk -= K p_dv -= V p_beta -= K p_dbeta -= K p_alpha -= K p_dha -= V p_ha -= V if USE_DH0: p_dh0 = dh0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) tl.store(p_dh0, d_h.to(p_dh0.dtype.element_ty), mask=mask_bk[:, None] & mask_bv[None, :]) tl.debug_barrier() h = tl.zeros([BK, BV], dtype=tl.float32) p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) p_beta = beta + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) p_ha = ha + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) p_dha = dha + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) p_alpha = alpha + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK ) p_dalpha = dalpha + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange( 0, BK) if USE_INITIAL_STATE: mask_kv = mask_bk[:, None] & mask_bv[None, :] p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) for i in range(0, T): d_ha = tl.load(p_dha, mask=mask_bv, other=0).to(tl.float32) d_alpha = tl.sum(d_ha[None, :] * h, axis=1) tl.store(p_dalpha, d_alpha.to(p_dalpha.dtype.element_ty), mask=mask_bk) b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) b_beta = tl.load(p_beta, mask=mask_bk, other=0).to(tl.float32) b_ha = tl.load(p_ha, mask=mask_bv, other=0).to(tl.float32) h += b_k[:, None] * b_v[None, :] + b_beta[:, None] * b_ha[None, :] _d_q = h * b_do[None, :] d_q = tl.sum(_d_q, axis=1) * scale tl.store(p_dq, d_q.to(p_dq.dtype.element_ty), mask=mask_bk) p_k += K p_do += V p_v += V p_dk += K p_dalpha += K p_dha += V p_ha += V p_dq += K p_beta += K
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Backpropagation" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/generalized_delta_rule/iplr/fused_recurrent.py
7e5bd5a2-7393-4fdc-8835-64d5a5604ecc
triton_kernels.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/triton_kernels.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def _triton_second_order_fwd(x_ptr: tl.tensor, y_ptr: tl.tensor, z_ptr: tl. tensor, sh_1_0_ptr: tl.tensor, sh_1_1_ptr: tl.tensor, sh_1_2_ptr: tl. tensor, sh_2_0_ptr: tl.tensor, sh_2_1_ptr: tl.tensor, sh_2_2_ptr: tl. tensor, sh_2_3_ptr: tl.tensor, sh_2_4_ptr: tl.tensor, BLOCK_SIZE: tl. constexpr, vector_length: tl.constexpr): sqrt_3 = 3 ** 0.5 block_id = tl.program_id(0) offset = tl.arange(0, BLOCK_SIZE) + BLOCK_SIZE * block_id x_row_start = x_ptr + offset y_row_start = y_ptr + offset z_row_start = z_ptr + offset x = tl.load(x_row_start, mask=offset < vector_length) y = tl.load(y_row_start, mask=offset < vector_length) z = tl.load(z_row_start, mask=offset < vector_length) sh_1_0 = x * sqrt_3 sh_1_1 = y * sqrt_3 sh_1_2 = z * sqrt_3 sqrt_15 = 15 ** 0.5 sqrt_5 = 5 ** 0.5 sq_x = x * x sq_y = y * y sq_z = z * z sh_2_0 = sqrt_15 * x * z sh_2_1 = sqrt_15 * x * y sh_2_2 = sqrt_5 * (sq_y - 0.5 * (sq_x + sq_z)) sh_2_3 = sqrt_15 * y * z sh_2_4 = 0.5 * sqrt_15 * (sq_z - sq_x) sh_1_0_start = sh_1_0_ptr + offset sh_1_1_start = sh_1_1_ptr + offset sh_1_2_start = sh_1_2_ptr + offset sh_2_0_start = sh_2_0_ptr + offset sh_2_1_start = sh_2_1_ptr + offset sh_2_2_start = sh_2_2_ptr + offset sh_2_3_start = sh_2_3_ptr + offset sh_2_4_start = sh_2_4_ptr + offset tl.store(sh_1_0_start, sh_1_0, mask=offset < vector_length) tl.store(sh_1_1_start, sh_1_1, mask=offset < vector_length) tl.store(sh_1_2_start, sh_1_2, mask=offset < vector_length) tl.store(sh_2_0_start, sh_2_0, mask=offset < vector_length) tl.store(sh_2_1_start, sh_2_1, mask=offset < vector_length) tl.store(sh_2_2_start, sh_2_2, mask=offset < vector_length) tl.store(sh_2_3_start, sh_2_3, mask=offset < vector_length) tl.store(sh_2_4_start, sh_2_4, mask=offset < vector_length)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/triton_kernels.py
2692045b-1381-44b0-bcd7-ec5e84568124
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/rwkv6/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0' ] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for num_warps in [1, 2, 4, 8] for num_stages in [2, 3, 4]], key=['BT']) @triton.jit def chunk_rwkv6_bwd_kernel_dh(q, gi, ge, do, dh, dht, dh0, offsets, chunk_offsets, scale, T: tl.constexpr, HQ: tl.constexpr, H: tl. constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl. constexpr, BV: tl.constexpr, NG: tl.constexpr, STORE_INITIAL_STATE_GRADIENT: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_bg = i_nh // NG i_n, i_hq = i_nh // HQ, i_nh % HQ i_h = i_hq // NG if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_dht = tl.make_block_ptr(dht + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32) for i_t in range(NT - 1, -1, -1): if HEAD_FIRST: p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_dh = tl.make_block_ptr(dh + ((boh + i_t) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) last_idx = min(i_t * BT + BT, T) - 1 if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_nh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_nh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (K, T), (1, HQ * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), ( HQ * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) if HEAD_FIRST: p_gk = tl.make_block_ptr(ge + i_bg * T * K, (K, T), (1, K), ( i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_gk_last = gi + (i_bg * T + last_idx) * K + i_k * BK + tl.arange( 0, BK) else: p_gk = tl.make_block_ptr(ge + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_gk_last = gi + (bos + last_idx ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK) b_gk = tl.load(p_gk, boundary_check=(0, 1)) b_q = (b_q * tl.exp(b_gk) * scale).to(b_q.dtype) b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) < K, other=0.0) b_dh *= tl.exp(b_gk_last)[:, None] b_dh += tl.dot(b_q, b_do) if STORE_INITIAL_STATE_GRADIENT: p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Backpropagation" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/chunk.py
2845735e-85d3-4315-9d21-ce129b242704
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/based/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def _parallel_based_bwd_dkv(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dk, dv, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, B, H, T, scale, BTL: tl. constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, K: tl .constexpr, V: tl.constexpr): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) b_k, b_v = tl.load(p_k, boundary_check=(0, 1)), tl.load(p_v, boundary_check=(0, 1)) b_dk, b_dv = tl.zeros([BTL, BK], dtype=tl.float32), tl.zeros([BTL, BV], dtype=tl.float32) for i in range(tl.cdiv(T, BTS) * BTS - BTS, (i_c + 1) * BTL - BTS, -BTS): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), ( i_k * BK, i), (BK, BTS), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i), (BV, BTS), (0, 1)) p_dz = dz + i_bh * T + i + tl.arange(0, BTS) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_dz = tl.load(p_dz, mask=i + tl.arange(0, BTS) < T) b_s = tl.dot(b_k.to(b_q.dtype), b_q, allow_tf32=False) * scale b_s2 = 1 + b_s + 0.5 * b_s * b_s b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False) b_ds = tl.dot(b_v, b_do, allow_tf32=False) * scale if i_v == 0: b_ds += b_dz[None, :] * scale else: b_ds = b_ds b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False) tl.debug_barrier() o_q, o_k = tl.arange(0, BTS), tl.arange(0, BTL) for i in range(i_c * BTL, (i_c + 1) * BTL, BTS): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), ( i_k * BK, i), (BK, BTS), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i), (BV, BTS), (0, 1)) p_dz = dz + i_bh * T + i + tl.arange(0, BTS) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_dz = tl.load(p_dz, mask=i + tl.arange(0, BTS) < T) m_s = o_k[:, None] <= o_q[None, :] b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale b_s2 = 1 + b_s + 0.5 * b_s * b_s b_s = tl.where(m_s, b_s, 0) b_s2 = tl.where(m_s, b_s2, 0) b_ds = tl.dot(b_v, b_do, allow_tf32=False) if i_v == 0: b_ds += b_dz[None, :] else: b_ds = b_ds b_ds = tl.where(m_s, b_ds, 0) * scale b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False) b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False) o_q += BTS p_dk = tl.make_block_ptr(dk + (i_bh + B * H * i_v) * s_k_h, (T, K), ( s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + B * H * i_k) * s_v_h, (T, V), ( s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) return
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/based/parallel.py
86340ed0-7aa9-45cf-8b18-cb8988e9b602
masks.py
drisspg/transformer_nuggets
transformer_nuggets/flash/masks.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def inverse_causal_mask_triton(score, batch, head, seq_len_q, seq_len_kv): score = tl.where(seq_len_q > seq_len_kv, float('-inf'), score) return score
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/flash/masks.py
aed79a3c-9b2f-4cb8-809d-b5eb89f04608
associative_rnn_scan.py
TushaarGVS/linear-rnn
linear_rnn/triton/associative_rnn_scan.py
48320589b73154484be7d09a144923a2b9e56b85
0
@triton.jit def _associative_rnn_scan_fwd_kernel(x_ptr, a_ptr, cum_a_ptr, out_ptr, stride_x_batch, stride_x_len, stride_x_dim, stride_a_batch, stride_a_len, stride_a_dim, stride_out_batch, stride_out_len, stride_out_dim, stride_cum_a_batch, stride_cum_a_len, stride_cum_a_dim, BLOCK_SIZE_LEN: tl.constexpr, BLOCK_SIZE_DIM: tl.constexpr): pid_batch = tl.program_id(0) pid_len = tl.program_id(1) pid_dim = tl.program_id(2) x_ptr += pid_batch * stride_x_batch a_ptr += pid_batch * stride_a_batch if cum_a_ptr is not None: cum_a_ptr += pid_batch * stride_cum_a_batch out_ptr += pid_batch * stride_out_batch offsets_dim = pid_dim * BLOCK_SIZE_DIM + tl.arange(0, BLOCK_SIZE_DIM) offsets_len = pid_len * BLOCK_SIZE_LEN + tl.arange(0, BLOCK_SIZE_LEN) x_ptrs = x_ptr + offsets_dim[None, :] * stride_x_dim + offsets_len[:, None ] * stride_x_len a_ptrs = a_ptr + offsets_dim[None, :] * stride_a_dim + offsets_len[:, None ] * stride_a_len out_ptrs = out_ptr + offsets_dim[None, :] * stride_out_dim + offsets_len[ :, None] * stride_out_len if cum_a_ptr is not None: cum_a_ptrs = cum_a_ptr + offsets_dim[None, : ] * stride_cum_a_dim + offsets_len[:, None] * stride_cum_a_len x = tl.load(x_ptrs).to(tl.float32) a = tl.load(a_ptrs).to(tl.float32) cum_a, all_hiddens = tl.associative_scan(input=(a, x), axis=0, combine_fn=_associative_scan_op) mask = (offsets_len == (pid_len + 1) * BLOCK_SIZE_LEN - 1)[:, None] if cum_a_ptr is not None: tl.store(cum_a_ptrs, cum_a.to(cum_a_ptr.dtype.element_ty), mask=mask) tl.store(out_ptrs, all_hiddens.to(out_ptr.dtype.element_ty), mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/TushaarGVS/linear-rnn/blob/48320589b73154484be7d09a144923a2b9e56b85/linear_rnn/triton/associative_rnn_scan.py
4df492d6-8632-47e9-80d8-2308db2c2a20
math.py
BobMcDear/attorch
attorch/math.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def standardize(input, mean, inv_std, weight, bias): """ Standardizes the input given its mean and inverse standard deviation, multiplies the result by weights, and adds a bias vector. Args: input: Input to standardize. mean: Mean of input. inv_std: Inverse standard deviation of input. weight: Weight multiplied by the standardized input. bias: Bias added to the result of the weight multiplication. Returns: Standardized input. """ return weight * inv_std * (input - mean) + bias
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py
2e8a3dc0-e0ec-484c-ad3a-59cdc79b11ae
sgmv_shrink.py
IBM/vllm
vllm/lora/ops/sgmv_shrink.py
99523dd62be2ecf6c6db15e8133aaaf7855e7e86
0
@triton.jit def _sgmv_shrink_kernel(input_ptr, lora_ptr, out_ptr, N, K, b_seq_start_loc, seq_lens, lora_indices, scaling, xm_stride, xk_stride, l0_stride, lora_k_stride, lora_n_stride, cm_stride, cn_stride, BLOCK_M: tl. constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, EVEN_K: tl. constexpr, SPLIT_K: tl.constexpr): """ The sgmv's shrink triton kernel is based on GroupGEMM+SPLIT-K. The GEMM of Multi-LoRA can be considered as GroupGEMM. Additionally, introducing SPLIT-K can improve performance """ pid = tl.program_id(axis=0) pid_sk = tl.program_id(axis=1) cur_batch = tl.program_id(axis=2) cta_n_num = tl.cdiv(N, BLOCK_N) pid_m = pid // cta_n_num pid_n = pid % cta_n_num M = tl.load(seq_lens + cur_batch) if pid_m * BLOCK_M > M: return lora_index = tl.load(lora_indices + cur_batch) if lora_index == -1: return cur_seq_start = tl.load(b_seq_start_loc + cur_batch) offset_m = tl.arange(0, BLOCK_M) + pid_m * BLOCK_M offset_n = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N offset_k = pid_sk * BLOCK_K + tl.arange(0, BLOCK_K) ram = tl.max_contiguous(tl.multiple_of(offset_m % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(offset_n % N, BLOCK_N), BLOCK_N) a_ptr = input_ptr + cur_seq_start * xm_stride + ram[:, None ] * xm_stride + offset_k[None, :] * xk_stride b_ptr = lora_ptr + l0_stride * lora_index + rbn[None, : ] * lora_k_stride + offset_k[:, None] * lora_n_stride accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)): if EVEN_K: tiled_a = tl.load(a_ptr) tiled_b = tl.load(b_ptr) else: k_remaining = K - k * (BLOCK_K * SPLIT_K) tiled_a = tl.load(a_ptr, mask=offset_k[None, :] < k_remaining, other=0.0) tiled_b = tl.load(b_ptr, mask=offset_k[:, None] < k_remaining, other=0.0) accumulator += tl.dot(tiled_a, tiled_b) a_ptr += BLOCK_K * SPLIT_K * xk_stride b_ptr += BLOCK_K * SPLIT_K * lora_n_stride offset_cm = cur_seq_start + tl.arange(0, BLOCK_M) + pid_m * BLOCK_M offset_cn = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N c_ptr = out_ptr + offset_cm[:, None] * cm_stride + offset_cn[None, : ] * cn_stride c_mask = (offset_cm[:, None] < cur_seq_start + M) & (offset_cn[None, :] < N ) accumulator *= scaling if SPLIT_K == 1: tl.store(c_ptr, accumulator, mask=c_mask) else: tl.atomic_add(c_ptr, accumulator, mask=c_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/lora/ops/sgmv_shrink.py
b6a99fcb-ac7f-4a0f-ab1a-1f9af95e6c52
sparse_linear.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/sparse_linear.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.autotune(configs=autotune_configs, key=['col_dim', 'inner_sparse_dim', 'sparse_dim']) @triton.jit def input_inner_sparse_matmul_kernel(lhs_ptr, rhs_ptr, out_ptr, expert_ends_ptr, row_dim: tl.constexpr, col_dim: tl.constexpr, inner_sparse_dim: tl.constexpr, sparse_dim: tl.constexpr, padded_sparse_dim: tl.constexpr, lhs_stride_row: tl.constexpr, lhs_stride_inner: tl.constexpr, rhs_stride_inner: tl.constexpr, rhs_stride_col: tl.constexpr, out_stride_row: tl.constexpr, out_stride_col: tl.constexpr, accumulate: tl.constexpr, block_size_row: tl.constexpr, block_size_col: tl.constexpr, block_size_inner: tl. constexpr, group_size_row: tl.constexpr): tl.static_assert(row_dim % block_size_row == 0) tl.static_assert(col_dim % block_size_col == 0) tl.static_assert(inner_sparse_dim % block_size_inner == 0) pid_row, pid_col = tl.swizzle2d(tl.program_id(axis=0), tl.program_id( axis=1), row_dim // block_size_row, col_dim // block_size_col, group_size_row) row_offset = pid_row * block_size_row sparse_range = tl.arange(0, padded_sparse_dim) expert_ends = tl.load(expert_ends_ptr + sparse_range, mask=sparse_range < sparse_dim, other=row_dim) sparse_index = tl.sum((expert_ends <= row_offset).to(tl.int64)) if sparse_index == sparse_dim: return inner_dense_offset = sparse_index * inner_sparse_dim col_offset = pid_col * block_size_col row_range = tl.arange(0, block_size_row)[:, None] col_range = tl.arange(0, block_size_col)[None, :] inner_range = tl.arange(0, block_size_inner) lhs_ptr += (row_offset + row_range) * lhs_stride_row + inner_range[None, : ] * lhs_stride_inner rhs_ptr += (inner_dense_offset + inner_range[:, None] ) * rhs_stride_inner + (col_offset + col_range) * rhs_stride_col out_ptr += (row_offset + row_range) * out_stride_row + (col_offset + col_range) * out_stride_col out = tl.dot(tl.load(lhs_ptr), tl.load(rhs_ptr), out_dtype=tl.float32) for k in range(1, inner_sparse_dim // block_size_inner): lhs_ptr += block_size_inner * lhs_stride_inner rhs_ptr += block_size_inner * rhs_stride_inner out += tl.dot(tl.load(lhs_ptr), tl.load(rhs_ptr)) if accumulate: out += tl.load(out_ptr) tl.store(out_ptr, out)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Coalesced", "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/sparse_linear.py
7118da2e-e1df-45f5-99f0-a46403452599
gemm2.py
vedantroy/awq
examples/gemm2.py
a0e638f269862a78da4ea6a7f4c08bc54486018e
0
@triton.jit def matmul_kernel_simple(a_ptr, qw_ptr, c_ptr, scales_ptr, zeros_ptr, dbg_qwpacked_ptr, dbg_qwunpacked_ptr, dbg_dequant_ptr, dbg_scales_ptr, dbg_unpacked_zeros_ptr, dbg_to_add_ptr, M, N, K, BLOCK_SIZE_M: tl. constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, QUANT_GROUP_SIZE: tl.constexpr): """Kernel for computing the matmul C = A x qw (qweights). """ pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % group_size_m pid_n = pid % num_pid_in_group // group_size_m offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) qw_shifter = offs_k % 8 * 4 accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, 1): a_offs = k * BLOCK_SIZE_K + (offs_am[:, None] * K + offs_k[None, :]) a = tl.load(a_ptr + a_offs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) qw_offs = (k * BLOCK_SIZE_K + offs_k[:, None]) // 8 * N + offs_bn[ None, :] qw_packed = tl.load(qw_ptr + qw_offs) if pid == 0 and k == 0: k_x_n = tl.arange(0, BLOCK_SIZE_K)[:, None ] * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] tl.store(dbg_qwpacked_ptr + k_x_n, qw_packed) qw_unpacked = qw_packed >> qw_shifter[:, None] & 15 if pid == 0 and k == 0: k_x_n = tl.arange(0, BLOCK_SIZE_K)[:, None ] * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] tl.store(dbg_qwunpacked_ptr + k_x_n, qw_unpacked) k_iters_per_quant_group = QUANT_GROUP_SIZE // BLOCK_SIZE_K grp_idx = k // k_iters_per_quant_group grp_row_off = N * grp_idx col_offs = offs_bn scales = tl.load(scales_ptr + grp_row_off + col_offs) if pid == 0 and k == 0: tl.store(dbg_scales_ptr + tl.arange(0, BLOCK_SIZE_N), scales) zeros_row_off = grp_row_off // 8 idx_within_packed = grp_idx % 8 packed_zeros = tl.load(zeros_ptr + zeros_row_off + col_offs) unpacked_zeros = packed_zeros >> idx_within_packed * 4 & 15 if pid == 0 and k == 0: tl.store(dbg_unpacked_zeros_ptr + tl.arange(0, BLOCK_SIZE_N), unpacked_zeros) dequantized = scales[None, :].to(tl.float32) * (qw_unpacked.to(tl. float32) - unpacked_zeros[None, :].to(tl.float32)) if pid == 0 and k == 0: k_x_n = tl.arange(0, BLOCK_SIZE_K)[:, None ] * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] tl.store(dbg_dequant_ptr + k_x_n, dequantized) to_add = tl.dot(a, dequantized.to(tl.float16)) if pid == 0 and k == 0: m_x_n = tl.arange(0, BLOCK_SIZE_M)[:, None ] * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] tl.store(dbg_to_add_ptr + m_x_n, to_add) accumulator += to_add c = accumulator.to(tl.float16) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) stride_cm = N c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask)
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/vedantroy/awq/blob/a0e638f269862a78da4ea6a7f4c08bc54486018e/examples/gemm2.py
cce543b6-f8b2-4791-8e56-9a8d72b6369f
dequant_kernel.py
drisspg/transformer_nuggets
transformer_nuggets/quant/dequant_kernel.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def dequant_nf4_tensor_kernel(inpt_ptr, output_ptr, quantized_scalers_ptr, quantization_factor_ptr, scaler_mean_ptr, nf4_lut_ptr, scaler_block_size: tl.constexpr, XBLOCK: tl.constexpr): """Dequantizes a tensor from nf4 to bfloat16""" offset = tl.program_id(0) * XBLOCK index = offset + tl.arange(0, XBLOCK)[:] index = tl.max_contiguous(tl.multiple_of(index, XBLOCK), XBLOCK) inpt = tl.load(inpt_ptr + index) first_elements = inpt >> 4 second_elements = inpt & 15 dequantized_first = dequantize(first_elements, nf4_lut_ptr) dequantized_second = dequantize(second_elements, nf4_lut_ptr) block_scaler = dequantize_scalers(quantized_scalers_ptr, quantization_factor_ptr, scaler_mean_ptr, XBLOCK, scaler_block_size) scaled_first = dequantized_first * block_scaler scaled_second = dequantized_second * block_scaler store_indices = offset * 2 + tl.arange(0, XBLOCK * 2)[:] interleaved = tl.interleave(scaled_first, scaled_second) tl.store(output_ptr + store_indices, interleaved)
{ "Data Type": [ "int8", "bf16" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/quant/dequant_kernel.py
75190c07-be32-4efd-b8f2-d8a6bee1648a
quantize.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/triton/quantize.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def _kernel_quantize_mx4(A, out, rand_bits, M, K, GROUPS_PER_ROW, GROUPS_PER_THREAD, ROW_PADDING, GROUP_SIZE: tl.constexpr, EBITS: tl. constexpr, MBITS: tl.constexpr, ROUNDING_MODE: tl.constexpr, STOCHASTIC_CASTING: tl.constexpr, FP4_EXP_BIAS: tl.constexpr, GROUP_LOAD: tl.constexpr, USE_INT64: tl.constexpr) ->None: """Quantize a 1D float tensor into a packed MX4 tensor. Args: A (Tensor): [M] float tensor to be quantized. out (Tensor): [M / 2 + M / GROUP_SIZE] output containing packed mx4 values. rand_bits (Optional Tensor): [M, K / 2] random integers used for stochastic rounding. M (int): Number of input rows. K (int): Number of input columns. GROUPS_PER_ROW (int): Number of groups in each row of the input. GROUPS_PER_THREAD (int): Number of groups to process per thread. ROW_PADDING (int): Number of elements of padding to insert into each row. GROUP_SIZE (int): Size of chunks that use the same shared exponent. EBITS (int): Number of exponent bits in target mx4 format. MBITS (int): Number of mantissa bits in target mx4 format. ROUNDING_MODE (int): Which rounding method to use when calculating shared exponent. STOCHASTIC_CASTING (bool): Whether to use stochastic rounding when downcasting. FP4_EXP_BIAS (int): Exponent bias of target mx4 format. GROUP_LOAD (int): Number of groups to process simultaneously. USE_INT64 (bool): Whether to use int64 for indexing. This is needed for large tensors. """ FP32_EXP_MASK: tl.constexpr = 2139095040 FP32_EXP_OFFSET: tl.constexpr = 23 FP32_EXP_BIAS: tl.constexpr = 127 FP32_SIGN_OFFSET: tl.constexpr = 31 SIGN_MASK: tl.constexpr = 1 FP32_MANTISSA_MASK: tl.constexpr = 8388607 MBITS_IMPLICIT: tl.constexpr = MBITS + 1 MAX_FP32_MANTISSA_BITS: tl.constexpr = 24 IMPLIED_1_BIT: tl.constexpr = 1 << 23 FP32_MIN_NORMAL: tl.constexpr = 2 ** -126 MANTISSA_OVERFLOW_THRESHOLD: tl.constexpr = (1 << MBITS_IMPLICIT) - 1 EXPONENT_OVERFLOW_THRESHOLD: tl.constexpr = (1 << EBITS) - 1 IMPLICIT_1_MASK = (1 << MBITS_IMPLICIT - 1) - 1 RAND_MASK: tl.constexpr = (1 << FP32_EXP_OFFSET - MBITS) - 1 pid = tl.program_id(0) if USE_INT64: pid = pid.to(tl.int64) M = tl.cast(M, tl.int64) K = tl.cast(K, tl.int64) GROUPS_PER_THREAD = tl.cast(GROUPS_PER_THREAD, tl.int64) PACKED_GROUP_SIZE: tl.constexpr = GROUP_SIZE // 2 + 1 NUM_GROUPS = M * GROUPS_PER_ROW OUTPUT_CHUNK_SIZE = GROUPS_PER_THREAD * GROUP_SIZE // 2 + GROUPS_PER_THREAD OUTPUT_SIZE = GROUP_SIZE * NUM_GROUPS // 2 + NUM_GROUPS input_start = pid * (GROUPS_PER_THREAD * GROUP_SIZE) output_start = pid * OUTPUT_CHUNK_SIZE exp_start = output_start + GROUP_SIZE // 2 input_offset = tl.arange(0, GROUP_LOAD * GROUP_SIZE) + input_start output_offset = tl.arange(0, GROUP_LOAD * (GROUP_SIZE // 2)) if ROUNDING_MODE == 3: rand_bits_offset = tl.arange(0, GROUP_LOAD) + pid * GROUPS_PER_THREAD else: rand_bits_offset = pid * GROUPS_PER_THREAD output_offset += output_offset // (GROUP_SIZE // 2) + output_start exp_offset = tl.arange(0, GROUP_LOAD) * PACKED_GROUP_SIZE + exp_start for _k in range(0, tl.cdiv(GROUPS_PER_THREAD, GROUP_LOAD)): pad_mask = input_offset % (GROUPS_PER_ROW * GROUP_SIZE) < K if ROW_PADDING != 0: padded_input_offset = input_offset - input_offset // ( GROUPS_PER_ROW * GROUP_SIZE) * ROW_PADDING else: padded_input_offset = input_offset a = tl.load(A + padded_input_offset, mask=(padded_input_offset < M * K) & (padded_input_offset < (pid + 1) * GROUPS_PER_THREAD * GROUP_SIZE) & pad_mask, other=0) a_groups = tl.reshape(a, [GROUP_LOAD, GROUP_SIZE]) group_max = tl.max(tl.abs(a_groups), axis=1) group_max = tl.where(group_max == 0, FP32_MIN_NORMAL, group_max) group_rand_bits = None if ROUNDING_MODE == 3 or STOCHASTIC_CASTING: group_rand_bits = tl.load(rand_bits + rand_bits_offset, mask= rand_bits_offset < K // GROUP_SIZE, other=0) rand_bits_offset += GROUP_LOAD group_exp = _compute_exp(group_max, ROUNDING_MODE, group_rand_bits, MBITS) group_exp = group_exp - EBITS group_exp = tl.clamp(group_exp, -127, 125) scale = tl.exp2(group_exp.to(tl.float64)).to(tl.float32) scaled_a = tl.reshape(a, [GROUP_LOAD, GROUP_SIZE]) / tl.reshape(scale, [GROUP_LOAD, 1]) scaled_a = tl.reshape(scaled_a, [GROUP_LOAD * GROUP_SIZE]) tl.store(out + exp_offset, (group_exp + FP32_EXP_BIAS).to(tl.int8), mask=(exp_offset < OUTPUT_SIZE) & (exp_offset < OUTPUT_CHUNK_SIZE * (pid + 1))) scaled_a = scaled_a.to(tl.int32, bitcast=True) if STOCHASTIC_CASTING: philox_4x_offset = tl.split(tl.reshape(input_offset, [ GROUP_LOAD * GROUP_SIZE // 2, 2], can_reorder=True)) philox_4x_offset = tl.split(tl.reshape(philox_4x_offset, [ GROUP_LOAD * GROUP_SIZE // 4, 2], can_reorder=True)) a_4x, b_4x, c_4x, d_4x = tl.randint4x(group_rand_bits, philox_4x_offset, n_rounds=7) stochastic_round_bits = tl.join(tl.join(a_4x, b_4x), tl.join( c_4x, d_4x)) stochastic_round_bits = tl.reshape(stochastic_round_bits, [ GROUP_LOAD * GROUP_SIZE]).to(tl.int32, bitcast=True) scaled_a = scaled_a + (stochastic_round_bits & RAND_MASK) sign_bit = scaled_a >> FP32_SIGN_OFFSET & SIGN_MASK biased_exp = (scaled_a & FP32_EXP_MASK) >> FP32_EXP_OFFSET trailing_mantissa = scaled_a & FP32_MANTISSA_MASK new_biased_exp = biased_exp - FP32_EXP_BIAS + FP4_EXP_BIAS exp_diff = tl.where(new_biased_exp <= 0, 1 - new_biased_exp, 0) exp_diff = tl.minimum(exp_diff, MAX_FP32_MANTISSA_BITS) is_subnorm = biased_exp == 0 mantissa = tl.where(is_subnorm, trailing_mantissa, trailing_mantissa + IMPLIED_1_BIT) fp32_sig_bits = tl.where(is_subnorm, 23, 24).to(tl.int32) mantissa = mantissa >> fp32_sig_bits + exp_diff - MBITS_IMPLICIT - 1 mantissa = mantissa + 1 >> 1 overflow = mantissa > MANTISSA_OVERFLOW_THRESHOLD mantissa = tl.where(overflow and not is_subnorm, mantissa >> 1, mantissa) new_biased_exp = tl.where(new_biased_exp <= 0 and mantissa == 2, 1, new_biased_exp) mantissa = mantissa & IMPLICIT_1_MASK new_biased_exp = tl.where(overflow, new_biased_exp + 1, new_biased_exp) mantissa = tl.where(new_biased_exp > EXPONENT_OVERFLOW_THRESHOLD, 1, mantissa) new_biased_exp = tl.maximum(tl.minimum(new_biased_exp, EXPONENT_OVERFLOW_THRESHOLD), 0) mx4_value = new_biased_exp << MBITS_IMPLICIT - 1 | mantissa mx4_value = sign_bit << EBITS + MBITS | mx4_value low_mx4, high_mx4 = tl.split(tl.reshape(mx4_value, [GROUP_LOAD * GROUP_SIZE // 2, 2])) packed_mx4 = (high_mx4 << 4 | low_mx4).to(tl.int8) tl.store(out + output_offset, packed_mx4, mask=(output_offset < OUTPUT_SIZE) & (output_offset < OUTPUT_CHUNK_SIZE * (pid + 1))) input_offset += GROUP_LOAD * GROUP_SIZE exp_offset += GROUP_LOAD * PACKED_GROUP_SIZE output_offset += GROUP_LOAD * PACKED_GROUP_SIZE
{ "Data Type": [ "int8" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/quantize.py
e433ab40-e94b-424b-8781-6a02f5a372a2
dx.py
Forkxz/TritonDeepLearningKernel
kernel/dropconnect/dx.py
add54b6318e8fa5fdbf8c7b47659de9fceaa5691
0
@triton.jit def dropconnect_dx_kernel(dy_ptr, w_ptr, dx_ptr, seed, M, K, N, stride_dym, stride_dyn, stride_wk, stride_wn, stride_dm, stride_dk, stride_dn, stride_xm, stride_xk, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl. constexpr, BLOCK_SIZE_K: tl.constexpr, ALLOWTF32: tl.constexpr): """ dY_m = Y.grad dO_m = dY_m.view(M,1,N).broadcast_to(M,K,N) dx_m_cast = dO_m * WD_m dx_m = dx_m_cast.sum(dim=2) """ pid_m = tl.program_id(0) pid_k = tl.program_id(1) offset_m = pid_m * BLOCK_SIZE_M offset_n = 0 offset_k = pid_k * BLOCK_SIZE_K dy_offsets = block_offsets_2d(M, N, stride_dym, stride_dyn, offset_m, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_N) w_offsets = block_offsets_2d(K, N, stride_wk, stride_wn, offset_k, offset_n, BLOCK_SIZE_K, BLOCK_SIZE_N) d_offsets = block_offsets_3d(M, K, N, stride_dm, stride_dk, stride_dn, offset_m, offset_k, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_K, BLOCK_SIZE_N) dy_offsets = dy_offsets.reshape(BLOCK_SIZE_M, 1, BLOCK_SIZE_N) w_offsets = w_offsets.reshape(1, BLOCK_SIZE_K, BLOCK_SIZE_N) offs_n = tl.arange(0, BLOCK_SIZE_N) dy_tile = dy_ptr + dy_offsets w_tile = w_ptr + w_offsets ASM: tl.constexpr = 'cvt.rna.tf32.f32 $0, $1;' accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32) for n in range(0, tl.cdiv(N, BLOCK_SIZE_N)): random_masks = tl.random.rand(seed, d_offsets) > 0.5 n_mask = offs_n[None, None, :] < N - n * BLOCK_SIZE_N dy_load = tl.load(dy_tile, mask=n_mask, other=0.0) w_load = tl.load(w_tile, mask=n_mask, other=0.0) dy = tl.where(random_masks, dy_load, 0.0) wd = tl.where(random_masks, w_load, 0.0) mul = dy * wd accumulator += tl.sum(mul, axis=2) dy_tile += BLOCK_SIZE_N * stride_dyn w_tile += BLOCK_SIZE_N * stride_wn d_offsets += BLOCK_SIZE_N * stride_dn dx_offset, dx_mask = block_offsets_2d(M, K, stride_xm, stride_xk, offset_m, offset_k, BLOCK_SIZE_M, BLOCK_SIZE_K, True) dx_tile = dx_ptr + dx_offset dx = accumulator.to(dx_tile.dtype.element_ty) tl.store(dx_tile, dx, mask=dx_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/Forkxz/TritonDeepLearningKernel/blob/add54b6318e8fa5fdbf8c7b47659de9fceaa5691/kernel/dropconnect/dx.py
65eed763-e3c9-4f09-8b89-130070dd79d3
sized_tuned_bwd.py
ROCm/aotriton
tritonsrc/sized_tuned_bwd.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.autotune(configs=TRITON_CONFIG_LIST_BWD_SIZED, key=['BLOCK_DMODEL', 'max_seqlen_q', 'max_seqlen_k']) @triton.jit def sized_tuned_bwd_kernel_dq(Q, K, V, B, sm_scale, Out, DO, DQ, DB, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dqz, stride_dqh, stride_dqm, stride_dqk, stride_dbz, stride_dbh, stride_dbm, stride_dbn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl. constexpr): bare_bwd_kernel_dq(Q, K, V, B, sm_scale, Out, DO, DQ, DB, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dqz, stride_dqh, stride_dqm, stride_dqk, stride_dbz, stride_dbh, stride_dbm, stride_dbn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M, BLOCK_DMODEL, BLOCK_N, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD= PADDED_HEAD, BIAS_TYPE=BIAS_TYPE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/sized_tuned_bwd.py
29eb6850-1766-413b-8e3d-01a3060c34f7
chunk_h.py
sustcsonglin/flash-linear-attention
fla/ops/common/chunk_h.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0' ] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for num_warps in [1, 2, 4, 8] for num_stages in [2, 3, 4]], key=['BT', 'USE_G', 'USE_GK', 'USE_GV']) @triton.jit def chunk_bwd_kernel_dh(q, g, gk, gv, do, dh, dht, dh0, offsets, chunk_offsets, scale, T: tl.constexpr, HQ: tl.constexpr, H: tl. constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl. constexpr, BV: tl.constexpr, NG: tl.constexpr, USE_G: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr, STORE_INITIAL_STATE_GRADIENT: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_bg = i_nh // NG i_n, i_hq = i_nh // HQ, i_nh % HQ i_h = i_hq // NG if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_dht = tl.make_block_ptr(dht + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32) for i_t in range(NT - 1, -1, -1): if HEAD_FIRST: p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_dh = tl.make_block_ptr(dh + ((boh + i_t) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) last_idx = min(i_t * BT + BT, T) - 1 if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_nh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_nh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (K, T), (1, HQ * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), ( HQ * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_do = tl.load(p_do, boundary_check=(0, 1)) if USE_G: if HEAD_FIRST: p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT) p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT) b_g_last = tl.load(g + i_bg * T + last_idx) else: p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h b_g_last = tl.load(g + (bos + last_idx) * H + i_h) b_g = tl.load(p_g, mask=i_t * BT + tl.arange(0, BT) < T, other=0.0) b_q = (b_q * tl.exp(b_g)[None, :]).to(b_q.dtype) b_dh *= tl.exp(b_g_last) if USE_GK: if HEAD_FIRST: p_gk = tl.make_block_ptr(gk + i_bg * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_gk_last = gk + (i_bg * T + last_idx ) * K + i_k * BK + tl.arange(0, BK) else: p_gk = tl.make_block_ptr(gk + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_gk_last = gk + (bos + last_idx ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK) b_gk = tl.load(p_gk, boundary_check=(0, 1)) b_q = (b_q * tl.exp(b_gk)).to(b_q.dtype) b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) < K, other=0.0) b_dh *= tl.exp(b_gk_last)[:, None] if USE_GV: if HEAD_FIRST: p_gv = tl.make_block_ptr(gv + i_bg * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_gv_last = gv + (i_bg * T + last_idx ) * V + i_v * BV + tl.arange(0, BV) else: p_gv = tl.make_block_ptr(gv + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_gv_last = gv + (bos + last_idx ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV) b_gv = tl.load(p_gv, boundary_check=(0, 1)) b_do = (b_do * tl.exp(b_gv)).to(b_do.dtype) b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) < V, other=0.0) b_dh *= tl.exp(b_gv_last)[None, :] b_dh += tl.dot(b_q, b_do) if STORE_INITIAL_STATE_GRADIENT: p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h.py
1e1944d8-6b04-41df-b0ee-4bdf17a83a50
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/rwkv4/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_recurrent_rwkv4_backward_kernel(w_ptr, w_s_c, u_ptr, u_s_c, k_ptr, k_s_b, k_s_t, k_s_c, v_ptr, v_s_b, v_s_t, v_s_c, state_ptr, state_s_b, state_s_abe, state_s_t, state_s_c, gwkv_ptr, gwkv_s_b, gwkv_s_t, gwkv_s_c, gstate_out_ptr, gstate_out_s_b, gstate_out_s_abe, gstate_out_s_c, gw_ptr, gw_s_c, gu_ptr, gu_s_c, gk_ptr, gk_s_b, gk_s_t, gk_s_c, gv_ptr, gv_s_b, gv_s_t, gv_s_c, gstate_ptr, gstate_s_b, gstate_s_abe, gstate_s_c, tsz, chans, BLOCK_SIZE_C: tl.constexpr): b_idx = tl.program_id(0) c_idx = tl.program_id(1) cs = c_idx * BLOCK_SIZE_C + tl.arange(0, BLOCK_SIZE_C) cmask = cs < chans k_ptr = k_ptr + b_idx * k_s_b v_ptr = v_ptr + b_idx * v_s_b alpha_ptr = state_ptr + b_idx * state_s_b beta_ptr = state_ptr + b_idx * state_s_b + state_s_abe eps_ptr = state_ptr + b_idx * state_s_b + 2 * state_s_abe gk_ptr = gk_ptr + b_idx * gk_s_b gv_ptr = gv_ptr + b_idx * gv_s_b gwkv_ptr = gwkv_ptr + b_idx * gwkv_s_b galpha_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b gbeta_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b + gstate_out_s_abe geps_out_ptr = (gstate_out_ptr + b_idx * gstate_out_s_b + 2 * gstate_out_s_abe) galpha = tl.load(galpha_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl .float32) gbeta = tl.load(gbeta_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl. float32) geps = tl.load(geps_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl. float32) w = tl.load(w_ptr + w_s_c * cs, mask=cmask).to(tl.float32) u = tl.load(u_ptr + u_s_c * cs, mask=cmask).to(tl.float32) gw = tl.zeros_like(w) gu = tl.zeros_like(u) alpha_prev = tl.load(alpha_ptr + tsz * state_s_t + state_s_c * cs, mask =cmask).to(tl.float32) beta_prev = tl.load(beta_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask ).to(tl.float32) eps_prev = tl.load(eps_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask ).to(tl.float32) for t in range(tsz): tc = tsz - t - 1 kt = tl.load(k_ptr + tc * k_s_t + k_s_c * cs, mask=cmask).to(tl.float32 ) vt = tl.load(v_ptr + tc * v_s_t + v_s_c * cs, mask=cmask).to(tl.float32 ) alpha_curr = alpha_prev beta_curr = beta_prev eps_curr = eps_prev alpha_prev = tl.load(alpha_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32) beta_prev = tl.load(beta_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32) eps_prev = tl.load(eps_ptr + tc * state_s_t + state_s_c * cs, mask= cmask).to(tl.float32) ukt = u + kt tau = tl.maximum(ukt, eps_prev) e1 = tl.exp(eps_prev - tau) e2 = tl.exp(ukt - tau) euke = tl.exp(ukt + eps_prev - 2 * tau) denom = e1 * beta_prev + e2 denom_sq = denom * denom gwkvt = tl.load(gwkv_ptr + tc * gwkv_s_t + gwkv_s_c * cs, mask=cmask ).to(tl.float32) guk = gwkvt * e2 * (e1 * beta_prev * vt - e1 * alpha_prev) / denom_sq gu += guk gk = guk gv = gwkvt * e2 / denom galpha_wkv = gwkvt * e1 / denom gbeta_wkv = -gwkvt * e1 * (e2 * vt + e1 * alpha_prev) / denom_sq geps_wkv_denom = e1 * beta_prev + e2 geps_wkv = gwkvt * euke * (alpha_prev - vt * beta_prev) / ( geps_wkv_denom * geps_wkv_denom) e1 = tl.exp(w + eps_prev - eps_curr) e2 = tl.exp(kt - eps_curr) galpha_we = galpha * e1 * alpha_prev gw += galpha_we gk += galpha * e2 * vt gv += galpha * e2 geps += galpha * -alpha_curr gbeta_we = gbeta * e1 * beta_prev gw += gbeta_we gk += gbeta * e2 geps += gbeta * -beta_curr geps_mask = w + eps_prev > kt geps_we = tl.where(geps_mask, geps, tl.zeros_like(geps)) gw += geps_we gk += tl.where(geps_mask, tl.zeros_like(geps), geps) tl.store(gk_ptr + tc * gk_s_t + gk_s_c * cs, gk, mask=cmask) tl.store(gv_ptr + tc * gv_s_t + gv_s_c * cs, gv, mask=cmask) galpha = galpha * e1 + galpha_wkv gbeta = gbeta * e1 + gbeta_wkv geps = galpha_we + gbeta_we + geps_we + geps_wkv galpha_ptr = gstate_ptr + b_idx * gstate_s_b gbeta_ptr = gstate_ptr + b_idx * gstate_s_b + gstate_s_abe geps_ptr = gstate_ptr + b_idx * gstate_s_b + 2 * gstate_s_abe tl.store(galpha_ptr + gstate_s_c * cs, galpha, mask=cmask) tl.store(gbeta_ptr + gstate_s_c * cs, gbeta, mask=cmask) tl.store(geps_ptr + gstate_s_c * cs, geps, mask=cmask) gw_temp = tl.load(gw_ptr + gw_s_c * cs, mask=cmask).to(tl.float32) gw_temp += gw tl.store(gw_ptr + gw_s_c * cs, gw_temp, mask=cmask) gu_temp = tl.load(gu_ptr + gu_s_c * cs, mask=cmask).to(tl.float32) gu_temp += gu tl.store(gu_ptr + gu_s_c * cs, gu_temp, mask=cmask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv4/fused_recurrent.py
4a398122-1442-4248-8842-7e8a278b8424
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/hgrn/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({'BD': 32}, num_warps=1), triton. Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4), triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64}, num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({ 'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton .Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps =2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128}, num_warps=8)], key=['D']) @triton.jit def chunk_hgrn_fwd_kernel_h(x, g, gc, o, h0, T: tl.constexpr, D: tl. constexpr, BT: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl. constexpr): i_d, i_t, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_x = x + i_b * T * D + i_t * BT * D + o_d p_g = g + i_b * T * D + i_t * BT * D + o_d p_gc = gc + i_b * T * D + i_t * BT * D + o_d p_o = o + i_b * T * D + i_t * BT * D + o_d b_h = tl.zeros([BD], dtype=tl.float32) b_gc = tl.zeros([BD], dtype=tl.float32) if USE_INITIAL_STATE: if i_t == 0: b_h += tl.load(h0 + i_b * D + o_d, mask=mask, other=0).to(tl. float32) for i in range(0, BT): mask_t = mask & (i_t * BT + i < T) b_x = tl.load(p_x, mask=mask_t, other=0).to(tl.float32) b_g = tl.load(p_g, mask=mask_t, other=0).to(tl.float32) b_h = tl.exp(b_g) * b_h + b_x b_gc = b_gc + b_g tl.store(p_gc, b_gc.to(p_o.dtype.element_ty), mask=mask_t) tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask_t) p_x += D p_g += D p_gc += D p_o += D
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/hgrn/chunk.py
67bfb3db-8a20-4dc2-925e-39148ea3e6d9
rms_norm.py
dame-cell/Triformer
triformer/rms_norm.py
0712537d576166b93fa09aa9509b2661b9ed8a68
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE': 128, 'NUM_WARPS': 4} ), triton.Config({'BLOCK_SIZE': 256, 'NUM_WARPS': 8}), triton.Config({ 'BLOCK_SIZE': 512, 'NUM_WARPS': 16}), triton.Config({'BLOCK_SIZE': 1024, 'NUM_WARPS': 16}), triton.Config({'BLOCK_SIZE': 2048, 'NUM_WARPS': 32}), triton.Config({'BLOCK_SIZE': 4096, 'NUM_WARPS': 32}), triton.Config({ 'BLOCK_SIZE': 8192, 'NUM_WARPS': 48})], key=['n_cols']) @triton.jit def _rms_layernorm_backward(dY, dY_row_stride, X, X_row_stride, W, W_row_stride, r, r_row_stride, dX, dX_row_stride, dW, n_cols, eps, BLOCK_SIZE: tl.constexpr, NUM_WARPS: tl.constexpr): pid = tl.program_id(0) num_pids = tl.num_programs(0) col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < n_cols dY_ptr = dY + pid * dY_row_stride + col_offsets X_ptr = X + pid * X_row_stride + col_offsets dX_ptr = dX + pid * dX_row_stride + col_offsets dY_row = tl.load(dY_ptr, mask=mask, other=0).to(tl.float32) X_row = tl.load(X_ptr, mask=mask, other=0).to(tl.float32) W_row = tl.load(W + col_offsets, mask=mask, other=0).to(tl.float32) rms = tl.load(r + pid).to(tl.float32) X_norm = X_row * rms dY_W = dY_row * W_row sum_dY_X = tl.sum(dY_W * X_norm, axis=0) dX = rms * (dY_W - X_norm * (sum_dY_X / n_cols)) dW_row = dY_row * X_norm tl.atomic_add(dW + col_offsets, dW_row, mask=mask) tl.store(dX_ptr, dX, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/rms_norm.py
7596edff-211e-475d-872d-74ad640ee13a
inout_tensor.py
gmgu/study-triton
2_inout_tensor/inout_tensor.py
3a9a24fd3f1de3e7465535ffe72f6deac8a419bd
0
@triton.jit def copy_kernel(in_ptr, out_ptr, n: tl.constexpr): offsets = tl.arange(0, n) x = tl.load(in_ptr + offsets) y = tl.store(out_ptr + offsets, x)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/gmgu/study-triton/blob/3a9a24fd3f1de3e7465535ffe72f6deac8a419bd/2_inout_tensor/inout_tensor.py
9c7ea44a-b658-498e-bf16-7647e1ef2be1
cross_entropy.py
ardywibowo/triton-mode
kernels/cross_entropy.py
5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1
0
@triton.jit def triton_cross_entropy_backward(input_grad_ptr, input_stride, grad_output_ptr, num_classes, BLOCK_SIZE: tl.constexpr): row_id = tl.program_id(0).to(tl.int64) input_grad_ptr += row_id * input_stride grad_output = tl.load(grad_output_ptr) for i in range(0, num_classes, BLOCK_SIZE): input_offsets = i + tl.arange(0, BLOCK_SIZE) input_grad_block = tl.load(input_grad_ptr + input_offsets, mask= input_offsets < num_classes) tl.store(input_grad_ptr + input_offsets, input_grad_block * grad_output, mask=input_offsets < num_classes)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/cross_entropy.py
90672e0c-650f-4d76-8b2b-6f1033c4bc1c
y_9.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_9.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def ninth_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): coord_stride = 3 block_id = tl.program_id(0) coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) CONST000 = 1.93163963757558 CONST001 = 2.65478475211798 CONST002 = 1.72771101506082 CONST004 = 1.59908344719522 CONST005 = 6.39633378878088 CONST006 = 6.39633378878088 CONST007 = 8.63855507530412 CONST008 = 9.59450068317133 CONST009 = 4.35889894354067 CONST010 = 10.7269778688696 CONST011 = 10.7269778688696 CONST012 = 6.39633378878088 CONST013 = 15.0007324039945 CONST014 = 13.0937127087774 CONST016 = 14.45506743704 CONST017 = 14.45506743704 CONST018 = 13.3827919767794 CONST019 = 13.5214774630291 CONST020 = 23.8930627690618 CONST021 = 27.0429549260581 CONST022 = 29.2403830344269 CONST023 = 29.2403830344269 CONST024 = 30.001464807989 CONST025 = -480.023436927823 CONST026 = -480.023436927823 CONST029 = 42.9079114754785 CONST030 = -462.562157985281 CONST032 = -967.518168434061 CONST034 = 57.8202697481601 CONST035 = 58.9217071894985 CONST036 = 58.9217071894985 CONST037 = 62.4530292249704 CONST038 = 1081.71819704233 CONST039 = 64.3618672132178 CONST040 = 578.202697481601 CONST044 = 600.029296159779 CONST045 = -936.795438374555 CONST047 = 96.7518168434061 CONST049 = 115.64053949632 CONST051 = -392.811381263323 CONST053 = 137.14955340795 CONST055 = 150.007324039945 CONST056 = -343.263291803828 CONST058 = 11.2632978048796 CONST061 = -315.37233853663 CONST062 = -314.249105010659 CONST063 = 205.957975082297 CONST065 = -294.608535947493 CONST066 = 240.011718463912 CONST068 = 241.879542108515 CONST069 = 255.853351551235 CONST070 = 255.853351551235 CONST071 = -241.879542108515 CONST072 = -240.011718463912 CONST073 = -241.879542108515 CONST074 = 788.430846341574 CONST075 = 1.72771101506082 CONST076 = -1.93163963757558 CONST077 = -1249.06058449941 CONST078 = -223.00191917791 CONST080 = -216.343639408465 CONST081 = 300.01464807989 CONST082 = -204.682681240988 CONST083 = -204.682681240988 CONST084 = -204.682681240988 CONST086 = -196.405690631662 CONST087 = -191.890013663426 CONST088 = -191.890013663427 CONST089 = -187.359087674911 CONST090 = -693.843236977922 CONST091 = 334.502878766866 CONST092 = -176.765121568496 CONST093 = -150.007324039945 CONST094 = -144.5506743704 CONST095 = 374.718175349822 CONST096 = 374.718175349822 CONST097 = -649.030918225395 CONST099 = -630.744677073259 CONST100 = -115.64053949632 CONST101 = -114.421097267943 CONST102 = -115.64053949632 CONST103 = -104.74970167022 CONST104 = 411.915950164594 CONST105 = -95.5722510762473 CONST106 = -90.106382439037 CONST107 = -90.0043944239669 CONST109 = -80.2967518606762 CONST110 = -78.4601809837321 CONST111 = 435.383175795327 CONST112 = -589.217071894985 CONST113 = -78.4601809837321 CONST114 = 435.383175795328 CONST115 = -68.5747767039748 CONST116 = -63.9633378878088 CONST117 = -63.9633378878088 CONST118 = -62.4530292249704 CONST119 = -58.9217071894985 CONST120 = -1081.71819704233 CONST121 = -57.8202697481601 CONST122 = -57.8202697481601 CONST123 = -58.9217071894985 CONST124 = -54.0859098521163 CONST125 = 462.562157985281 CONST127 = -48.3759084217031 CONST128 = -48.375908421703 CONST129 = -38.6327927515116 CONST130 = -30.9062342012093 CONST131 = 483.759084217031 CONST132 = -30.001464807989 CONST133 = -30.001464807989 CONST134 = -27.0429549260581 CONST135 = -24.1879542108515 CONST136 = -24.1879542108515 CONST137 = -1.63671408859718 CONST138 = -15.0007324039945 CONST139 = -13.5214774630291 CONST140 = -13.8216881204866 CONST141 = -13.0937127087774 CONST142 = -13.3827919767794 CONST143 = -9.82028453158308 CONST144 = -4.91014226579154 CONST145 = 511.706703102471 VAR06 = x * x * x * x VAR07 = x * x * x VAR08 = x * x VAR01 = VAR07 * VAR07 * VAR07 VAR02 = VAR06 * VAR06 VAR03 = VAR06 * VAR07 VAR04 = VAR07 * VAR07 VAR05 = VAR07 * VAR08 VAR15 = y * y * y * y VAR16 = y * y * y VAR17 = y * y VAR10 = VAR16 * VAR16 * VAR16 VAR11 = VAR15 * VAR15 VAR12 = VAR15 * VAR16 VAR13 = VAR16 * VAR16 VAR14 = VAR16 * VAR17 VAR24 = z * z * z * z VAR25 = z * z * z VAR26 = z * z VAR19 = VAR25 * VAR25 * VAR25 VAR20 = VAR24 * VAR24 VAR21 = VAR24 * VAR25 VAR22 = VAR25 * VAR25 VAR23 = VAR25 * VAR26 Y00 = (CONST001 * VAR01 + CONST020 * VAR20 * x + CONST078 * VAR07 * VAR22 + CONST091 * VAR05 * VAR24 + CONST105 * VAR03 * VAR26) Y01 = y * (-CONST099 * VAR05 * VAR25 + CONST099 * VAR07 * VAR23 + CONST106 * VAR03 * z - CONST106 * VAR21 * x) Y02 = CONST000 * VAR01 + VAR03 * (CONST129 * VAR26 + CONST130 * VAR17 ) + VAR05 * (CONST021 * VAR24 - CONST097 * VAR17 * VAR26) + VAR07 * ( CONST120 * VAR17 * VAR24 - CONST124 * VAR22) + x * (-CONST080 * VAR17 * VAR22 + CONST139 * VAR20) Y03 = VAR16 * (CONST077 * VAR07 * VAR25 + CONST095 * VAR05 * z + CONST096 * VAR23 * x) + y * (-CONST089 * VAR05 * VAR25 - CONST089 * VAR07 * VAR23 + CONST109 * VAR03 * z + CONST109 * VAR21 * x) Y04 = (CONST002 * VAR01 + CONST007 * VAR20 * x + CONST135 * VAR05 * VAR24 + CONST140 * VAR03 * VAR26 + VAR15 * (CONST032 * VAR07 * VAR26 + CONST047 * VAR05 + CONST131 * VAR24 * x) + VAR17 * (- CONST071 * VAR07 * VAR24 + CONST071 * VAR22 * x + CONST111 * VAR05 * VAR26 + CONST127 * VAR03)) Y05 = VAR14 * (CONST030 * VAR07 * z - CONST030 * VAR25 * x) + VAR16 * ( CONST030 * VAR23 * x + CONST125 * VAR05 * z) + y * (CONST034 * VAR07 * VAR23 + CONST121 * VAR05 * VAR25 - CONST121 * VAR21 * x + CONST122 * VAR03 * z) Y06 = CONST119 * VAR03 * VAR17 - CONST137 * VAR01 + VAR05 * (CONST035 * VAR17 * VAR26 - CONST086 * VAR15 + CONST143 * VAR24) + VAR07 * ( CONST051 * VAR15 * VAR26 - CONST065 * VAR17 * VAR24 + CONST103 * VAR13 + CONST141 * VAR22) + x * (-CONST062 * VAR13 * VAR26 - CONST092 * VAR17 * VAR22 + CONST112 * VAR15 * VAR24 + CONST144 * VAR20) Y07 = CONST132 * VAR03 * y * z + VAR05 * (CONST081 * VAR16 * z + CONST107 * VAR25 * y) + VAR07 * (CONST026 * VAR14 * z + CONST044 * VAR16 * VAR25 + CONST107 * VAR23 * y) + x * (CONST025 * VAR14 * VAR25 + CONST053 * VAR12 * z + CONST081 * VAR16 * VAR23 + CONST132 * VAR21 * y) Y08 = CONST004 * VAR01 + VAR03 * (CONST006 * VAR26 + CONST116 * VAR17 ) + VAR05 * (CONST008 * VAR24 + CONST069 * VAR15 + CONST087 * VAR17 * VAR26) + VAR07 * (CONST005 * VAR22 + CONST083 * VAR13 + CONST087 * VAR17 * VAR24 + CONST145 * VAR15 * VAR26) + x * (CONST004 * VAR20 + CONST022 * VAR11 + CONST069 * VAR15 * VAR24 + CONST082 * VAR13 * VAR26 + CONST116 * VAR17 * VAR22) Y09 = CONST009 * VAR10 + VAR12 * (CONST110 * VAR26 + CONST113 * VAR08 ) + VAR14 * (CONST063 * VAR06 + CONST063 * VAR24 + CONST104 * VAR08 * VAR26) + VAR16 * (CONST056 * VAR06 * VAR26 + CONST056 * VAR08 * VAR24 + CONST101 * VAR04 + CONST101 * VAR22) + y * (CONST010 * VAR20 + CONST011 * VAR02 + CONST029 * VAR04 * VAR26 + CONST029 * VAR08 * VAR22 + CONST039 * VAR06 * VAR24) Y10 = CONST004 * VAR19 + VAR21 * (CONST005 * VAR08 + CONST117 * VAR17 ) + VAR23 * (CONST008 * VAR06 + CONST070 * VAR15 + CONST088 * VAR08 * VAR17) + VAR25 * (CONST012 * VAR04 + CONST082 * VAR13 + CONST087 * VAR06 * VAR17 + CONST145 * VAR08 * VAR15) + z * (CONST004 * VAR02 + CONST023 * VAR11 + CONST070 * VAR06 * VAR15 + CONST084 * VAR08 * VAR13 + CONST117 * VAR04 * VAR17) Y11 = VAR12 * (CONST115 * VAR08 - CONST115 * VAR26) + VAR14 * (CONST066 * VAR06 + CONST072 * VAR24) + VAR16 * (CONST055 * VAR08 * VAR24 + CONST093 * VAR04 + CONST093 * VAR06 * VAR26 - CONST093 * VAR22) + y * ( CONST013 * VAR02 + CONST024 * VAR04 * VAR26 + CONST133 * VAR08 * VAR22 + CONST138 * VAR20) Y12 = CONST036 * VAR17 * VAR21 + CONST137 * VAR19 + VAR23 * (CONST086 * VAR15 + CONST123 * VAR08 * VAR17 - CONST143 * VAR06) + VAR25 * ( CONST014 * VAR04 - CONST051 * VAR08 * VAR15 + CONST065 * VAR06 * VAR17 - CONST103 * VAR13) + z * (CONST062 * VAR08 * VAR13 + CONST092 * VAR04 * VAR17 - CONST112 * VAR06 * VAR15 - CONST144 * VAR02) Y13 = VAR14 * (CONST049 * VAR06 + CONST049 * VAR24 + CONST090 * VAR08 * VAR26) + VAR16 * (CONST040 * VAR06 * VAR26 + CONST040 * VAR08 * VAR24 + CONST100 * VAR22 + CONST102 * VAR04) + y * (CONST016 * VAR20 + CONST017 * VAR02 + CONST094 * VAR06 * VAR24 + CONST121 * VAR04 * VAR26 + CONST122 * VAR08 * VAR22) Y14 = (CONST007 * VAR02 * z + CONST075 * VAR19 + CONST136 * VAR06 * VAR23 + CONST140 * VAR08 * VAR21 + VAR15 * (CONST032 * VAR08 * VAR25 + CONST047 * VAR23 + CONST131 * VAR06 * z) + VAR17 * ( CONST068 * VAR06 * VAR25 + CONST073 * VAR04 * z + CONST114 * VAR08 * VAR23 + CONST128 * VAR21)) Y15 = VAR16 * (CONST037 * VAR22 - CONST045 * VAR06 * VAR26 + CONST045 * VAR08 * VAR24 + CONST118 * VAR04) + y * (CONST018 * VAR02 + CONST089 * VAR04 * VAR26 - CONST089 * VAR08 * VAR22 + CONST142 * VAR20) Y16 = (CONST019 * VAR02 * z + CONST076 * VAR19 + CONST124 * VAR04 * VAR25 - CONST129 * VAR08 * VAR21 + CONST134 * VAR06 * VAR23 + VAR17 * (CONST038 * VAR06 * VAR25 + CONST080 * VAR04 * z + CONST097 * VAR08 * VAR23 - CONST130 * VAR21)) Y17 = y * (CONST058 * VAR02 + CONST058 * VAR20 + CONST061 * VAR04 * VAR26 + CONST061 * VAR08 * VAR22 + CONST074 * VAR06 * VAR24) Y18 = (CONST001 * VAR19 + CONST020 * VAR02 * z + CONST078 * VAR04 * VAR25 + CONST091 * VAR06 * VAR23 + CONST105 * VAR08 * VAR21) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) tl.store(output_ptr + output_row_offset, Y00, mask=output_row_offset < output_numel) tl.store(output_ptr + output_row_offset + 1, Y01, mask= output_row_offset + 1 < output_numel) tl.store(output_ptr + output_row_offset + 2, Y02, mask= output_row_offset + 2 < output_numel) tl.store(output_ptr + output_row_offset + 3, Y03, mask= output_row_offset + 3 < output_numel) tl.store(output_ptr + output_row_offset + 4, Y04, mask= output_row_offset + 4 < output_numel) tl.store(output_ptr + output_row_offset + 5, Y05, mask= output_row_offset + 5 < output_numel) tl.store(output_ptr + output_row_offset + 6, Y06, mask= output_row_offset + 6 < output_numel) tl.store(output_ptr + output_row_offset + 7, Y07, mask= output_row_offset + 7 < output_numel) tl.store(output_ptr + output_row_offset + 8, Y08, mask= output_row_offset + 8 < output_numel) tl.store(output_ptr + output_row_offset + 9, Y09, mask= output_row_offset + 9 < output_numel) tl.store(output_ptr + output_row_offset + 10, Y10, mask= output_row_offset + 10 < output_numel) tl.store(output_ptr + output_row_offset + 11, Y11, mask= output_row_offset + 11 < output_numel) tl.store(output_ptr + output_row_offset + 12, Y12, mask= output_row_offset + 12 < output_numel) tl.store(output_ptr + output_row_offset + 13, Y13, mask= output_row_offset + 13 < output_numel) tl.store(output_ptr + output_row_offset + 14, Y14, mask= output_row_offset + 14 < output_numel) tl.store(output_ptr + output_row_offset + 15, Y15, mask= output_row_offset + 15 < output_numel) tl.store(output_ptr + output_row_offset + 16, Y16, mask= output_row_offset + 16 < output_numel) tl.store(output_ptr + output_row_offset + 17, Y17, mask= output_row_offset + 17 < output_numel) tl.store(output_ptr + output_row_offset + 18, Y18, mask= output_row_offset + 18 < output_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_9.py
e243a29b-b114-4f2d-a187-afd303c61af0
special.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/special.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def joint_second_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor, sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl. constexpr, output_numel: tl.constexpr): block_id = tl.program_id(0) coord_stride = 3 coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) output_stride = 9 output_striding = tl.arange(0, block_size) * output_stride output_row_offset = output_striding + block_size * output_stride * block_id CONST_00 = 3.87298334620742 CONST_01 = 2.23606797749979 CONST_02 = 4.47213595499958 CONST_03 = tl.sqrt(3.0) g_Y10 = tl.load(sph_grad_ptr + output_row_offset + 1, mask= output_row_offset + 1 < output_numel) g_Y11 = tl.load(sph_grad_ptr + output_row_offset + 2, mask= output_row_offset + 2 < output_numel) g_Y12 = tl.load(sph_grad_ptr + output_row_offset + 3, mask= output_row_offset + 3 < output_numel) g_Y20 = tl.load(sph_grad_ptr + output_row_offset + 4, mask= output_row_offset + 4 < output_numel) g_Y21 = tl.load(sph_grad_ptr + output_row_offset + 5, mask= output_row_offset + 5 < output_numel) g_Y22 = tl.load(sph_grad_ptr + output_row_offset + 6, mask= output_row_offset + 6 < output_numel) g_Y23 = tl.load(sph_grad_ptr + output_row_offset + 7, mask= output_row_offset + 7 < output_numel) g_Y24 = tl.load(sph_grad_ptr + output_row_offset + 8, mask= output_row_offset + 8 < output_numel) g_x = (CONST_00 * g_Y20 * z + CONST_00 * g_Y21 * y - CONST_01 * g_Y22 * x - CONST_00 * g_Y24 * x + CONST_03 * g_Y10) g_y = (CONST_00 * g_Y21 * x + CONST_02 * g_Y22 * y + CONST_00 * g_Y23 * z + CONST_03 * g_Y11) g_z = (CONST_00 * g_Y20 * x - CONST_01 * g_Y22 * z + CONST_00 * g_Y23 * y + CONST_00 * g_Y24 * z + CONST_03 * g_Y12) tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask= coord_row_offset + 1 < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask= coord_row_offset + 2 < coord_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/special.py
12f42420-1a7f-46d4-adc4-5b7cb9b2a72f
triton_kernels.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/triton_kernels.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def _triton_fourth_order_fwd(x_ptr: tl.tensor, y_ptr: tl.tensor, z_ptr: tl. tensor, sh_1_0_ptr: tl.tensor, sh_1_1_ptr: tl.tensor, sh_1_2_ptr: tl. tensor, sh_2_0_ptr: tl.tensor, sh_2_1_ptr: tl.tensor, sh_2_2_ptr: tl. tensor, sh_2_3_ptr: tl.tensor, sh_2_4_ptr: tl.tensor, sh_3_0_ptr: tl. tensor, sh_3_1_ptr: tl.tensor, sh_3_2_ptr: tl.tensor, sh_3_3_ptr: tl. tensor, sh_3_4_ptr: tl.tensor, sh_3_5_ptr: tl.tensor, sh_3_6_ptr: tl. tensor, sh_4_0_ptr: tl.tensor, sh_4_1_ptr: tl.tensor, sh_4_2_ptr: tl. tensor, sh_4_3_ptr: tl.tensor, sh_4_4_ptr: tl.tensor, sh_4_5_ptr: tl. tensor, sh_4_6_ptr: tl.tensor, sh_4_7_ptr: tl.tensor, sh_4_8_ptr: tl. tensor, BLOCK_SIZE: tl.constexpr, vector_length: tl.constexpr): sqrt_3 = 3 ** 0.5 block_id = tl.program_id(0) offset = tl.arange(0, BLOCK_SIZE) + BLOCK_SIZE * block_id x_row_start = x_ptr + offset y_row_start = y_ptr + offset z_row_start = z_ptr + offset x = tl.load(x_row_start, mask=offset < vector_length) y = tl.load(y_row_start, mask=offset < vector_length) z = tl.load(z_row_start, mask=offset < vector_length) sh_1_0 = x * sqrt_3 sh_1_1 = y * sqrt_3 sh_1_2 = z * sqrt_3 sqrt_15 = 15 ** 0.5 sqrt_5 = 5 ** 0.5 sq_x = x * x sq_y = y * y sq_z = z * z sh_2_0 = sqrt_15 * x * z sh_2_1 = sqrt_15 * x * y sh_2_2 = sqrt_5 * (sq_y - 0.5 * (sq_x + sq_z)) sh_2_3 = sqrt_15 * y * z sh_2_4 = 0.5 * sqrt_15 * (sq_z - sq_x) sqrt_42 = 42 ** 0.5 sqrt_168 = 168 ** 0.5 sqrt_7 = 7 ** 0.5 sh_3_0 = 1 / 6 * sqrt_42 * (sh_2_0 * z + sh_2_4 * x) sh_3_1 = sqrt_7 * sh_2_0 * y sh_3_2 = 1 / 8 * sqrt_168 * (4 * sq_y - (sq_x + sq_z)) * x sh_3_3 = 0.5 * sqrt_7 * y * (2 * sq_y - 3 * (sq_x + sq_z)) sh_3_4 = 1 / 8 * sqrt_168 * z * (4 * sq_y - (sq_x + sq_z)) sh_3_5 = sqrt_7 * (sh_2_4 * y) sh_3_6 = 1 / 6 * sqrt_42 * (sh_2_4 * z - sh_2_0 * x) sqrt_2 = 2 ** 0.5 sqrt_210 = 210 ** 0.5 sqrt_14 = 14 ** 0.5 sqrt_21 = 21 ** 0.5 sqrt_70 = 70 ** 0.5 sqrt_105 = 105 ** 0.5 sqrt_6 = 6 ** 0.5 sh_4_0 = 3 / 4 * sqrt_2 * (sh_3_0 * z + sh_3_6 * x) sh_4_1 = (3 / 4 * sh_3_0 * y + 3 / 8 * sqrt_6 * sh_3_1 * z + 3 / 8 * sqrt_6 * sh_3_5 * x) sh_4_2 = (-3 / 56 * sqrt_14 * sh_3_0 * z + 3 / 14 * sqrt_21 * sh_3_1 * y + 3 / 56 * sqrt_210 * sh_3_2 * z + 3 / 56 * sqrt_210 * sh_3_4 * x + 3 / 56 * sqrt_14 * sh_3_6 * x) sh_4_3 = (-3 / 56 * sqrt_42 * sh_3_1 * z + 3 / 28 * sqrt_105 * sh_3_2 * y + 3 / 28 * sqrt_70 * sh_3_3 * x + 3 / 56 * sqrt_42 * sh_3_5 * x) sh_4_4 = (-3 / 28 * sqrt_42 * sh_3_2 * x + 3 / 7 * sqrt_7 * sh_3_3 * y - 3 / 28 * sqrt_42 * sh_3_4 * z) sh_4_5 = (-3 / 56 * sqrt_42 * sh_3_1 * x + 3 / 28 * sqrt_70 * sh_3_3 * z + 3 / 28 * sqrt_105 * sh_3_4 * y - 3 / 56 * sqrt_42 * sh_3_5 * z) sh_4_6 = (-3 / 56 * sqrt_14 * sh_3_0 * x - 3 / 56 * sqrt_210 * sh_3_2 * x + 3 / 56 * sqrt_210 * sh_3_4 * z + 3 / 14 * sqrt_21 * sh_3_5 * y - 3 / 56 * sqrt_14 * sh_3_6 * z) sh_4_7 = (-3 / 8 * sqrt_6 * sh_3_1 * x + 3 / 8 * sqrt_6 * sh_3_5 * z + 3 / 4 * sh_3_6 * y) sh_4_8 = 3 / 4 * sqrt_2 * (-sh_3_0 * x + sh_3_6 * z) sh_1_0_start = sh_1_0_ptr + offset sh_1_1_start = sh_1_1_ptr + offset sh_1_2_start = sh_1_2_ptr + offset sh_2_0_start = sh_2_0_ptr + offset sh_2_1_start = sh_2_1_ptr + offset sh_2_2_start = sh_2_2_ptr + offset sh_2_3_start = sh_2_3_ptr + offset sh_2_4_start = sh_2_4_ptr + offset sh_3_0_start = sh_3_0_ptr + offset sh_3_1_start = sh_3_1_ptr + offset sh_3_2_start = sh_3_2_ptr + offset sh_3_3_start = sh_3_3_ptr + offset sh_3_4_start = sh_3_4_ptr + offset sh_3_5_start = sh_3_5_ptr + offset sh_3_6_start = sh_3_6_ptr + offset sh_4_0_start = sh_4_0_ptr + offset sh_4_1_start = sh_4_1_ptr + offset sh_4_2_start = sh_4_2_ptr + offset sh_4_3_start = sh_4_3_ptr + offset sh_4_4_start = sh_4_4_ptr + offset sh_4_5_start = sh_4_5_ptr + offset sh_4_6_start = sh_4_6_ptr + offset sh_4_7_start = sh_4_7_ptr + offset sh_4_8_start = sh_4_8_ptr + offset tl.store(sh_1_0_start, sh_1_0, mask=offset < vector_length) tl.store(sh_1_1_start, sh_1_1, mask=offset < vector_length) tl.store(sh_1_2_start, sh_1_2, mask=offset < vector_length) tl.store(sh_2_0_start, sh_2_0, mask=offset < vector_length) tl.store(sh_2_1_start, sh_2_1, mask=offset < vector_length) tl.store(sh_2_2_start, sh_2_2, mask=offset < vector_length) tl.store(sh_2_3_start, sh_2_3, mask=offset < vector_length) tl.store(sh_2_4_start, sh_2_4, mask=offset < vector_length) tl.store(sh_3_0_start, sh_3_0, mask=offset < vector_length) tl.store(sh_3_1_start, sh_3_1, mask=offset < vector_length) tl.store(sh_3_2_start, sh_3_2, mask=offset < vector_length) tl.store(sh_3_3_start, sh_3_3, mask=offset < vector_length) tl.store(sh_3_4_start, sh_3_4, mask=offset < vector_length) tl.store(sh_3_5_start, sh_3_5, mask=offset < vector_length) tl.store(sh_3_6_start, sh_3_6, mask=offset < vector_length) tl.store(sh_4_0_start, sh_4_0, mask=offset < vector_length) tl.store(sh_4_1_start, sh_4_1, mask=offset < vector_length) tl.store(sh_4_2_start, sh_4_2, mask=offset < vector_length) tl.store(sh_4_3_start, sh_4_3, mask=offset < vector_length) tl.store(sh_4_4_start, sh_4_4, mask=offset < vector_length) tl.store(sh_4_5_start, sh_4_5, mask=offset < vector_length) tl.store(sh_4_6_start, sh_4_6, mask=offset < vector_length) tl.store(sh_4_7_start, sh_4_7, mask=offset < vector_length) tl.store(sh_4_8_start, sh_4_8, mask=offset < vector_length)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/triton_kernels.py
2330b2e5-9c58-4b9b-8328-2f4b391bd8bf
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_softmax/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES_RAGGED, BLOCK_SIZES_M, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_softmax_kernel_variable_length_loop_buffer_then_sum( input_ptr_values, input_ptr_offsets, output_ptr, M, BLOCK_SIZE_RAGGED: tl.constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_b = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((BLOCK_SIZE_RAGGED, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_b), tl.load( input_ptr_offsets + (pid_b + 1)) buffer_max_all = tl.full((BLOCK_SIZE_RAGGED, BLOCK_SIZE_M), value=float ('-inf'), dtype=tl.float32) for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED ): offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=float('-inf') ) buffer_max_all = tl.maximum(buffer_max_all, input) buffer_max = tl.max(buffer_max_all, axis=0, keep_dims=True) for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED ): offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=float('-inf') ) buffer += tl.exp(input - buffer_max) buffer_exp_sum = tl.sum(buffer, axis=0) for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED ): offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=float('-inf') ) output = tl.fdiv(tl.exp(input - buffer_max), buffer_exp_sum) tl.store(output_ptr + idxs, output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_softmax/kernels.py
a85dfd4f-2d51-4198-9b23-08c7173a6ea2
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8)], key=['BC', 'BK']) @triton.jit def chunk_gla_fwd_A_kernel_intra_sub_intra_split(q, k, g, A, offsets, indices, scale, B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, NC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_tc, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H i_t, i_i = i_tc // NC, i_tc % NC i_j = i_i if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) all = T T = eos - bos else: bos, eos = i_b * T, i_b * T + T all = B * T if i_t * BT + i_i * BC >= T: return o_i = tl.arange(0, BC) o_k = i_k * BK + tl.arange(0, BK) m_k = o_k < K m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T if HEAD_FIRST: o_A = (i_k * B * H + i_bh) * T * BC + (i_t * BT + i_i * BC + tl. arange(0, BC)) * BC p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_g = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_k = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) p_gk = tl.max_contiguous(tl.multiple_of(g + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) else: o_A = (i_k * all + bos + i_t * BT + i_i * BC + tl.arange(0, BC) ) * H * BC + i_h * BC p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_g = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_k = tl.max_contiguous(tl.multiple_of(k + (bos + i_t * BT + i_j * BC) * H * K + i_h * K + o_k, BK), BK) p_gk = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_j * BC) * H * K + i_h * K + o_k, BK), BK) b_q = tl.load(p_q, boundary_check=(0, 1)) b_g = tl.load(p_g, boundary_check=(0, 1)) for j in range(0, min(BC, T - i_t * BT - i_i * BC)): b_A = tl.zeros([BC], dtype=tl.float32) b_k = tl.load(p_k, mask=m_k, other=0).to(tl.float32) b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32) b_A += tl.sum(b_q * b_k[None, :] * tl.exp(b_g - b_gk[None, :]), 1) b_A = tl.where(o_i >= j, b_A * scale, 0.0) tl.store(A + o_A + j, b_A, mask=m_A) p_k += K if HEAD_FIRST else H * K p_gk += K if HEAD_FIRST else H * K
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py
37d65854-b0fd-4bc2-a248-cd43fe18bd16
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_jagged_bmm_jagged_out_kernel(a_ptr, a_offset_ptr, b_ptr, b_offset_ptr, c_ptr, offsets_mn_ptr, max_seq_len, num_blocks_n, K, stride_am, stride_ak, stride_bk, stride_bn, allow_tf32: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): """ Kernel for computing C = A x B. A has shape (sum_B(Mi), K), B has shape (K, sum_B(Ni)) and C has shape (sum_B(Mi * Ni)) """ pid = tl.program_id(axis=0) pid_batch = tl.program_id(axis=1) begin_a = tl.load(a_offset_ptr + pid_batch) end_a = tl.load(a_offset_ptr + pid_batch + 1) begin_b = tl.load(b_offset_ptr + pid_batch) end_b = tl.load(b_offset_ptr + pid_batch + 1) offset_mn = tl.load(offsets_mn_ptr + pid_batch) M = end_a - begin_a M = tl.minimum(M, max_seq_len) N = end_b - begin_b N = tl.minimum(N, max_seq_len) pid_m = pid // num_blocks_n pid_n = pid % num_blocks_n if pid_m * BLOCK_SIZE_M >= M or pid_n * BLOCK_SIZE_N >= N: return offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) + begin_a * stride_am b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) + begin_b * stride_bn c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, K, BLOCK_SIZE_K): updated_offset = k + offs_k a = tl.load(a_ptrs, mask=(updated_offset[None, :] < K) & (offs_am[:, None] < M), other=0.0) b = tl.load(b_ptrs, mask=(updated_offset[:, None] < K) & (offs_bn[ None, :] < N), other=0.0) c += tl.dot(a, b, allow_tf32=allow_tf32) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + offset_mn + N * offs_cm[:, None] + offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
9c9a0484-f69a-4208-aa24-d3d5c62c9050
sb_varlen_bwd.py
shawntan/stickbreaking-attention
stickbreaking_attention/sb_varlen/sb_varlen_bwd.py
8dd32ad5e58f0ee0232fd4782dc53d354ff8d283
0
@triton.jit def _backward_one_row(seq_prog_id, seq_length, qk_scale, M_range, N_range, D_range, D_mask, cm, DO_head_seq_ptr, stride_dom, stride_dod: tl. constexpr, DR_head_seq_ptr, stride_drm, A_head_seq_ptr, stride_am: tl. constexpr, Q_head_seq_ptr, stride_qm, stride_qd: tl.constexpr, K_head_seq_ptr, stride_kn, stride_kd: tl.constexpr, V_head_seq_ptr, stride_vn, stride_vd: tl.constexpr, DQ_head_seq_ptr, stride_dqm, stride_dqd: tl.constexpr, DK_head_seq_ptr, stride_dkn, stride_dkd: tl. constexpr, DV_head_seq_ptr, stride_dvn, stride_dvd: tl.constexpr, KV_Lock_ptr, KV_Count_ptr, logit_scale, BLOCK_D: tl.constexpr, NO_D_MASK: tl.constexpr, NO_M_MASK: tl.constexpr, ALLOW_TF32: tl. constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, acc_dtype: tl. constexpr=tl.float32, is_compiling: tl.constexpr=False, attend_current: tl.constexpr=False): block_start_offset = BLOCK_M * seq_prog_id M_blk_idxs = block_start_offset + M_range M_mask = M_blk_idxs < seq_length NO_M_MASK = block_start_offset + BLOCK_M - 1 < seq_length N_blk_idxs_start = 0 N_blk_idxs = N_blk_idxs_start + N_range DO_blk_ptrs = DO_head_seq_ptr + (stride_dom * M_blk_idxs[:, None] + stride_dod * D_range[None, :]) K_blk_ptrs = K_head_seq_ptr + (stride_kn * N_blk_idxs[:, None] + stride_kd * D_range[None, :]) Q_blk_ptrs = Q_head_seq_ptr + (stride_qm * M_blk_idxs[:, None] + stride_qd * D_range[None, :]) V_blk_ptrs = V_head_seq_ptr + (stride_vn * N_blk_idxs[:, None] + stride_vd * D_range[None, :]) A_blk_ptrs = A_head_seq_ptr + stride_am * M_blk_idxs DQ_blk_ptrs = DQ_head_seq_ptr + (stride_dqm * M_blk_idxs[:, None] + stride_dqd * D_range[None, :]) DK_blk_ptrs = DK_head_seq_ptr + (stride_dkn * N_blk_idxs[:, None] + stride_dkd * D_range[None, :]) DV_blk_ptrs = DV_head_seq_ptr + (stride_dvn * N_blk_idxs[:, None] + stride_dvd * D_range[None, :]) DR_blk_ptrs = DR_head_seq_ptr + stride_drm * M_blk_idxs if NO_D_MASK: if NO_M_MASK: q = tl.load(Q_blk_ptrs) do = tl.load(DO_blk_ptrs) dr = tl.load(DR_blk_ptrs) neg_log_acc = tl.load(A_blk_ptrs, mask=M_mask) else: q = tl.load(Q_blk_ptrs, mask=M_mask[:, None]) do = tl.load(DO_blk_ptrs, mask=M_mask[:, None]) dr = tl.load(DR_blk_ptrs, mask=M_mask) neg_log_acc = tl.load(A_blk_ptrs, mask=M_mask) else: MD_mask = M_mask[:, None] & D_mask[None, :] q = tl.load(Q_blk_ptrs, mask=MD_mask) do = tl.load(DO_blk_ptrs, mask=MD_mask) dr = tl.load(DR_blk_ptrs, mask=M_mask) neg_log_acc = tl.load(A_blk_ptrs, mask=M_mask) neg_log_acc = neg_log_acc.to(dtype=acc_dtype) grad_prev_acc = tl.zeros((BLOCK_M,), dtype=acc_dtype) dq = tl.zeros((BLOCK_M, BLOCK_D), dtype=acc_dtype) fwd_cm = tl.trans(cm) iters = (block_start_offset + BLOCK_M) // BLOCK_N for i in range(iters): on_band = iters - i - 1 < BLOCK_M // BLOCK_N N_mask = N_blk_idxs < seq_length NO_N_MASK = N_blk_idxs_start + BLOCK_N - 1 < seq_length k, v = load_kv(K_blk_ptrs, V_blk_ptrs, N_mask=N_mask, NO_N_MASK= N_blk_idxs_start + BLOCK_N - 1 < seq_length, D_mask=D_mask, NO_D_MASK=NO_D_MASK) p, log_om_beta, neg_log_acc = compute_block(q, k, qk_scale, neg_log_acc, M_blk_idxs, N_blk_idxs, cm, on_band, ALLOW_TF32, attend_current=attend_current, backward=True, is_compiling= is_compiling) if not NO_M_MASK: neg_log_acc = tl.where(M_mask, neg_log_acc, 0.0) att_dA = p * (tl.dot(do, tl.trans(v), allow_tf32=ALLOW_TF32) - dr[:, None]) cumul_att_dA = tl.dot(att_dA.to(cm.dtype), fwd_cm, allow_tf32= ALLOW_TF32) + grad_prev_acc[:, None] grad_prev_acc += tl.sum(att_dA, axis=1) beta = 1 - tl.exp2(log_om_beta) dqk = att_dA - beta * cumul_att_dA dq = tl.dot(dqk.to(k.dtype), k, acc=dq, allow_tf32=ALLOW_TF32) block_dk = tl.dot(tl.trans(dqk).to(q.dtype), q, allow_tf32=ALLOW_TF32 ) * logit_scale block_dv = tl.dot(tl.trans(p), do.to(p.dtype), allow_tf32=ALLOW_TF32) locked_add(KV_Lock_ptr + i, KV_Count_ptr + i, DK_blk_ptrs, block_dk, DV_blk_ptrs, block_dv, N_mask, NO_N_MASK, D_mask, NO_D_MASK) N_blk_idxs += BLOCK_N N_blk_idxs_start += BLOCK_N K_blk_ptrs += BLOCK_N * stride_kn V_blk_ptrs += BLOCK_N * stride_vn DK_blk_ptrs += BLOCK_N * stride_dkn DV_blk_ptrs += BLOCK_N * stride_dvn dq = (logit_scale * dq).to(DQ_head_seq_ptr.type.element_ty) if NO_D_MASK: tl.store(DQ_blk_ptrs, dq, mask=M_mask[:, None]) else: tl.store(DQ_blk_ptrs, dq, mask=M_mask[:, None] & D_mask[None, :])
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Transposed Access", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_bwd.py
0fa9d38c-c513-408f-a16f-741c7127f438
flash_triton.py
MayDomine/Burst-Attention
burst_attn/flash_triton.py
b088c554072935074ea9c643de5ee363be5ab1f6
0
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[ 'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[ 'BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args[ 'BLOCK_HEADDIM']}) @triton.jit def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl. constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :]) t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) if EVEN_M & EVEN_N: if EVEN_HEADDIM: q = tl.load(q_ptrs) else: q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) elif EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[ None, :] < headdim), other=0.0) end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) for start_n in range(0, end_n, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) if EVEN_N & EVEN_M: if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0) elif EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) if not EVEN_N: qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float ('-inf')) if IS_CAUSAL: qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf')) if BIAS_TYPE != 'none': if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k ), other=0.0).to(tl.float32) qk = qk * softmax_scale + bias m_ij = tl.maximum(tl.max(qk, 1), lse_i) p = tl.exp(qk - m_ij[:, None]) else: m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) p = tl.exp(qk * softmax_scale - m_ij[:, None]) l_ij = tl.sum(p, 1) acc_o_scale = tl.exp(m_i - m_ij) tl.store(t_ptrs, acc_o_scale) acc_o_scale = tl.load(t_ptrs) acc_o = acc_o * acc_o_scale[:, None] if EVEN_N & EVEN_M: if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0) elif EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) p = p.to(v.dtype) acc_o += tl.dot(p, v) m_i = m_ij l_i_new = tl.exp(lse_i - m_ij) + l_ij lse_i = m_ij + tl.log(l_i_new) o_scale = tl.exp(m_i - lse_i) tl.store(t_ptrs, o_scale) o_scale = tl.load(t_ptrs) acc_o = acc_o * o_scale[:, None] start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m tl.store(lse_ptrs, lse_i) offs_d = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o) else: tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) elif EVEN_HEADDIM: tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) else: tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & ( offs_d[None, :] < headdim))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/MayDomine/Burst-Attention/blob/b088c554072935074ea9c643de5ee363be5ab1f6/burst_attn/flash_triton.py
8a6f7534-fbb7-4a16-8b55-555cc439bcf0
paged_attn_v2.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/paged_attn_v2.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _paged_attention_v2_reduce(out, exp_sums, max_logits, tmp_out, context_lens, stride_exp_m, stride_exp_n, stride_out_m, stride_out_n, stride_tmp_m, stride_tmp_n, stride_tmp_k, HEAD_SIZE: tl.constexpr, NUM_PARTITIONS: tl.constexpr): seq_idx = tl.program_id(axis=1) head_idx = tl.program_id(axis=0) context_len = tl.load(context_lens + seq_idx) num_partitions = tl.cdiv(context_len, PARTITION_SIZE) exp_sum = 0.0 max_logit = float('-inf') offs_logit = seq_idx * stride_exp_m + head_idx * stride_exp_n head_size_offs = tl.arange(0, HEAD_SIZE) tmp_out_ptr = seq_idx * stride_tmp_m + head_idx * stride_tmp_n out_ptr = seq_idx * stride_out_m + head_idx * stride_out_n + head_size_offs acc = tl.zeros([HEAD_SIZE], dtype=tl.float32) global_exp_sum = tl.zeros([1], dtype=tl.float32) logits = tl.load(max_logits + offs_logit + tl.arange(0, NUM_PARTITIONS), mask=tl.arange(0, NUM_PARTITIONS) < num_partitions, other=float('-inf') ) max_logit = tl.max(logits, axis=0) exp_sum = tl.load(exp_sums + offs_logit + tl.arange(0, NUM_PARTITIONS), mask=tl.arange(0, NUM_PARTITIONS) < num_partitions, other=0.0) rescaled_exp_sum = exp_sum * tl.exp(logits - max_logit) global_exp_sum += tl.sum(rescaled_exp_sum, axis=0) tmp = tl.load(tmp_out + tmp_out_ptr + tl.arange(0, NUM_PARTITIONS)[:, None] * stride_tmp_k + head_size_offs) acc += tl.sum(tmp * rescaled_exp_sum[:, None], axis=0) inv_sum = 1.0 / (global_exp_sum + 1e-06) tl.store(out + out_ptr, acc * inv_sum)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn_v2.py
8114d12c-96e5-4779-a4c3-39663c02465d
conv.py
chengzeyi/stable-fast
src/sfast/triton/ops/conv.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@conv_heuristics() @triton.jit def _kernel_delta_x(x, w, bias, y, stride_xn, stride_xc, stride_xh, stride_xw, stride_wn, stride_wc, stride_wh, stride_ww, stride_yn, stride_yc, stride_yh, stride_yw, delta_x_ptr, BATCH, IN_C, IN_H, IN_W, KERNEL_N, KERNEL_H, KERNEL_W, OUT_H, OUT_W, stride_h, stride_w, padding_h, padding_w, dilation_h, dilation_w, output_padding_h, output_padding_w, groups, ACC_TYPE: tl.constexpr, CONV1X1_NHWC: tl. constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl. constexpr, GROUP_H: tl.constexpr, WITH_BIAS: tl.constexpr): """ each program instance computes a [BLOCK_BATCH, BLOCK_N, BLOCK_H, BLOCK_W] block of y """ pid_nhw = tl.program_id(0) pid_k = tl.program_id(1) off_y_k = pid_k * BLOCK_N + tl.arange(0, BLOCK_N) off_y_nhw = pid_nhw * BLOCK_M + tl.arange(0, BLOCK_M) off_y_n = off_y_nhw // (OUT_H * OUT_W) off_y_hw = off_y_nhw % (OUT_H * OUT_W) off_y_h = off_y_hw // OUT_W + output_padding_h off_y_w = off_y_hw % OUT_W + output_padding_w off_x_n = off_y_n off_x_h = off_y_h * stride_h - padding_h off_x_w = off_y_w * stride_w - padding_w off_x_nhw = off_x_n * stride_xn + off_x_h * stride_xh + off_x_w * stride_xw off_x_crs = tl.arange(0, BLOCK_K) CRS = IN_C * KERNEL_H * KERNEL_W if not CONV1X1_NHWC: delta_x_ptrs = delta_x_ptr + off_x_crs off_x_crs_unpacked = tl.load(delta_x_ptrs, mask=off_x_crs < CRS) x_ptrs = x + off_x_nhw[:, None] + off_x_crs_unpacked[None, :] else: x_ptrs = x + off_x_nhw[:, None] + off_x_crs[None, :] mask_x = ((off_x_n < BATCH) & (off_x_h >= 0) & (off_x_h < IN_H) & ( off_x_w >= 0) & (off_x_w < IN_W))[:, None] & (off_x_crs < CRS)[None, :] off_w_crs = tl.arange(0, BLOCK_K) off_w_k = off_y_k w_ptrs = w + off_w_crs[:, None] + off_w_k[None, :] * stride_wn mask_w = (off_x_crs < CRS)[:, None] & (off_w_k < KERNEL_N)[None, :] matrix_x = tl.load(x_ptrs, mask=mask_x, other=0.0) matrix_w = tl.load(w_ptrs, mask=mask_w, other=0.0) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) for crs in range(0, CRS, BLOCK_K): acc += tl.dot(matrix_x, matrix_w, out_dtype=ACC_TYPE) w_ptrs += BLOCK_K if not CONV1X1_NHWC: delta_x_ptrs += BLOCK_K off_x_crs = crs + BLOCK_K + tl.arange(0, BLOCK_K) off_x_crs_unpacked = tl.load(delta_x_ptrs, mask=off_x_crs < CRS, other=0) x_ptrs = x + off_x_nhw[:, None] + off_x_crs_unpacked[None, :] else: off_x_crs = crs + BLOCK_K + tl.arange(0, BLOCK_K) x_ptrs += BLOCK_K mask_x = ((off_x_n < BATCH) & (off_x_h >= 0) & (off_x_h < IN_H) & ( off_x_w >= 0) & (off_x_w < IN_W))[:, None] & (off_x_crs < CRS)[ None, :] mask_w = (off_x_crs < CRS)[:, None] & (off_w_k < KERNEL_N)[None, :] matrix_x = tl.load(x_ptrs, mask=mask_x, other=0.0) matrix_w = tl.load(w_ptrs, mask=mask_w, other=0.0) if WITH_BIAS: acc += tl.load(bias + off_y_k)[None, :] acc = acc.to(y.dtype.element_ty) off_y_k = pid_k * BLOCK_N + tl.arange(0, BLOCK_N) off_y_nhw = pid_nhw * BLOCK_M + tl.arange(0, BLOCK_M) off_y_n = off_y_nhw // (OUT_H * OUT_W) off_y_hw = off_y_nhw % (OUT_H * OUT_W) off_y_h = off_y_hw // OUT_W + output_padding_h off_y_w = off_y_hw % OUT_W + output_padding_w y_ptrs = y + off_y_n[:, None] * stride_yn + off_y_h[:, None ] * stride_yh + off_y_w[:, None] * stride_yw + off_y_k[None, : ] * stride_yc mask_y = (off_y_n < BATCH)[:, None] & (off_y_h < OUT_H + output_padding_h)[ :, None] & (off_y_w < OUT_W + output_padding_w)[:, None] & (off_y_k < KERNEL_N)[None, :] tl.store(y_ptrs, acc, mask=mask_y) return
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/conv.py
bd8d9b19-0eb1-4606-abf9-07bc9b74d955
logsumexp.py
sustcsonglin/flash-linear-attention
fla/ops/utils/logsumexp.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'HAS_SCALE': lambda args: args['scale'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16, 32]], key=['D']) @triton.jit def logsumexp_fwd_kernel(x, z, scale, D: tl.constexpr, B: tl.constexpr, HAS_SCALE: tl.constexpr): i_n, i_d = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64) o_d = i_d * B + tl.arange(0, B) m_d = o_d < D b_x = tl.load(x + i_n * D + o_d, mask=m_d, other=-float('inf')) if HAS_SCALE: b_x = b_x * scale b_m = tl.max(b_x, 0) b_z = tl.log(tl.sum(tl.exp(b_x - b_m), 0)) + b_m tl.store(z + i_n * tl.cdiv(D, B) + i_d, b_z)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/logsumexp.py
6a35f449-cfba-4f15-a4d9-9faf8f90396e
gemm_postop_addmatrix_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_postop_addmatrix_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=3, num_warps=32), triton.Config({ 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32 ), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 512, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages =2, num_warps=32)], key=['M', 'N', 'K']) @triton.jit def matmul_kernel_with_block_pointers(a_ptr, b_ptr, c_ptr, d_ptr, M: tl. constexpr, N: tl.constexpr, K: tl.constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl. constexpr, stride_cm: tl.constexpr, stride_cn: tl.constexpr, stride_dm: tl.constexpr, stride_dn: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % group_size_m pid_n = pid % num_pid_in_group // group_size_m a_block_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=( stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0)) b_block_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=( stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0)) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for _ in range(0, K, BLOCK_SIZE_K): a = tl.load(a_block_ptr, boundary_check=(0, 1)) b = tl.load(b_block_ptr, boundary_check=(0, 1)) accumulator += tl.dot(a, b) a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K)) b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0)) d_block_ptr = tl.make_block_ptr(base=d_ptr, shape=(M, N), strides=( stride_dm, stride_dn), offsets=(pid_m * BLOCK_SIZE_M, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0)) d = tl.load(d_block_ptr, boundary_check=(0, 1)) c = accumulator + d c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=( stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0)) tl.store(c_block_ptr, c, boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_postop_addmatrix_benchmark.py
10debe65-3ac2-4a2b-b2a0-78f9bbae7964
triton_jagged_tensor_ops.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def tensor_elementwise_add(x, y): return x + y
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [], "Performance Objective": [ "Low Latency" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
965c0840-cbb1-4409-bcfe-384d35052963
softmax.py
l1351868270/implicit_gemm.triton
triton_kernel/softmax.py
64eb8548ccf4576883c928f6315be8b24680a455
0
@triton.jit def _ld_softmax_bwd_kernel(ds_ptr, p_ptr, dp_ptr, ds_row_stride, p_row_stride, dp_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) p_start_ptr = p_ptr + row_idx * p_row_stride dp_start_ptr = dp_ptr + row_idx * dp_row_stride col_offsets = tl.arange(0, BLOCK_SIZE) p_ptrs = p_start_ptr + col_offsets dp_ptrs = dp_start_ptr + col_offsets mask = col_offsets < n_cols p_row = tl.load(p_ptrs, mask=mask, other=0) dp_row = tl.load(dp_ptrs, mask=mask, other=0) ds_row = p_row * (dp_row - tl.sum(p_row * dp_row, axis=0)) ds_start_ptr = ds_ptr + row_idx * ds_row_stride ds_ptrs = ds_start_ptr + col_offsets tl.store(ds_ptrs, ds_row, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/l1351868270/implicit_gemm.triton/blob/64eb8548ccf4576883c928f6315be8b24680a455/triton_kernel/softmax.py
23ae7635-b08c-4919-a8c0-55f2f7104fe2
group_norm.py
chengzeyi/stable-fast
src/sfast/triton/ops/group_norm.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@eval( """triton.heuristics({ 'ROW_SIZE': lambda kwargs: triton.next_power_of_2(kwargs['C'] // kwargs['groups']), 'BLOCK_SIZE': lambda kwargs: max( 1, min(triton.next_power_of_2(kwargs['HxW']), 4096 // (triton.next_power_of_2(kwargs['C'] // kwargs['groups'])) )), })""" ) @eval( """triton.heuristics({ 'num_warps': lambda kwargs: max(1, min(16, kwargs['ROW_SIZE'] * kwargs['BLOCK_SIZE'] // 128)), 'C_G': lambda kwargs: kwargs['C'] // kwargs['groups'], })""" ) @triton.jit def group_norm_4d_channels_last_forward_collect_stats_kernel(input_ptr, N, C, HxW, groups, eps, mean_ptr, rstd_ptr, C_G, ROW_SIZE: tl.constexpr, BLOCK_SIZE: tl.constexpr): group = tl.program_id(0) pid_batch = tl.program_id(1) offset = pid_batch * C * HxW + group * C_G X = input_ptr + offset _mean = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32) _m2 = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32) _weight = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32) row = tl.arange(0, ROW_SIZE) for off in range(0, HxW, BLOCK_SIZE): r = off + tl.arange(0, BLOCK_SIZE) m2_ = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32) mask = (r < HxW)[:, None] & (row[None, :] < C_G) weight_ = mask.to(tl.float32) x = tl.load(X + (r * C)[:, None] + row[None, :], mask=mask).to(tl. float32) _mean, _m2, _weight = welford_combine(_mean, _m2, _weight, x, m2_, weight_) _mean = tl.view(_mean, (BLOCK_SIZE * ROW_SIZE,)) _m2 = tl.view(_m2, (BLOCK_SIZE * ROW_SIZE,)) _weight = tl.view(_weight, (BLOCK_SIZE * ROW_SIZE,)) mean, m2, weight = tl.reduce((_mean, _m2, _weight), 0, welford_combine) var = m2 / weight rstd = 1.0 / tl.sqrt(var + eps) offset = pid_batch * groups + group tl.store(mean_ptr + offset, mean) tl.store(rstd_ptr + offset, rstd)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/group_norm.py
770ec2b3-7745-432e-bbae-8d2c438cc02f
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_softmax_kernel(input_ptr, output_ptr, input_offsets_ptr, input_row_stride, input_head_stride, output_row_stride, output_head_stride, max_seq_len: tl.constexpr, BLOCK_SIZE: tl.constexpr): """ input shpae is [SUM_B, H] output shape is [SUM_B, H] """ pid_batch = tl.program_id(0) pid_head = tl.program_id(1) row_begin = tl.load(input_offsets_ptr + pid_batch) row_end = tl.load(input_offsets_ptr + pid_batch + 1) N = tl.minimum(max_seq_len, row_end - row_begin) if N == 0: return row_start_ptr = input_ptr + row_begin * input_row_stride col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = (row_start_ptr + col_offsets * input_row_stride + pid_head * input_head_stride) row = tl.load(input_ptrs, mask=col_offsets < N, other=-float('inf')) row_mins_max = row - tl.max(row, axis=0) numerator = tl.exp(row_mins_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator output_row_start_ptr = output_ptr + row_begin * output_row_stride output_ptrs = (output_row_start_ptr + col_offsets * output_row_stride + pid_head * output_head_stride) tl.store(output_ptrs, softmax_output, mask=col_offsets < N)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
5c760d10-cb85-49c6-9d13-141637fb65e6
matrix-vector-multiplication-bf16.py
northstreet12/triton-cpu
python/tutorials/matrix-vector-multiplication-bf16.py
bfb302ffc5fde3b9efe040cb452ddac0454dbb98
0
@triton.jit def gemv_kernel(Y, A, X, M, N, stride_am, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): start_m = tl.program_id(0) rm = start_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) rn = tl.arange(0, BLOCK_SIZE_N) A = A + (rm[:, None] * stride_am + rn[None, :]) X = X + rn acc = tl.zeros((BLOCK_SIZE_M,), dtype=tl.float32) for n in range(N, 0, -BLOCK_SIZE_N): a = tl.load(A) x = tl.load(X) acc += tl.sum(a * x[None, :], axis=1) A += BLOCK_SIZE_N X += BLOCK_SIZE_N y = acc.to(tl.bfloat16) Y = Y + rm tl.store(Y, y)
{ "Data Type": [ "bf16", "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/northstreet12/triton-cpu/blob/bfb302ffc5fde3b9efe040cb452ddac0454dbb98/python/tutorials/matrix-vector-multiplication-bf16.py
1e8d4b3f-525d-4e92-a1e7-b8c95e9d1b8e
bwd_kernel_dk_dv.py
ROCm/aotriton
tritonsrc/bwd_kernel_dk_dv.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def bwd_kernel_dk_dv(Q, K, V, B, sm_scale, Out, DO, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dkz, stride_dkh, stride_dkn, stride_dkk, stride_dvz, stride_dvh, stride_dvk, stride_dvn, num_head_q: 'i32', num_head_k: 'i32', cu_seqlens_q, cu_seqlens_k, num_seqlens: 'i32', max_seqlen_q: 'i32', max_seqlen_k: 'i32', head_dim: 'i32', dropout_p, philox_seed_ptr, philox_offset1: '*u32', philox_offset2: 'u32', BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl. constexpr): philox_seed = 0 philox_offset_base = philox_offset2 if ENABLE_DROPOUT: philox_seed = tl.load(philox_seed_ptr) philox_offset_base += tl.load(philox_offset1) start_k = tl.program_id(0) * BLOCK_N off_h_k = tl.program_id(1) off_z = tl.program_id(2) num_z = tl.num_programs(2) offs_m = tl.arange(0, BLOCK_M) offs_n = start_k + tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) ld_offs_d = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL) cu_seqlens_q_start = 0 cu_seqlens_k_start = 0 seqlen_q = max_seqlen_q seqlen_k = max_seqlen_k batch_index = off_z if num_seqlens > 0: cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z) cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1) seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start if start_k >= seqlen_k: return cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z) cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1) seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start batch_index = 0 if num_seqlens < 0: cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z) cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1) seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start if start_k >= seqlen_k: return cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z) cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1) seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start cu_seqlens_q_start = 0 cu_seqlens_k_start = 0 batch_index = off_z k_offset = (off_h_k * stride_kh + batch_index * stride_kz + cu_seqlens_k_start * stride_kn) K += k_offset kt_ptrs = K + offs_d[:, None] * stride_kk + offs_n[None, :] * stride_kn if start_k + BLOCK_N <= seqlen_k: kt = load_fn(kt_ptrs, ld_offs_d, None, head_dim, seqlen_k) else: kt = load_fn(kt_ptrs, ld_offs_d, offs_n, head_dim, seqlen_k) v_offset = (off_h_k * stride_vh + batch_index * stride_vz + cu_seqlens_k_start * stride_vk) V += v_offset vt_ptrs = V + offs_d[:, None] * stride_vn + offs_n[None, :] * stride_vk if start_k + BLOCK_N <= seqlen_k: vt = load_fn(vt_ptrs, ld_offs_d, None, head_dim, seqlen_k) else: vt = load_fn(vt_ptrs, ld_offs_d, offs_n, head_dim, seqlen_k) if BIAS_TYPE == 0: B_block_ptr = 0 elif BIAS_TYPE == 1: B_block_ptr = tl.make_block_ptr(base=B + off_h_k * stride_bh + batch_index * stride_bz, shape=(seqlen_q, seqlen_k), strides=( stride_bm, stride_bn), offsets=(0, start_k), block_shape=( BLOCK_M, BLOCK_N), order=(1, 0)) else: tl.static_assert(False, f'Unsupported BIAS_TYPE {BIAS_TYPE}') dk_offset = (off_h_k * stride_dkh + batch_index * stride_dkz + cu_seqlens_k_start * stride_dkn) DK += dk_offset dv_offset = (off_h_k * stride_dvh + batch_index * stride_dvz + cu_seqlens_k_start * stride_dvk) DV += dv_offset dv = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32) qk_scale = sm_scale * 1.44269504089 bias_scale = 1.0 / sm_scale group_size = num_head_q // num_head_k q_lo = start_k if CAUSAL else 0 q_hi = seqlen_q real_seqlen_q = q_hi - q_lo n_blocks = tl.cdiv(q_hi - q_lo, BLOCK_M) n_extra_tokens = 0 if real_seqlen_q < BLOCK_M: n_extra_tokens = BLOCK_M - real_seqlen_q elif real_seqlen_q % BLOCK_M: n_extra_tokens = real_seqlen_q % BLOCK_M is_irregular_q = n_extra_tokens != 0 leading_masked_blocks = 0 trailing_masked_blocks = 0 if CAUSAL: leading_masked_blocks = tl.cdiv(BLOCK_N, BLOCK_M) trailing_masked_blocks = 1 if is_irregular_q else 0 else: leading_masked_blocks = 0 trailing_masked_blocks = 1 if is_irregular_q else 0 n_full_blocks = n_blocks - leading_masked_blocks - trailing_masked_blocks dropout_scale = 1.0 / (1.0 - dropout_p) if ENABLE_DROPOUT else 1.0 for off_h_q in range(off_h_k * group_size, off_h_k * group_size + group_size): off_zh = off_z * num_head_q + off_h_q * 1 if ENABLE_DROPOUT: batch_philox_offset = (philox_offset_base + off_zh * max_seqlen_q * max_seqlen_k) else: batch_philox_offset = 0 D_ptrs = D + off_zh * max_seqlen_q l_ptrs = L + off_zh * max_seqlen_q q_offset = (off_h_q * stride_qh + batch_index * stride_qz + cu_seqlens_q_start * stride_qm) q_ptrs = Q + q_offset + offs_m[:, None] * stride_qm + offs_d[None, : ] * stride_qk do_offset = (off_h_q * stride_oh + batch_index * stride_oz + cu_seqlens_q_start * stride_om) do_ptrs = DO + do_offset + offs_m[:, None] * stride_om + offs_d[None, : ] * stride_ok lo = 0 hi = 0 if leading_masked_blocks > 0: lo = q_lo hi = lo + leading_masked_blocks * BLOCK_M overflow_size = 0 if hi < q_hi else hi - q_hi dk, dv = bwd_inner_dk_dv(dk, dv, qk_scale, bias_scale, q_ptrs, stride_qm, kt, vt, B_block_ptr, do_ptrs, stride_om, l_ptrs, D_ptrs, seqlen_q, seqlen_k, head_dim, start_k, lo, hi, overflow_size, dropout_p, dropout_scale, philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M, BLOCK_DMODEL, BLOCK_N, False, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD, BIAS_TYPE) tl.debug_barrier() if n_full_blocks > 0: lo = q_lo + leading_masked_blocks * BLOCK_M hi = lo + n_full_blocks * BLOCK_M dk, dv = bwd_inner_dk_dv(dk, dv, qk_scale, bias_scale, q_ptrs, stride_qm, kt, vt, B_block_ptr, do_ptrs, stride_om, l_ptrs, D_ptrs, seqlen_q, seqlen_k, head_dim, start_k, lo, hi, 0, dropout_p, dropout_scale, philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M, BLOCK_DMODEL, BLOCK_N, True, False, ENABLE_DROPOUT, PADDED_HEAD, BIAS_TYPE) if n_full_blocks >= 0 and trailing_masked_blocks > 0: tl.debug_barrier() lo = (q_lo + leading_masked_blocks * BLOCK_M + n_full_blocks * BLOCK_M) hi = q_hi overflow_size = lo + trailing_masked_blocks * BLOCK_M - q_hi dk, dv = bwd_inner_dk_dv(dk, dv, qk_scale, bias_scale, q_ptrs, stride_qm, kt, vt, B_block_ptr, do_ptrs, stride_om, l_ptrs, D_ptrs, seqlen_q, seqlen_k, head_dim, start_k, lo, hi, overflow_size, dropout_p, dropout_scale, philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M, BLOCK_DMODEL, BLOCK_N, False, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD, BIAS_TYPE) dk = (dk * sm_scale).to(kt.type.element_ty) dv = dv.to(vt.type.element_ty) mstore2d(dk, BLOCK_N, BLOCK_DMODEL, o_base=DK, o_start_row=start_k, o_start_col=0, o_rows=seqlen_k, o_cols=head_dim, stride_row= stride_dkn, stride_col=stride_dkk) mstore2d(dv, BLOCK_N, BLOCK_DMODEL, o_base=DV, o_start_row=start_k, o_start_col=0, o_rows=seqlen_k, o_cols=head_dim, stride_row= stride_dvk, stride_col=stride_dvn)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/bwd_kernel_dk_dv.py
ee05de93-5deb-4808-b6ef-0af8f24d4eda
triton_fused_vq_attn.py
LouChao98/vqtree
ops/triton_fused_vq_attn.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[ 'BLOCK_M'] == 0}) @triton.jit def _vq_fwd_kernel(Q, K_VQ, K_VQ_CNT, V_VQ, V_VQ_INDEX, Out, L, softmax_scale, stride_q_b, stride_q_h, stride_q_m, stride_kvq_h, stride_kvq_c, stride_kvqc_b, stride_kvqc_h, stride_kvqc_n, stride_vvq_b, stride_vvq_h, stride_vvq_n, stride_vvqi_b, stride_vvqi_h, stride_vvqi_n, stride_o_b, stride_o_h, stride_o_m, nheads, seqlen_q, codebook_size, CACHE_KEY_SEQLEN_Q, WINDOW_SIZE: tl.constexpr, BLOCK_HEADDIM: tl. constexpr, EVEN_M: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl. constexpr, WRITE_LSE: tl.constexpr): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads offs_m = start_m * BLOCK_M + WINDOW_SIZE + BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF acc = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) Q_block_ptr = tl.make_block_ptr(base=Q + (off_b * stride_q_b + off_h * stride_q_h), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_q_m, 1), offsets=(start_m * BLOCK_M + WINDOW_SIZE + BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM), order=(1, 0)) K_VQ_block_ptr = tl.make_block_ptr(base=K_VQ + off_h * stride_kvq_h, shape=(BLOCK_HEADDIM, codebook_size), strides=(1, stride_kvq_c), offsets=(0, 0), block_shape=(BLOCK_HEADDIM, BLOCK_N), order=(0, 1)) K_VQC_block_ptr = tl.make_block_ptr(base=K_VQ_CNT + (off_b * stride_kvqc_b + off_h * stride_kvqc_h + start_m * stride_kvqc_n), shape=(codebook_size,), strides=(1,), offsets=(0,), block_shape=( BLOCK_N,), order=(0,)) VVQI_block_ptr = tl.make_block_ptr(base=V_VQ_INDEX + (off_b * stride_vvqi_b + off_h * stride_vvqi_h + start_m * stride_vvqi_n), shape=(codebook_size,), strides=(1,), offsets=(0,), block_shape=( BLOCK_N,), order=(0,)) V_VQ += off_b * stride_vvq_b + off_h * stride_vvq_h if EVEN_M: q = tl.load(Q_block_ptr) else: q = tl.load(Q_block_ptr, boundary_check=(0,), padding_option='zero') acc, l_i, m_i = _vq_attn_fwd_inner(acc, l_i, m_i, q, softmax_scale, K_VQ_block_ptr, K_VQC_block_ptr, VVQI_block_ptr, V_VQ, stride_vvq_n, codebook_size, BLOCK_HEADDIM, BLOCK_N) acc = acc / l_i[:, None] if WRITE_LSE: l_ptrs = L + off_hb * seqlen_q + offs_m if EVEN_M: tl.store(l_ptrs, m_i + tl.math.log2(l_i)) else: tl.store(l_ptrs, m_i + tl.math.log2(l_i), mask=offs_m < seqlen_q) out_ptrs = Out + off_b * stride_o_b + off_h * stride_o_h + (offs_m[:, None] * stride_o_m + offs_d[None, :]) if EVEN_M: tl.store(out_ptrs, acc) else: tl.store(out_ptrs, acc, mask=offs_m[:, None] < seqlen_q)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax", "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_vq_attn.py
a1c210f1-dae7-43a1-b05d-d236f1f87998
real_rnn_tie_input_gate.py
berlino/seq_icl
src/models/sequence/rnn/scan_triton/real_rnn_tie_input_gate.py
9b9223d15348b5a415fb453ed988ed5f7ab9fbdc
0
@triton.jit def fwd_sequential_scan_fused(v, f1, hidden, B, L, C, BLOCK_M: tl.constexpr): offset_b = tl.program_id(0) if offset_b >= B: return offset_n = tl.program_id(1) ptr = tl.arange(0, BLOCK_M) + offset_b * L * C + offset_n * BLOCK_M h1 = tl.zeros([BLOCK_M], dtype=tl.float32) for _ in range(L): x0 = tl.load(v + ptr).to(tl.float32) decay1 = tl.load(f1 + ptr).to(tl.float32) decay1 = tl.sigmoid(decay1) h1 = (h1 - x0) * decay1 + x0 tl.store(hidden + ptr, h1.to(hidden.dtype.element_ty)) ptr += C
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/scan_triton/real_rnn_tie_input_gate.py
4e1ef67f-1573-4d17-8121-3a7f8e148d1b
shape.py
2niuhe/triton_utils
src/triton_utils/shape.py
6184906ac3b86dac3ccbfac128ec393ccecde5df
0
@triton.jit def load_full_2d(ptr, sz0: tl.constexpr, sz1: tl.constexpr, stride0=None, stride1=1): """Load 2d block [0,...,sz0-1] x [0,...,sz1-1]""" stride0 = stride0 or sz1 offs = get_2d_offset(tl.arange(0, sz0), tl.arange(0, sz1), stride0, stride1 ) mask = get_2d_mask(tl.arange(0, sz0), tl.arange(0, sz1), sz0, sz1) return tl.load(ptr + offs, mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [], "Performance Objective": [ "Low Latency" ] }
[ "Apache" ]
https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py
399b5bd6-779f-481e-b641-a97817c65b63
k_softmax.py
kimiasa/Experiments
src/ops/triton/k_softmax.py
c4e73bfefd8290695ec52b6386b6b81838ca94a1
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32)], key=['K']) @triton.heuristics({'DEPTH': lambda nargs: get_depth(nargs['K'])}) @triton.heuristics({'IS_FP16': lambda nargs: nargs['Y'].dtype == torch.float16} ) @triton.jit def _softmax(Y, X, M, stride_ym, stride_yn, stride_xm, stride_xn, stride_m, K, LOG: tl.constexpr, MASK_TYPE: tl.constexpr, CAUSAL: tl.constexpr, DEPTH: tl.constexpr, IS_FP16: tl.constexpr): """ Fused softmax kernel over a 3d tensor. The softmax is applied over the last dimension, meaning that this is equivalent to torch.softmax(tensor, dim=-1) Note, if the last dimension is large, say 128K elements, the kernel compile time can shot up to many minutes when the kernel is run for the first time. """ m = tl.program_id(0) n = tl.program_id(1) k = tl.arange(0, DEPTH) x_ptrs = X + m * stride_xm + n * stride_xn + k io_mask = k < K if CAUSAL: io_mask = io_mask & (k <= n) x = tl.load(x_ptrs, mask=io_mask, other=float('-inf')) if CAUSAL: off = float('-inf') off = off.to(x.dtype) x = tl.where(k > n, off, x) if MASK_TYPE is not None: if MASK_TYPE == 'qk': mask_ptrs = M + n * stride_m + k elif MASK_TYPE == 'bk': mask_ptrs = M + m * stride_m + k add_mask = tl.load(mask_ptrs, io_mask, other=float('-inf')) x += add_mask z = x - tl.max(x, axis=0) if IS_FP16: z = z.to(tl.float32) num = tl.exp(z) denom = tl.sum(num, axis=0) if LOG: y = z - tl.log(denom) else: y = num / denom y_ptrs = Y + m * stride_ym + n * stride_yn + k tl.store(y_ptrs, y, mask=k < K)
{ "Data Type": [ "fp16", "fp32" ], "Functionality": [ "Softmax", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/kimiasa/Experiments/blob/c4e73bfefd8290695ec52b6386b6b81838ca94a1/src/ops/triton/k_softmax.py
a5f58e11-541c-49c1-aad8-632c55cafadf
mamba_ssm.py
Charlie-XIAO/sparse-vllm
vllm/model_executor/layers/mamba/ops/mamba_ssm.py
d228909a30b0c245c35417fb7d2acdf9a3690042
0
@triton.heuristics({'HAS_DT_BIAS': lambda args: args['dt_bias_ptr'] is not None}) @triton.heuristics({'HAS_D': lambda args: args['D_ptr'] is not None}) @triton.heuristics({'HAS_Z': lambda args: args['z_ptr'] is not None}) @triton.heuristics({'HAS_STATE_BATCH_INDICES': lambda args: args[ 'state_batch_indices_ptr'] is not None}) @triton.heuristics({'BLOCK_SIZE_DSTATE': lambda args: triton. next_power_of_2(args['dstate'])}) @triton.jit def _selective_scan_update_kernel(state_ptr, x_ptr, dt_ptr, dt_bias_ptr, A_ptr, B_ptr, C_ptr, D_ptr, z_ptr, out_ptr, state_batch_indices_ptr, batch, nheads, dim, dstate, nheads_ngroups_ratio, stride_state_batch, stride_state_head, stride_state_dim, stride_state_dstate, stride_x_batch, stride_x_head, stride_x_dim, stride_dt_batch, stride_dt_head, stride_dt_dim, stride_dt_bias_head, stride_dt_bias_dim, stride_A_head, stride_A_dim, stride_A_dstate, stride_B_batch, stride_B_group, stride_B_dstate, stride_C_batch, stride_C_group, stride_C_dstate, stride_D_head, stride_D_dim, stride_z_batch, stride_z_head, stride_z_dim, stride_out_batch, stride_out_head, stride_out_dim, DT_SOFTPLUS: tl.constexpr, TIE_HDIM: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, HAS_DT_BIAS: tl.constexpr, HAS_D: tl. constexpr, HAS_Z: tl.constexpr, HAS_STATE_BATCH_INDICES: tl.constexpr, BLOCK_SIZE_DSTATE: tl.constexpr): pid_m = tl.program_id(axis=0) pid_b = tl.program_id(axis=1) pid_h = tl.program_id(axis=2) if HAS_STATE_BATCH_INDICES: state_batch_indices_ptr += pid_b state_batch_idx = tl.load(state_batch_indices_ptr) state_ptr += (state_batch_idx * stride_state_batch + pid_h * stride_state_head) else: state_ptr += pid_b * stride_state_batch + pid_h * stride_state_head x_ptr += pid_b * stride_x_batch + pid_h * stride_x_head dt_ptr += pid_b * stride_dt_batch + pid_h * stride_dt_head if HAS_DT_BIAS: dt_bias_ptr += pid_h * stride_dt_bias_head A_ptr += pid_h * stride_A_head B_ptr += (pid_b * stride_B_batch + pid_h // nheads_ngroups_ratio * stride_B_group) C_ptr += (pid_b * stride_C_batch + pid_h // nheads_ngroups_ratio * stride_C_group) if HAS_Z: z_ptr += pid_b * stride_z_batch + pid_h * stride_z_head out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_n = tl.arange(0, BLOCK_SIZE_DSTATE) state_ptrs = state_ptr + (offs_m[:, None] * stride_state_dim + offs_n[ None, :] * stride_state_dstate) x_ptrs = x_ptr + offs_m * stride_x_dim dt_ptrs = dt_ptr + offs_m * stride_dt_dim if HAS_DT_BIAS: dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim if HAS_D: D_ptr += pid_h * stride_D_head A_ptrs = A_ptr + (offs_m[:, None] * stride_A_dim + offs_n[None, :] * stride_A_dstate) B_ptrs = B_ptr + offs_n * stride_B_dstate C_ptrs = C_ptr + offs_n * stride_C_dstate if HAS_D: D_ptrs = D_ptr + offs_m * stride_D_dim if HAS_Z: z_ptrs = z_ptr + offs_m * stride_z_dim out_ptrs = out_ptr + offs_m * stride_out_dim state = tl.load(state_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0) x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32) if not TIE_HDIM: dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32) if HAS_DT_BIAS: dt += tl.load(dt_bias_ptrs, mask=offs_m < dim, other=0.0).to(tl .float32) if DT_SOFTPLUS: dt = softplus(dt) A = tl.load(A_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0).to(tl.float32) dA = tl.exp(A * dt[:, None]) else: dt = tl.load(dt_ptr).to(tl.float32) if HAS_DT_BIAS: dt += tl.load(dt_bias_ptr).to(tl.float32) if DT_SOFTPLUS: dt = softplus(dt) A = tl.load(A_ptr).to(tl.float32) dA = tl.exp(A * dt) B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32) C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32) if HAS_D: D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32) if HAS_Z: z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32) dB = B[None, :] * dt[:, None] if not TIE_HDIM else B * dt state = state * dA + dB * x[:, None] tl.store(state_ptrs, state, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate)) out = tl.sum(state * C[None, :], axis=1) if HAS_D: out += x * D if HAS_Z: out *= z * tl.sigmoid(z) tl.store(out_ptrs, out, mask=offs_m < dim)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/model_executor/layers/mamba/ops/mamba_ssm.py
bfa71336-4d07-4f50-b917-10440a567a7d
wy_fast.py
sustcsonglin/flash-linear-attention
fla/ops/gated_delta_rule/wy_fast.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [2, 4, 8]], key=['BK']) @triton.jit def fwd_prepare_wy_repr_kernel_chunk64(k, g, beta, Aw, Au, offsets, indices, T: tl.constexpr, K: tl.constexpr, H: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T b_Aw = tl.zeros([BC, BC], dtype=tl.float32) b_Aw2 = tl.zeros([BC, BC], dtype=tl.float32) b_Aw3 = tl.zeros([BC, BC], dtype=tl.float32) if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BC,), (0,)) p_beta2 = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT + BC,), (BC,), (0,)) else: p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BC,), (0,)) p_beta2 = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT + BC,), (BC,), (0,)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_beta2 = tl.load(p_beta2, boundary_check=(0,)) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0)) p_k2 = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0)) p_k2 = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_kb = (b_k * b_beta[:, None]).to(b_k.dtype) b_k2 = tl.load(p_k2, boundary_check=(0, 1)) b_kb2 = (b_k2 * b_beta2[:, None]).to(b_k2.dtype) b_Aw += tl.dot(b_kb, tl.trans(b_k)) b_Aw2 += tl.dot(b_kb2, tl.trans(b_k2)) b_Aw3 += tl.dot(b_kb2, tl.trans(b_k)) b_Aw = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_Aw, 0) b_Aw2 = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_Aw2, 0) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BC, ), (0,)) p_g2 = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT + BC,), (BC,), (0,)) else: p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BC,), (0,)) p_g2 = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT + BC,), (BC,), (0,)) b_g = tl.load(p_g, boundary_check=(0,)) b_g2 = tl.load(p_g2, boundary_check=(0,)) b_Au = b_Aw * tl.exp(b_g[:, None] - b_g[None, :]) b_Au2 = b_Aw2 * tl.exp(b_g2[:, None] - b_g2[None, :]) b_Au3 = b_Aw3 * tl.exp(b_g2[:, None] - b_g[None, :]) for i in range(1, BC): mask = tl.arange(0, BC) == i b_aw = tl.sum(tl.where(mask[:, None], b_Aw, 0), 0) b_aw2 = tl.sum(tl.where(mask[:, None], b_Aw2, 0), 0) b_au = tl.sum(tl.where(mask[:, None], b_Au, 0), 0) b_au2 = tl.sum(tl.where(mask[:, None], b_Au2, 0), 0) b_aw = b_aw + tl.sum(b_aw[:, None] * b_Aw, 0) * (tl.arange(0, BC) < i) b_aw2 = b_aw2 + tl.sum(b_aw2[:, None] * b_Aw2, 0) * (tl.arange(0, BC) < i) b_au = b_au + tl.sum(b_au[:, None] * b_Au, 0) * (tl.arange(0, BC) < i) b_au2 = b_au2 + tl.sum(b_au2[:, None] * b_Au2, 0) * (tl.arange(0, BC) < i) b_Aw = tl.where(mask[:, None], b_aw, b_Aw) b_Aw2 = tl.where(mask[:, None], b_aw2, b_Aw2) b_Au = tl.where(mask[:, None], b_au, b_Au) b_Au2 = tl.where(mask[:, None], b_au2, b_Au2) b_Aw += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_Aw2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_Aw3 = -tl.dot(tl.dot(b_Aw2, b_Aw3, allow_tf32=False), b_Aw, allow_tf32=False) b_Au += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_Au2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_Au3 = -tl.dot(tl.dot(b_Au2, b_Au3, allow_tf32=False), b_Au, allow_tf32=False) if HEAD_FIRST: p_Aw1 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT, 0), (BC, BC), (1, 0)) p_Aw2 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT + BC, BC), (BC, BC), (1, 0)) p_Aw3 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT + BC, 0), (BC, BC), (1, 0)) p_Aw4 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT, BC), (BC, BC), (1, 0)) p_Au1 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT, 0), (BC, BC), (1, 0)) p_Au2 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT + BC, BC), (BC, BC), (1, 0)) p_Au3 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT + BC, 0), (BC, BC), (1, 0)) p_Au4 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT, BC), (BC, BC), (1, 0)) else: p_Aw1 = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) p_Aw2 = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) p_Aw3 = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) p_Aw4 = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) p_Au1 = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) p_Au2 = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) p_Au3 = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) p_Au4 = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) tl.store(p_Aw1, b_Aw.to(p_Aw1.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_Aw2, b_Aw2.to(p_Aw2.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_Aw3, b_Aw3.to(p_Aw3.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_Aw4, tl.zeros([BC, BC], dtype=tl.float32).to(p_Aw4.dtype. element_ty), boundary_check=(0, 1)) tl.store(p_Au1, b_Au.to(p_Au1.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_Au2, b_Au2.to(p_Au2.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_Au3, b_Au3.to(p_Au3.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_Au4, tl.zeros([BC, BC], dtype=tl.float32).to(p_Au4.dtype. element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Quantization", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/wy_fast.py
382c7df7-c231-4082-9738-316b2060d437
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/retention/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def fused_recurrent_retention_fwd_kernel(q, k, v, o, h0, ht, offsets, scale, B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, REVERSE: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_v, i_k, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T b_b = 1 - tl.math.exp2(-5 - i_h * 1.0) if HEAD_FIRST: p_q = q + i_nh * T * K + i_k * BK + tl.arange(0, BK) p_k = k + i_nh * T * K + i_k * BK + tl.arange(0, BK) p_v = v + i_nh * T * V + i_v * BV + tl.arange(0, BV) p_o = o + (i_k * B * H + i_nh) * T * V + i_v * BV + tl.arange(0, BV) else: p_q = q + (bos + (T - 1 if REVERSE else 0) ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_k = k + (bos + (T - 1 if REVERSE else 0) ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_v = v + (bos + (T - 1 if REVERSE else 0) ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_o = o + (i_k * all + bos + (T - 1 if REVERSE else 0) ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) mask_k = i_k * BK + tl.arange(0, BK) < K mask_v = i_v * BV + tl.arange(0, BV) < V mask_h = mask_k[None, :] & mask_v[:, None] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[None, :] ) * V + (i_v * BV + tl.arange(0, BV)[:, None]) b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) for _ in range(0, T): b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_h = b_b * b_h + b_k[None, :] * b_v[:, None] b_o = b_h * b_q[None, :] b_o = tl.sum(b_o, axis=1) tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v) p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V if STORE_FINAL_STATE: p_ht = ht + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[None, :] ) * V + (i_v * BV + tl.arange(0, BV)[:, None]) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/fused_recurrent.py
cdef9924-80d7-4787-9792-40f7c0314224
triton_kernels.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/triton_kernels.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def _triton_third_order_fwd(x_ptr: tl.tensor, y_ptr: tl.tensor, z_ptr: tl. tensor, sh_1_0_ptr: tl.tensor, sh_1_1_ptr: tl.tensor, sh_1_2_ptr: tl. tensor, sh_2_0_ptr: tl.tensor, sh_2_1_ptr: tl.tensor, sh_2_2_ptr: tl. tensor, sh_2_3_ptr: tl.tensor, sh_2_4_ptr: tl.tensor, sh_3_0_ptr: tl. tensor, sh_3_1_ptr: tl.tensor, sh_3_2_ptr: tl.tensor, sh_3_3_ptr: tl. tensor, sh_3_4_ptr: tl.tensor, sh_3_5_ptr: tl.tensor, sh_3_6_ptr: tl. tensor, BLOCK_SIZE: tl.constexpr, vector_length: tl.constexpr): sqrt_3 = 3 ** 0.5 block_id = tl.program_id(0) offset = tl.arange(0, BLOCK_SIZE) + BLOCK_SIZE * block_id x_row_start = x_ptr + offset y_row_start = y_ptr + offset z_row_start = z_ptr + offset x = tl.load(x_row_start, mask=offset < vector_length) y = tl.load(y_row_start, mask=offset < vector_length) z = tl.load(z_row_start, mask=offset < vector_length) sh_1_0 = x * sqrt_3 sh_1_1 = y * sqrt_3 sh_1_2 = z * sqrt_3 sqrt_15 = 15 ** 0.5 sqrt_5 = 5 ** 0.5 sq_x = x * x sq_y = y * y sq_z = z * z sh_2_0 = sqrt_15 * x * z sh_2_1 = sqrt_15 * x * y sh_2_2 = sqrt_5 * (sq_y - 0.5 * (sq_x + sq_z)) sh_2_3 = sqrt_15 * y * z sh_2_4 = 0.5 * sqrt_15 * (sq_z - sq_x) sqrt_42 = 42 ** 0.5 sqrt_168 = 168 ** 0.5 sqrt_7 = 7 ** 0.5 sh_3_0 = 1 / 6 * sqrt_42 * (sh_2_0 * z + sh_2_4 * x) sh_3_1 = sqrt_7 * sh_2_0 * y sh_3_2 = 1 / 8 * sqrt_168 * (4 * sq_y - (sq_x + sq_z)) * x sh_3_3 = 0.5 * sqrt_7 * y * (2 * sq_y - 3 * (sq_x + sq_z)) sh_3_4 = 1 / 8 * sqrt_168 * z * (4 * sq_y - (sq_x + sq_z)) sh_3_5 = sqrt_7 * (sh_2_4 * y) sh_3_6 = 1 / 6 * sqrt_42 * (sh_2_4 * z - sh_2_0 * x) sh_1_0_start = sh_1_0_ptr + offset sh_1_1_start = sh_1_1_ptr + offset sh_1_2_start = sh_1_2_ptr + offset sh_2_0_start = sh_2_0_ptr + offset sh_2_1_start = sh_2_1_ptr + offset sh_2_2_start = sh_2_2_ptr + offset sh_2_3_start = sh_2_3_ptr + offset sh_2_4_start = sh_2_4_ptr + offset sh_3_0_start = sh_3_0_ptr + offset sh_3_1_start = sh_3_1_ptr + offset sh_3_2_start = sh_3_2_ptr + offset sh_3_3_start = sh_3_3_ptr + offset sh_3_4_start = sh_3_4_ptr + offset sh_3_5_start = sh_3_5_ptr + offset sh_3_6_start = sh_3_6_ptr + offset tl.store(sh_1_0_start, sh_1_0, mask=offset < vector_length) tl.store(sh_1_1_start, sh_1_1, mask=offset < vector_length) tl.store(sh_1_2_start, sh_1_2, mask=offset < vector_length) tl.store(sh_2_0_start, sh_2_0, mask=offset < vector_length) tl.store(sh_2_1_start, sh_2_1, mask=offset < vector_length) tl.store(sh_2_2_start, sh_2_2, mask=offset < vector_length) tl.store(sh_2_3_start, sh_2_3, mask=offset < vector_length) tl.store(sh_2_4_start, sh_2_4, mask=offset < vector_length) tl.store(sh_3_0_start, sh_3_0, mask=offset < vector_length) tl.store(sh_3_1_start, sh_3_1, mask=offset < vector_length) tl.store(sh_3_2_start, sh_3_2, mask=offset < vector_length) tl.store(sh_3_3_start, sh_3_3, mask=offset < vector_length) tl.store(sh_3_4_start, sh_3_4, mask=offset < vector_length) tl.store(sh_3_5_start, sh_3_5, mask=offset < vector_length) tl.store(sh_3_6_start, sh_3_6, mask=offset < vector_length)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/triton_kernels.py
8a07eb48-f388-411a-8bea-4db66f7e583a
test_triton.py
pytorch/xla
test/test_triton.py
40efdb7b6571ce92797b5ba42619b79c1b147b3e
0
@triton.jit def add_kernel(x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x_ptr + offsets, mask=mask) y = tl.load(y_ptr + offsets, mask=mask) output = x + y tl.store(output_ptr + offsets, output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch/xla/blob/40efdb7b6571ce92797b5ba42619b79c1b147b3e/test/test_triton.py
73d4eb91-5118-44b5-a7cc-d60243dd1659
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/gsa/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_recurrent_gsa_inference_kernel(q, k, v, s, g, o, hk0, hv0, hkt, hvt, scale, K: tl.constexpr, V: tl.constexpr, M: tl.constexpr, BK: tl. constexpr, BV: tl.constexpr, NG: tl.constexpr): i_bh = tl.program_id(0) i_bg = i_bh // NG b_s = tl.load(s + i_bg * M + tl.arange(0, M)).to(tl.float32) b_g = tl.load(g + i_bg * M + tl.arange(0, M)).to(tl.float32) b_g = tl.exp(b_g) b_ok = tl.zeros([M], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): o_k = i_k * BK + tl.arange(0, BK) p_hk0 = hk0 + i_bg * K * M + o_k[None, :] * M + tl.arange(0, M)[:, None ] mask_k = o_k < K mask_hk = (tl.arange(0, M) < M)[:, None] & mask_k[None, :] b_hk = tl.load(p_hk0, mask=mask_hk, other=0.0).to(tl.float32) b_q = tl.load(q + i_bh * K + o_k, mask=mask_k, other=0.0).to(tl.float32 ) * scale b_k = tl.load(k + i_bg * K + o_k, mask=mask_k, other=0.0).to(tl.float32 ) b_hk = b_hk * b_g[:, None] + b_k[None, :] * b_s[:, None] b_ok += tl.sum(b_hk * b_q[None, :], axis=1) if i_bh % NG == 0: p_hkt = hkt + i_bg * K * M + o_k[None, :] * M + tl.arange(0, M)[ :, None] tl.store(p_hkt, b_hk.to(p_hkt.dtype.element_ty), mask=mask_hk) b_qv = tl.softmax(b_ok) for i_v in range(tl.cdiv(V, BV)): o_v = i_v * BV + tl.arange(0, BV) p_hv0 = hv0 + i_bg * M * V + tl.arange(0, M)[None, :] * V + o_v[:, None ] mask_v = o_v < V mask_hv = mask_v[:, None] & (tl.arange(0, M) < M)[None, :] b_hv = tl.load(p_hv0, mask=mask_hv, other=0).to(tl.float32) b_v = tl.load(v + i_bg * V + o_v, mask=mask_v, other=0).to(tl.float32) b_hv = b_hv * b_g[None, :] + b_s[None, :] * b_v[:, None] b_ov = tl.sum(b_hv * b_qv[None, :], axis=1) tl.store(o + i_bh * V + o_v, b_ov.to(o.dtype.element_ty), mask=mask_v) if i_bh % NG == 0: p_hvt = hvt + i_bg * M * V + tl.arange(0, M)[None, :] * V + o_v[ :, None] tl.store(p_hvt, b_hv.to(p_hvt.dtype.element_ty), mask=mask_hv)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gsa/fused_recurrent.py
d007ef85-87e3-4ce0-8e46-7b94cff34ce5
triton_fused_attention.py
pytorch-labs/tritonbench
tritonbench/kernels/triton_fused_attention.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(list(filter(keep, configsOpt)), key=['N_CTX']) @triton.jit def _attn_fwd_opt(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl. constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.constexpr, STAGE: tl. constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE: tl.constexpr, ENABLE_WS: tl.constexpr): tl.static_assert(BLOCK_N <= HEAD_DIM) pid = tl.program_id(0) off_hz = tl.program_id(1) _attn_fwd_compute(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid, Z, H, N_CTX, BLOCK_M, BLOCK_N, HEAD_DIM, STAGE, ENABLE_TMA, LOOP_SCHEDULE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py
858e4bb7-3ed2-490f-84f5-a9677c3f962b
lstm_fw.py
NX-AI/flashrnn
flashrnn/flashrnn/triton_fused/lstm_fw.py
3fca666a81c8740af4878d7bc5e2a51900e4fe14
0
@triton.autotune(configs, key=['siz_B', 'T', 'B', 'NH', 'DH']) @triton.jit def _forward_sequence_kernel(states_initial, Wx, R, b, states_all, gates_all, T: tl.constexpr, NS: tl.constexpr, B: tl.constexpr, NH: tl. constexpr, DH: tl.constexpr, NGI: tl.constexpr, NGR: tl.constexpr, siz_B: tl.constexpr, OUTPUT_GATES: tl.constexpr, DTYPE: tl.constexpr=tl .float32): idx_b_NH, idx_b_B = tl.program_id(0), tl.program_id(1) str_matWx_NH = T * NGI * B * DH str_matWx_T = NGI * B * DH str_matStatesAll_NH = (T + 1) * NS * B * DH str_matStatesAll_T = NS * B * DH str_matGatesAll_NH = T * NGI * B * DH str_matGatesAll_T = NGI * B * DH matHtrans_initial_ptr = tl.make_block_ptr(base=states_initial + idx_b_NH * NS * B * DH + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matHtrans = tl.load(matHtrans_initial_ptr).to(tl.float32) matCtrans_initial_ptr = tl.make_block_ptr(base=states_initial + idx_b_NH * NS * B * DH + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matCtrans = tl.load(matCtrans_initial_ptr).to(tl.float32) matHtrans_initial_store_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + 0 * str_matStatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matHtrans_initial_store_ptr, matHtrans.to(DTYPE)) matCtrans_initial_store_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + 0 * str_matStatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matCtrans_initial_store_ptr, matCtrans.to(DTYPE)) matRtrans_i_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 0 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_i = tl.load(matRtrans_i_ptr) matRtrans_f_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 1 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_f = tl.load(matRtrans_f_ptr) matRtrans_z_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 2 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_z = tl.load(matRtrans_z_ptr) matRtrans_o_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 3 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_o = tl.load(matRtrans_o_ptr) vecB_i_ptr = b + idx_b_NH * NGI * DH + 0 * DH + tl.arange(0, DH) vecB_i = tl.load(vecB_i_ptr) vecB_f_ptr = b + idx_b_NH * NGI * DH + 1 * DH + tl.arange(0, DH) vecB_f = tl.load(vecB_f_ptr) vecB_z_ptr = b + idx_b_NH * NGI * DH + 2 * DH + tl.arange(0, DH) vecB_z = tl.load(vecB_z_ptr) vecB_o_ptr = b + idx_b_NH * NGI * DH + 3 * DH + tl.arange(0, DH) vecB_o = tl.load(vecB_o_ptr) for idx_t in range(T): matIxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matIxtrans = tl.load(matIxtrans_ptr) matFxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matFxtrans = tl.load(matFxtrans_ptr) matZxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matZxtrans = tl.load(matZxtrans_ptr) matOxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matOxtrans = tl.load(matOxtrans_ptr) matRhtrans_i = tl.dot(matHtrans.to(DTYPE), matRtrans_i) matRhtrans_f = tl.dot(matHtrans.to(DTYPE), matRtrans_f) matRhtrans_z = tl.dot(matHtrans.to(DTYPE), matRtrans_z) matRhtrans_o = tl.dot(matHtrans.to(DTYPE), matRtrans_o) matIbar = matIxtrans + matRhtrans_i + vecB_i[None, :] matFbar = matFxtrans + matRhtrans_f + vecB_f[None, :] matZbar = matZxtrans + matRhtrans_z + vecB_z[None, :] matObar = matOxtrans + matRhtrans_o + vecB_o[None, :] matI = tl.sigmoid(matIbar) matF = tl.sigmoid(matFbar) matZ = triton_tanh(matZbar) matO = tl.sigmoid(matObar) matCtrans_next = matF * matCtrans + matI * matZ matHtrans_next = matO * triton_tanh(matCtrans_next) matHtrans_next_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0 ), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matHtrans_next_ptr, matHtrans_next.to(DTYPE)) matCtrans_next_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0 ), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matCtrans_next_ptr, matCtrans_next.to(DTYPE)) if OUTPUT_GATES: matGatesItrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesItrans_ptr, matI.to(DTYPE)) matGatesFtrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesFtrans_ptr, matF.to(DTYPE)) matGatesZtrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesZtrans_ptr, matZ.to(DTYPE)) matGatesOtrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesOtrans_ptr, matO.to(DTYPE)) matCtrans = matCtrans_next matHtrans = matHtrans_next
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Batch-Oriented" ] }
[ "MIT", "BSD" ]
https://github.com/NX-AI/flashrnn/blob/3fca666a81c8740af4878d7bc5e2a51900e4fe14/flashrnn/flashrnn/triton_fused/lstm_fw.py
87908dfa-3000-45a4-bd58-e284ba835528
fp8_gemm.py
pytorch/FBGEMM
fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.autotune(configs=[Config({'BLOCK_SIZE': 512}), Config({'BLOCK_SIZE': 1024}), Config({'BLOCK_SIZE': 2048}), Config({'BLOCK_SIZE': 4096}), Config({'BLOCK_SIZE': 8192})], key=['K']) @triton.jit def _kernel_quantize_fp8_row(A, A_scale, A_fp8, scale_ub, B, M, N, K, stride_ab, stride_am, stride_an, stride_ak, stride_ob, stride_om, stride_on, stride_ok, TL_FP8_DTYPE: tl.constexpr, MAX_FP8: tl.constexpr, EPS: tl.constexpr, CLAMP_MAX: tl.constexpr, BLOCK_SIZE: tl.constexpr, USE_INT64: tl.constexpr) ->None: """Quantize and scale each row. Scale per row i is computed as MAX_FP8 / max(abs(A[i, :])) Kernel naively iterates through matrix with [1, BLOCK_SIZE] tiles in a max pass then scale/quantize pass. Todo: * Better tiling schemes. Args: A (Tensor): higher precision input tensor of 4 dimension. A_scale (Tensor): [B * M * N] reciprocal scale tensor per row. A_fp8 (Tensor): fp8 scaled tensor. A_fp8 = A / a_scale scale_ub (Tensor): [1] Maximum value allowed for scale. B (int): Size of dimenion 0 M (int): Size of dimenion 1 N (int): Size of dimenion 2 K (int): Size of dimenion 3 stride_ab (int): Stride of b dimension of A. stride_am (int): Stride of m dimension of A. stride_an (int): Stride of n dimension of A. stride_ak (int): Stride of k dimension of A. stride_ob (int): Stride of b dimension of output. stride_om (int): Stride of m dimension of output. stride_on (int): Stride of n dimension of output. stride_ok (int): Stride of k dimension of output. TL_FP8_DTYPE (tl.dtype): Target fp8 datatype. MAX_FP8 (float): Maxmimum expressible value for FP8. EPS (float): Epsilon value for numerical stability. CLAMP_MAX (bool): Whethar to apply scale_ub. BLOCK_SIZE (int): Block size for reduction. USE_INT64 (bool): Whether to use int64 indexing for large inputs. """ pid = tl.program_id(0) if USE_INT64: pid = pid.to(tl.int64) n_offset = tl.arange(0, BLOCK_SIZE) a_offset_base = pid // (M * N) * stride_ab + pid % (M * N ) // N * stride_am + pid % (M * N) % N * stride_an a_fp8_offset_base = pid // (M * N) * stride_ob + pid % (M * N ) // N * stride_om + pid % (M * N) % N * stride_on cur_max = 0.0 for _k in range(0, tl.cdiv(K, BLOCK_SIZE)): a = tl.load(A + a_offset_base + n_offset * stride_ak, mask=n_offset < K, other=0.0) tile_max = tl.max(tl.abs(a)) cur_max = tl.maximum(tile_max, cur_max) n_offset += BLOCK_SIZE if CLAMP_MAX: ub = tl.load(scale_ub) cur_max = tl.clamp(cur_max, EPS, ub) else: cur_max = tl.maximum(cur_max, EPS) a_scale = MAX_FP8 / cur_max tl.store(A_scale + pid, 1.0 / a_scale) n_offset = tl.arange(0, BLOCK_SIZE) for _k in range(0, tl.cdiv(K, BLOCK_SIZE)): a = tl.load(A + a_offset_base + n_offset * stride_ak, mask=n_offset < K, other=0.0) a_fp8 = a * a_scale a_fp8 = tl.clamp(a_fp8, -MAX_FP8, MAX_FP8) a_fp8.to(TL_FP8_DTYPE) tl.store(A_fp8 + a_fp8_offset_base + n_offset * stride_ok, a_fp8, mask=n_offset < K) n_offset += BLOCK_SIZE
{ "Data Type": [ "fp32" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py