uuid
stringlengths
36
36
file_name
stringlengths
5
50
repo_name
stringclasses
110 values
file_path
stringlengths
7
112
commit_hash
stringclasses
110 values
starcount
int64
0
0
input
stringlengths
39
33.8k
category
dict
licenses
sequencelengths
1
2
github_url
stringlengths
94
193
203cae00-18cd-4f73-9919-f4c8e964f077
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_K': b}, num_warps=w) for b, w in itertools.product([2, 4, 16, 32, 128, 256], [2, 4, 8])], key=['N']) @triton.jit def triton_sum_kernel_2D_result_dim_1(input_ptr, output_ptr, M: tl. constexpr, N: tl.constexpr, K: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): pid = tl.program_id(axis=0) pid_m = pid // tl.cdiv(K, BLOCK_SIZE_K) pid_k = pid % tl.cdiv(K, BLOCK_SIZE_K) block_start_n = 0 block_start_k = pid_k * BLOCK_SIZE_K offsets_n = block_start_n + tl.arange(0, BLOCK_SIZE_N) offsets_k = block_start_k + tl.arange(0, BLOCK_SIZE_K) mask_n = offsets_n < N mask_k = offsets_k < K idxs_base = offsets_n[:, None] * K + offsets_k idxs = idxs_base + pid_m * N * K mask = mask_n[:, None] & mask_k input = tl.load(input_ptr + idxs, mask=mask, other=0) output = tl.sum(input, axis=0) output_offsets = pid_m * K + offsets_k tl.store(output_ptr + output_offsets, output, mask=mask_k)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/sum/kernels.py
683528ff-21dc-4e7c-be90-58e192bdd603
gemm_a16w8.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/gemm_a16w8.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _triton_gemm_a16w8_sub_channel_kernel(A, B, C, scale_b, bias, zero_points, M, N, K, stride_am, stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, stride_zpk, stride_zpn, stride_scalek, stride_scalen, add_bias: tl.constexpr, add_zero_points: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl.constexpr): pid = tl.program_id(0) pid_z = tl.program_id(1) grid_m = tl.cdiv(M, BLOCK_M) grid_n = tl.cdiv(N, BLOCK_N) width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + pid % group_size pid_n = pid % width // group_size rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K) A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rbn[:, None] * stride_bn + rk[None, :] * stride_bk) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) scale_w_offs = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) _SCALE0 = tl.zeros([1], dtype=scale_b.dtype.element_ty) for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)): k_remaining = K - k * (BLOCK_K * SPLIT_K) _A0 = tl.zeros((1, 1), dtype=A.dtype.element_ty) a = tl.load(A, mask=rk[None, :] < k_remaining, other=_A0) _B0 = tl.zeros((1, 1), dtype=B.dtype.element_ty) b = tl.load(B, mask=rk[None, :] < k_remaining, other=_B0) if add_zero_points: _ZERO_POINT0 = tl.zeros([1], dtype=zero_points.dtype.element_ty) zero_points_offs = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) zero_points_ptrs = zero_points + (k * SPLIT_K + pid_z ) * stride_zpk + zero_points_offs zero_points_vals = tl.load(zero_points_ptrs, mask= zero_points_offs < N, other=_ZERO_POINT0) b = b - zero_points_vals[:, None] scale_ptrs = (scale_b + k * SPLIT_K * stride_scalek + pid_z * stride_scalek + scale_w_offs) scales = tl.load(scale_ptrs, mask=scale_w_offs < N, other=_SCALE0) b_fp = b * scales[:, None] b_fp = tl.trans(b_fp) acc += tl.dot(a, b_fp, out_dtype=tl.float32, allow_tf32=True) A += BLOCK_K * SPLIT_K * stride_ak B += BLOCK_K * SPLIT_K * stride_bk acc = acc.to(C.dtype.element_ty) rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] if add_bias: offs_bias = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) bias_ptrs = bias + offs_bias _BIAS0 = tl.zeros([1], dtype=bias.dtype.element_ty) bias_vals = tl.load(bias_ptrs, mask=offs_bias < N, other=_BIAS0) if pid_z == 0: acc += bias_vals[None, :] if SPLIT_K == 1: tl.store(C, acc, mask=mask) else: tl.atomic_add(C, acc, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/gemm_a16w8.py
c5831adf-3388-428d-9adb-9b92d80bed77
layernorm.py
sustcsonglin/flash-linear-attention
fla/modules/layernorm.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32)], key=['N', 'HAS_RESIDUAL', 'STORE_RESIDUAL_OUT', 'IS_RMS_NORM', 'HAS_BIAS']) @triton.jit def layer_norm_fwd_kernel(X, Y, W, B, RESIDUAL, RESIDUAL_OUT, Mean, Rstd, stride_x_row, stride_y_row, stride_res_row, stride_res_out_row, N, G, eps, IS_RMS_NORM: tl.constexpr, BLOCK_N: tl.constexpr, HAS_RESIDUAL: tl .constexpr, STORE_RESIDUAL_OUT: tl.constexpr, HAS_WEIGHT: tl.constexpr, HAS_BIAS: tl.constexpr): row = tl.program_id(0) group = row % G X += row * stride_x_row Y += row * stride_y_row if HAS_RESIDUAL: RESIDUAL += row * stride_res_row if STORE_RESIDUAL_OUT: RESIDUAL_OUT += row * stride_res_out_row cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) if HAS_RESIDUAL: residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl .float32) x += residual if STORE_RESIDUAL_OUT: tl.store(RESIDUAL_OUT + cols, x, mask=cols < N) if not IS_RMS_NORM: mean = tl.sum(x, axis=0) / N tl.store(Mean + row, mean) xbar = tl.where(cols < N, x - mean, 0.0) var = tl.sum(xbar * xbar, axis=0) / N else: xbar = tl.where(cols < N, x, 0.0) var = tl.sum(xbar * xbar, axis=0) / N rstd = 1 / tl.sqrt(var + eps) tl.store(Rstd + row, rstd) mask = cols < N if HAS_WEIGHT: w = tl.load(W + group * stride_x_row + cols, mask=mask).to(tl.float32) if HAS_BIAS: b = tl.load(B + group * stride_x_row + cols, mask=mask).to(tl.float32) x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd y = x_hat * w if HAS_WEIGHT else x_hat if HAS_BIAS: y = y + b tl.store(Y + cols, y, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/layernorm.py
ec15a21e-2872-4637-b17e-81c3c60d4e50
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gsa/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=['BT']) @triton.jit def chunk_gsa_fwd_k_kernel_inter(q, k, h, g, o, A, offsets, indices, scale, T: tl.constexpr, HQ: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NG: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_bg = i_bh // NG i_b, i_hq = i_bh // HQ, i_bh % HQ i_h = i_hq // NG if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_o = tl.zeros([BT, BV], dtype=tl.float32) b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bg * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_bg * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (K, V), ( V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)) b_o += tl.dot(b_q, b_h) b_A += tl.dot(b_q, b_k) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_A = tl.make_block_ptr(A + (bos * HQ + i_hq) * BT, (T, BT), (HQ * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_g = tl.load(p_g, boundary_check=(0, 1)) b_o = b_o * tl.exp(b_g) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) b_A = tl.where(m_s, b_A, 0.0) if i_v == 0: tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access", "Transposed Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gsa/chunk.py
4b05f8aa-476d-4b90-b0cb-9c78955c0028
mlstm_scan.py
LukasBluebaum/xLSTM-Triton-CUDA-Implementation
mlstm_scan.py
6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b
0
@triton.jit def reduce_mlstm_triton(F_REDUCED_IN, F_REDUCED_OUT, C, N, NH: tl.constexpr, D: tl.constexpr, NSB: tl.constexpr, BLOCK_SIZE: tl.constexpr): bh_id = tl.program_id(0) x_id = tl.program_id(1) y_id = tl.program_id(2) batch_id = bh_id // NH head_id = bh_id % NH nsb_range = tl.arange(0, NSB) nsb_range_2d = tl.arange(0, NSB)[:, None] nsb_range_3d = tl.arange(0, NSB)[:, None, None] block_range = tl.arange(0, BLOCK_SIZE) block_range_2d = block_range[None, :] x_range = block_range + x_id * BLOCK_SIZE x_range_3d = x_range[None, :, None] y_range = block_range + y_id * BLOCK_SIZE y_range_3d = y_range[None, None, :] batch_offset_f = batch_id * NH * NSB + head_id * NSB batch_offset_n = batch_id * NH * NSB * D + head_id * NSB * D batch_offset_c = batch_id * NH * NSB * D * D + head_id * NSB * D * D f = tl.load(F_REDUCED_IN + batch_offset_f + nsb_range) c_range = (batch_offset_c + nsb_range_3d * D * D + x_range_3d * D + y_range_3d) c_mask = (nsb_range_3d < NSB) & (x_range_3d < D) & (y_range_3d < D) c = tl.load(C + c_range, c_mask) f_reduced, c = tl.associative_scan((tl.broadcast_to(f[:, None, None], ( NSB, BLOCK_SIZE, BLOCK_SIZE)), c), 0, scan_op) tl.store(C + c_range, c, c_mask) if x_id == 0 and y_id == 0: f_range = batch_offset_f + nsb_range_3d + block_range[None, :, None ] * 0 + block_range[None, None, :] * 0 f_mask = (nsb_range_3d < NSB) & (block_range[None, :, None] == 0) & ( block_range[None, None, :] == 0) tl.store(F_REDUCED_OUT + f_range, f_reduced, f_mask) if x_id == 0: n_range = (batch_offset_n + nsb_range_2d * D + block_range_2d + y_id * BLOCK_SIZE) n_mask = (nsb_range_2d < NSB) & (block_range_2d + y_id * BLOCK_SIZE < D ) n = tl.load(N + n_range, n_mask) _, n = tl.associative_scan((tl.broadcast_to(f[:, None], (NSB, BLOCK_SIZE)), n), 0, scan_op) tl.store(N + n_range, n, n_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_scan.py
c775be82-a8e2-4755-9d15-d9d2fdf331a0
mlstm_scan.py
LukasBluebaum/xLSTM-Triton-CUDA-Implementation
mlstm_scan.py
6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b
0
@triton.jit def roll_op(a1, b1_last, b1_cur, a2, b2_last, b2_cur): return a1 + a2, tl.where(a2 == 1, b1_cur, 0) + b2_last, b2_cur
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_scan.py
723fee45-0116-4b18-9403-354cfe2b1f3a
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_2_softmax_backward_kernel(grad_output_ptr, softmax_output_ptr, grad_input_ptr, offsets_row_ptr, offsets_col_ptr, offsets_overall_ptr, grad_output_stride, softmax_output_stride, grad_input_stride, transpose, max_seq_len_row: tl.constexpr, max_seq_len_col: tl.constexpr, BLOCK_SIZE: tl.constexpr): pid_batch = tl.program_id(0) pid_head = tl.program_id(1) begin = tl.load(offsets_overall_ptr + pid_batch) if transpose: N = tl.load(offsets_row_ptr + pid_batch + 1) - tl.load( offsets_row_ptr + pid_batch) H = tl.load(offsets_col_ptr + pid_batch + 1) - tl.load( offsets_col_ptr + pid_batch) stride_n = H stride_h = H // H H = tl.minimum(max_seq_len_col, H) N = tl.minimum(max_seq_len_row, N) else: N = tl.load(offsets_col_ptr + pid_batch + 1) - tl.load( offsets_col_ptr + pid_batch) H = tl.load(offsets_row_ptr + pid_batch + 1) - tl.load( offsets_row_ptr + pid_batch) stride_h = N stride_n = N // N H = tl.minimum(max_seq_len_row, H) N = tl.minimum(max_seq_len_col, N) if pid_head >= H: return if H == 0 or N == 0: pass start_ptr = grad_output_ptr + begin * grad_output_stride offsets = tl.arange(0, BLOCK_SIZE) grad_output_ptrs = (start_ptr + offsets * grad_output_stride * stride_n + pid_head * grad_output_stride * stride_h) softmax_output_ptrs = (softmax_output_ptr + begin * softmax_output_stride + offsets * softmax_output_stride * stride_n + pid_head * softmax_output_stride * stride_h) grad_output_row = tl.load(grad_output_ptrs, mask=offsets < N, other=0.0) softmax_output_row = tl.load(softmax_output_ptrs, mask=offsets < N, other=0.0) sum_value = tl.sum(grad_output_row * softmax_output_row, axis=0) grad_input_row = (grad_output_row - sum_value) * softmax_output_row grad_input_row_start_ptr = grad_input_ptr + begin * grad_input_stride grad_input_ptrs = (grad_input_row_start_ptr + offsets * grad_input_stride * stride_n + pid_head * grad_input_stride * stride_h) tl.store(grad_input_ptrs, grad_input_row, mask=offsets < N)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
59b8c65e-8a9d-4eb0-8a49-f36eda5a4381
kl.py
ardywibowo/triton-mode
kernels/kl.py
5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1
0
@triton.jit def triton_kl_forward(y_pred_ptr, y_pred_stride, y_true_ptr, y_true_stride, output_loss_ptr, output_loss_stride, num_classes, epsilon, BLOCK_SIZE: tl.constexpr, log_target: tl.constexpr=False, reduction_mode: tl. constexpr=REDUCE_BATCH_MEAN): row_id = tl.program_id(0).to(tl.int64) y_pred_ptr += row_id * y_pred_stride y_true_ptr += row_id * y_true_stride output_loss_ptr += row_id * output_loss_stride base_offsets = tl.arange(0, BLOCK_SIZE) loss_sum = 0.0 for i in range(0, num_classes, BLOCK_SIZE): offsets = i + base_offsets mask = offsets < num_classes y_pred = tl.load(y_pred_ptr + offsets, mask=mask, other=0.0) y_true = tl.load(y_true_ptr + offsets, mask=mask, other=0.0) if not log_target: loss = y_true * (tl.log(tl.maximum(y_true, epsilon)) - y_pred) else: loss = tl.exp(y_true) * (y_true - y_pred) if reduction_mode == REDUCE_NONE: tl.store(output_loss_ptr + offsets, loss, mask=mask) else: loss_sum += tl.sum(loss, axis=0) if reduction_mode != REDUCE_NONE: tl.store(output_loss_ptr, loss_sum)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/kl.py
30740efe-faab-4c6a-a9da-b62c8d379e71
test.py
Aalanli/AMDGPUExperiments
test.py
2a6fd9e1e81d1916e3d87db4dda930e2fa417527
0
@triton.jit def test(at, bt, ct, k): midx = tl.arange(0, 32) kidx = tl.arange(0, 32) nidx = tl.arange(0, 32) aidx = midx[:, None] * 32 + kidx[None, :] bidx = kidx[:, None] * 32 + nidx[None, :] cidx = midx[:, None] * 32 + nidx[None, :] a_ptrs = at + aidx b_ptrs = bt + bidx c_ptrs = ct + cidx for i in range(k): a = tl.load(a_ptrs) b = tl.load(b_ptrs) x = tl.dot(a, b) tl.atomic_add(c_ptrs, x) a_ptrs += 32 b_ptrs += 32 c_ptrs += 32
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/Aalanli/AMDGPUExperiments/blob/2a6fd9e1e81d1916e3d87db4dda930e2fa417527/test.py
f7119a9c-0bf5-469a-844f-759f16760205
fused_rotary_emb.py
tascj/kaggle-lmsys-chatbot-arena
human_pref/inference/ops/fused_rotary_emb.py
83cd93d50b9283c18711e8c63e4e1c6399c7b9ce
0
@wrap_jit_func(type_hint=dict(Q=Tensor, K=Tensor, PostionIds=Tensor, InvFreq=Tensor, scaling_factor=float, OutQ=Tensor, OutK=Tensor, stride_bq=int, stride_sq=int, stride_hq=int, stride_dq=int, stride_bk= int, stride_sk=int, stride_hk=int, stride_dk=int, stride_bp=int, stride_sp=int, max_seq_len=int, BLOCK=torch.int32, BLOCK_HQ=torch.int32, BLOCK_HK=torch.int32, BLOCK_F=torch.int32)) @triton.jit def _fused_rotary_emb_kernel(Q, K, PostionIds, InvFreq, scaling_factor, OutQ, OutK, stride_bq, stride_sq, stride_hq: tl.constexpr, stride_dq: tl.constexpr, stride_bk, stride_sk, stride_hk: tl.constexpr, stride_dk: tl.constexpr, stride_bp, stride_sp, max_seq_len, BLOCK: tl.constexpr, BLOCK_HQ: tl.constexpr, BLOCK_HK: tl.constexpr, BLOCK_F: tl.constexpr): """fused rotary emb kernel.""" batch_id = tl.program_id(0) seq_block_id = tl.program_id(1) s_off = seq_block_id * BLOCK + tl.arange(0, BLOCK)[:, None] f_off = tl.arange(0, BLOCK_F)[None, :] s_mask = s_off < max_seq_len bp_off = stride_bp * batch_id p_off = bp_off + stride_sp * s_off sq_off = batch_id * stride_bq + s_off * stride_sq q0_off = sq_off + f_off * stride_dq q1_off = q0_off + BLOCK_F * stride_dq sk_off = batch_id * stride_bk + s_off * stride_sk k0_off = sk_off + f_off * stride_dk k1_off = k0_off + BLOCK_F * stride_dk inv_freq = tl.load(InvFreq + f_off).to(tl.float32) position_ids = tl.load(PostionIds + p_off, mask=s_mask).to(tl.float32) position_ids = position_ids / scaling_factor pos_freq = position_ids * inv_freq cos = tl.cos(pos_freq).to(Q.dtype.element_ty) sin = tl.sin(pos_freq).to(Q.dtype.element_ty) for h in range(BLOCK_HQ): q0 = tl.load(Q + q0_off + h * stride_hq, mask=s_mask) q1 = tl.load(Q + q1_off + h * stride_hq, mask=s_mask) q0_out = q0 * cos - q1 * sin tl.store(OutQ + q0_off + h * stride_hq, q0_out, mask=s_mask) q1_out = q1 * cos + q0 * sin tl.store(OutQ + q1_off + h * stride_hq, q1_out, mask=s_mask) for h in range(BLOCK_HK): k0 = tl.load(K + k0_off + h * stride_hk, mask=s_mask) k1 = tl.load(K + k1_off + h * stride_hk, mask=s_mask) k0_out = k0 * cos - k1 * sin tl.store(OutK + k0_off + h * stride_hk, k0_out, mask=s_mask) k1_out = k1 * cos + k0 * sin tl.store(OutK + k1_off + h * stride_hk, k1_out, mask=s_mask)
{ "Data Type": [ "fp32", "fp16", "bf16" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/tascj/kaggle-lmsys-chatbot-arena/blob/83cd93d50b9283c18711e8c63e4e1c6399c7b9ce/human_pref/inference/ops/fused_rotary_emb.py
4efaee35-c75d-4f5c-8424-f258ebfd3ef4
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps) for BK in [32, 64] for BV in [64, 128] for num_warps in [2, 4, 8]], key=['BT']) @triton.jit def chunk_gla_fwd_kernel_o(q, v, g, h, o, A, offsets, indices, scale, T: tl .constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl. constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl. constexpr, HEAD_FIRST: tl.constexpr): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T m_s = tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :] b_o = tl.zeros([BT, BV], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_g = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_g = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (K, V), ( V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_g = tl.load(p_g, boundary_check=(0, 1)) b_qg = (b_q * tl.exp(b_g)).to(b_q.dtype) b_h = tl.load(p_h, boundary_check=(0, 1)) if i_k >= 0: b_o += tl.dot(b_qg, b_h.to(b_qg.dtype)) if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_A = tl.load(p_A, boundary_check=(0, 1)) b_A = tl.where(m_s, b_A, 0.0).to(b_v.dtype) b_o += tl.dot(b_A, b_v, allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32", "bf16" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py
2d261111-e9c4-4247-abba-85e8407ab595
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def _multi_head_jagged_flash_attention_fwd_kernel(q_ptr, k_ptr, v_ptr, offset_ptr, o_ptr, lse_i_ptr, stride_qh, stride_qm, stride_qd, stride_kh, stride_kn, stride_kd, stride_vh, stride_vn, stride_vd, stride_oh, stride_om, stride_od, stride_lse_h, num_heads: tl.constexpr, max_seq_len: tl.constexpr, D: tl.constexpr, allow_tf32: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_D: tl.constexpr): pid_m = tl.program_id(axis=0) pid_bh = tl.program_id(axis=1) pid_batch = pid_bh // num_heads pid_head = pid_bh % num_heads begin = tl.load(offset_ptr + pid_batch) end = tl.load(offset_ptr + pid_batch + 1) seqlen = end - begin seqlen = tl.minimum(seqlen, max_seq_len) if pid_m * BLOCK_M >= seqlen: return offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_D) acc = tl.zeros([BLOCK_M, BLOCK_D], dtype=tl.float32) mi = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') li = tl.zeros([BLOCK_M], dtype=tl.float32) for j in range(0, seqlen, BLOCK_N): offs_n = tl.arange(0, BLOCK_N) + j q_ptrs = q_ptr + pid_head * stride_qh + begin * stride_qm + (offs_m [:, None] * stride_qm + offs_d[None, :] * stride_qd) k_ptrs = k_ptr + pid_head * stride_kh + begin * stride_kn + (offs_n [None, :] * stride_kn + offs_d[:, None] * stride_kd) qk = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for d in range(0, D, BLOCK_D): curr_d = d + offs_d q = tl.load(q_ptrs, mask=(curr_d[None, :] < D) & (offs_m[:, None] < seqlen), other=0.0) k = tl.load(k_ptrs, mask=(curr_d[:, None] < D) & (offs_n[None, :] < seqlen), other=0.0) qk += tl.dot(q, k, allow_tf32=allow_tf32) q_ptrs += BLOCK_D * stride_qd k_ptrs += BLOCK_D * stride_kd mi_new = tl.maximum(tl.max(qk, axis=1), mi) mn_mask = (offs_m[:, None] < seqlen) & (offs_n[None, :] < seqlen) p = tl.exp(qk - mi_new[:, None]) p = tl.where(mn_mask, p, 0.0) lij_hat = tl.sum(p, axis=1) alpha = tl.exp(mi - mi_new) li = alpha * li + lij_hat acc = alpha[:, None] * acc v_ptrs = v_ptr + pid_head * stride_vh + begin * stride_vn + (offs_d [None, :] * stride_vd + offs_n[:, None] * stride_vn) v = tl.load(v_ptrs, mask=(offs_d[None, :] < D) & (offs_n[:, None] < seqlen), other=0.0) p /= max_seq_len p = p.to(v_ptr.dtype.element_ty) acc += tl.dot(p, v, allow_tf32=allow_tf32) mi = mi_new lse_i = mi + tl.math.log(li) lse_i_offsets = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) lse_i_ptrs = lse_i_ptr + pid_head * stride_lse_h + begin + lse_i_offsets tl.store(lse_i_ptrs, lse_i, mask=lse_i_offsets < seqlen) acc = acc / li[:, None] o_ptrs = o_ptr + (pid_head * stride_oh + begin * stride_om + offs_m[:, None] * stride_om + offs_d[None, :] * stride_od) o_mask = (offs_m[:, None] < seqlen) & (offs_d[None, :] < D) tl.store(o_ptrs, acc, mask=o_mask)
{ "Data Type": [ "fp32", "bf16" ], "Functionality": [ "Attention Mechanisms", "Softmax", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings", "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
aa5c6a98-da4b-4b90-9be0-e4a00ab26b49
mlstm_matmul.py
LukasBluebaum/xLSTM-Triton-CUDA-Implementation
mlstm_matmul.py
6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b
0
@triton.jit def mlstm_matmul_kernel_backward_db(dH, Q, K, V, F, I, M, B, dB, NH: tl. constexpr, S: tl.constexpr, D: tl.constexpr, SB: tl.constexpr): bh_id = tl.program_id(0) sb_id = tl.program_id(1) batch_id = bh_id // NH head_id = bh_id % NH batch_offset_dh = batch_id * NH * S * D + head_id * S * D batch_offset_f = batch_id * NH * S + head_id * S offset_dh = tl.arange(0, SB) + sb_id * SB offset_vk = tl.arange(0, SB) + sb_id * SB d_range = tl.arange(0, D) dh_range = batch_offset_dh + offset_dh[:, None] * D + d_range[None, :] dh_mask = (offset_dh[:, None] < S) & (d_range[None, :] < D) dh = tl.load(dH + dh_range, dh_mask) q = tl.load(Q + dh_range, dh_mask) m = tl.load(M + batch_offset_f + offset_dh, offset_dh < S) f = tl.load(F + batch_offset_f + offset_dh, offset_dh < S) f = tl.cumsum(tl.log(tl.sigmoid(f))) scale = tl.sqrt(tl.full((1,), D, dtype=tl.float32)) dn_acc = tl.zeros((SB,), dtype=tl.float32) for j in range(sb_id, -1, -1): vk_range = batch_offset_dh + offset_vk[:, None] * D + d_range[None, :] vk_mask = (offset_vk[:, None] < S) & (d_range[None, :] < D) v = tl.load(V + vk_range, vk_mask) f_next = tl.load(F + batch_offset_f + offset_vk, offset_vk < S) i = tl.load(I + batch_offset_f + offset_vk, offset_vk < S) f_next = tl.log(tl.sigmoid(f_next)) if j == sb_id: f_next = tl.cumsum(f_next) d = f[:, None] - f_next[None, :] + i[None, :] mask = offset_dh[:, None] >= offset_vk[None, :] d = tl.where(mask, d, -float('inf')) else: f += tl.sum(f_next) f_next = tl.cumsum(f_next) d = f[:, None] - f_next[None, :] + i[None, :] d = tl.exp(d - m[:, None]) dc = matrix_mult(dh, tl.trans(v), SB) k = tl.load(K + vk_range, vk_mask) / scale c_tilde = matrix_mult(q, tl.trans(k), SB) * d dn_acc += tl.sum(c_tilde * dc, 1) offset_vk -= SB b = tl.load(B + batch_offset_f + offset_dh, offset_dh < S) n = tl.maximum(tl.abs(b), tl.exp(-m)) + 1e-06 dn = -dn_acc * (1 / tl.exp(tl.log(n) * 2.0)) db = sign(b) * dn * tl.where(tl.abs(b) > tl.exp(-m), 1.0, 0.0) tl.store(dB + batch_offset_f + offset_dh, db, offset_dh < S)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_matmul.py
03082872-4113-4a3f-8432-9b3df03409c0
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/rwkv6/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK}, num_warps=num_warps, num_stages=num_stages) for BK in [32, 64] for num_warps in [1, 2, 4, 8] for num_stages in [2, 3, 4]], key=['BC']) @triton.jit def chunk_rwkv6_fwd_A_kernel_intra_sub_inter(q, k, gi, ge, A, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, NC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H i_i, i_j = i_c // NC, i_c % NC if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if i_t * BT + i_i * BC >= T: return if i_i <= i_j: return b_A = tl.zeros([BC, BC], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): o_k = i_k * BK + tl.arange(0, BK) m_k = o_k < K if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_gq = tl.make_block_ptr(ge + i_bh * T * K, (T, K), (K, 1), ( i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) p_gk = tl.make_block_ptr(gi + i_bh * T * K, (K, T), (1, K), ( i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) p_gn = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_gq = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) p_gk = tl.make_block_ptr(gi + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) p_gn = tl.max_contiguous(tl.multiple_of(gi + (bos + i_t * BT + i_i * BC) * H * K + i_h * K + o_k, BK), BK) b_gn = tl.load(p_gn, mask=m_k, other=0) b_q = tl.load(p_q, boundary_check=(0, 1)) b_gq = tl.load(p_gq, boundary_check=(0, 1)) b_qg = b_q * tl.exp(b_gq - b_gn[None, :]) * scale b_k = tl.load(p_k, boundary_check=(0, 1)) b_gk = tl.load(p_gk, boundary_check=(0, 1)) b_kg = b_k * tl.exp(b_gn[:, None] - b_gk) b_A += tl.dot(b_qg, b_kg) if HEAD_FIRST: p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) else: p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) tl.store(p_A, b_A.to(A.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/chunk.py
af45c3e7-e57c-45df-8d0a-061adf132ddc
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES, BLOCK_SIZES, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_sum_kernel_variable_length_loop_buffer_then_sum( input_ptr_values, input_ptr_offsets, output_ptr, M, BLOCK_SIZE_RAGGED: tl.constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_ragged = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((BLOCK_SIZE_RAGGED, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_ragged ), tl.load(input_ptr_offsets + (pid_ragged + 1)) for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED ): offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m buffer += tl.load(input_ptr_values + idxs, mask=mask, other=0) buffer_sum = tl.sum(buffer, axis=0) buffer_view = buffer_sum.reshape((BLOCK_SIZE_M,)) output_offsets = offsets_m + pid_ragged * M output_mask = output_offsets < M * (pid_ragged + 1) tl.store(output_ptr + output_offsets, buffer_view, mask=output_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_sum/kernels.py
7505340d-3573-43b3-becd-e287423981c1
triton_flash_attention.py
IBM/vllm
vllm/attention/ops/triton_flash_attention.py
99523dd62be2ecf6c6db15e8133aaaf7855e7e86
0
@triton.jit def load_fn(block_ptr, first, second, pad): if first and second: tensor = tl.load(block_ptr, boundary_check=(0, 1), padding_option=pad) elif first: tensor = tl.load(block_ptr, boundary_check=(0,), padding_option=pad) elif second: tensor = tl.load(block_ptr, boundary_check=(1,), padding_option=pad) else: tensor = tl.load(block_ptr) return tensor
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/attention/ops/triton_flash_attention.py
feab1add-a03a-45e1-9a8b-92ffbf911c83
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/based/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def parallel_based_fwd_kernel(q, k, v, o, z, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BTL: tl.constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr): i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) NV = tl.cdiv(V, BV) i_k = i_kv // NV i_v = i_kv % NV p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BTS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BTS, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_o = tl.zeros([BTL, BV], dtype=tl.float32) b_z = tl.zeros([BTL], dtype=tl.float32) for _ in range(0, i_c * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = 1 + b_s + 0.5 * b_s * b_s b_z += tl.sum(b_s, axis=1) b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) p_k = tl.advance(p_k, (0, BTS)) p_v = tl.advance(p_v, (BTS, 0)) tl.debug_barrier() o_q = tl.arange(0, BTL) o_k = tl.arange(0, BTS) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i_c * BTL), (BK, BTS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTS, BV), (1, 0)) for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) m_s = o_q[:, None] >= o_k[None, :] b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = 1 + b_s + 0.5 * b_s * b_s b_s = tl.where(m_s, b_s, 0) b_z += tl.sum(b_s, axis=1) b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) p_k = tl.advance(p_k, (0, BTS)) p_v = tl.advance(p_v, (BTS, 0)) o_k += BTS p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * s_v_h, (T, V), ( s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) p_z = z + (i_bh + B * H * i_k) * T + i_c * BTL + tl.arange(0, BTL) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=i_c * BTL + tl.arange( 0, BTL) < T)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/based/parallel.py
84ed0301-81a1-45f6-b51b-ce832f2a056f
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/simple_gla/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=4), triton.Config({}, num_warps=8)], key=['BT', 'BK', 'BV']) @triton.jit def chunk_simple_gla_bwd_kernel_dqkg(q, k, v, h, g, do, dh, dq, dk, dg, offsets, indices, scale, B: tl.constexpr, T: tl.constexpr, H: tl. constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl. constexpr, BV: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl. constexpr): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) all = T T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T all = B * T o_i = tl.arange(0, BT) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT, ), (0,)) b_g_last = tl.load(g + i_bh * T + min(i_t * BT + BT, T) - 1) else: p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) b_g_last = tl.load(g + (bos + min(i_t * BT + BT, T) - 1) * H + i_h) b_g = tl.load(p_g, boundary_check=(0,)) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_ds = tl.zeros([BT, BT], dtype=tl.float32) b_dg = tl.zeros([BT], dtype=tl.float32) b_dg_last = tl.zeros([1], dtype=tl.float32) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (V, K), ( 1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)) b_dh = tl.load(p_dh, boundary_check=(0, 1)) b_dg_last += tl.sum(b_h * b_dh) b_ds += tl.dot(b_do, tl.trans(b_v)) b_dq += tl.dot(b_do, b_h.to(b_do.dtype)) b_dk += tl.dot(b_v, b_dh.to(b_v.dtype)) if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dg = tl.make_block_ptr(dg + (i_k * B * H + i_bh) * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BK, BT), (0, 1)) p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dg = tl.make_block_ptr(dg + (i_k * all + bos) * H + i_h, (T,), (H ,), (i_t * BT,), (BT,), (0,)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_dg_last *= tl.exp(b_g_last) b_dq = b_dq * tl.exp(b_g)[:, None] * scale b_dk = b_dk * tl.exp(-b_g + b_g_last)[:, None] b_dg_last += tl.sum(b_dk * b_k) b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale * tl.exp(b_g [:, None] - b_g[None, :]), 0) b_ds = b_ds.to(b_k.dtype) b_dq += tl.dot(b_ds, b_k) b_dk += tl.dot(tl.trans(b_ds), b_q) b_dg += tl.sum(b_q * b_dq - b_k * b_dk, axis=1) b_dg = tl.where(o_i < min(BT, T - i_t * BT) - 1, b_dg, b_dg + b_dg_last) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/simple_gla/chunk.py
35265897-fe76-4437-a48d-a82641778823
hilbert.py
Kitsunetic/space-filling-pytorch
space_filling_pytorch/functional/hilbert.py
0de955ad1036973ee7506c5a0124c208acec722d
0
@triton.jit def _encode_hilbert_kernel(xyz_ptr, code_ptr, B, N, space_size, x_offset, y_offset, z_offset, str_xyz_B, str_xyz_N, str_xyz_C, BLK: tl.constexpr, ASSIGN_BATCH_INDEX: tl.constexpr): pid_b = tl.program_id(0) pid_n = tl.program_id(1) offs_n = pid_n * BLK + tl.arange(0, BLK) mask_n = offs_n < N xyz_ptrs = xyz_ptr + pid_b * str_xyz_B + offs_n * str_xyz_N fx = tl.load(xyz_ptrs + x_offset * str_xyz_C, mask=mask_n) fy = tl.load(xyz_ptrs + y_offset * str_xyz_C, mask=mask_n) fz = tl.load(xyz_ptrs + z_offset * str_xyz_C, mask=mask_n) ret = _calculate_hilbert_distance(fx, fy, fz, space_size) if ASSIGN_BATCH_INDEX: ret |= pid_b.to(tl.int64) << 48 tl.store(code_ptr + pid_b * N + offs_n, ret, mask=mask_n)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/hilbert.py
f7e0aaee-d0e9-4cb0-8788-587e3a9bf44c
triton_flash_attention.py
IBM/vllm
vllm/attention/ops/triton_flash_attention.py
99523dd62be2ecf6c6db15e8133aaaf7855e7e86
0
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, actual_seqlen_k, dropout_p, philox_seed, batch_philox_offset, encoded_softmax_block_ptr, block_min, block_max, offs_n_causal, masked_blocks, n_extra_tokens, bias_ptr, IS_CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl. constexpr, OFFS_M: tl.constexpr, OFFS_N: tl.constexpr, PRE_LOAD_V: tl. constexpr, MASK_STEPS: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr, PADDED_HEAD: tl.constexpr): for start_n in range(block_min, block_max, BLOCK_N): k = load_fn(K_block_ptr, PADDED_HEAD, MASK_STEPS and n_extra_tokens != 0, 'zero') if PRE_LOAD_V: v = load_fn(V_block_ptr, MASK_STEPS and n_extra_tokens != 0, PADDED_HEAD, 'zero') qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) if MASK_STEPS: if start_n + BLOCK_N == block_max and n_extra_tokens != 0: boundary_m = tl.full([BLOCK_M], actual_seqlen_k, dtype=tl.int32 ) size_n = start_n + OFFS_N[None, :] mask = size_n < boundary_m[:, None] qk = tl.where(mask, qk, float('-inf')) if IS_CAUSAL: causal_boundary = start_n + offs_n_causal causal_mask = OFFS_M[:, None] >= causal_boundary[None, :] qk = tl.where(causal_mask, qk, float('-inf')) qk += tl.dot(q, k) if bias_ptr is not None: bias = load_fn(bias_ptr, False, MASK_STEPS and n_extra_tokens != 0, 'zero') qk += bias * 1.44269504089 m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk = qk - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) if ENABLE_DROPOUT: philox_offset = (batch_philox_offset + start_m * BLOCK_M * actual_seqlen_k + start_n - BLOCK_N) keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, actual_seqlen_k) if RETURN_ENCODED_SOFTMAX: tl.store(encoded_softmax_block_ptr, tl.where(keep, p, -p). to(encoded_softmax_block_ptr.type.element_ty)) p = tl.where(keep, p, 0.0) elif RETURN_ENCODED_SOFTMAX: tl.store(encoded_softmax_block_ptr, p.to( encoded_softmax_block_ptr.type.element_ty)) alpha = tl.math.exp2(m_i - m_ij) acc = acc * alpha[:, None] if not PRE_LOAD_V: v = load_fn(V_block_ptr, MASK_STEPS and n_extra_tokens != 0, PADDED_HEAD, 'zero') l_i = l_i * alpha + l_ij m_i = m_ij acc += tl.dot(p.to(V_block_ptr.type.element_ty), v) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) if bias_ptr is not None: bias_ptr = tl.advance(bias_ptr, (0, BLOCK_N)) if RETURN_ENCODED_SOFTMAX: encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/attention/ops/triton_flash_attention.py
49a964a1-bf73-4726-98df-82a3e693bd2f
fp8_gemm.py
pytorch/FBGEMM
fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.autotune(configs=MATMUL_CONFIGS + [Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=3, num_warps= 8)], key=['m_key', 'n_key', 'k_key']) @triton.heuristics({'EVEN_K': lambda args: args['K'] % (args['BLOCK_K'] * args['SPLIT_K']) == 0}) @triton.jit def _kernel_matmul_fp8_row_no_fast_acc(A_ptr, B_ptr, C_ptr, M, N, K, m_key, n_key, k_key, A_scale, B_scale, Bias, stride_am, stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, dot_out_dtype: tl.constexpr, allow_tf32: tl.constexpr, fp8_fast_accum: tl.constexpr, BLOCK_M: tl. constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl. constexpr, SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, USE_BIAS: tl. constexpr, AB_DTYPE: tl.constexpr, NUM_SMS: tl.constexpr) ->None: """Matmul kernel of [M, K] @ [N, K] with row-wise scales performs swizzled matmul in [BLOCK_M, BLOCK_K] with [BLOCK_K, BLOCK_N] tiles. Args: A (TensorWrapper): [M, K] input tensor. B (TensorWrapper): [N, K] input tensor. C (TensorWrapper): [M, N] output tensor. M (int): M dimension of input tensor. N (int): N dimension of input tensor. K (int): K dimension of input tensor. m_key (int): Autotuning key for M dimension of input tensor. n_key (int): Autotuning key for N dimension of input tensor. k_key (int): Autotuning key for K dimension of input tensor. A_scale (TensorWrapper): [M] reciprocal scale tensor per row. A * A_scale = original A B_scale (TensorWrapper): [N] reciprocal scale tensor per row. B * B_scale = original B Bias (TensorWrapper): [N] Optional bias tensor. stride_am (int): Stride of M dimension of A. stride_ak (int): Stride of K dimension of A. stride_bn (int): Stride of N dimension of B. stride_bk (int): Stride of K dimension of B. stride_cm (int): Stride of M dimension of C. stride_cn (int): Stride of N dimension of C. dot_out_dtype (torch.dtype): Output type of tensor core. allow_tf32 (bool): Whether to use TF32 for tensor core. fp8_fast_accum (bool): Whether to use fast accumulation for tensor core. BLOCK_M (int): Block size for M dimension. BLOCK_N (int): Block size for N dimension. BLOCK_K (int): Block size for K dimension. GROUP_M (int): Number of groups for M dimension swizzle. SPLIT_K (int): Number of SM's to launch per row. EVEN_K (bool): Whether K is evenly divisible by BLOCK_K * SPLIT_K. USE_BIAS(bool): Whether to use bias. AB_DTYPE (bool): Wether to cast A and B to C.dtype before tensor core. """ start_pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_M) num_pid_n = tl.cdiv(N, BLOCK_N) k_tiles = tl.cdiv(K, BLOCK_K) num_tiles = num_pid_m * num_pid_n tiles_per_SM = num_tiles // NUM_SMS if start_pid < num_tiles % NUM_SMS: tiles_per_SM += 1 tile_id = start_pid - NUM_SMS ki = -1 offs_k_for_mask = tl.arange(0, BLOCK_K) num_pid_in_group = GROUP_M * num_pid_n pid_m = 0 pid_n = 0 offs_am = tl.arange(0, BLOCK_M) offs_bn = tl.arange(0, BLOCK_N) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype) for _ in range(0, k_tiles * tiles_per_SM): ki = tl.where(ki == k_tiles - 1, 0, ki + 1) if ki == 0: tile_id += NUM_SMS group_id = tile_id // num_pid_in_group first_pid_m = group_id * GROUP_M group_size_m = min(num_pid_m - first_pid_m, GROUP_M) pid_m = first_pid_m + tile_id % group_size_m pid_n = tile_id % num_pid_in_group // group_size_m start_m = pid_m * BLOCK_M start_n = pid_n * BLOCK_N offs_am = start_m + tl.arange(0, BLOCK_M) offs_bn = start_n + tl.arange(0, BLOCK_N) offs_am = tl.where(offs_am < M, offs_am, 0) offs_bn = tl.where(offs_bn < N, offs_bn, 0) offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_M), BLOCK_M) offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_N), BLOCK_N) offs_k = ki * BLOCK_K + tl.arange(0, BLOCK_K) A = A_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak ) B = B_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn ) a = tl.load(A, mask=offs_k_for_mask[None, :] < K - ki * BLOCK_K, other=0.0) b = tl.load(B, mask=offs_k_for_mask[:, None] < K - ki * BLOCK_K, other=0.0) acc += tl.dot(a, b, out_dtype=dot_out_dtype, allow_tf32=allow_tf32) if ki == k_tiles - 1: rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) a_scale = tl.load(A_scale + rm, mask=rm < M) b_scale = tl.load(B_scale + rn, mask=rn < N) scale = a_scale[:, None] * b_scale[None, :] acc *= scale if USE_BIAS: bias = tl.load(Bias + rn, mask=rn < N) acc += bias[None, :] acc = acc.to(C_ptr.dtype.element_ty) C = C_ptr + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] tl.store(C, acc, mask=mask) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype)
{ "Data Type": [], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
1c6094ba-7870-44ef-a8cd-0333dd051641
activations.py
sustcsonglin/flash-linear-attention
fla/modules/activations.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32)], key=['D']) @triton.jit def logsigmoid_fwd_kernel(x, y, temperature, T: tl.constexpr, D: tl. constexpr, B: tl.constexpr): i = tl.program_id(0) o_i = i * B + tl.arange(0, B) m_i = o_i < T b_x = tl.load(x + o_i, mask=m_i, other=0.0).to(tl.float32) b_m = tl.minimum(0.0, b_x) b_z = 1.0 + tl.exp(-tl.abs(b_x)) b_y = (b_m - tl.log(b_z)) / temperature tl.store(y + o_i, b_y.to(y.dtype.element_ty), mask=m_i)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/activations.py
7de4e638-bcf1-4f0d-ae73-3e9eb9ad0241
transposable_semi_structured.py
huyz2023/2by4-pretrain
sparse/transposable_semi_structured.py
9e330125dea71e5a3dee235f4efb8869f9e4cdd0
0
@triton.jit def _to_transposable_sparse_semi_structured_kernel(dense_ptr, sparse_ptr, mask_raw_ptr, mask_ptr, dense_row_stride, dense_col_stride, sparse_row_stride, sparse_col_stride, mask_raw_row_stride, mask_raw_col_stride, mask_row_stride, mask_col_stride, m, k, n, abs, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) * 32 + (tl.arange(0, 128) // 16 * 4)[None, : ] + (tl.arange(0, 16) // 4)[:, None] col_idx = tl.program_id(1) * 64 + (tl.arange(0, 128) % 16 * 4)[None, :] + ( tl.arange(0, 16) % 4)[:, None] dense = tl.load(dense_ptr + row_idx * dense_row_stride + col_idx * dense_col_stride) mask_raw = tl.load(mask_raw_ptr + tl.arange(0, 16)[None, :] * mask_raw_col_stride + tl.arange(0, BLOCK_SIZE)[:, None] * mask_raw_row_stride, mask=tl.arange(0, BLOCK_SIZE)[:, None] < n, other=0) sum = tl.dot(mask_raw, tl.abs(dense)) if abs else tl.dot(mask_raw, dense) sum = tl.where(tl.arange(0, BLOCK_SIZE)[:, None] < n, sum, -float('inf')) max = tl.argmax(sum, 0) mask_idx = max[None, :] * 16 + tl.arange(0, 16)[:, None] mask = tl.load(mask_raw_ptr + mask_idx).to(tl.int1) tl.store(sparse_ptr + row_idx * sparse_row_stride + col_idx * sparse_col_stride, dense, mask=mask) tl.store(mask_ptr + row_idx * mask_row_stride + col_idx * mask_col_stride, mask)
{ "Data Type": [], "Functionality": [ "Top-K Selection", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "BSD" ]
https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/transposable_semi_structured.py
7b3ef975-67fb-4aaf-98b2-e7dc5ae1976a
prefix_prefill.py
IBM/vllm
vllm/attention/ops/prefix_prefill.py
99523dd62be2ecf6c6db15e8133aaaf7855e7e86
0
@triton.jit def _fwd_kernel_flash_attn_v2(Q, K, V, K_cache, V_cache, B_Loc, sm_scale, B_Start_Loc, B_Seqlen, B_Ctxlen, block_size, x, Out, stride_b_loc_b, stride_b_loc_s, stride_qbs, stride_qh, stride_qd, stride_kbs, stride_kh, stride_kd, stride_vbs, stride_vh, stride_vd, stride_obs, stride_oh, stride_od, stride_k_cache_bs, stride_k_cache_h, stride_k_cache_d, stride_k_cache_bl, stride_k_cache_x, stride_v_cache_bs, stride_v_cache_h, stride_v_cache_d, stride_v_cache_bl, num_queries_per_kv: int, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl. constexpr, BLOCK_N: tl.constexpr): cur_batch = tl.program_id(0) cur_head = tl.program_id(1) start_m = tl.program_id(2) cur_kv_head = cur_head // num_queries_per_kv cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch) cur_batch_seq_len = tl.load(B_Seqlen + cur_batch) cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch) block_start_loc = BLOCK_M * start_m offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) off_q = (cur_batch_in_all_start_index + offs_m[:, None] ) * stride_qbs + cur_head * stride_qh + offs_d[None, :] * stride_qd q = tl.load(Q + off_q, mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len, other=0.0) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) for start_n in range(0, cur_batch_ctx_len, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) bn = tl.load(B_Loc + cur_batch * stride_b_loc_b + (start_n + offs_n ) // block_size * stride_b_loc_s, mask=start_n + offs_n < cur_batch_ctx_len, other=0) off_k = bn[None, : ] * stride_k_cache_bs + cur_kv_head * stride_k_cache_h + offs_d[ :, None] // x * stride_k_cache_d + (start_n + offs_n[None, :] ) % block_size * stride_k_cache_bl + offs_d[:, None ] % x * stride_k_cache_x off_v = bn[:, None ] * stride_v_cache_bs + cur_kv_head * stride_v_cache_h + offs_d[ None, :] * stride_v_cache_d + (start_n + offs_n[:, None] ) % block_size * stride_v_cache_bl k = tl.load(K_cache + off_k, mask=start_n + offs_n[None, :] < cur_batch_ctx_len, other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) qk = tl.where(start_n + offs_n[None, :] < cur_batch_ctx_len, qk, float('-inf')) qk *= sm_scale m_ij = tl.max(qk, 1) m_i_new = tl.maximum(m_i, m_ij) p = tl.math.exp(qk - m_i_new[:, None]) l_ij = tl.sum(p, 1) alpha = tl.math.exp(m_i - m_i_new) l_i_new = alpha * l_i + l_ij acc_scale = alpha acc = acc * acc_scale[:, None] v = tl.load(V_cache + off_v, mask=start_n + offs_n[:, None] < cur_batch_ctx_len, other=0.0) p = p.to(v.dtype) acc += tl.dot(p, v) l_i = l_i_new m_i = m_i_new off_k = offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh + offs_d[ :, None] * stride_kd off_v = offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh + offs_d[ None, :] * stride_vd k_ptrs = K + off_k v_ptrs = V + off_v block_mask = tl.where(block_start_loc < cur_batch_seq_len - cur_batch_ctx_len, 1, 0) for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) k = tl.load(k_ptrs + (cur_batch_in_all_start_index + start_n) * stride_kbs, mask=start_n + offs_n[None, :] < cur_batch_seq_len - cur_batch_ctx_len, other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) qk *= sm_scale qk = tl.where(offs_m[:, None] >= start_n + offs_n[None, :], qk, float('-inf')) m_ij = tl.max(qk, 1) m_i_new = tl.maximum(m_i, m_ij) p = tl.math.exp(qk - m_i_new[:, None]) l_ij = tl.sum(p, 1) alpha = tl.math.exp(m_i - m_i_new) l_i_new = alpha * l_i + l_ij acc_scale = alpha acc = acc * acc_scale[:, None] v = tl.load(v_ptrs + (cur_batch_in_all_start_index + start_n) * stride_vbs, mask=start_n + offs_n[:, None] < cur_batch_seq_len - cur_batch_ctx_len, other=0.0) p = p.to(v.dtype) acc += tl.dot(p, v) l_i = l_i_new m_i = m_i_new off_o = (cur_batch_in_all_start_index + offs_m[:, None] ) * stride_obs + cur_head * stride_oh + offs_d[None, :] * stride_od out_ptrs = Out + off_o tl.store(out_ptrs, acc, mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len) return
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/attention/ops/prefix_prefill.py
6d49d736-8ea9-4cd8-ba62-bcb2f44902ea
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/abc/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def chunk_abc_bwd_kernel_intra_K(v, z, do, dA, s_v_h, s_v_t, s_v_d, scale, T: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BV: tl.constexpr, NC: tl.constexpr): i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_t, i_i, i_j = i_c // (NC * NC), i_c % (NC * NC) // NC, i_c % (NC * NC ) % NC n_bh = tl.num_programs(2) if i_i > i_j: p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), ( i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1)) p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_zn = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), (( i_t * BT + i_i * BC) * V + i_v * BV,), (BV,), (0,)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_dA = tl.make_block_ptr(dA + (i_bh + i_v * n_bh) * T * BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) b_zn = tl.load(p_zn, boundary_check=(0,)) b_z = tl.load(p_z, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_do = (b_do * tl.exp(b_zn[None, :] - b_z) * scale).to(b_do.dtype) b_v = tl.load(p_v, boundary_check=(0, 1)) b_v = tl.exp(b_v - b_zn[:, None]).to(b_v.dtype) b_dA = tl.dot(b_do, b_v, allow_tf32=False) tl.store(p_dA, b_dA.to(dA.dtype.element_ty), boundary_check=(0, 1)) elif i_i == i_j: p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T * V,), (s_v_d,), ((i_t * BT + i_j * BC) * V + i_v * BV,), (BV,), (0,)) p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) b_z = tl.load(p_z, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) * scale o_i = tl.arange(0, BC) o_A = (i_bh + i_v * n_bh) * T * BT + (i_t * BT + i_i * BC + tl. arange(0, BC)) * BT + i_j * BC m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T for j in range(0, BC): b_v = tl.load(p_v, boundary_check=(0,)).to(tl.float32) b_dA = tl.sum(b_do * tl.exp(b_v[None, :] - b_z), 1) b_dA = tl.where(o_i >= j, b_dA, 0) tl.store(dA + o_A + j, b_dA.to(b_do.dtype), mask=m_A) p_v = tl.advance(p_v, (V,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py
abbc7553-4ca9-4830-a5ff-405e42b5cd6b
rwkv_log.py
berlino/seq_icl
src/models/sequence/rnn/scan_triton/rwkv_log.py
9b9223d15348b5a415fb453ed988ed5f7ab9fbdc
0
@triton.jit def logsubexp(a, b, log_eps: tl.constexpr): max_ab = tl.maximum(tl.maximum(a, b), log_eps) return max_ab + tl.log(tl.exp(a - max_ab) - tl.exp(b - max_ab))
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "Apache" ]
https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/scan_triton/rwkv_log.py
a1e6cbbe-2b59-4e14-81c5-dd969b3c4059
triton_fused_attention.py
pytorch-labs/tritonbench
tritonbench/kernels/triton_fused_attention.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(list(filter(keep, configsTmaWSPersistent)), key=['N_CTX']) @triton.jit def _attn_fwd_tma_ws_persistent(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.constexpr, STAGE: tl.constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE: tl. constexpr, ENABLE_WS: tl.constexpr, GRID_MULTIPLE: tl.constexpr): tl.static_assert(BLOCK_N <= HEAD_DIM) n_tile_num = tl.cdiv(N_CTX, BLOCK_M) prog_id = tl.program_id(0) num_progs = tl.num_programs(0) total_tiles = n_tile_num * Z * H tiles_per_sm = total_tiles // num_progs if prog_id < total_tiles % num_progs: tiles_per_sm += 1 tile_idx = prog_id for _ in range(0, tiles_per_sm): pid = tile_idx % n_tile_num off_hz = tile_idx // n_tile_num _attn_fwd_compute_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid, Z, H, N_CTX, BLOCK_M, BLOCK_N, HEAD_DIM, STAGE, ENABLE_TMA, LOOP_SCHEDULE) tile_idx += num_progs
{ "Data Type": [], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py
4e993c1c-6857-48f0-95ea-0de66ed768a8
avgpool.py
neuro-ml/kerops
kerops/kernels/avgpool.py
735336775e825d5cb06b8850d25423661b12d1ac
0
@triton.jit def _AvgPoolCeilStats_cl3d_backward_impl(Inpgrad_ptr, Outgrad_ptr, Output_ptr, Meangrad_ptr, Sqmeangrad_ptr, h_outgrad, w_outgrad, d_outgrad, d_inpgrad, batch_stride_outgrad, H_stride_outgrad, W_stride_outgrad, batch_stride_inpgrad, H_stride_inpgrad, W_stride_inpgrad, numel_no_channels_inpgrad, num_channels: tl.constexpr, almost_half_d: tl.constexpr): batch = tl.program_id(0) H = tl.program_id(1) W = tl.program_id(2) Inpgrad_ptr += (batch * batch_stride_inpgrad + H * H_stride_inpgrad + W * W_stride_inpgrad) Output_ptr += (batch * batch_stride_inpgrad + H * H_stride_inpgrad + W * W_stride_inpgrad) pair_offset = tl.arange(0, 2) channels_offset = tl.arange(0, num_channels) d_offset = tl.arange(0, almost_half_d) inpgrad_offset = d_offset[:, None, None] * num_channels + channels_offset[ None, :, None] outgrad_offset = d_offset[:, None, None] * (2 * num_channels ) + channels_offset[None, :, None] + pair_offset[None, None, : ] * num_channels inpgrad_mask = d_offset[:, None, None] < d_inpgrad outgrad_mask = d_offset[:, None, None] * 2 + pair_offset[None, None, : ] < d_outgrad inpgrad = tl.load(Inpgrad_ptr + inpgrad_offset, mask=inpgrad_mask, other=0.0) output = tl.load(Output_ptr + inpgrad_offset, mask=inpgrad_mask, other=0.0) meangrad = tl.load(Meangrad_ptr + channels_offset)[None, :, None] sqmeangrad = tl.load(Sqmeangrad_ptr + channels_offset)[None, :, None] normalizer = tl.sum(outgrad_mask.to(tl.float16), axis=2)[:, :, None].to(tl .float16) W_skip = False if 2 * (W + 1) > w_outgrad: W_skip = True else: normalizer *= 2 H_skip = False if 2 * (H + 1) > h_outgrad: H_skip = True else: normalizer *= 2 meangrad = meangrad / numel_no_channels_inpgrad sqmeangrad = 2 * output.to(tl.float32 ) * sqmeangrad / numel_no_channels_inpgrad grad = (inpgrad + meangrad + sqmeangrad) / normalizer Tmp_ptr = (Outgrad_ptr + batch * batch_stride_outgrad + 2 * H * H_stride_outgrad + 2 * W * W_stride_outgrad) tl.store(Tmp_ptr + outgrad_offset, grad, mask=outgrad_mask) if not W_skip: Tmp_ptr = (Outgrad_ptr + batch * batch_stride_outgrad + 2 * H * H_stride_outgrad + (2 * W + 1) * W_stride_outgrad) tl.store(Tmp_ptr + outgrad_offset, grad, mask=outgrad_mask) if not H_skip: Tmp_ptr = Outgrad_ptr + batch * batch_stride_outgrad + (2 * H + 1 ) * H_stride_outgrad + 2 * W * W_stride_outgrad tl.store(Tmp_ptr + outgrad_offset, grad, mask=outgrad_mask) if not H_skip and not W_skip: Tmp_ptr = Outgrad_ptr + batch * batch_stride_outgrad + (2 * H + 1 ) * H_stride_outgrad + (2 * W + 1) * W_stride_outgrad tl.store(Tmp_ptr + outgrad_offset, grad, mask=outgrad_mask)
{ "Data Type": [ "fp16", "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/avgpool.py
d2863f4d-a943-457c-8fe8-8bab49d63b2d
chunk_h_parallel.py
sustcsonglin/flash-linear-attention
fla/ops/common/chunk_h_parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'STORE_FINAL_STATE': lambda args: args['ht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64, 128] for BV in [32, 64, 128] for num_warps in [2, 4, 8, 16] for num_stages in [2, 3]], key= ['BT', 'USE_G', 'USE_GK', 'USE_GV']) @triton.jit def chunk_fwd_kernel_h_reduction(h, g, gk, gv, kvt, ht, offsets, chunk_offsets, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl .constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_G: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT b_h = tl.zeros([BK, BV], dtype=tl.float32) for i_t in range(NT): if HEAD_FIRST: p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) if i_t > 0: tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1)) last_idx = min(i_t * BT + BT, T) - 1 if USE_G: if HEAD_FIRST: b_g_last = tl.load(g + i_nh * T + last_idx) else: b_g_last = tl.load(g + bos * H + last_idx * H + i_h) b_h *= tl.exp(b_g_last) if USE_GK: if HEAD_FIRST: p_gk_last = (gk + i_nh * T * K + last_idx * K + i_k * BK + tl.arange(0, BK)) else: p_gk_last = gk + (bos + last_idx ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK) b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) < K, other=0.0) b_h *= tl.exp(b_gk_last)[:, None] if USE_GV: if HEAD_FIRST: p_gv_last = (gv + i_nh * T * V + last_idx * V + i_v * BV + tl.arange(0, BV)) else: p_gv_last = gv + (bos + last_idx ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV) b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) < V, other=0.0) b_h *= tl.exp(b_gv_last)[None, :] if STORE_FINAL_STATE: p_kvt = tl.make_block_ptr(kvt + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_ht = tl.make_block_ptr(ht + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h += tl.load(p_kvt, boundary_check=(0, 1)).to(tl.float32) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_parallel.py
e88a9daf-61e9-4aae-bbd8-4d5f74361199
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/simple_gla/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'NV': lambda args: triton.cdiv(args['V'], args['BV'])}) @triton.jit def parallel_simple_gla_bwd_kernel(q, k, v, g, do, dq, dk, dv, dg, s_k_h, s_k_t, s_v_h, s_v_t, scale, B: tl.constexpr, H: tl.constexpr, T: tl. constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl. constexpr, BK: tl.constexpr, BV: tl.constexpr, NV: tl.constexpr): i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_k, i_v = i_kv // NV, i_kv % NV parallel_simple_gla_bwd_kernel_dq(i_bh, i_t, i_k, i_v, i_kv, q, k, v, g, do, dq, dg, s_k_h, s_k_t, s_v_h, s_v_t, scale, B=B, H=H, T=T, K=K, V=V, BT=BT, BS=BS, BK=BK, BV=BV) tl.debug_barrier() parallel_simple_gla_bwd_kernel_dkv(i_bh, i_t, i_k, i_v, i_kv, q, k, v, g, do, dk, dv, dg, s_k_h, s_k_t, s_v_h, s_v_t, scale, B, H, T, K, V, BT, BS, BK, BV)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/simple_gla/parallel.py
ba44918d-689f-49fc-8bc9-8cd9eb5ecc57
gelu_and_mul.py
tascj/kaggle-lmsys-chatbot-arena
human_pref/inference/ops/gelu_and_mul.py
83cd93d50b9283c18711e8c63e4e1c6399c7b9ce
0
@triton.jit def _gelu_and_mul_kernel(input_ptr, stride_input_m, stride_input_n, stride_output_m, stride_output_n, size_m, size_n, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): tid = tl.program_id(0) input_m_offsets = tid * BLOCK_M + tl.arange(0, BLOCK_M) output_m_offsets = tid * BLOCK_M + tl.arange(0, BLOCK_M) pid = tl.program_id(1) input_n_offsets = pid * BLOCK_N + tl.arange(0, BLOCK_N) output_n_offsets = pid * BLOCK_N + tl.arange(0, BLOCK_N) up_offsets = input_m_offsets[:, None] * stride_input_m + (input_n_offsets [None, :] + size_n) * stride_input_n gate_offsets = input_m_offsets[:, None] * stride_input_m + input_n_offsets[ None, :] * stride_input_n res_offsets = output_m_offsets[:, None ] * stride_output_m + output_n_offsets[None, :] * stride_output_n up = tl.load(input_ptr + up_offsets, mask=(input_n_offsets < size_n)[ None, :] * (input_m_offsets < size_m)[:, None], other=0.0) gate = tl.load(input_ptr + gate_offsets, mask=(input_n_offsets < size_n )[None, :] * (input_m_offsets < size_m)[:, None], other=0.0).to(tl. float32) gate = gelu(gate) gate = gate.to(input_ptr.dtype.element_ty) tl.store(input_ptr + res_offsets, up * gate, mask=(output_n_offsets < size_n)[None, :] * (output_m_offsets < size_m)[:, None])
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/tascj/kaggle-lmsys-chatbot-arena/blob/83cd93d50b9283c18711e8c63e4e1c6399c7b9ce/human_pref/inference/ops/gelu_and_mul.py
db060ba9-fe89-418b-807d-5beda14cd648
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'OUTPUT_ATTENTIONS': lambda args: args['attn'] is not None} ) @triton.jit def parallel_delta_rule_fwd_kernel(q, k, k2, v, beta, o, o_new, attn, s_k_h, s_k_t, s_v_h, s_v_t, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, OUTPUT_ATTENTIONS: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, 1), (i_t * BT, 0), (BT, BK), (1, 0)) b_q = tl.zeros([BT, BK], dtype=tl.float32) b_q += tl.load(p_q, boundary_check=(0, 1)) b_o = tl.zeros([BT, BV], dtype=tl.float32) p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, 1), (i_t * BT, 0), (BT, BV), (1, 0)) b_o += tl.load(p_o, boundary_check=(0, 1)) for offset in range((i_t + 1) * BT - 2 * BS, i_t * BT - BS, -BS): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (1, s_k_t), (0, offset), (BK, BS), (0, 1)) p_k2 = tl.make_block_ptr(k2 + i_bh * s_k_h, (T, K), (s_k_t, 1), ( offset, 0), (BS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, 1), ( offset, 0), (BS, BV), (1, 0)) p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (offset,), (BS,), (0,)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_beta = tl.load(p_beta, boundary_check=(0,)) m_s = tl.arange(0, BT) >= offset - i_t * BT + BS b_s = tl.dot(b_q.to(b_k.dtype), b_k, allow_tf32=False) b_s = tl.where(m_s[:, None], b_s, 0) b_o += tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) b_k2 = (tl.load(p_k2, boundary_check=(0, 1)) * b_beta[:, None]).to(b_v .dtype) b_q -= tl.dot(b_s.to(b_v.dtype), b_k2, allow_tf32=False) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn + i_bh * T * T, (T, T), (T, 1), ( i_t * BT, offset), (BT, BS), (1, 0)) tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) for offset in range(i_t * BT - BS, -BS, -BS): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (1, s_k_t), (0, offset), (BK, BS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, 1), ( offset, 0), (BS, BV), (1, 0)) p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (offset,), (BS,), (0,)) p_k2 = tl.make_block_ptr(k2 + i_bh * s_k_h, (T, K), (s_k_t, 1), ( offset, 0), (BS, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_s = tl.dot(b_q.to(b_k.dtype), b_k, allow_tf32=False) b_o += tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) b_k2 = (tl.load(p_k2, boundary_check=(0, 1)) * b_beta[:, None]).to(b_v .dtype) b_q -= tl.dot(b_s.to(b_v.dtype), b_k2, allow_tf32=False).to(b_q.dtype) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn + i_bh * T * T, (T, T), (T, 1), ( i_t * BT, offset), (BT, BS), (1, 0)) tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) p_o_new = tl.make_block_ptr(o_new + i_bh * s_v_h, (T, V), (s_v_t, 1), ( i_t * BT, 0), (BT, BV), (1, 0)) tl.store(p_o_new, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication", "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/parallel.py
520e593c-f72d-4d79-8df6-fa4beed24ea7
fp8_gemm.py
pytorch/FBGEMM
fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.autotune(configs=[Config({'BLOCK_M': 128, 'BLOCK_N': 256, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=3, num_warps=8), Config({'BLOCK_M': 256, 'BLOCK_N': 128, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=3, num_warps= 8), Config({'BLOCK_M': 256, 'BLOCK_N': 64, 'BLOCK_K': 128, 'SPLIT_K': 1 }, num_stages=4, num_warps=4), Config({'BLOCK_M': 64, 'BLOCK_N': 256, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=4, num_warps=4), Config({ 'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=4, num_warps=4), Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4), Config({ 'BLOCK_M': 64, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages =4, num_warps=4), Config({'BLOCK_M': 64, 'BLOCK_N': 64, 'BLOCK_K': 512, 'SPLIT_K': 1}, num_stages=3, num_warps=4)], key=['m_key', 'n_key', 'k_key'] ) @triton.heuristics({'EVEN_K': lambda args: args['K'] % (args['BLOCK_K'] * args['SPLIT_K']) == 0}) @triton.jit def _kernel_matmul_fp8_row_tma_persistent(A_ptr, B_ptr, C_ptr, M, N, K, m_key, n_key, k_key, A_scale, B_scale, Bias, stride_am, stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, dot_out_dtype: tl.constexpr, c_dtype: tl.constexpr, bias_dtype: tl.constexpr, allow_tf32: tl. constexpr, fp8_fast_accum: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, AB_DTYPE: tl.constexpr, SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, NUM_SMS: tl. constexpr, USE_BIAS: tl.constexpr) ->None: """Matmul kernel of [M, K] @ [N, K] with row-wise scales performs swizzled matmul in [BLOCK_M, BLOCK_K] with [BLOCK_K, BLOCK_N] tiles. Args: A (TensorWrapper): [M, K] input tensor. B (TensorWrapper): [N, K] input tensor. C (TensorWrapper): [M, N] output tensor. M (int): M dimension of input tensor. N (int): N dimension of input tensor. K (int): K dimension of input tensor. A_scale (TensorWrapper): [M] reciprocal scale tensor per row. A * A_scale = original A B_scale (TensorWrapper): [N] reciprocal scale tensor per row. B * B_scale = original B stride_am (int): Stride of M dimension of A. stride_ak (int): Stride of K dimension of A. stride_bn (int): Stride of N dimension of B. stride_bk (int): Stride of K dimension of B. stride_cm (int): Stride of M dimension of C. stride_cn (int): Stride of N dimension of C. dot_out_dtype (torch.dtype): Output type of tensor core. allow_tf32 (bool): Whether to use TF32 for tensor core. fp8_fast_accum (bool): Whether to use fast accumulation for tensor core. BLOCK_M (int): Block size for M dimension. BLOCK_N (int): Block size for N dimension. BLOCK_K (int): Block size for K dimension. GROUP_M (int): Number of groups for M dimension swizzle. SPLIT_K (int): Number of SM's to launch per row. EVEN_K (bool): Whether K is evenly divisible by BLOCK_K * SPLIT_K. AB_DTYPE (bool): Wether to cast A and B to C.dtype before tensor core. """ start_pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_M) num_pid_n = tl.cdiv(N, BLOCK_N) k_tiles = tl.cdiv(K, BLOCK_K) num_tiles = num_pid_m * num_pid_n tiles_per_SM = num_tiles // NUM_SMS if start_pid < num_tiles % NUM_SMS: tiles_per_SM += 1 tile_id = start_pid - NUM_SMS ki = -1 pid_m = 0 pid_n = 0 offs_am = 0 offs_bn = 0 num_pid_in_group = GROUP_M * num_pid_n acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype) dtype_fp8 = tl.float8e4nv scale_dtype = tl.float32 for _ in range(0, k_tiles * tiles_per_SM): ki = tl.where(ki == k_tiles - 1, 0, ki + 1) if ki == 0: tile_id += NUM_SMS group_id = tile_id // num_pid_in_group first_pid_m = group_id * GROUP_M group_size_m = min(num_pid_m - first_pid_m, GROUP_M) pid_m = first_pid_m + tile_id % group_size_m pid_n = tile_id % num_pid_in_group // group_size_m offs_am = pid_m * BLOCK_M offs_bn = pid_n * BLOCK_N offs_am = tl.multiple_of(offs_am, BLOCK_M) offs_bn = tl.multiple_of(offs_bn, BLOCK_N) offs_k = ki * BLOCK_K a = tl._experimental_descriptor_load(A_ptr, [offs_am, offs_k], [ BLOCK_M, BLOCK_K], dtype_fp8) b = tl._experimental_descriptor_load(B_ptr, [offs_bn, offs_k], [ BLOCK_N, BLOCK_K], dtype_fp8) if fp8_fast_accum: acc = tl.dot(a, b.T, acc, out_dtype=dot_out_dtype, allow_tf32= allow_tf32) else: acc += tl.dot(a, b.T, out_dtype=dot_out_dtype, allow_tf32= allow_tf32) if ki == k_tiles - 1: a_scale = tl._experimental_descriptor_load(A_scale, [offs_am], [BLOCK_M], scale_dtype) b_scale = tl._experimental_descriptor_load(B_scale, [offs_bn], [BLOCK_N], scale_dtype) scale = a_scale[:, None] * b_scale[None, :] acc *= scale if USE_BIAS: bias = tl._experimental_descriptor_load(Bias, [offs_bn], [ BLOCK_N], bias_dtype) acc += bias[None, :] acc = acc.to(c_dtype) tl._experimental_descriptor_store(C_ptr, acc, [offs_am, offs_bn]) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype)
{ "Data Type": [], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
d240495b-66c0-479d-a4bb-97581826f003
mhmoe.py
dtadpole/triton-playground
mhmoe.py
2d317976722d63080133b1bf88b1f0cdec98f831
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_B': 32, 'BLOCK_SIZE_E': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_B': 64, 'BLOCK_SIZE_E': 32}, num_stages=4, num_warps=4), triton.Config({ 'BLOCK_SIZE_B': 32, 'BLOCK_SIZE_E': 64}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_B': 64, 'BLOCK_SIZE_E': 64}, num_stages=3, num_warps=4)], key=['B', 'D', 'E']) @triton.jit def mlp_wide_kernel_fwd(x_ptr, w1_ptr, w2_ptr, o_ptr, H, B, D: tl.constexpr, E, stride_xb, stride_xd, stride_w1d, stride_w1e, stride_w2e, stride_w2d, stride_ob, stride_od, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_E: tl. constexpr, ACTIVATION: tl.constexpr): """Kernel for computing the mlp Z = X @ W1, H = f(Z), O = H @ W2. - X has shape (B, D) - W1 has shape (D, E) - W2 has shape (E, D) - O has shape (B, D) """ pid = tl.program_id(axis=0) batch_groups = tl.cdiv(B, BLOCK_SIZE_B) pid_b = pid % batch_groups pid_h = pid // batch_groups TARGET_TYPE = x_ptr.type.element_ty x_ptrs = tl.make_block_ptr(base=x_ptr, shape=(B * H, D), strides=( stride_xb, stride_xd), offsets=(pid_h * B + pid_b * BLOCK_SIZE_B, 0 ), block_shape=(BLOCK_SIZE_B, D), order=(1, 0)) w1_ptrs = tl.make_block_ptr(base=w1_ptr, shape=(D * H, E), strides=( stride_w1d, stride_w1e), offsets=(pid_h * D, 0), block_shape=(D, BLOCK_SIZE_E), order=(1, 0)) w2_ptrs = tl.make_block_ptr(base=w2_ptr, shape=(E * H, D), strides=( stride_w2e, stride_w2d), offsets=(pid_h * E, 0), block_shape=( BLOCK_SIZE_E, D), order=(1, 0)) o_ptrs = tl.make_block_ptr(base=o_ptr, shape=(B * H, D), strides=( stride_ob, stride_od), offsets=(pid_h * B + pid_b * BLOCK_SIZE_B, 0 ), block_shape=(BLOCK_SIZE_B, D), order=(1, 0)) x = tl.load(x_ptrs) o = tl.zeros((BLOCK_SIZE_B, D), dtype=tl.float32) for e in range(0, tl.cdiv(E, BLOCK_SIZE_E)): w1 = tl.load(w1_ptrs) w2 = tl.load(w2_ptrs) z = tl.dot(x, w1, out_dtype=tl.float32) if ACTIVATION == 'leaky_relu': z = leaky_relu(z).to(TARGET_TYPE) elif ACTIVATION == 'silu': z = silu(z).to(TARGET_TYPE) elif ACTIVATION == 'sigmoid': z = tl.sigmoid(z).to(TARGET_TYPE) else: z = z.to(TARGET_TYPE) o = tl.dot(z, w2, o, out_dtype=tl.float32) w1_ptrs = tl.advance(w1_ptrs, (0, BLOCK_SIZE_E)) w2_ptrs = tl.advance(w2_ptrs, (BLOCK_SIZE_E, 0)) o = o.to(TARGET_TYPE) tl.store(o_ptrs, o)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe.py
d3df060f-25ae-4f53-8fb1-4c7cff1669ee
quantize.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/triton/quantize.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def _kernel_dequantize_mx4(A, mx4_lookup_table, out, M, GROUPS_PER_THREAD, GROUP_SIZE: tl.constexpr, GROUP_LOAD: tl.constexpr, USE_INT64: tl.constexpr ) ->None: """Dequantize a packed MX4 tensor and apply scaling. Args: A (Tensor): [M] MX4 tensor packed into int8. shared_exp (Tensor): Int8 tensor representing group exponent. mx4_lookup_table (Tensor): Map from mx4 integer value to floating point. M (int): Total number of elements in input. GROUPS_PER_THREAD (int): Number of groups each thread is responsible for. GROUP_SIZE (int): Size of chunks that use the same shared exponent. GROUP_LOAD (int): Number of groups to process simultaneously. USE_INT64 (bool): Whether to use int64 for indexing. """ MX4_BIT_MASK: tl.constexpr = 15 FP32_EXP_BIAS: tl.constexpr = 127 PACKED_GROUP_SIZE: tl.constexpr = GROUP_SIZE // 2 + 1 pid = tl.program_id(0) if USE_INT64: pid = pid.to(tl.int64) M = tl.cast(M, tl.int64) GROUPS_PER_THREAD = tl.cast(GROUPS_PER_THREAD, tl.int64) INPUT_CHUNK_SIZE = GROUPS_PER_THREAD * PACKED_GROUP_SIZE OUTPUT_CHUNK_SIZE = GROUPS_PER_THREAD * GROUP_SIZE OUTPUT_SIZE = M // PACKED_GROUP_SIZE * GROUP_SIZE input_start = pid * (GROUPS_PER_THREAD * PACKED_GROUP_SIZE) exp_start = input_start + GROUP_SIZE // 2 output_start = pid * OUTPUT_CHUNK_SIZE input_offset = tl.arange(0, GROUP_LOAD * GROUP_SIZE // 2) exp_indices = input_offset // (GROUP_SIZE // 2) input_offset = input_offset + exp_indices + input_start output_offset = tl.arange(0, GROUP_LOAD * GROUP_SIZE) + output_start exp_offset = exp_indices * PACKED_GROUP_SIZE + exp_start for _k in range(0, tl.cdiv(GROUPS_PER_THREAD, GROUP_LOAD)): a = tl.load(A + input_offset, mask=(input_offset < M) & ( input_offset < INPUT_CHUNK_SIZE * (pid + 1)), other=0.0) low_mx4 = a & MX4_BIT_MASK high_mx4 = a >> 4 & MX4_BIT_MASK low_fp32 = tl.load(mx4_lookup_table + low_mx4) high_fp32 = tl.load(mx4_lookup_table + high_mx4) exp = tl.load(A + exp_offset, mask=(exp_offset < M) & (exp_offset < INPUT_CHUNK_SIZE * (pid + 1)), other=0.0) exp = exp.to(tl.int16) - FP32_EXP_BIAS scale = tl.exp2(exp.to(tl.float64)).to(tl.float32) scaled_low_fp32 = scale * low_fp32 scaled_high_fp32 = scale * high_fp32 scaled_fp32 = tl.interleave(scaled_low_fp32, scaled_high_fp32) tl.store(out + output_offset, scaled_fp32, mask=(output_offset < OUTPUT_SIZE) & (output_offset < OUTPUT_CHUNK_SIZE * (pid + 1))) input_offset += GROUP_LOAD * PACKED_GROUP_SIZE exp_offset += GROUP_LOAD * PACKED_GROUP_SIZE output_offset += GROUP_LOAD * GROUP_SIZE
{ "Data Type": [ "int8", "fp32" ], "Functionality": [ "Quantization", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/quantize.py
9f4731c2-0c44-4143-a92f-bcfed7921b0a
normalization.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/normalization.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def triton_normalization_backward_kernel_1(grad_input_ptr, grad_output_ptr, grad_weight_partial_ptr, grad_bias_partial_ptr, output_ptr, weight_ptr, bias_ptr, inv_var_ptr, n_cols, n_rows, has_bias: tl.constexpr, zero_centered: tl.constexpr, block_size: tl.constexpr, block_size_row: tl.constexpr): rows = tl.program_id(0) * block_size_row + tl.arange(0, block_size_row)[ :, None] row_mask = rows < n_rows cols = tl.arange(0, block_size)[None, :] col_mask = cols < n_cols mask = col_mask & row_mask offsets = rows * n_cols + cols output = tl.load(output_ptr + offsets, mask=mask, other=0).to(tl.float32) grad_output = tl.load(grad_output_ptr + offsets, mask=mask, other=0).to(tl .float32) weight = tl.load(weight_ptr + cols, mask=col_mask).to(tl.float32) if zero_centered: weight += 1 inv_var = tl.load(inv_var_ptr + rows, mask=row_mask) if has_bias: bias = tl.load(bias_ptr + cols, mask=col_mask).to(tl.float32) output = output - bias input_normalized = tl.where(mask, output / weight, 0.0) weight_grad_output = tl.where(mask, weight * grad_output * inv_var, 0.0) grad_input = weight_grad_output - input_normalized * (tl.sum( input_normalized * weight_grad_output, axis=1)[:, None] / n_cols) if has_bias: grad_input = grad_input - tl.sum(weight_grad_output, axis=1)[:, None ] / n_cols tl.store(grad_input_ptr + offsets, grad_input, mask=mask) parameter_offsets = tl.program_id(0) * n_cols + cols grad_weight_partial_ptr = grad_weight_partial_ptr + parameter_offsets grad_weight_partial = (grad_output * input_normalized).to(weight.dtype) grad_weight_partial = tl.sum(grad_weight_partial, axis=0)[None, :] if has_bias: grad_bias_partial_ptr = grad_bias_partial_ptr + parameter_offsets grad_bias_partial = tl.sum(grad_output.to(weight.dtype), axis=0)[ None, :] tl.store(grad_weight_partial_ptr, grad_weight_partial, mask=col_mask) if has_bias: tl.store(grad_bias_partial_ptr, grad_bias_partial, mask=col_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/normalization.py
5a3b3d77-505a-428b-9f7e-43a71233c09b
fp8_matmul.py
drisspg/transformer_nuggets
transformer_nuggets/fp8/fp8_matmul.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def matmul_kernel_tma_persistent(a_desc_ptr, a_scale_ptr, b_desc_ptr, b_scale_ptr, c_desc_ptr, M, N, K, stride_a_scale_m, stride_b_scale_n, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, NUM_SMS: tl.constexpr, output_dtype: tl.constexpr, ROW_WISE_SCALING: tl.constexpr): tl.inline_asm_elementwise( 'fence.proxy.tensormap::generic.acquire.gpu [$1], 128; // $0 dummy reg' , '=r, l', [a_desc_ptr], dtype=tl.int32, is_pure=False, pack=1) tl.inline_asm_elementwise( 'fence.proxy.tensormap::generic.acquire.gpu [$1], 128; // $0 dummy reg' , '=r, l', [b_desc_ptr], dtype=tl.int32, is_pure=False, pack=1) tl.inline_asm_elementwise( 'fence.proxy.tensormap::generic.acquire.gpu [$1], 128; // $0 dummy reg' , '=r, l', [c_desc_ptr], dtype=tl.int32, is_pure=False, pack=1) dtype = tl.float8e4nv start_pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) k_tiles = tl.cdiv(K, BLOCK_SIZE_K) num_tiles = num_pid_m * num_pid_n tiles_per_SM = num_tiles // NUM_SMS if start_pid < num_tiles % NUM_SMS: tiles_per_SM += 1 tile_id = start_pid - NUM_SMS ki = -1 pid_m = 0 pid_n = 0 offs_am = 0 offs_bn = 0 num_pid_in_group = GROUP_SIZE_M * num_pid_n accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) a_scale, b_scale = load_scales(a_scale_ptr, b_scale_ptr, ROW_WISE_SCALING) for _ in range(0, k_tiles * tiles_per_SM): ki = tl.where(ki == k_tiles - 1, 0, ki + 1) if ki == 0: tile_id += NUM_SMS group_id = tile_id // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + tile_id % group_size_m pid_n = tile_id % num_pid_in_group // group_size_m offs_am = pid_m * BLOCK_SIZE_M offs_bn = pid_n * BLOCK_SIZE_N offs_k = ki * BLOCK_SIZE_K a = tl._experimental_descriptor_load(a_desc_ptr, [offs_am, offs_k], [BLOCK_SIZE_M, BLOCK_SIZE_K], dtype) b = tl._experimental_descriptor_load(b_desc_ptr, [offs_bn, offs_k], [BLOCK_SIZE_N, BLOCK_SIZE_K], dtype) accumulator = tl.dot(a, b.T, accumulator) if ki == k_tiles - 1: offs_cm = offs_am + tl.arange(0, BLOCK_SIZE_M) offs_cn = offs_bn + tl.arange(0, BLOCK_SIZE_N) accumulator = apply_scaling(accumulator, a_scale, b_scale, ROW_WISE_SCALING, offs_cm, offs_cn, M, N, stride_a_scale_m, stride_b_scale_n) c = accumulator.to(output_dtype) tl._experimental_descriptor_store(c_desc_ptr, c, [offs_am, offs_bn] ) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl. float32)
{ "Data Type": [], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/fp8/fp8_matmul.py
40bd775e-ef2e-4eda-8c59-25ebdea73d19
RzLinearBackward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearBackward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=8), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=8), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=2, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def rz_linear_backward_weight_grad_kernel_tf32(a_ptr, b_ptr, c_ptr, init_factor, M, N, K, H, stride_am, stride_ak, stride_bm, stride_bn, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): rz_linear_backward_weight_grad_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr= c_ptr, init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am= stride_am, stride_ak=stride_ak, stride_bm=stride_bm, stride_bn= stride_bn, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1=R1, R0=R0, allow_tf32=True, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N= BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
{ "Data Type": [], "Functionality": [ "Matrix Multiplication", "Backpropagation" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearBackward.py
0657cbe4-31fe-41a2-aee4-95f95ff84d3e
masks.py
drisspg/transformer_nuggets
transformer_nuggets/flash/masks.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def causal_mask_triton(score, batch, head, seq_len_q, seq_len_kv): score = tl.where(seq_len_q >= seq_len_kv, score, float('-inf')) return score
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/flash/masks.py
40cd1d4b-831e-4e99-84f0-0996d5aa95be
bwd_split_kernel.py
ROCm/aotriton
test/bwd_split_kernel.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def dot(BLOCK_M: tl.constexpr, QDIM: tl.constexpr, KDIM: tl.constexpr, q, k): if BLOCK_M == 1: return tl.sum(tl.view(q, [QDIM]) * tl.view(k, [KDIM])) else: return tl.dot(q, k)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/test/bwd_split_kernel.py
17bb60bc-fa4c-439e-b572-df79bd2eeab3
triton_fused_attn2.py
LouChao98/vqtree
ops/triton_fused_attn2.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[ 'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[ 'BLOCK_N'] == 0}) @triton.jit def _fwd_kernel(Q, K, V, Out, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) Q_block_ptr = tl.make_block_ptr(base=Q + (off_b * stride_qb + off_h * stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM ), order=(1, 0)) K_block_ptr = tl.make_block_ptr(base=K + (off_b * stride_kb + off_h * stride_kh), shape=(seqlen_k, BLOCK_HEADDIM), strides=(stride_kn, 1), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0)) V_block_ptr = tl.make_block_ptr(base=V + (off_b * stride_vb + off_h * stride_vh), shape=(seqlen_k, BLOCK_HEADDIM), strides=(stride_vn, 1), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0)) lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) if EVEN_M: q = tl.load(Q_block_ptr) else: q = tl.load(Q_block_ptr, boundary_check=(0,), padding_option='zero') end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) for start_n in range(0, end_n, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) if EVEN_N & EVEN_M: k = tl.load(K_block_ptr) else: k = tl.load(K_block_ptr, boundary_check=(0,), padding_option='zero' ) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, tl.trans(k)) if not EVEN_N: qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, NEGINF) if IS_CAUSAL: qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, NEGINF) m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) p = tl.exp(qk * softmax_scale - m_ij[:, None]) l_ij = tl.sum(p, 1) acc_o_scale = tl.exp(m_i - m_ij) acc_o = acc_o * acc_o_scale[:, None] if EVEN_N & EVEN_M: v = tl.load(V_block_ptr) else: v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero' ) p = p.to(v.dtype) acc_o += tl.dot(p, v) m_i = m_ij l_i_new = tl.exp(lse_i - m_ij) + l_ij lse_i = m_ij + tl.log(l_i_new) K_block_ptr = tl.advance(K_block_ptr, (BLOCK_N, 0)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) o_scale = tl.exp(m_i - lse_i) acc_o = acc_o * o_scale[:, None] start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: tl.store(out_ptrs, acc_o) else: tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_attn2.py
2186ae8f-a1c1-4eda-9e86-5e9dad2b7585
tuned_bwd.py
ROCm/aotriton
tritonsrc/tuned_bwd.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.autotune(configs=TRITON_CONFIG_LIST_BWD, key=['BLOCK_DMODEL', 'max_seqlen_q', 'max_seqlen_k']) @triton.jit def tuned_bwd_kernel_dq(Q, K, V, B, sm_scale, Out, DO, DQ, DB, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dqz, stride_dqh, stride_dqm, stride_dqk, stride_dbz, stride_dbh, stride_dbm, stride_dbn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl. constexpr): bare_bwd_kernel_dq(Q, K, V, B, sm_scale, Out, DO, DQ, DB, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dqz, stride_dqh, stride_dqm, stride_dqk, stride_dbz, stride_dbh, stride_dbm, stride_dbn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M, BLOCK_DMODEL, BLOCK_N, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD= PADDED_HEAD, BIAS_TYPE=BIAS_TYPE)
{ "Data Type": [ "fp32", "int8" ], "Functionality": [ "Quantization", "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/tuned_bwd.py
0e6f0fcf-9cae-4955-907d-a1026597b579
RzLinearForward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearForward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.jit def rz_linear_forward_core(a_ptr, b_ptr, c_ptr, init_factor, M: int, N: int, K: int, H: int, stride_am, stride_ak, stride_cm, stride_cn, allow_tf32: tl.constexpr, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE) pid_m = first_pid_m + pid % group_size_m pid_n = pid % num_pid_in_group // group_size_m offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_offset = b_ptr + offs_k[:, None] * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] b_ptrs = b_offset + ((0 * R3 + pid_n * R2 + R1) % R0 * R0 + (0 * R7 + pid_n * R5 + R4) % R0) % (H - BLOCK_SIZE_K * BLOCK_SIZE_N) c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) a_zero = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32) b_zero = tl.zeros((BLOCK_SIZE_K, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): offs_k = k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) a_mask = (offs_cm[:, None] < M) & (offs_k[None, :] < K) b_mask = (offs_k[:, None] < K) & (offs_cn[None, :] < N) a = tl.load(a_ptrs, mask=a_mask, other=a_zero) b = tl.load(b_ptrs, mask=b_mask, other=b_zero) c += tl.dot(a, b, allow_tf32=allow_tf32) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs = b_offset + (((k + 1) * R3 + pid_n * R2 + R1) % R0 * R0 + ( (k + 1) * R7 + pid_n * R5 + R4) % R0) % (H - BLOCK_SIZE_K * BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, : ] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c * init_factor, mask=c_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearForward.py
f66b57d6-8434-4700-927a-a112b18f64e5
cross_entropy.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/cross_entropy.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def triton_cross_entropy_forward_backward_kernel(logits_ptr, labels_ptr, grad_logits_ptr, losses_ptr, grad_losses, n_cols, logits_stride_0, grad_logits_stride_0, logits_scale_factor: tl.constexpr, block_size: tl .constexpr): block_idx = tl.program_id(0).to(tl.int64) col_offsets = tl.arange(0, block_size) logits_ptr = logits_ptr + block_idx * logits_stride_0 mask = col_offsets < n_cols logits = tl.load(logits_ptr + col_offsets, mask=mask, other=-float('inf') ).to(tl.float32) if logits_scale_factor != 1.0: logits *= logits_scale_factor max_logits = tl.max(logits, 0) exp_logits = tl.exp(logits - max_logits) sum_exp_logits = tl.sum(exp_logits, 0) label_idx = tl.load(labels_ptr + block_idx) label_logits = tl.load(logits_ptr + label_idx).to(tl.float32) if label_idx < 0: loss = 0.0 else: loss = tl.log(sum_exp_logits) + max_logits - label_logits tl.store(losses_ptr + block_idx, loss) grad_logits_ptr = grad_logits_ptr + block_idx * grad_logits_stride_0 col_offsets = tl.arange(0, block_size) label_idx = tl.load(labels_ptr + block_idx) exp_logits = exp_logits / sum_exp_logits if logits_scale_factor != 1.0: exp_logits *= logits_scale_factor if label_idx < 0: grad_losses = 0.0 grad_logits = grad_losses * tl.where(col_offsets == label_idx, exp_logits - 1.0, exp_logits) tl.store(grad_logits_ptr + col_offsets, grad_logits, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/cross_entropy.py
dc459f02-1c1e-4b41-baca-462de7e6a012
ops.py
srush/triton-autodiff
triton_autodiff/ops.py
f9d1a04d048e3252bfd222646db7175ad60a3c7c
0
@triton.jit def zeroslike(x): return tl.zeros(x.shape, tl.float32)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/srush/triton-autodiff/blob/f9d1a04d048e3252bfd222646db7175ad60a3c7c/triton_autodiff/ops.py
2af621bf-a5fd-4ee0-a77d-7c7225403ab3
sparse_copy.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/sparse_copy.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def copy_sparse_to_dense_kernel(input_ptr, output_ptr, scores_ptr, sparse_rows_ptr, num_columns: tl.constexpr, num_experts_per_token: tl. constexpr, block_size: tl.constexpr): dense_row = tl.program_id(0) offsets = tl.arange(0, block_size) + block_size * tl.program_id(1) mask = None if num_columns % block_size == 0 else offsets < num_columns out = tl.zeros((block_size,), tl.float32) for top_index in range(num_experts_per_token): sparse_row = tl.load(sparse_rows_ptr + dense_row * num_experts_per_token + top_index) input_ = tl.load(input_ptr + sparse_row * num_columns + offsets, mask=mask) if scores_ptr is not None: input_ *= tl.load(scores_ptr + dense_row * num_experts_per_token + top_index).to(tl.float32) out += input_ tl.store(output_ptr + dense_row * num_columns + offsets, out, mask=mask)
{ "Data Type": [ "fp32", "int8" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/sparse_copy.py
c6143804-3cfd-4d1f-ab60-f8d9dbef8b8b
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_softmax/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES_RAGGED, BLOCK_SIZES_M, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_softmax_kernel_simple_fused_buffer_then_sum(input_ptr_values, input_ptr_offsets, output_ptr, M, MAX_SEQLEN, BLOCK_SIZE_RAGGED: tl. constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_b = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((BLOCK_SIZE_RAGGED, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_b), tl.load( input_ptr_offsets + (pid_b + 1)) buffer_max_all = tl.full((BLOCK_SIZE_RAGGED, BLOCK_SIZE_M), value=float ('-inf'), dtype=tl.float32) for block_pos in range(0, MAX_SEQLEN, BLOCK_SIZE_RAGGED): block_start_ragged = ragged_start + block_pos offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=float('-inf') ) buffer_max_all = tl.maximum(buffer_max_all, input) buffer_max = tl.max(buffer_max_all, axis=0, keep_dims=True) for block_pos in range(0, MAX_SEQLEN, BLOCK_SIZE_RAGGED): block_start_ragged = ragged_start + block_pos offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=float('-inf') ) buffer += tl.exp(input - buffer_max) buffer_exp_sum = tl.sum(buffer, axis=0) for block_pos in range(0, MAX_SEQLEN, BLOCK_SIZE_RAGGED): block_start_ragged = ragged_start + block_pos offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=float('-inf') ) output = tl.fdiv(tl.exp(input - buffer_max), buffer_exp_sum) tl.store(output_ptr + idxs, output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_softmax/kernels.py
97976f05-d763-4664-a07a-d3f7a68ba825
rms_norm_kernels.py
BobMcDear/attorch
attorch/rms_norm_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'feat_dim']) @triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic, 'BLOCK_SIZE_FEAT': lambda args: next_power_of_2(args['feat_dim'])}) @triton.jit def rms_norm_backward_kernel(output_grad_pointer, input_pointer, inv_rms_pointer, weight_pointer, input_grad_pointer, weight_grad_pointer, batch_dim, feat_dim, output_grad_batch_stride, output_grad_feat_stride, input_batch_stride, input_feat_stride, input_grad_batch_stride, input_grad_feat_stride, weight_grad_batch_stride, weight_grad_feat_stride, scale_by_weight: tl. constexpr, BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_FEAT: tl.constexpr): """ Calculates the input gradient of root mean square normalization. Args: output_grad_pointer: Pointer to root mean square normalization's output gradients. The output gradients must be of shape [batch_dim, feat_dim]. input_pointer: Pointer to the input. The input must be of shape [batch_dim, feat_dim]. inv_rms_pointer: Pointer to the input's inverse root mean square. The inverse root mean square should be of shape [batch_dim]. weight_pointer: Pointer to optional weights if affine transform occurred. The weights, if provided, must be of shape [feat_dim]. input_grad_pointer: Pointer to a container the input's gradients are written to. The container must be of shape [batch_dim, feat_dim]. weight_grad_pointer: Pointer to an optional container the weights' row-wise gradients are written to if scale_by_weight is True, which should later be summed. The container, if provided, must be of shape [batch_dim/BLOCK_SIZE_BATCH, feat_dim]. bias_grad_pointer: Pointer to an optional container the bias vector's row-wise gradients are written to if scale_by_weight and add_bias are True, which should later be summed. The container, if provided, must be of shape [batch_dim/BLOCK_SIZE_BATCH, feat_dim]. batch_dim: Batch dimension. feat_dim: Dimensionality of the features. output_grad_batch_stride: Stride necessary to jump one element along the output gradients' batch dimension. output_grad_feat_stride: Stride necessary to jump one element along the output gradients' feature dimension. input_batch_stride: Stride necessary to jump one element along the input's batch dimension. input_feat_stride: Stride necessary to jump one element along the input's feature dimension. input_grad_batch_stride: Stride necessary to jump one element along the input gradient container's batch dimension. input_grad_feat_stride: Stride necessary to jump one element along the input gradient container's feature dimension. weight_grad_batch_stride: Stride necessary to jump one element along the weight gradient container's batch dimension. weight_grad_feat_stride: Stride necessary to jump one element along the weight gradient container's feature dimension. scale_by_weight: Flag for scaling the normalized output by weights. BLOCK_SIZE_BATCH: Block size across the batch dimension. BLOCK_SIZE_FEAT: Block size across the feature dimension. """ batch_pid = tl.program_id(axis=0) batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH ) feat_offset = tl.arange(0, BLOCK_SIZE_FEAT) batch_mask = batch_offset < batch_dim feat_mask = feat_offset < feat_dim output_grad_pointer += output_grad_batch_stride * batch_offset[:, None ] + output_grad_feat_stride * feat_offset[None, :] input_pointer += input_batch_stride * batch_offset[:, None ] + input_feat_stride * feat_offset[None, :] input_grad_pointer += input_grad_batch_stride * batch_offset[:, None ] + input_grad_feat_stride * feat_offset[None, :] output_grad = tl.load(output_grad_pointer, mask=batch_mask[:, None] & feat_mask[None, :]).to(tl.float32) input = tl.load(input_pointer, mask=batch_mask[:, None] & feat_mask[ None, :]).to(tl.float32) inv_rms = tl.load(inv_rms_pointer + batch_offset, mask=batch_mask) pre_lin = input * inv_rms[:, None] if scale_by_weight: weight = tl.load(weight_pointer + feat_offset, mask=feat_mask) weight_output_grad_prod = weight * output_grad else: weight_output_grad_prod = output_grad term1 = input * tl.sum(input * weight_output_grad_prod, axis=1) term2 = inv_rms[:, None] * inv_rms[:, None] input_grad = inv_rms[:, None] * (weight_output_grad_prod - term1 * term2 / feat_dim) tl.store(input_grad_pointer, input_grad, mask=batch_mask[:, None] & feat_mask[None, :]) if scale_by_weight: weight_grad_pointer += (weight_grad_batch_stride * batch_pid + weight_grad_feat_stride * feat_offset) tl.store(weight_grad_pointer, tl.sum(output_grad * pre_lin, axis=0), mask=feat_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/rms_norm_kernels.py
617a6f86-5188-4419-b333-c0d0a02f6e0f
softmax_online_v2_spec_rev_evict.py
iclementine/optimize_softmax
softmax_online_v2_spec_rev_evict.py
6ddeee3481dd5e63f4a30b946c417e97bc4494bf
0
@triton.jit def softmax_kernel_online_v2(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr ): pid_m = tl.program_id(0) m = tl.full((TILE_N,), value=-float('inf'), dtype=output_ptr.dtype. element_ty) z = tl.full((TILE_N,), value=0, dtype=output_ptr.dtype.element_ty) prev_multiple = prev_multiple_of(N, TILE_N) for start_n in range(0, prev_multiple, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset inp = tl.load(input_ptrs).to(output_ptr.dtype.element_ty) new_m = tl.maximum(m, inp) new_z = tl.exp(m - new_m) * z + tl.exp(inp - new_m) m = new_m z = new_z for start_n in range(prev_multiple, N, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) new_m = tl.maximum(m, inp) new_z = tl.exp(m - new_m) * z + tl.exp(inp - new_m) m = new_m z = new_z final_m = tl.max(m, 0) z = tl.sum(tl.exp(m - final_m) * z) m = final_m prev_multiple = prev_multiple_of(N, TILE_N) for start_n in range(0, TILE_N, TILE_N): n_offsets = prev_multiple - start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf'), eviction_policy='evict_first').to(output_ptr.dtype.element_ty) e = tl.exp(inp - m) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out, mask=mask) for start_n in range(TILE_N, N, TILE_N): n_offsets = prev_multiple - start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset inp = tl.load(input_ptrs, eviction_policy='evict_first').to(output_ptr .dtype.element_ty) e = tl.exp(inp - m) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out)
{ "Data Type": [], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_online_v2_spec_rev_evict.py
ac0acde3-97ef-443c-937e-f8500c232164
random_matrix.py
Forkxz/TritonDeepLearningKernel
kernel/dropconnect/random_matrix.py
add54b6318e8fa5fdbf8c7b47659de9fceaa5691
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 4, 'BLOCK_SIZE_K': 32})], key=['M', 'N', 'K']) @triton.jit def random_matrix_kernel(r_ptr, seed, M, K, N, stride_dm, stride_dk, stride_dn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n offset_m = pid_m * BLOCK_SIZE_M offset_n = pid_n * BLOCK_SIZE_N offset_k = 0 d_offsets = block_offsets_3d(M, K, N, stride_dm, stride_dk, stride_dn, offset_m, offset_k, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_K, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): k_mask = offs_k[None, :, None] < K - k * BLOCK_SIZE_K random_masks = tl.random.rand(seed, d_offsets) > 0.5 tl.store(r_ptr + d_offsets, random_masks.to(tl.int8), mask=k_mask) d_offsets += BLOCK_SIZE_K * stride_dk
{ "Data Type": [ "int8" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/Forkxz/TritonDeepLearningKernel/blob/add54b6318e8fa5fdbf8c7b47659de9fceaa5691/kernel/dropconnect/random_matrix.py
6670d8a8-c520-453d-87db-e31e9f5517c5
test_triton_basics.py
tucommenceapousser/xformers
tests/test_triton_basics.py
c97e3d917cfdad4a38acd4e9d776030d25ab9141
0
@triton.jit def k_mean(X, Mean, Var, stride, N, BLOCK_SIZE_N: tl.constexpr): """ Fused layernorm kernel over a 3d tensor. The layer norm is applied over the last dimension. Compute y = (x - E(x))/(sqrt(var(x) + epsilon)) * gamma + beta """ row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) x_ptrs = X + row * stride + cols x = tl.load(x_ptrs, mask=cols < N, other=0.0).to(tl.float32) x = tl.where(cols < N, x, 0.0) x_mean = tl.sum(x, axis=0) / N x_zm = x - x_mean x_zm = tl.where(cols < N, x_zm, 0.0) x_var = tl.sum(x_zm * x_zm, axis=0) / N tl.store(Mean + row, x_mean) tl.store(Var + row, x_var)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/tucommenceapousser/xformers/blob/c97e3d917cfdad4a38acd4e9d776030d25ab9141/tests/test_triton_basics.py
52ce8da6-a14c-4648-8839-2497e5c7cd47
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/rebased/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def parallel_rebased_fwd_kernel(q, k, v, o, z, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B, H, T, K: tl.constexpr, V: tl.constexpr, BTL: tl .constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr): i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) NV = tl.cdiv(V, BV) i_k = i_kv // NV i_v = i_kv % NV p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BTS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0, i_v * BV), (BTS, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_o = tl.zeros([BTL, BV], dtype=tl.float32) b_z = tl.zeros([BTL], dtype=tl.float32) for _ in range(0, i_c * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = b_s * b_s b_z += tl.sum(b_s, axis=1) b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) p_k = tl.advance(p_k, (0, BTS)) p_v = tl.advance(p_v, (BTS, 0)) tl.debug_barrier() o_q = tl.arange(0, BTL) o_k = tl.arange(0, BTS) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k * BK, i_c * BTL), (BK, BTS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTS, BV), (1, 0)) for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) m_s = o_q[:, None] >= o_k[None, :] b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = b_s * b_s b_s = tl.where(m_s, b_s, 0) b_z += tl.sum(b_s, axis=1) b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) p_k = tl.advance(p_k, (0, BTS)) p_v = tl.advance(p_v, (BTS, 0)) o_k += BTS p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * s_v_h, (T, V), ( s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) p_z = z + (i_bh + B * H * i_k) * T + i_c * BTL + tl.arange(0, BTL) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=i_c * BTL + tl.arange( 0, BTL) < T)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rebased/parallel.py
a2f2c846-80e3-4ee0-8813-8cc6f55128f3
sparse_optimizer.py
huyz2023/2by4-pretrain
sparse/sparse_optimizer.py
9e330125dea71e5a3dee235f4efb8869f9e4cdd0
0
@triton.autotune(configs=get_configs(), key=['m']) @triton.jit def _inverse(F_ptr, out_ptr, F_row_stride, out_row_stride, F_col_stride, out_col_stride, F_page_stride, out_page_stride, m, BLOCK_SIZE: tl.constexpr ): row_idx = tl.program_id(0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = row_idx < m a11 = tl.load(F_ptr + row_idx * F_row_stride + 0 * F_col_stride + 0 * F_page_stride, mask=mask) a12 = tl.load(F_ptr + row_idx * F_row_stride + 0 * F_col_stride + 1 * F_page_stride, mask=mask) a13 = tl.load(F_ptr + row_idx * F_row_stride + 0 * F_col_stride + 2 * F_page_stride, mask=mask) a14 = tl.load(F_ptr + row_idx * F_row_stride + 0 * F_col_stride + 3 * F_page_stride, mask=mask) a21 = tl.load(F_ptr + row_idx * F_row_stride + 1 * F_col_stride + 0 * F_page_stride, mask=mask) a22 = tl.load(F_ptr + row_idx * F_row_stride + 1 * F_col_stride + 1 * F_page_stride, mask=mask) a23 = tl.load(F_ptr + row_idx * F_row_stride + 1 * F_col_stride + 2 * F_page_stride, mask=mask) a24 = tl.load(F_ptr + row_idx * F_row_stride + 1 * F_col_stride + 3 * F_page_stride, mask=mask) a31 = tl.load(F_ptr + row_idx * F_row_stride + 2 * F_col_stride + 0 * F_page_stride, mask=mask) a32 = tl.load(F_ptr + row_idx * F_row_stride + 2 * F_col_stride + 1 * F_page_stride, mask=mask) a33 = tl.load(F_ptr + row_idx * F_row_stride + 2 * F_col_stride + 2 * F_page_stride, mask=mask) a34 = tl.load(F_ptr + row_idx * F_row_stride + 2 * F_col_stride + 3 * F_page_stride, mask=mask) a41 = tl.load(F_ptr + row_idx * F_row_stride + 3 * F_col_stride + 0 * F_page_stride, mask=mask) a42 = tl.load(F_ptr + row_idx * F_row_stride + 3 * F_col_stride + 1 * F_page_stride, mask=mask) a43 = tl.load(F_ptr + row_idx * F_row_stride + 3 * F_col_stride + 2 * F_page_stride, mask=mask) a44 = tl.load(F_ptr + row_idx * F_row_stride + 3 * F_col_stride + 3 * F_page_stride, mask=mask) det = (a11 * a22 * a33 * a44 - a12 * a23 * a34 * a41 + a13 * a24 * a31 * a42 - a14 * a21 * a32 * a43 + a14 * a23 * a32 * a41 - a11 * a24 * a33 * a42 + a12 * a21 * a34 * a43 - a13 * a22 * a31 * a44 + a12 * a23 * a31 * a44 - a13 * a21 * a34 * a42 + a11 * a24 * a32 * a43 - a14 * a22 * a33 * a41 + a14 * a21 * a33 * a42 - a12 * a24 * a31 * a43 + a13 * a22 * a34 * a41 - a11 * a23 * a32 * a44 + a13 * a21 * a32 * a44 - a11 * a22 * a34 * a43 + a12 * a24 * a33 * a41 - a14 * a23 * a31 * a42 + a14 * a22 * a31 * a43 - a13 * a24 * a32 * a41 + a11 * a23 * a34 * a42 - a12 * a21 * a33 * a44) c11 = (a22 * a33 * a44 + a23 * a34 * a42 + a24 * a32 * a43 - a24 * a33 * a42 - a23 * a32 * a44 - a22 * a34 * a43) c12 = -(a21 * a33 * a44 + a23 * a34 * a41 + a24 * a31 * a43 - a24 * a33 * a41 - a23 * a31 * a44 - a21 * a34 * a43) c13 = (a21 * a32 * a44 + a22 * a34 * a41 + a24 * a31 * a42 - a24 * a32 * a41 - a22 * a31 * a44 - a21 * a34 * a42) c14 = -(a21 * a32 * a43 + a22 * a33 * a41 + a23 * a31 * a42 - a23 * a32 * a41 - a22 * a31 * a43 - a21 * a33 * a42) c21 = -(a12 * a33 * a44 + a13 * a34 * a42 + a14 * a32 * a43 - a14 * a33 * a42 - a13 * a32 * a44 - a12 * a34 * a43) c22 = (a11 * a33 * a44 + a13 * a34 * a41 + a14 * a31 * a43 - a14 * a33 * a41 - a13 * a31 * a44 - a11 * a34 * a43) c23 = -(a11 * a32 * a44 + a12 * a34 * a41 + a14 * a31 * a42 - a14 * a32 * a41 - a12 * a31 * a44 - a11 * a34 * a42) c24 = (a11 * a32 * a43 + a12 * a33 * a41 + a13 * a31 * a42 - a13 * a32 * a41 - a12 * a31 * a43 - a11 * a33 * a42) c31 = (a12 * a23 * a44 + a13 * a24 * a42 + a14 * a22 * a43 - a14 * a23 * a42 - a13 * a22 * a44 - a12 * a24 * a43) c32 = -(a11 * a23 * a44 + a13 * a24 * a41 + a14 * a21 * a43 - a14 * a23 * a41 - a13 * a21 * a44 - a11 * a24 * a43) c33 = (a11 * a22 * a44 + a12 * a24 * a41 + a14 * a21 * a42 - a14 * a22 * a41 - a12 * a21 * a44 - a11 * a24 * a42) c34 = -(a11 * a22 * a43 + a12 * a23 * a41 + a13 * a21 * a42 - a13 * a22 * a41 - a12 * a21 * a43 - a11 * a23 * a42) c41 = -(a12 * a23 * a34 + a13 * a24 * a32 + a14 * a22 * a33 - a14 * a23 * a32 - a13 * a22 * a34 - a12 * a24 * a33) c42 = (a11 * a23 * a34 + a13 * a24 * a31 + a14 * a21 * a33 - a14 * a23 * a31 - a13 * a21 * a34 - a11 * a24 * a33) c43 = -(a11 * a22 * a34 + a12 * a24 * a31 + a14 * a21 * a32 - a14 * a22 * a31 - a12 * a21 * a34 - a11 * a24 * a32) c44 = (a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a13 * a22 * a31 - a12 * a21 * a33 - a11 * a23 * a32) tl.store(out_ptr + row_idx * out_row_stride + 0 * out_col_stride + 0 * out_page_stride, c11 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 0 * out_col_stride + 1 * out_page_stride, c21 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 0 * out_col_stride + 2 * out_page_stride, c31 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 0 * out_col_stride + 3 * out_page_stride, c41 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 1 * out_col_stride + 0 * out_page_stride, c12 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 1 * out_col_stride + 1 * out_page_stride, c22 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 1 * out_col_stride + 2 * out_page_stride, c32 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 1 * out_col_stride + 3 * out_page_stride, c42 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 2 * out_col_stride + 0 * out_page_stride, c13 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 2 * out_col_stride + 1 * out_page_stride, c23 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 2 * out_col_stride + 2 * out_page_stride, c33 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 2 * out_col_stride + 3 * out_page_stride, c43 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 3 * out_col_stride + 0 * out_page_stride, c14 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 3 * out_col_stride + 1 * out_page_stride, c24 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 3 * out_col_stride + 2 * out_page_stride, c34 / det, mask=mask) tl.store(out_ptr + row_idx * out_row_stride + 3 * out_col_stride + 3 * out_page_stride, c44 / det, mask=mask)
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/sparse_optimizer.py
464215f1-3063-4a65-8777-6e5fd10319d0
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/rwkv6/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_INITIAL_STATE': lambda args: args['dh0'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4)], key=['BK', 'BV']) @triton.jit def fused_recurrent_rwkv6_bwd_kernel_dkv(q, k, v, w, u, do, dk, dk1, dv, dh0, offsets, scale, B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, REVERSE: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_OFFSETS: tl .constexpr, HEAD_FIRST: tl.constexpr): i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl. int64), tl.program_id(2).to(tl.int64) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T o_k = i_k * BK + tl.arange(0, BK) o_v = i_v * BV + tl.arange(0, BV) if HEAD_FIRST: p_q = q + i_nh * T * K + ((T - 1) * K if not REVERSE else 0) + o_k p_k = k + i_nh * T * K + ((T - 1) * K if not REVERSE else 0) + o_k p_v = v + i_nh * T * V + ((T - 1) * V if not REVERSE else 0) + o_v p_w = w + i_nh * T * K + ((T - 1) * K if not REVERSE else 0) + o_k p_do = do + i_nh * T * V + ((T - 1) * V if not REVERSE else 0) + o_v p_dk = dk + (i_v * B * H + i_nh) * T * K + ((T - 1) * K if not REVERSE else 0) + o_k p_dk1 = dk1 + (i_v * B * H + i_nh) * T * K + ((T - 1) * K if not REVERSE else 0) + o_k p_dv = dv + (i_k * B * H + i_nh) * T * V + ((T - 1) * V if not REVERSE else 0) + o_v else: p_q = q + (bos + (T - 1 if not REVERSE else 0)) * H * K + i_h * K + o_k p_k = k + (bos + (T - 1 if not REVERSE else 0)) * H * K + i_h * K + o_k p_v = v + (bos + (T - 1 if not REVERSE else 0)) * H * V + i_h * V + o_v p_w = w + (bos + (T - 1 if not REVERSE else 0)) * H * K + i_h * K + o_k p_do = do + (bos + (T - 1 if not REVERSE else 0) ) * H * V + i_h * V + o_v p_dk = dk + (i_v * all + bos + (T - 1 if not REVERSE else 0) ) * H * K + i_h * K + o_k p_dk1 = dk1 + (i_v * all + bos + (T - 1 if not REVERSE else 0) ) * H * K + i_h * K + o_k p_dv = dv + (i_k * all + bos + (T - 1 if not REVERSE else 0) ) * H * V + i_h * V + o_v p_u = u + i_h * K + o_k mask_k = o_k < K mask_v = o_v < V mask_h = mask_k[:, None] & mask_v[None, :] b_u = tl.load(p_u, mask=mask_k, other=0).to(tl.float32) b_dh = tl.zeros([BK, BV], dtype=tl.float32) for _ in range(T - 1, -1, -1): b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_w = tl.load(p_w, mask=mask_k, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) b_dkv = b_q[:, None] * b_do[None, :] b_dk = tl.sum(b_dh * b_v[None, :], 1) tl.store(p_dk1, b_dk.to(p_dk1.dtype.element_ty), mask=mask_k) b_dk += tl.sum(b_dkv * b_u[:, None] * b_v[None, :], 1) b_dv = tl.sum((b_dh + b_dkv * b_u[:, None]) * b_k[:, None], 0) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v) b_dh *= tl.exp(b_w)[:, None] b_dh += b_dkv p_q += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_k += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_v += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_w += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_do += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_dk += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_dk1 += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_dv += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V if USE_INITIAL_STATE: p_dh0 = dh0 + i_nh * K * V + o_k[:, None] * V + o_v[None, :] tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/fused_recurrent.py
9233b706-1ad9-479f-95dd-2f0d42a6e5fc
flash_4.py
LitingLin/LoRAT
trackit/runner/evaluation/distributed/tracker_evaluator/components/segmentation/segment_anything_fast/flash_4.py
d7515a51174b037f122ce4ac6c56d668b0ee152b
0
@triton.jit def _fwd_kernel_aligned(Q, K, V, B0, sm_scale, Out, stride_qh, stride_qm, stride_qk, stride_kh, stride_kn, stride_kk, stride_vh, stride_vk, stride_vn, stride_oh, stride_om, stride_on, stride_b0h, stride_b0m, Z, H, N_CTX, P_SEQ, OUT_DTYPE: tl.constexpr, BIAS_LAST_SIZE: tl.constexpr, B0_NUMEL: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_M: tl. constexpr, BLOCK_N: tl.constexpr): start_m = tl.program_id(0) off_hz = tl.program_id(1) q_offset = off_hz * stride_qh kv_offset = off_hz * stride_kh Q_block_ptr = tl.make_block_ptr(base=Q + q_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) K_block_ptr = tl.make_block_ptr(base=K + kv_offset, shape=(BLOCK_DMODEL, N_CTX + P_SEQ), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) V_block_ptr = tl.make_block_ptr(base=V + kv_offset, shape=(N_CTX + P_SEQ, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0 ), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0)) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) qk_scale = sm_scale * 1.44269504 q = tl.load(Q_block_ptr) q = (q * qk_scale).to(OUT_DTYPE) lo = 0 hi = N_CTX + P_SEQ b_ptr_offsets_m = tl.arange(0, BLOCK_M) b_offset = off_hz * stride_b0h b_ptr_offsets_n_1 = tl.arange(0, BLOCK_N) % BIAS_LAST_SIZE + BIAS_LAST_SIZE b1 = tl.load(B0 + b_offset + ((start_m * BLOCK_M + b_ptr_offsets_m) * stride_b0m)[:, None] + b_ptr_offsets_n_1[None, :]) for start_n in range(lo, hi, BLOCK_N): k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=OUT_DTYPE) qk += tl.dot(q, k) b0 = tl.load(B0 + b_offset + ((start_m * BLOCK_M + b_ptr_offsets_m) * stride_b0m)[:, None] + start_n // BLOCK_N) qk += (b0 + b1) * 1.44269504 m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) acc *= alpha[:, None] acc += tl.dot(p.to(OUT_DTYPE), v) l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) acc = acc / l_i[:, None] O_block_ptr = tl.make_block_ptr(base=Out + q_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) tl.store(O_block_ptr, acc.to(OUT_DTYPE))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/LitingLin/LoRAT/blob/d7515a51174b037f122ce4ac6c56d668b0ee152b/trackit/runner/evaluation/distributed/tracker_evaluator/components/segmentation/segment_anything_fast/flash_4.py
f3027f3b-527d-4872-925c-33213b5e854d
outer_softmax_online.py
iclementine/optimize_softmax
outer_softmax_online.py
6ddeee3481dd5e63f4a30b946c417e97bc4494bf
0
@triton.jit def softmax_kernel_online(output_ptr, input_ptr, M, N, K, TILE_N: tl. constexpr, TILE_K: tl.constexpr): pid_k = tl.program_id(0) pid_m = tl.program_id(1) k_offsets = pid_k * TILE_K + tl.arange(0, TILE_K) m = tl.full([TILE_N, TILE_K], value=float('-inf'), dtype=tl.float32) z = tl.full([TILE_N, TILE_K], value=0.0, dtype=tl.float32) for start_n in range(0, N, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offsets = pid_m * N * K + n_offsets[:, None] * K + k_offsets mask = (n_offsets[:, None] < N) & (k_offsets < K) inp = tl.load(input_ptr + offsets, mask=mask, other=-float('inf')) m_new = tl.maximum(m, inp) alpha = tl.exp(m - m_new) z = z * alpha + tl.exp(inp - m_new) m = m_new m_reduced = tl.max(m, 0) z = tl.sum(z * tl.exp(m - m_reduced[None, :]), 0) m = m_reduced previous_multiple = prev_multiple_of(N, TILE_N) for start_n in range(0, N, TILE_N): n_offsets = previous_multiple - start_n + tl.arange(0, TILE_N) offsets = pid_m * N * K + n_offsets[:, None] * K + k_offsets mask = (n_offsets[:, None] < N) & (k_offsets[None, :] < K) inp = tl.load(input_ptr + offsets, mask=mask, other=-float('inf')) o = tl.exp(inp - m[None, :]) / z[None, :] tl.store(output_ptr + offsets, o, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/outer_softmax_online.py
df855118-c357-4a08-a639-b101eb791b9c
fused_recurrent.py
sustcsonglin/hope-fla
fla/ops/hope/fused_recurrent.py
0750c9a9a360fb72236dfaaaf21496959c5ef48d
0
@triton.jit def fused_recurrent_bwd_kernel(q, k, k_l2, dq, dk, dk_l2, dk_l2_partial_fwd, dk_l2_partial_bwd, dq_reflected, dk_reflected, T, D: tl.constexpr, BK: tl.constexpr): i_b, i_h = tl.program_id(0), tl.program_id(1) d_h = tl.zeros([BK, BK], dtype=tl.float32) offset = i_b * T * D + i_h * BK + tl.arange(0, BK) + (T - 1) * D p_q = q + offset p_k = k + offset p_k_l2 = k_l2 + offset p_dq_reflected = dq_reflected + offset p_dk_reflected = dk_reflected + offset p_dq = dq + offset p_dk = dk + offset p_dk_l2 = dk_l2 + offset p_dk_l2_partial_fwd = dk_l2_partial_fwd + offset p_dk_l2_partial_bwd = dk_l2_partial_bwd + offset for _ in range(T): b_q = tl.load(p_q).to(tl.float32) b_k = tl.load(p_k).to(tl.float32) b_k_l2 = tl.load(p_k_l2).to(tl.float32) b_dq_reflected = tl.load(p_dq_reflected).to(tl.float32) b_dk_reflected = tl.load(p_dk_reflected).to(tl.float32) d_h += b_q[None, :] * b_dq_reflected[:, None] + b_k[None, : ] * b_dk_reflected[:, None] b_dk_l2_partial_fwd = tl.load(p_dk_l2_partial_fwd).to(tl.float32) b_dk_l2 = -2 * tl.sum(b_dk_l2_partial_fwd[:, None] * d_h, axis=0) tl.store(p_dk_l2, b_dk_l2.to(p_dk_l2.dtype.element_ty)) b_dk_l2_partial = tl.sum(d_h * b_k_l2[None, :], axis=1) d_h -= 2 * b_k_l2[None, :] * b_dk_l2_partial[:, None] tl.store(p_dk_l2_partial_bwd, b_dk_l2_partial.to( p_dk_l2_partial_bwd.dtype.element_ty)) p_dq_reflected -= D p_dk_reflected -= D p_q -= D p_k -= D p_k_l2 -= D p_dk_l2_partial_fwd -= D p_dk_l2_partial_bwd -= D p_dk_l2 -= D tl.debug_barrier() offset = i_b * T * D + i_h * BK + tl.arange(0, BK) p_q = q + offset p_k = k + offset p_k_l2 = k_l2 + offset p_dq_reflected = dq_reflected + offset p_dk_reflected = dk_reflected + offset p_dq = dq + offset p_dk = dk + offset p_dk_l2 = dk_l2 + offset p_dk_l2_partial_bwd = dk_l2_partial_bwd + offset h = tl.zeros([BK, BK], dtype=tl.float32) + (tl.arange(0, BK)[:, None] == tl.arange(0, BK)[None, :]) for _ in range(T): b_k_l2 = tl.load(p_k_l2).to(tl.float32) b_dk_l2_partial = tl.load(p_dk_l2_partial_bwd).to(tl.float32) b_dk_l2 = -2 * tl.sum(h * b_dk_l2_partial[:, None], axis=0) b_dk_l2 += tl.load(p_dk_l2) tl.store(p_dk_l2, b_dk_l2.to(p_dk_l2.dtype.element_ty)) tmp = tl.sum(h * b_k_l2[None, :], axis=1) h -= 2 * b_k_l2[None, :] * tmp[:, None] b_dq_reflected = tl.load(p_dq_reflected).to(tl.float32) b_dk_reflected = tl.load(p_dk_reflected).to(tl.float32) b_dq = tl.sum(b_dq_reflected[:, None] * h, axis=0) b_dk = tl.sum(b_dk_reflected[:, None] * h, axis=0) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty)) p_q += D p_k += D p_k_l2 += D p_dq_reflected += D p_dk_reflected += D p_dk_l2 += D p_dk_l2_partial_bwd += D p_dq += D p_dk += D
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/hope-fla/blob/0750c9a9a360fb72236dfaaaf21496959c5ef48d/fla/ops/hope/fused_recurrent.py
2f55269a-e5f4-4bb7-88a8-6d4fb70c6ff0
rope.py
dame-cell/Triformer
triformer/rope.py
0712537d576166b93fa09aa9509b2661b9ed8a68
0
@triton.heuristics({'BACKWARD_PASS': lambda args: bool(args['BACKWARD_PASS'])}) @triton.jit def _rope_embedding(Q, Q_row_stride, cos, cos_row_stride, sin, sin_row_stride, seqlen, head_dim: tl.constexpr, n_heads: tl.constexpr, BACKWARD_PASS: tl.constexpr, BLOCK_SIZE: tl.constexpr): """ Calculates the RoPE Embedding quickly RoPE is Q * cos + rotate_half(Q) * sin See our blog post for more info """ ROPE_GROUP_SIZE = 4 row_position = tl.program_id(0) group_head_position = tl.program_id(1) col_offsets = tl.arange(0, BLOCK_SIZE) half_head_dim = head_dim // 2 mask = col_offsets < half_head_dim sin1 = tl.load(sin + row_position % seqlen * sin_row_stride + half_head_dim * 0 + col_offsets, mask=mask, other=0) cos1 = tl.load(cos + row_position % seqlen * cos_row_stride + half_head_dim * 0 + col_offsets, mask=mask, other=0) if BACKWARD_PASS: sin1 = -sin1 pass head_start = group_head_position * ROPE_GROUP_SIZE head_end = min(head_start + ROPE_GROUP_SIZE, n_heads) for k in range(head_start, head_end): offs_q1 = row_position * Q_row_stride + k * head_dim + col_offsets offs_q2 = (row_position * Q_row_stride + k * head_dim + col_offsets + half_head_dim) Q1 = tl.load(Q + offs_q1, mask=mask, other=0).to(sin1.dtype) Q2 = tl.load(Q + offs_q2, mask=mask, other=0).to(sin1.dtype) tl.store(Q + offs_q1, Q1 * cos1 - Q2 * sin1, mask=mask) tl.store(Q + offs_q2, Q2 * cos1 + Q1 * sin1, mask=mask) pass
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/rope.py
0556f753-1a94-4e65-a541-a0d3c5e13c41
cumsum.py
sustcsonglin/flash-linear-attention
fla/ops/utils/cumsum.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BT': 16}, num_warps=2), triton. Config({'BT': 32}, num_warps=4), triton.Config({'BT': 32}, num_warps=2), triton.Config({'BT': 64}, num_warps=8), triton.Config({'BT': 64}, num_warps=4)], key=[]) @triton.jit def chunk_global_reversed_cumsum_scalar_kernel(s, o, offsets, T: tl. constexpr, H: tl.constexpr, BT: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr): i_bh = tl.program_id(0) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_b).to(tl.int32), tl.load(offsets + i_b + 1).to(tl.int32) else: bos, eos = i_b * T, i_b * T + T T = eos - bos b_z = tl.zeros([], dtype=tl.float32) for i_t in range(tl.cdiv(T, BT) - 1, -1, -1): if HEAD_FIRST: p_s = tl.make_block_ptr(s + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) p_o = tl.make_block_ptr(o + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) else: p_s = tl.make_block_ptr(s + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) p_o = tl.make_block_ptr(o + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) b_s = tl.load(p_s, boundary_check=(0,)).to(tl.float32) b_zz = tl.sum(b_s, axis=0) b_z += b_zz b_o = b_s - tl.cumsum(b_s, axis=0) + b_z[None] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/cumsum.py
11947c31-82e7-420d-82ef-4b852131022a
rmsnorm.py
ardywibowo/triton-mode
kernels/rmsnorm.py
5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1
0
@triton.jit def triton_rmsnorm_forward(Y_ptr, Y_row_stride, X_ptr, X_row_stride, W_ptr, RSTD_ptr, RSTD_row_stride, n_cols, eps, offset, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < n_cols Y_ptr += row_idx * Y_row_stride X_ptr += row_idx * X_row_stride RSTD_ptr += row_idx * RSTD_row_stride X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0) X_row_dtype = X_row.dtype W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0) X_row = X_row.to(tl.float32) mean_square = tl.sum(X_row * X_row, axis=0) / n_cols rstd = tl.libdevice.rsqrt(mean_square + eps) tl.store(RSTD_ptr, rstd) X_row = X_row * rstd X_row = X_row.to(X_row_dtype) Y_row = X_row * (offset + W_row) tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/rmsnorm.py
c11fd5e3-13e4-4c89-b431-45f0b4f5fe6c
linear.py
neuro-ml/kerops
kerops/kernels/linear.py
735336775e825d5cb06b8850d25423661b12d1ac
0
@triton.jit def _ReLULinearAddBackward(input_ptr, grad_ptr, input_grad_ptr, weight_ptr, weight_grad_ptr, numel_no_channels, in_channels: tl.constexpr, out_channels: tl.constexpr, D_block: tl.constexpr, _ILP: tl.constexpr): pid = tl.program_id(0) input_ptr += pid * _ILP * in_channels * D_block grad_ptr += pid * _ILP * out_channels * D_block input_grad_ptr += pid * _ILP * in_channels * D_block weight_grad_ptr += pid * in_channels * out_channels in_channels_offset = tl.arange(0, in_channels) out_channels_offset = tl.arange(0, out_channels) d_offset = tl.arange(0, D_block) input_offset = d_offset[:, None] * in_channels + in_channels_offset[None, : ] output_offset = d_offset[:, None] * out_channels + out_channels_offset[ None, :] weight_offset = out_channels_offset[:, None] + in_channels_offset[None, : ] * out_channels weight_grad_offset = in_channels_offset[:, None ] * out_channels + out_channels_offset[None, :] weight = tl.load(weight_ptr + weight_offset) weight_grad = tl.zeros([in_channels, out_channels], dtype=tl.float32) for i in tl.static_range(0, _ILP): mask = d_offset[:, None] < numel_no_channels - (pid * _ILP + i ) * D_block input = tl.load(input_ptr + input_offset, mask=mask, other=0.0) grad = tl.load(grad_ptr + output_offset, mask=mask, other=0.0) weight_grad += tl.dot(tl.trans(tl.maximum(input, 0.0).to(tl.float16 )), grad, out_dtype=tl.float32, allow_tf32=True) input_grad = tl.dot(grad, weight, out_dtype=tl.float32, allow_tf32=True ).to(tl.float16) * (input > 0) tl.store(input_grad_ptr + input_offset, input_grad, mask=mask) grad_ptr += out_channels * D_block input_grad_ptr += in_channels * D_block input_ptr += in_channels * D_block tl.store(weight_grad_ptr + weight_grad_offset, weight_grad)
{ "Data Type": [ "fp16", "fp32" ], "Functionality": [ "Backpropagation", "Activation Functions" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/linear.py
ffe33cc0-6fd8-45d2-bdf4-eedd126fdd10
flash_attention_fwd_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/flash_attention_fwd_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.jit def _attn_fwd(Q, K, V, sm_scale, M, Out, stride_qz: tl.constexpr, stride_qh: tl.constexpr, stride_qm: tl.constexpr, stride_qk: tl.constexpr, stride_kz: tl.constexpr, stride_kh: tl.constexpr, stride_kn: tl. constexpr, stride_kk: tl.constexpr, stride_vz: tl.constexpr, stride_vh: tl.constexpr, stride_vk: tl.constexpr, stride_vn: tl.constexpr, stride_oz: tl.constexpr, stride_oh: tl.constexpr, stride_om: tl. constexpr, stride_on: tl.constexpr, Z: tl.constexpr, H: tl.constexpr, N_CTX: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, STAGE: tl.constexpr): start_m = tl.program_id(2) off_z = tl.program_id(0) off_h = tl.program_id(1) qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64 ) * stride_qh if N_CTX <= 512: start_m = tl.program_id(0) off_z = tl.program_id(2) qvk_offset = off_z.to(tl.int64) * stride_qh Q_block_ptr = tl.make_block_ptr(base=Q + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) V_block_ptr = tl.make_block_ptr(base=V + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0)) K_block_ptr = tl.make_block_ptr(base=K + qvk_offset, shape=( BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0 ), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) O_block_ptr = tl.make_block_ptr(base=Out + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) qk_scale = sm_scale qk_scale *= 1.44269504 q = tl.load(Q_block_ptr) if STAGE & 1: acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, qk_scale, BLOCK_M, BLOCK_DMODEL, BLOCK_N, 4 - STAGE, offs_m, offs_n, N_CTX) if STAGE & 2: tl.debug_barrier() acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, qk_scale, BLOCK_M, BLOCK_DMODEL, BLOCK_N, 2, offs_m, offs_n, N_CTX) m_i += tl.math.log2(l_i) acc = acc / l_i[:, None] tl.store(O_block_ptr, acc.to(Out.type.element_ty))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/flash_attention_fwd_benchmark.py
6c2b085e-9a9b-4d4a-8365-f732191bf5c6
y_5.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_5.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def fifth_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): coord_stride = 3 block_id = tl.program_id(0) coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) CONST000 = 1.73430461568895 CONST001 = 2.32681380862329 CONST002 = 1.60565407233314 CONST003 = 3.21130814466628 CONST004 = 3.3166247903554 CONST005 = 6.21867148191637 CONST006 = 6.21867148191637 CONST007 = 1.60565407233314 CONST009 = 11.6340690431164 CONST010 = 12.8452325786651 CONST011 = 12.4373429638327 CONST012 = 12.8452325786651 CONST013 = 13.8744369255116 CONST017 = 33.9852909359329 CONST018 = 7.35803132638072 CONST020 = -44.1481879582843 CONST021 = -41.6233107765348 CONST022 = -29.4321253055229 CONST023 = -23.2681380862329 CONST024 = -19.2678488679977 CONST025 = -19.2678488679977 CONST026 = -16.9926454679664 CONST027 = -16.9926454679664 CONST028 = -13.8744369255116 CONST029 = -16.583123951777 CONST030 = 3.4686092313779 CONST031 = -8.49632273398321 CONST032 = -5.20291384706685 CONST033 = -3.4686092313779 CONST034 = -1.73430461568895 VAR05 = x * x * x * x * x VAR06 = x * x * x * x VAR07 = x * x * x VAR08 = x * x VAR14 = y * y * y * y * y VAR15 = y * y * y * y VAR16 = y * y * y VAR17 = y * y VAR23 = z * z * z * z * z VAR24 = z * z * z * z VAR25 = z * z * z VAR26 = z * z Y00 = CONST001 * VAR05 + CONST009 * VAR24 * x + CONST023 * VAR07 * VAR26 Y01 = y * (CONST022 * VAR07 * z - CONST022 * VAR25 * x) Y02 = CONST000 * VAR05 + VAR07 * (CONST028 * VAR17 + CONST033 * VAR26 ) + x * (-CONST021 * VAR17 * VAR26 + CONST032 * VAR24) Y03 = CONST027 * VAR07 * y * z + x * (CONST017 * VAR16 * z + CONST026 * VAR25 * y) Y04 = CONST002 * VAR05 + VAR07 * (CONST003 * VAR26 + CONST025 * VAR17 ) + x * (CONST002 * VAR24 + CONST010 * VAR15 + CONST024 * VAR17 * VAR26 ) Y05 = CONST004 * VAR14 + VAR16 * (CONST029 * VAR08 + CONST029 * VAR26 ) + y * (CONST005 * VAR06 + CONST006 * VAR24 + CONST011 * VAR08 * VAR26 ) Y06 = CONST002 * VAR23 + VAR25 * (CONST003 * VAR08 + CONST024 * VAR17 ) + z * (CONST007 * VAR06 + CONST012 * VAR15 + CONST024 * VAR08 * VAR17 ) Y07 = VAR16 * (CONST026 * VAR08 - CONST026 * VAR26) + y * (-CONST031 * VAR06 + CONST031 * VAR24) Y08 = CONST034 * VAR23 + VAR25 * (CONST013 * VAR17 + CONST030 * VAR08 ) + z * (CONST021 * VAR08 * VAR17 - CONST032 * VAR06) Y09 = y * (CONST018 * VAR06 + CONST018 * VAR24 + CONST020 * VAR08 * VAR26) Y10 = CONST001 * VAR23 + CONST009 * VAR06 * z + CONST023 * VAR08 * VAR25 output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) tl.store(output_ptr + output_row_offset, Y00, mask=output_row_offset < output_numel) tl.store(output_ptr + output_row_offset + 1, Y01, mask= output_row_offset + 1 < output_numel) tl.store(output_ptr + output_row_offset + 2, Y02, mask= output_row_offset + 2 < output_numel) tl.store(output_ptr + output_row_offset + 3, Y03, mask= output_row_offset + 3 < output_numel) tl.store(output_ptr + output_row_offset + 4, Y04, mask= output_row_offset + 4 < output_numel) tl.store(output_ptr + output_row_offset + 5, Y05, mask= output_row_offset + 5 < output_numel) tl.store(output_ptr + output_row_offset + 6, Y06, mask= output_row_offset + 6 < output_numel) tl.store(output_ptr + output_row_offset + 7, Y07, mask= output_row_offset + 7 < output_numel) tl.store(output_ptr + output_row_offset + 8, Y08, mask= output_row_offset + 8 < output_numel) tl.store(output_ptr + output_row_offset + 9, Y09, mask= output_row_offset + 9 < output_numel) tl.store(output_ptr + output_row_offset + 10, Y10, mask= output_row_offset + 10 < output_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_5.py
a0b42e56-4bd9-44e8-83f0-ca330317f885
fp8_matmul.py
drisspg/transformer_nuggets
transformer_nuggets/fp8/fp8_matmul.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def load_scales(a_scale_ptr, b_scale_ptr, ROW_WISE_SCALING: tl.constexpr): if ROW_WISE_SCALING: return a_scale_ptr, b_scale_ptr else: a_scale = tl.load(a_scale_ptr) b_scale = tl.load(b_scale_ptr) return a_scale, b_scale
{ "Data Type": [ "fp32" ], "Functionality": [], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/fp8/fp8_matmul.py