uuid
stringlengths 36
36
| file_name
stringlengths 5
50
| repo_name
stringclasses 110
values | file_path
stringlengths 7
112
| commit_hash
stringclasses 110
values | starcount
int64 0
0
| input
stringlengths 39
33.8k
| category
dict | licenses
sequencelengths 1
2
| github_url
stringlengths 94
193
|
---|---|---|---|---|---|---|---|---|---|
c09cde34-9ffc-4939-be5b-e95b46999a0f | softmax_loop_along_reduce_axis_v2.py | iclementine/optimize_softmax | softmax_loop_along_reduce_axis_v2.py | 6ddeee3481dd5e63f4a30b946c417e97bc4494bf | 0 | @triton.jit
def softmax_kernel_loop_v2(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr):
pid_m = tl.program_id(0)
m = tl.full((TILE_N,), value=-float('inf'), dtype=output_ptr.dtype.
element_ty)
for start_n in range(0, N, TILE_N):
n_offsets = start_n + tl.arange(0, TILE_N)
offset = pid_m * N + n_offsets
input_ptrs = input_ptr + offset
mask = n_offsets < N
inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
.dtype.element_ty)
m = tl.maximum(m, inp)
m = tl.max(m, 0)
z = tl.full((TILE_N,), value=0, dtype=output_ptr.dtype.element_ty)
for start_n in range(0, N, TILE_N):
n_offsets = start_n + tl.arange(0, TILE_N)
offset = pid_m * N + n_offsets
input_ptrs = input_ptr + offset
mask = n_offsets < N
inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
.dtype.element_ty)
e = tl.exp(inp - m)
z += e
z = tl.sum(z, 0)
for start_n in range(0, N, TILE_N):
n_offsets = start_n + tl.arange(0, TILE_N)
offset = pid_m * N + n_offsets
input_ptrs = input_ptr + offset
mask = n_offsets < N
inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
.dtype.element_ty)
e = tl.exp(inp - m)
out = e / z
output_ptrs = output_ptr + offset
tl.store(output_ptrs, out, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_loop_along_reduce_axis_v2.py |
d41cc477-8ab0-4b21-a14c-3997eac771ce | fused_recurrent.py | sustcsonglin/flash-linear-attention | fla/ops/rwkv6/fused_recurrent.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BT': BT, 'BK': BK}, num_warps=
num_warps) for BT in [16, 32, 64] for BK in [32, 64] for num_warps in [
1, 2, 4, 8]], key=['K'])
@triton.jit
def fused_recurrent_rwkv6_bwd_kernel_dw(q, k, dq, dk, dw, offsets, scale, T:
tl.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK:
tl.constexpr, REVERSE: tl.constexpr, HEAD_FIRST: tl.constexpr,
USE_OFFSETS: tl.constexpr):
i_k, i_nh = tl.program_id(0), tl.program_id(1)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
else:
bos, eos = i_n * T, i_n * T + T
T = eos - bos
NT = tl.cdiv(T, BT)
o_i = tl.arange(0, BT)
m_i = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0
) if not REVERSE else tl.where(o_i[:, None] <= o_i[None, :], 1.0, 0.0)
b_z = tl.zeros([BK], dtype=tl.float32)
i_t = 0 if not REVERSE else NT - 1
for _ in range(NT):
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_nh * T * K, (T, K), (K, 1), (i_t *
BT + 1, i_k * BK), (BT, BK), (1, 0))
p_dq = tl.make_block_ptr(dq + i_nh * T * K, (T, K), (K, 1), (
i_t * BT + 1, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_nh * T * K, (T - 1, K), (K, 1), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_nh * T * K, (T - 1, K), (K, 1),
(i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dw = tl.make_block_ptr(dw + i_nh * T * K, (T, K), (K, 1), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
else:
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0))
p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T - 1, K), (H *
K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T - 1, K),
(H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dw = tl.make_block_ptr(dw + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1)).to(tl.float32)
b_dq = tl.load(p_dq, boundary_check=(0, 1)).to(tl.float32)
b_k = tl.load(p_k, boundary_check=(0, 1)).to(tl.float32)
b_dk = tl.load(p_dk, boundary_check=(0, 1)).to(tl.float32)
b_dw = b_q * b_dq * scale - b_k * b_dk
b_c = b_z[None, :] + tl.dot(m_i, b_dw, allow_tf32=False)
tl.store(p_dw, b_c.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
if i_t >= 0:
b_z += tl.sum(b_dw, 0)
i_t += 1 if not REVERSE else -1
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/fused_recurrent.py |
ad644dd8-8dd8-4e51-b816-115a5a717ad7 | hilbert.py | Kitsunetic/space-filling-pytorch | space_filling_pytorch/functional/hilbert.py | 0de955ad1036973ee7506c5a0124c208acec722d | 0 | @triton.jit
def _calculate_hilbert_distance(fx, fy, fz, space_size):
x = ((fx + 1) / 2 * space_size).to(tl.int64)
y = ((fy + 1) / 2 * space_size).to(tl.int64)
z = ((fz + 1) / 2 * space_size).to(tl.int64)
x = tl.minimum(tl.maximum(x, 0), space_size - 1)
y = tl.minimum(tl.maximum(y, 0), space_size - 1)
z = tl.minimum(tl.maximum(z, 0), space_size - 1)
for i in tl.static_range(15, 0, -1):
q = 1 << i
p = q - 1
x ^= tl.where(x & q, p, 0)
cond = y & q
t = (x ^ y) & p
x ^= tl.where(cond, p, t)
y ^= tl.where(cond, 0, t)
cond = z & q
t = (x ^ z) & p
x ^= tl.where(cond, p, t)
z ^= tl.where(cond, 0, t)
y ^= x
z ^= y
t = 0
for i in tl.static_range(15, 0, -1):
q = 1 << i
t ^= tl.where(z & q, q - 1, 0)
x ^= t
y ^= t
z ^= t
ret = 0
for i in tl.static_range(0, 16):
q = 1 << i
ret |= (x & q) << 2 * i + 2
ret |= (y & q) << 2 * i + 1
ret |= (z & q) << 2 * i + 0
return ret
| {
"Data Type": [],
"Functionality": [],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/hilbert.py |
f6eb3989-cac5-479b-973d-97694fdb700e | mlstm_scan.py | LukasBluebaum/xLSTM-Triton-CUDA-Implementation | mlstm_scan.py | 6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b | 0 | @triton.jit
def roll(y, dim=0):
_, rh2, _ = tl.associative_scan((1 + 0 * y, 0.0 * y, y), dim, roll_op)
return rh2
| {
"Data Type": [],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_scan.py |
28746acd-0067-40c2-9349-3abb547bd86d | chunk_h_split.py | sustcsonglin/flash-linear-attention | fla/ops/common/chunk_h_split.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not
None, 'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not
None, 'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for
num_warps in [2, 4, 8] for num_stages in [2, 3]], key=['BT', 'USE_G',
'USE_GK', 'USE_GV'])
@triton.jit
def chunk_bwd_kernel_dh_split(q, g, gk, gv, do, dht, dhs, dhr, dh0, offsets,
split_indices, scale, T: tl.constexpr, S: tl.constexpr, HQ: tl.
constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.
constexpr, BK: tl.constexpr, BV: tl.constexpr, NG: tl.constexpr, USE_G:
tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr,
USE_FINAL_STATE_GRADIENT: tl.constexpr, STORE_INITIAL_STATE_GRADIENT:
tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr):
i_k, i_v, i_sh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_ss, i_hq = i_sh // HQ, i_sh % HQ
if USE_OFFSETS:
i_n, i_s = tl.load(split_indices + i_ss * 2).to(tl.int32), tl.load(
split_indices + i_ss * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
NS = tl.cdiv(T, S)
else:
NS = tl.cdiv(T, S)
i_n, i_s = i_ss // NS, i_ss % NS
bos, eos = i_n * T, i_n * T + T
i_nh = i_n * HQ + i_hq
i_ng, i_h = i_nh // NG, i_hq // NG
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
if i_s == NS - 1:
if USE_FINAL_STATE_GRADIENT:
p_dht = tl.make_block_ptr(dht + i_nh * K * V, (K, V), (V, 1), (
i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
p_dhr = tl.make_block_ptr(dhr + i_sh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dhr, b_dh.to(p_dhr.dtype.element_ty), boundary_check=(0, 1))
for i_t in range(tl.cdiv(min(i_s * S + S, T), BT) - 1, tl.cdiv(i_s * S,
BT) - 1, -1):
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_nh * T * K, (K, T), (1, K), (i_k *
BK, i_t * BT), (BK, BT), (0, 1))
p_do = tl.make_block_ptr(do + i_nh * T * V, (T, V), (V, 1), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
else:
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (K, T), (1,
HQ * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (
HQ * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
b_do = tl.load(p_do, boundary_check=(0, 1))
last_idx = min(i_t * BT + BT, T) - 1
if USE_G:
if HEAD_FIRST:
p_g = g + i_ng * T + i_t * BT + tl.arange(0, BT)
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
b_g_last = tl.load(g + i_ng * T + last_idx)
else:
p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
b_g = tl.load(p_g, mask=i_t * BT + tl.arange(0, BT) < T, other=0.0)
b_q = (b_q * tl.exp(b_g)[None, :]).to(b_q.dtype)
b_dh *= tl.exp(b_g_last)
if USE_GK:
if HEAD_FIRST:
p_gk = tl.make_block_ptr(gk + i_ng * T * K, (K, T), (1, K),
(i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + (i_ng * T + last_idx
) * K + i_k * BK + tl.arange(0, BK)
else:
p_gk = tl.make_block_ptr(gk + (bos * H + i_h) * K, (K, T),
(1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + (bos + last_idx
) * H * K + i_h * K + i_k * BK + tl.arange(0, BK)
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_q = (b_q * tl.exp(b_gk)).to(b_q.dtype)
b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) <
K, other=0.0)
b_dh *= tl.exp(b_gk_last)[:, None]
if USE_GV:
if HEAD_FIRST:
p_gv = tl.make_block_ptr(gv + i_ng * T * V, (T, V), (V, 1),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + (i_ng * T + last_idx
) * V + i_v * BV + tl.arange(0, BV)
else:
p_gv = tl.make_block_ptr(gv + (bos * H + i_h) * V, (T, V),
(H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + (bos + last_idx
) * H * V + i_h * V + i_v * BV + tl.arange(0, BV)
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
b_gv = tl.load(p_gv, boundary_check=(0, 1))
b_do = (b_do * tl.exp(b_gv)).to(b_do.dtype)
b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) <
V, other=0.0)
b_dh *= tl.exp(b_gv_last)[None, :]
b_dh += tl.dot(b_q, b_do)
if NS > 1:
p_dhs = tl.make_block_ptr(dhs + i_sh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dhs, b_dh.to(p_dhs.dtype.element_ty), boundary_check=(0, 1))
elif STORE_INITIAL_STATE_GRADIENT:
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_split.py |
66cc7094-2f0e-4a81-9d3e-fc4e2f0954ad | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/abc/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_abc_fwd_kernel_K(q, k, z, h, o, A, s_k_h, s_k_t, s_k_d, s_v_h,
s_v_t, s_v_d, s_h_h, s_h_t, s_h_d, scale, T: tl.constexpr, K: tl.
constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.
constexpr):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_p = tl.maximum(i_t * BT - 1, 0)
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
b_o = tl.zeros([BT, BV], dtype=tl.float32)
b_A = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (
i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (
s_h_t, s_h_d), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
b_k = tl.load(p_k, boundary_check=(0, 1))
b_h = tl.load(p_h, boundary_check=(0, 1))
b_o += tl.dot(b_q, b_h, allow_tf32=False)
b_A += tl.dot(b_q, b_k, allow_tf32=False)
p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t *
BT, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t *
BT, i_v * BV), (BT, BV), (1, 0))
b_z = tl.load(p_z, boundary_check=(0, 1))
p_zp = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), (i_p * V +
i_v * BV,), (BV,), (0,))
b_zp = tl.load(p_zp, boundary_check=(0,))
b_o = b_o * tl.exp(b_zp[None, :] - b_z)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT,
0), (BT, BT), (1, 0))
b_A = tl.where(m_s, b_A, 0.0)
if i_v == 0:
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py |
036c35d5-8ac1-4fea-a594-dfc3a88a9bfa | rmsnorm.py | agostini01/rms-norm-exercise | optimized/rmsnorm.py | 0884cc52a8cde60ff8af0fa58d5b5330ae5db87a | 0 | @triton.jit
def rms_norm(output_ptr, input_ptr, weights_ptr, stride, N, eps, DTYPE: tl.
constexpr, BLOCK_SIZE: tl.constexpr):
"""
RMS Norm Triton Kernel
Params:
- input_ptr (tensor): Pointer to Input
- output_ptr (tensor): Pointer to Output
- weights_ptr (tensor): Pointer to Scale applied to the normalized input
- stride (int): Stride to be applied when accessing elements in the input and output tensors
- N (int): Number of elements to be reduced == input_ptr.shape[-1]
- eps (half/float): Epsilon value added to the variance to prevent division by zero
- BLOCK_SIZE (constexpr): Size of the block for computation, provided as a compile-time constant
Usage:
_rms_norm[grid, block](x, y, self.w, input_stride , N, eps, BLOCK_SIZE)
"""
row = tl.program_id(0)
output_ptr += row * stride
input_ptr += row * stride
tmp = 0
tmp = tl.zeros([BLOCK_SIZE], dtype=DTYPE)
for offset in range(0, N, BLOCK_SIZE):
cols = offset + tl.arange(0, BLOCK_SIZE)
mask = cols < N
a = tl.load(input_ptr + cols, mask=mask, other=0.0).to(DTYPE)
tmp += a * a
rms = tl.sqrt(tl.sum(tmp) / N + eps)
for offset in range(0, N, BLOCK_SIZE):
cols = offset + tl.arange(0, BLOCK_SIZE)
mask = cols < N
x = tl.load(input_ptr + cols, mask=mask, other=0.0, eviction_policy
='evict_first').to(DTYPE)
w = tl.load(weights_ptr + cols, mask=mask)
x_hat = x / rms
y = x_hat * w
tl.store(output_ptr + cols, y, mask=mask)
| {
"Data Type": [
"fp32",
"fp16",
"bf16"
],
"Functionality": [
"Normalization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/agostini01/rms-norm-exercise/blob/0884cc52a8cde60ff8af0fa58d5b5330ae5db87a/optimized/rmsnorm.py |
55da2e67-0be0-4dfc-aa0d-22b2e71956a3 | softmax.py | sustcsonglin/flash-linear-attention | fla/ops/utils/softmax.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
num_warps=8), triton.Config({}, num_warps=16), triton.Config({},
num_warps=32)], key=['D'])
@triton.jit
def softmax_fwd_kernel(x, p, D: tl.constexpr, B: tl.constexpr):
i_n = tl.program_id(0)
o_d = tl.arange(0, B)
m_d = o_d < D
b_x = tl.load(x + i_n * D + o_d, mask=m_d, other=-float('inf'))
b_m = tl.max(b_x, 0)
b_x = tl.exp(b_x - b_m)
b_p = b_x / tl.sum(b_x, 0)
tl.store(p + i_n * D + o_d, b_p.to(p.dtype.element_ty), mask=m_d)
| {
"Data Type": [
"fp32",
"fp16",
"bf16"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/softmax.py |
ff97fdfb-b204-4483-bf5b-9713cad36067 | parallel.py | sustcsonglin/flash-linear-attention | fla/ops/based/parallel.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def parallel_based_bwd_kernel(q, k, v, do, dz, dq, dk, dv, s_k_h, s_k_t,
s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H: tl.constexpr, T:
tl.constexpr, K: tl.constexpr, V: tl.constexpr, BTL: tl.constexpr, BTS:
tl.constexpr, BK: tl.constexpr, BV: tl.constexpr):
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
NV = tl.cdiv(V, BV)
i_k = i_kv // NV
i_v = i_kv % NV
i_h = i_bh % H
_parallel_based_bwd_dq(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dq,
s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, B, H, T, scale, BTL=BTL,
BTS=BTS, BK=BK, BV=BV, K=K, V=V)
tl.debug_barrier()
_parallel_based_bwd_dkv(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dk,
dv, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, B, H, T, scale, BTL,
BTS, BK, BV, K, V)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Attention Mechanisms"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/based/parallel.py |
ea89f51b-43ee-4c4b-b14e-5c296ca54f47 | cross_entropy_loss.py | tdrussell/qlora-pipe | kernels/cross_entropy_loss.py | 6fb7c8eeae52a0e36c41f00628985f29d8330684 | 0 | @triton.heuristics({'DO_LOGIT_SCALING': lambda args: args['DO_LOGIT_SCALING']})
@triton.jit
def _chunked_cross_entropy_forward(logits_ptr, logits_row_stride, loss_ptr,
logsumexp_ptr, labels_ptr, VOCAB_SIZE: tl.constexpr, N_CHUNKS: tl.
constexpr, BLOCK_SIZE: tl.constexpr, DO_LOGIT_SCALING: tl.constexpr,
LOGIT_SCALE: tl.constexpr):
"""
256K vocab divided in 4 chunks
|-65536-| |-65536-| |-65536-| |-65536-|
|-------| |-------| |-------| |-------|
|-------| |-------| |-------| |-------|
If y == 0: CE_i = 0
If y == 1: CE_i = logsumexp - x
Notice we can do logsumexp for each chunk and then
logsumexp[chunk_sum(logsumexp)] == logsumexp
chunk_sum = log[chunk_sum(logsumexp)]
= log[exp(logsumexp(a)) + ... + exp(logsumexp(z))]
= log[exp(log[sum(exp(a))]) + ... + exp(log[sum(exp(z))])]
= log[sum(exp(a)) + ... + sum(exp(z))]
= logsumexp(x)
This means we can perform a logsumexp for each chunk, then do a
final logsumexp reduction!
Ie do: logsumexp(chunked_logsumexp) - x
"""
row_idx = tl.program_id(0)
chunk_idx = tl.program_id(1)
logits_ptr += row_idx * logits_row_stride.to(tl.int64)
loss_ptr += row_idx
logsumexp_ptr += row_idx * N_CHUNKS + chunk_idx
labels_ptr += row_idx
col_offsets = chunk_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = col_offsets < VOCAB_SIZE
label_idx = tl.load(labels_ptr).to(tl.int32)
logits = tl.load(logits_ptr + col_offsets, mask=mask, other=-float('inf')
).to(tl.float32)
if DO_LOGIT_SCALING:
logits = LOGIT_SCALE * logits
pass
c = tl.max(logits, 0)
logsumexp = c + tl.log(tl.sum(tl.exp(logits - c), 0))
if chunk_idx == 0:
if label_idx != -100:
x = tl.load(logits_ptr + label_idx).to(tl.float32)
if DO_LOGIT_SCALING:
x = LOGIT_SCALE * x
pass
loss = -1.0 * x
else:
loss = 0.0
tl.store(loss_ptr, loss)
pass
tl.store(logsumexp_ptr, logsumexp)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/tdrussell/qlora-pipe/blob/6fb7c8eeae52a0e36c41f00628985f29d8330684/kernels/cross_entropy_loss.py |
d6089944-ecae-4155-ae54-51eac263e597 | inout_tensor_parallel.py | gmgu/study-triton | 2_inout_tensor/inout_tensor_parallel.py | 3a9a24fd3f1de3e7465535ffe72f6deac8a419bd | 0 | @triton.jit
def copy_kernel(in_ptr, out_ptr, n, BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n
x = tl.load(in_ptr + offsets, mask=mask)
y = tl.store(out_ptr + offsets, x, mask=mask)
| {
"Data Type": [],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"Apache"
] | https://github.com/gmgu/study-triton/blob/3a9a24fd3f1de3e7465535ffe72f6deac8a419bd/2_inout_tensor/inout_tensor_parallel.py |
6f93083e-9dd4-4587-99ae-73b0d5ae4397 | triton_fused_attention.py | pytorch-labs/tritonbench | tritonbench/kernels/triton_fused_attention.py | 3a5dccb159834968567a2e45e561dc1aeaa8f8a8 | 0 | @triton.jit
def _attn_fwd_compute_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v,
desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz,
stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk,
stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid, Z,
H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.
constexpr, STAGE: tl.constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE:
tl.constexpr):
start_m = pid
off_z = off_hz // H
off_h = off_hz % H
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64
) * stride_qh
K_block_ptr = None
V_block_ptr = None
Q_block_ptr = None
O_block_ptr = None
if not ENABLE_TMA:
Q_block_ptr = tl.make_block_ptr(base=Q + qvk_offset, shape=(N_CTX,
HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0))
v_order: tl.constexpr = (0, 1
) if V.dtype.element_ty == tl.float8e5 else (1, 0)
V_block_ptr = tl.make_block_ptr(base=V + qvk_offset, shape=(N_CTX,
HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM), order=v_order)
K_block_ptr = tl.make_block_ptr(base=K + qvk_offset, shape=(
HEAD_DIM, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0
), block_shape=(HEAD_DIM, BLOCK_N), order=(0, 1))
O_block_ptr = tl.make_block_ptr(base=Out + qvk_offset, shape=(N_CTX,
HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0))
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
qk_scale = sm_scale
qk_scale *= 1.44269504
with tl.async_task([0]):
if ENABLE_TMA:
q = tl._experimental_descriptor_load(desc_q, [(qvk_offset //
stride_qm + start_m * BLOCK_M).to(tl.int32), 0], [BLOCK_M,
HEAD_DIM], Q.dtype.element_ty)
else:
q = tl.load(Q_block_ptr)
if STAGE & 1:
acc, l_i, m_i = _attn_fwd_inner_ws(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, desc_k, desc_v, Q, qvk_offset, stride_kn,
stride_vn, stride_vk, start_m, qk_scale, BLOCK_M, HEAD_DIM,
BLOCK_N, 4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty ==
tl.float8e5, ENABLE_TMA, LOOP_SCHEDULE)
if STAGE & 2:
acc, l_i, m_i = _attn_fwd_inner_ws(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, desc_k, desc_v, Q, qvk_offset, stride_kn,
stride_vn, stride_vk, start_m, qk_scale, BLOCK_M, HEAD_DIM,
BLOCK_N, 2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.
float8e5, ENABLE_TMA, LOOP_SCHEDULE)
with tl.async_task([1, 2]):
m_i += tl.math.log2(l_i)
acc = acc / l_i[:, None]
m_ptrs = M + off_hz * N_CTX + offs_m
tl.store(m_ptrs, m_i)
if ENABLE_TMA:
tl._experimental_descriptor_store(desc_o, acc.to(Out.type.
element_ty), [(qvk_offset // stride_om + start_m * BLOCK_M)
.to(tl.int32), 0])
else:
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"BSD"
] | https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py |
899ada78-0cbe-42a7-835e-eb835b7dce73 | kernel_benchmark.py | ruikangliu/FlatQuant | benchmarks/kernel_benchmark.py | 9d3032065f1688cb3f71ebc8166df6d91440e871 | 0 | @triton.jit
def quant_kernel(src_ptr, stride_srcb, stride_srcm, stride_srcn, dst_ptr,
stride_dstb, stride_dstm, stride_dstn, output_scale, B, M: tl.constexpr,
N: tl.constexpr, np2_M: tl.constexpr, np2_N: tl.constexpr):
"""
quant fp16 tensor to int4
"""
batch_id = tl.program_id(axis=0) + tl.program_id(axis=1) * tl.num_programs(
axis=0)
index_rows = tl.arange(0, np2_M)
index_cols = tl.arange(0, np2_N)
src_ptrs = src_ptr + batch_id * stride_srcb.to(tl.int64) + index_rows[:,
None] * stride_srcm + index_cols[None, :] * stride_srcn
src_mask = (index_rows[:, None] < M) & (index_cols[None, :] < N)
src = tl.load(src_ptrs, mask=src_mask, other=0.0)
abs_src_val = tl.abs(src)
max_src_val = tl.max(abs_src_val)
scale = max_src_val / 7.0
quant_val = libdevice.llrint(src / scale)
quant_val = max(-8, min(quant_val, 7))
quant_val = quant_val.reshape(np2_M, np2_N // 2, 2, can_reorder=False)
quant_val_even, quant_val_odd = quant_val.split()
quant_val_odd = quant_val_odd << 4
res = tl.zeros((np2_M, np2_N // 2), dtype=tl.uint8)
res = res | quant_val_odd & 240
res = res | quant_val_even & 15
offs_resm = tl.arange(0, np2_M)
offs_resn = tl.arange(0, np2_N // 2)
dst_ptrs = dst_ptr + stride_dstb.to(tl.int64
) * batch_id + stride_dstm * offs_resm[:, None
] + stride_dstn * offs_resn[None, :]
res_mask = (offs_resm[:, None] < M) & (offs_resn[None, :] < N // 2)
tl.store(dst_ptrs, res, mask=res_mask)
tl.store(output_scale + batch_id, scale)
| {
"Data Type": [
"fp16",
"uint8"
],
"Functionality": [
"Quantization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/ruikangliu/FlatQuant/blob/9d3032065f1688cb3f71ebc8166df6d91440e871/benchmarks/kernel_benchmark.py |
e91bc5a6-77ff-44ee-8f09-c99d4cd87aa7 | quant_triton.py | CompendiumLabs/ziggy | ziggy/backends/quant_triton.py | bd12fe50ca3475743f62ae26d4c184108e441e03 | 0 | @triton.jit
def quantize_kernel(X, Y, N, K, K1, scale, zero_point, BITS: tl.constexpr,
QFACT: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.
constexpr, BLOCK_SIZE_K1: tl.constexpr):
dtype = X.dtype.element_ty
scale_ty = tl.full((), scale, dtype=dtype)
zero_point_ty = tl.full((), zero_point, dtype=dtype)
QMASK = (1 << BITS) - 1
QMASK_FLT = tl.full((), QMASK, dtype=dtype)
pid_n = tl.program_id(0)
pid_k = tl.program_id(1)
bk = tl.arange(0, BLOCK_SIZE_K)
bk1 = tl.arange(0, BLOCK_SIZE_K1)
x_shift = BITS * (bk % QFACT)
rn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
rk = pid_k * BLOCK_SIZE_K + bk
rk1 = pid_k * BLOCK_SIZE_K1 + bk1
mask_x = rn[:, None] < N
mask_y = rn[:, None] < N
X1 = X + (rn[:, None] * K + rk[None, :])
Y1 = Y + (rn[:, None] * K1 + rk1[None, :])
x = tl.load(X1, mask=mask_x)
xf = clamp(x / scale_ty + zero_point_ty, 0.0, QMASK_FLT)
xi = tl.math.rint(xf).to(tl.uint8)
xq = xi << x_shift
mat = tl.reshape(xq, (BLOCK_SIZE_N, BLOCK_SIZE_K1, QFACT))
out = tl.sum(mat, axis=2)
tl.store(Y1, out, mask=mask_y)
| {
"Data Type": [
"fp32",
"fp16",
"bf16",
"uint8"
],
"Functionality": [
"Quantization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/CompendiumLabs/ziggy/blob/bd12fe50ca3475743f62ae26d4c184108e441e03/ziggy/backends/quant_triton.py |
55dad000-aa04-4d5a-bea5-663140e7161a | k_dropout.py | cpuhrsch/torchfused | torchfused/triton/k_dropout.py | 6c40ed160dcecbe7825f268f7c86bccd359e0ebf | 0 | @triton.autotune(configs=_k_configs, key=['N'])
@triton.jit
def k_dropout_fw(Y, X, BIAS, SEEDS, stride, N, p, **META):
"""
Apply dropout on an input tensor
Y : Output (M, N)
X : Input (M, N)
S : Seeds (M,)
p : dropout probability
"""
BLOCK_SIZE = META['BLOCK_SIZE']
row = tl.program_id(axis=0)
col = tl.program_id(axis=1)
offsets = row * stride + col * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = col * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) < N
x_ptrs = X + offsets
x = tl.load(x_ptrs, mask=mask)
if META['USE_BIAS']:
b_ptrs = BIAS + col * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
b = tl.load(b_ptrs, mask=mask)
x += b
if META['ACTIVATION']:
x = META['ACTIVATION'](x)
if p > 0.0:
output = _drop_and_scale(SEEDS, row, p, offsets, x)
else:
output = x
y_ptrs = Y + offsets
tl.store(y_ptrs, output, mask=mask)
| {
"Data Type": [],
"Functionality": [
"Elementwise Operations",
"Activation Functions"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"BSD"
] | https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_dropout.py |
d89888a4-f831-415d-9ee8-3c77f4fc0d29 | awq_triton.py | Charlie-XIAO/sparse-vllm | vllm/model_executor/layers/quantization/awq_triton.py | d228909a30b0c245c35417fb7d2acdf9a3690042 | 0 | @triton.jit
def awq_gemm_kernel(a_ptr, b_ptr, c_ptr, zeros_ptr, scales_ptr, M, N, K,
group_size, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr, SPLIT_K: tl.constexpr):
pid = tl.program_id(axis=0)
pid_z = tl.program_id(1)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // num_pid_n
pid_n = pid % num_pid_n
accumulator_dtype = c_ptr.type.element_ty
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=
accumulator_dtype)
reverse_awq_order_tensor = ((tl.arange(0, 2) * 4)[None, :] + tl.arange(
0, 4)[:, None]).reshape(8)
shifts = reverse_awq_order_tensor * 4
shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_K * (BLOCK_SIZE_N //
8), 8))
shifts = tl.reshape(shifts, (BLOCK_SIZE_K, BLOCK_SIZE_N))
offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
masks_am = offsets_am < M
offsets_bn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
masks_bn = offsets_bn < N // 8
offsets_zn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
masks_zn = offsets_zn < N // 8
offsets_sn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
masks_sn = offsets_sn < N
offsets_k = pid_z * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offsets_a = K * offsets_am[:, None] + offsets_k[None, :]
offsets_b = N // 8 * offsets_k[:, None] + offsets_bn[None, :]
a_ptrs = a_ptr + offsets_a
b_ptrs = b_ptr + offsets_b
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * SPLIT_K)):
masks_k = offsets_k < K
masks_a = masks_am[:, None] & masks_k[None, :]
a = tl.load(a_ptrs, mask=masks_a)
masks_b = masks_k[:, None] & masks_bn[None, :]
b = tl.load(b_ptrs, mask=masks_b)
b = tl.interleave(b, b)
b = tl.interleave(b, b)
b = tl.interleave(b, b)
offsets_szk = (BLOCK_SIZE_K * SPLIT_K * k + pid_z * BLOCK_SIZE_K
) // group_size + tl.arange(0, 1)
offsets_z = N // 8 * offsets_szk[:, None] + offsets_zn[None, :]
masks_zk = offsets_szk < K // group_size
masks_z = masks_zk[:, None] & masks_zn[None, :]
zeros_ptrs = zeros_ptr + offsets_z
zeros = tl.load(zeros_ptrs, mask=masks_z)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_K, BLOCK_SIZE_N))
offsets_s = N * offsets_szk[:, None] + offsets_sn[None, :]
masks_sk = offsets_szk < K // group_size
masks_s = masks_sk[:, None] & masks_sn[None, :]
scales_ptrs = scales_ptr + offsets_s
scales = tl.load(scales_ptrs, mask=masks_s)
scales = tl.broadcast_to(scales, (BLOCK_SIZE_K, BLOCK_SIZE_N))
b = b >> shifts & 15
zeros = zeros >> shifts & 15
b = (b - zeros) * scales
b = b.to(c_ptr.type.element_ty)
accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)
offsets_k += BLOCK_SIZE_K * SPLIT_K
a_ptrs += BLOCK_SIZE_K * SPLIT_K
b_ptrs += BLOCK_SIZE_K * SPLIT_K * (N // 8)
c = accumulator.to(c_ptr.type.element_ty)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + pid_z * N * M + N * offs_cm[:, None] + offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
| {
"Data Type": [
"uint8",
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Quantization"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"Apache"
] | https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/model_executor/layers/quantization/awq_triton.py |
5b54c71f-c6fd-49ad-b31b-72956c7bdb18 | fused_chunk.py | sustcsonglin/flash-linear-attention | fla/ops/linear_attn/fused_chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def fused_chunk_linear_attn_fwd_kernel(q, k, v, o, h0, ht, s_k_h, s_k_t,
s_k_d, s_v_h, s_v_t, s_v_d, scale, B, H, T, K: tl.constexpr, V: tl.
constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, CHECK:
tl.constexpr):
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
b_h = tl.zeros([BK, BV], dtype=tl.float32)
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0,
i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k *
BK, 0), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (0,
i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + (i_bh + i_k * B * H) * s_v_h, (T, V), (
s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0))
if USE_INITIAL_STATE:
p_h0 = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
for i in range(0, tl.cdiv(T, BT)):
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
b_k = tl.load(p_k, boundary_check=(0, 1))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_s = tl.dot(b_q, b_k, allow_tf32=False)
b_s = tl.where(m_s, b_s, 0)
b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
if CHECK and i == 0:
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
else:
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
p_q = tl.advance(p_q, (BT, 0))
p_k = tl.advance(p_k, (0, BT))
p_v = tl.advance(p_v, (BT, 0))
p_o = tl.advance(p_o, (BT, 0))
if STORE_FINAL_STATE:
p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/fused_chunk.py |
75455e8e-2630-4564-b24a-6cc4c167f9ee | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/abc/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_abc_bwd_kernel_intra_KV(v, z, A, do, dv, s_v_h, s_v_t, s_v_d, T:
tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BV:
tl.constexpr, NC: tl.constexpr):
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_t, i_i = i_c // NC, i_c % NC
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t *
BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
p_zn = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), ((i_t *
BT + i_i * BC + BC - 1) * V + i_v * BV,), (BV,), (0,))
b_zn = tl.load(p_zn, boundary_check=(0,))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_dv = tl.zeros([BC, BV], dtype=tl.float32)
for i_j in range(i_i + 1, NC):
p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), (i_i *
BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d),
(i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
b_z = tl.load(p_z, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_do = (b_do * tl.exp(b_zn[None, :] - b_z)).to(b_do.dtype)
b_A = tl.load(p_A, boundary_check=(0, 1))
b_dv += tl.dot(b_A, b_do, allow_tf32=False)
b_dv *= tl.exp(b_v - b_zn[None, :])
o_i = tl.arange(0, BC)
for j in range(0, BC):
p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (1,), ((i_t *
BT + i_i * BC + j) * V + i_v * BV,), (BV,), (0,))
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T * BT,), (1,), ((i_t *
BT + i_i * BC + j) * BT + i_i * BC,), (BC,), (0,))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T * V,), (1,), ((i_t *
BT + i_i * BC + j) * V + i_v * BV,), (BV,), (0,))
b_A = tl.load(p_A, boundary_check=(0,))
b_z = tl.load(p_z, boundary_check=(0,))
b_do = tl.load(p_do, boundary_check=(0,))
m_i = o_i[:, None] <= j
b_dv += tl.where(m_i, tl.exp(b_v - b_z[None, :]) * b_A[:, None] *
b_do[None, :], 0.0)
p_dv = tl.make_block_ptr(dv + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Attention Mechanisms",
"Backpropagation",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py |
2cc1ebc8-1e04-49be-a864-a110ad100feb | chunk_fuse.py | elephantmipt/rebased_minimal | flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py | e7b945509972fab9f9c1c7be431abf7d6bf62c95 | 0 | @triton.jit
def chunk_abc_bwd_kernel_dp(v, rv, cv, pv, do, dp, s_qk_h, s_qk_t, s_qk_d,
s_sk_h, s_sk_t, s_sk_m, T, BT: tl.constexpr, BV: tl.constexpr, BM: tl.
constexpr, DV: tl.constexpr, DM: tl.constexpr, NT: tl.constexpr):
i_m, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
n_bh = tl.num_programs(2)
p_v = tl.make_block_ptr(v + i_bh * s_qk_h, (DV, T), (s_qk_d, s_qk_t), (
i_v * BV, 0), (BV, BT), (0, 1))
p_rv = tl.make_block_ptr(rv + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m,),
(i_m * BM,), (BM,), (0,))
p_cv = tl.make_block_ptr(cv + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m),
(0, i_m * BM), (BT, BM), (1, 0))
p_pv = tl.make_block_ptr(pv + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m),
(0, i_m * BM), (BT, BM), (1, 0))
p_do = tl.make_block_ptr(do + i_bh * s_qk_h, (T, DV), (s_qk_t, s_qk_d),
(0, i_v * BV), (BT, BV), (1, 0))
p_dp = tl.make_block_ptr(dp + (i_v * n_bh + i_bh) * s_sk_h, (T, DM), (
s_sk_t, s_sk_m), (0, i_m * BM), (BT, BM), (1, 0))
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
b_hv = tl.zeros([BV, BM], dtype=tl.float32)
for _ in range(NT):
b_v = tl.load(p_v, boundary_check=(0, 1))
b_rv = tl.load(p_rv, boundary_check=(0,))
b_cv = tl.load(p_cv, boundary_check=(0, 1))
b_pv = tl.load(p_pv, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_inter = tl.dot(b_do, b_hv.to(b_do.dtype), allow_tf32=False) * b_rv[
None, :]
b_intra = tl.dot(tl.where(m_s, tl.dot(b_do, b_v, allow_tf32=False),
0).to(b_v.dtype), b_cv, allow_tf32=False)
b_dp = (b_inter + b_intra) * b_pv
b_hv = b_hv * b_rv[None, :] + tl.dot(b_v, b_cv, allow_tf32=False)
tl.store(p_dp, b_dp.to(p_dp.dtype.element_ty), boundary_check=(0, 1))
p_v = tl.advance(p_v, (0, BT))
p_rv = tl.advance(p_rv, (DM,))
p_cv = tl.advance(p_cv, (BT, 0))
p_pv = tl.advance(p_pv, (BT, 0))
p_do = tl.advance(p_do, (BT, 0))
p_dp = tl.advance(p_dp, (BT, 0))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Backpropagation",
"Elementwise Operations",
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py |
46b97460-47fd-4e2b-8f02-0a3f885ed908 | triton_sll.py | pytorch/FBGEMM | fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py | fe980ab54a6e28818d81c8694b6564e7f804418b | 0 | @triton.jit
def _multi_head_jagged_flash_attention_bwd_kernel(q_ptr, k_ptr, v_ptr,
o_ptr, offset_ptr, dq_ptr, dk_ptr, dv_ptr, do_ptr, delta_ptr, lse_ptr,
stride_qh, stride_qm, stride_qd, stride_kh, stride_kn, stride_kd,
stride_vh, stride_vn, stride_vd, stride_oh, stride_om, stride_od,
stride_lse_h, stride_delta_h, stride_dq_h, stride_dq_m, stride_dq_d,
stride_dk_h, stride_dk_n, stride_dk_d, stride_dv_h, stride_dv_n,
stride_dv_d, stride_do_h, stride_do_m, stride_do_d, num_heads: tl.
constexpr, max_seq_len: tl.constexpr, D: tl.constexpr, allow_tf32: tl.
constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_D: tl.
constexpr):
pid_bh = tl.program_id(axis=1)
pid_batch = pid_bh // num_heads
pid_head = pid_bh % num_heads
begin = tl.load(offset_ptr + pid_batch)
end = tl.load(offset_ptr + pid_batch + 1)
seqlen = tl.minimum(end - begin, max_seq_len)
if seqlen == 0:
return
pid_n = tl.program_id(axis=0)
offs_d = tl.arange(0, BLOCK_D)
offs_n = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
offs_m = tl.arange(0, BLOCK_M)
q_ptrs = q_ptr + pid_head * stride_qh + begin * stride_qm + (offs_m[:,
None] * stride_qm + offs_d[None, :] * stride_qd)
k_ptrs = k_ptr + pid_head * stride_kh + begin * stride_kn + (offs_n[:,
None] * stride_kn + offs_d[None, :] * stride_kd)
v_ptrs = v_ptr + pid_head * stride_vh + begin * stride_vn + (offs_n[:,
None] * stride_vn + offs_d[None, :] * stride_vd)
do_ptrs = do_ptr + pid_head * stride_do_h + begin * stride_do_m + (
offs_m[:, None] * stride_do_m + offs_d[None, :] * stride_do_d)
k = tl.load(k_ptrs, mask=(offs_d[None, :] < D) & (offs_n[:, None] <
seqlen), other=0.0)
v = tl.load(v_ptrs, mask=(offs_d[None, :] < D) & (offs_n[:, None] <
seqlen), other=0.0)
dv = tl.zeros([BLOCK_N, BLOCK_D], dtype=tl.float32)
dk = tl.zeros([BLOCK_N, BLOCK_D], dtype=tl.float32)
for begin_m in range(0, seqlen, BLOCK_M):
offs_m_curr = begin_m + offs_m
q = tl.load(q_ptrs, mask=(offs_d[None, :] < D) & (offs_m_curr[:,
None] < seqlen), other=0.0)
qk = tl.dot(q, tl.trans(k), allow_tf32=allow_tf32)
mn_mask = (offs_m_curr[:, None] < seqlen) & (offs_n[None, :] < seqlen)
lse_i = tl.load(lse_ptr + pid_head * stride_lse_h + begin +
offs_m_curr, mask=offs_m_curr < seqlen, other=float('inf'))
p = tl.exp(qk - lse_i[:, None])
p = tl.where(mn_mask, p, 0.0)
p /= max_seq_len
p = p.to(do_ptr.dtype.element_ty)
do = tl.load(do_ptrs, mask=(offs_d[None, :] < D) & (offs_m_curr[:,
None] < seqlen), other=0.0)
dv += tl.dot(tl.trans(p), do, allow_tf32=allow_tf32)
dp = tl.dot(do, tl.trans(v), allow_tf32=allow_tf32)
Di = tl.load(delta_ptr + pid_head * stride_delta_h + begin +
offs_m_curr, mask=offs_m_curr < seqlen)
ds = p * (dp - Di[:, None] * max_seq_len)
ds = ds.to(q_ptr.dtype.element_ty)
dk += tl.dot(tl.trans(ds), q, allow_tf32=allow_tf32)
q_ptrs += BLOCK_M * stride_qm
do_ptrs += BLOCK_M * stride_do_m
dk_ptrs = dk_ptr + pid_head * stride_dk_h + begin * stride_dk_n + (
offs_n[:, None] * stride_dk_n + offs_d[None, :] * stride_dk_d)
dv_ptrs = dv_ptr + pid_head * stride_dv_h + begin * stride_dv_n + (
offs_n[:, None] * stride_dv_n + offs_d[None, :] * stride_dv_d)
tl.store(dk_ptrs, dk, mask=(offs_d[None, :] < D) & (offs_n[:, None] <
seqlen))
tl.store(dv_ptrs, dv, mask=(offs_d[None, :] < D) & (offs_n[:, None] <
seqlen))
start_m = tl.program_id(axis=0) * BLOCK_M
offs_m_curr = start_m + tl.arange(0, BLOCK_M)
dq_ptrs_curr = dq_ptr + pid_head * stride_dq_h + begin * stride_dq_m + (
offs_m_curr[:, None] * stride_dq_m + offs_d[None, :] * stride_dq_d)
dq_curr = tl.zeros([BLOCK_M, BLOCK_D], dtype=tl.float32)
q_ptrs_curr = q_ptr + pid_head * stride_qh + begin * stride_qm + (
offs_m_curr[:, None] * stride_qm + offs_d[None, :] * stride_qd)
q_curr = tl.load(q_ptrs_curr, mask=(offs_d[None, :] < D) & (offs_m_curr
[:, None] < seqlen))
lse_i_curr = tl.load(lse_ptr + pid_head * stride_lse_h + begin +
offs_m_curr, mask=offs_m_curr < seqlen)
do_ptrs_curr = do_ptr + pid_head * stride_do_h + begin * stride_do_m + (
offs_m_curr[:, None] * stride_do_m + offs_d[None, :] * stride_do_d)
do_curr = tl.load(do_ptrs_curr, mask=(offs_d[None, :] < D) & (
offs_m_curr[:, None] < seqlen))
Di_curr = tl.load(delta_ptr + pid_head * stride_delta_h + begin +
offs_m_curr, mask=offs_m_curr < seqlen)
block_start = 0
while block_start < seqlen:
offs_n_curr = block_start + tl.arange(0, BLOCK_N)
k_ptrs_curr = k_ptr + pid_head * stride_kh + begin * stride_kn + (
offs_n_curr[:, None] * stride_kn + offs_d[None, :] * stride_kd)
v_ptrs_curr = v_ptr + pid_head * stride_vh + begin * stride_vn + (
offs_n_curr[:, None] * stride_vn + offs_d[None, :] * stride_vd)
k_curr = tl.load(k_ptrs_curr, mask=(offs_d[None, :] < D) & (
offs_n_curr[:, None] < seqlen))
v_curr = tl.load(v_ptrs_curr, mask=(offs_d[None, :] < D) & (
offs_n_curr[:, None] < seqlen))
qk_curr = tl.dot(q_curr, tl.trans(k_curr), allow_tf32=allow_tf32)
mn_mask_curr = (offs_m_curr[:, None] < seqlen) & (offs_n_curr[None,
:] < seqlen)
p_curr = tl.exp(qk_curr - lse_i_curr[:, None])
p_curr = tl.where(mn_mask_curr, p_curr, 0.0)
p_curr /= max_seq_len
dp_curr = tl.dot(do_curr, tl.trans(v_curr), allow_tf32=allow_tf32)
ds_curr = p_curr * (dp_curr - Di_curr[:, None] * max_seq_len)
ds_curr = ds_curr.to(k_ptr.dtype.element_ty)
dq_curr += tl.dot(ds_curr, k_curr, allow_tf32=allow_tf32)
block_start += BLOCK_N
tl.store(dq_ptrs_curr, dq_curr, mask=(offs_d[None, :] < D) & (
offs_m_curr[:, None] < seqlen))
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Backpropagation",
"Attention Mechanisms",
"Matrix Multiplication",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD",
"MIT"
] | https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py |
62678117-b269-40bc-af2e-e8df801e151a | addition.py | neuro-ml/kerops | kerops/kernels/addition.py | 735336775e825d5cb06b8850d25423661b12d1ac | 0 | @triton.jit
def _AddStats_cl3d_backward_impl(Addgrad_ptr, Meangrad_ptr, Sqmeangrad_ptr,
Sum_ptr, Outputgrad_ptr, numel, numel_no_channels, BLOCK_SIZE: tl.
constexpr, num_channels: tl.constexpr, block_other: tl.constexpr):
pid = tl.program_id(0)
Addgrad_ptr += pid * BLOCK_SIZE
Sum_ptr += pid * BLOCK_SIZE
Outputgrad_ptr += pid * BLOCK_SIZE
channels_offset = tl.arange(0, num_channels)
other_offset = tl.arange(0, block_other)
offset = channels_offset[None, :] + other_offset[:, None] * num_channels
mask = (other_offset < numel_no_channels - pid * block_other)[:, None]
sum = tl.load(Sum_ptr + offset, mask=mask, other=0.0)
add_grad = tl.load(Addgrad_ptr + offset, mask=mask, other=0.0)
mean_grad = tl.load(Meangrad_ptr + channels_offset[None, :])
sqmean_grad = tl.load(Sqmeangrad_ptr + channels_offset[None, :])
sqmean_grad_part = 2 * sum.to(tl.float32) * sqmean_grad / numel_no_channels
mean_grad_part = mean_grad / numel_no_channels
grad = add_grad + sqmean_grad_part + mean_grad_part
grad = grad.to(tl.float16)
tl.store(Outputgrad_ptr + offset, grad, mask=mask)
| {
"Data Type": [
"fp16",
"fp32"
],
"Functionality": [
"Backpropagation",
"Normalization",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/addition.py |
50f8d2cb-95bb-458d-a7f1-0ea3a9eb20e2 | fused_cross_entropy.py | sustcsonglin/flash-linear-attention | fla/modules/fused_cross_entropy.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'HAS_SMOOTHING': lambda args: args['label_smoothing'] >
0.0})
@triton.jit
def cross_entropy_fwd_kernel(loss_ptr, lse_ptr, z_loss_ptr, logits_ptr,
labels_ptr, label_smoothing, logit_scale, lse_square_scale,
ignore_index, total_classes, class_start_idx, n_cols, n_rows,
logits_row_stride, BLOCK_SIZE: tl.constexpr, HAS_SMOOTHING: tl.
constexpr, SPLIT: tl.constexpr):
row_idx = tl.program_id(0)
col_block_idx = tl.program_id(1)
logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
label_idx = tl.load(labels_ptr + row_idx)
logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols,
other=-float('inf'))
logits = logits.to(tl.float32) * logit_scale
max_logits = tl.max(logits, 0)
if HAS_SMOOTHING:
sum_logits = tl.sum(tl.where(col_offsets < n_cols, logits, 0.0), 0)
lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits
tl.store(lse_ptr + col_block_idx * n_rows + row_idx, lse)
if label_idx == ignore_index:
loss = 0.0
z_loss = 0.0
else:
label_idx -= class_start_idx
if label_idx >= col_block_idx * BLOCK_SIZE and label_idx < min(n_cols,
(col_block_idx + 1) * BLOCK_SIZE):
logits_label = tl.load(logits_ptr + label_idx) * logit_scale
if HAS_SMOOTHING:
loss = (lse if not SPLIT else 0.0
) - label_smoothing * sum_logits / total_classes - (1 -
label_smoothing) * logits_label
else:
loss = (lse if not SPLIT else 0.0) - logits_label
elif HAS_SMOOTHING:
loss = label_smoothing * ((lse if not SPLIT else 0.0) -
sum_logits / total_classes)
else:
loss = 0.0
if not SPLIT:
z_loss = lse_square_scale * lse * lse
loss += z_loss
else:
z_loss = 0.0
tl.store(loss_ptr + col_block_idx * n_rows + row_idx, loss)
if not SPLIT:
tl.store(z_loss_ptr + col_block_idx * n_rows + row_idx, z_loss)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/fused_cross_entropy.py |
908d9a97-c88c-4037-834b-8db2531abaa4 | y_1.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/direct/y_1.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def first_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size:
tl.constexpr, coord_numel: tl.constexpr, output_numel: tl.constexpr,
col_offset: tl.constexpr, output_stride: tl.constexpr):
coord_stride = 3
block_id = tl.program_id(0)
coord_striding = tl.arange(0, block_size) * coord_stride
coord_row_offset = coord_striding + block_size * coord_stride * block_id
x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 <
coord_numel)
z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 <
coord_numel)
CONST_00 = tl.sqrt(3.0)
Y10 = CONST_00 * x
Y11 = CONST_00 * y
Y12 = CONST_00 * z
output_striding = tl.arange(0, block_size) * output_stride
output_row_offset = (output_striding + block_size * output_stride *
block_id + col_offset)
tl.store(output_ptr + output_row_offset, Y10, mask=output_row_offset <
output_numel)
tl.store(output_ptr + output_row_offset + 1, Y11, mask=
output_row_offset + 1 < output_numel)
tl.store(output_ptr + output_row_offset + 2, Y12, mask=
output_row_offset + 2 < output_numel)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_1.py |
8f18db57-d2fd-4917-988c-68e1b2c06a4f | shape.py | 2niuhe/triton_utils | src/triton_utils/shape.py | 6184906ac3b86dac3ccbfac128ec393ccecde5df | 0 | @triton.jit
def store_2d(vals, ptr, sz0: tl.constexpr, sz1: tl.constexpr, n0, n1, max0,
max1, stride0=None, stride1=1):
"""Store 2d block into (n0,n1)th chunk of matrix (defined by ptr), where each chunk has size (sz0, sz1)"""
stride0 = stride0 or sz1
offs0 = get_1d_offest(sz0, n0)
offs1 = get_1d_offest(sz1, n1)
offs = get_2d_offset(offs0, offs1, stride0, stride1)
mask = get_2d_mask(offs0, offs1, max0, max1)
tl.store(ptr + offs, vals, mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py |
df8f566b-5179-4d60-9c4b-96a961c77a70 | softmax_split.py | iclementine/optimize_softmax | softmax_split.py | 6ddeee3481dd5e63f4a30b946c417e97bc4494bf | 0 | @triton.jit
def logsumexp_kernel(out_ptr, in_ptr, M, N, TILE_N: tl.constexpr):
pid_n = tl.program_id(0)
num_programs_n = tl.num_programs(0)
pid_m = tl.program_id(1)
n_offsets = pid_n * TILE_N + tl.arange(0, TILE_N)
mask = n_offsets < N
offset = pid_m * N + n_offsets
inp = tl.load(in_ptr + offset, mask=mask, other=-float('inf')).to(out_ptr
.dtype.element_ty)
m = tl.max(inp, 0)
e = tl.exp(inp - m)
z = tl.sum(e, 0)
logz = m + tl.log(z)
output_ptrs = out_ptr + pid_m * num_programs_n + pid_n
tl.store(output_ptrs, logz)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_split.py |
92000632-b05c-45c6-918d-cc07885d8e64 | 10-experimental-tma-store-matrix-multiplication.py | hgl71964/SIP | benchmarks/10-experimental-tma-store-matrix-multiplication.py | 767ed720d4bd5cee21670b125b62c434258c532b | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages
=7, num_warps=4)], key=['M', 'N', 'K'])
@triton.jit
def matmul_kernel(a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak,
stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M:
tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
block_offset_m = pid_m * BLOCK_SIZE_M
block_offset_n = pid_n * BLOCK_SIZE_N
a_tile_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=(
stride_am, stride_ak), offsets=(block_offset_m, 0), block_shape=(
BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0))
b_tile_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=(
stride_bk, stride_bn), offsets=(0, block_offset_n), block_shape=(
BLOCK_SIZE_K, BLOCK_SIZE_N), order=(0, 1))
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, K, BLOCK_SIZE_K):
a = tl.load(a_tile_ptr)
b = tl.load(b_tile_ptr)
accumulator += tl.dot(a, b)
a_tile_ptr = tl.advance(a_tile_ptr, [0, BLOCK_SIZE_K])
b_tile_ptr = tl.advance(b_tile_ptr, [BLOCK_SIZE_K, 0])
c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=(
stride_cm, stride_cn), offsets=(block_offset_m, block_offset_n),
block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0))
tl.store(c_block_ptr, accumulator)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings",
"Persistent Kernels"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/hgl71964/SIP/blob/767ed720d4bd5cee21670b125b62c434258c532b/benchmarks/10-experimental-tma-store-matrix-multiplication.py |
b957f60e-0bd5-47bd-acd6-2d465af4466c | chunk_h_split.py | sustcsonglin/flash-linear-attention | fla/ops/common/chunk_h_split.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'STORE_FINAL_STATE': lambda args: args['ht'] is not
None, 'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for
num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=['BT', 'USE_G',
'USE_GK', 'USE_GV'])
@triton.jit
def chunk_fwd_kernel_h_reduction(g, gk, gv, hs, hr, ht, offsets,
split_offsets, T: tl.constexpr, S: tl.constexpr, H: tl.constexpr, K: tl
.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl
.constexpr, USE_G: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.
constexpr, STORE_FINAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr):
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
NS = tl.cdiv(T, S)
boh = tl.load(split_offsets + i_n).to(tl.int32)
else:
bos, eos = i_n * T, i_n * T + T
NS = tl.cdiv(T, S)
boh = i_n * NS
b_h = tl.zeros([BK, BV], dtype=tl.float32)
for i_s in range(1, NS):
p_hs = tl.make_block_ptr(hs + ((boh + i_s - 1) * H + i_h) * K * V,
(K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_hr = tl.make_block_ptr(hr + ((boh + i_s) * H + i_h) * K * V, (K,
V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_h += tl.load(p_hs, boundary_check=(0, 1)).to(tl.float32)
tl.store(p_hr, b_h.to(p_hr.dtype.element_ty), boundary_check=(0, 1))
for i_t in range(tl.cdiv(i_s * S, BT), tl.cdiv(min(i_s * S + S, T), BT)
):
last_idx = min(i_t * BT + BT, T) - 1
if USE_G:
if HEAD_FIRST:
b_g_last = tl.load(g + i_nh * T + last_idx)
else:
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
b_h *= tl.exp(b_g_last)
if USE_GK:
if HEAD_FIRST:
p_gk_last = (gk + i_nh * T * K + last_idx * K + i_k *
BK + tl.arange(0, BK))
else:
p_gk_last = gk + (bos + last_idx
) * H * K + i_h * K + i_k * BK + tl.arange(0, BK)
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK
)
b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0,
BK) < K, other=0.0)
b_h *= tl.exp(b_gk_last)[:, None]
if USE_GV:
if HEAD_FIRST:
p_gv_last = (gv + i_nh * T * V + last_idx * V + i_v *
BV + tl.arange(0, BV))
else:
p_gv_last = gv + (bos + last_idx
) * H * V + i_h * V + i_v * BV + tl.arange(0, BV)
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV
)
b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0,
BV) < V, other=0.0)
b_h *= tl.exp(b_gv_last)[None, :]
if NS > 1:
if STORE_FINAL_STATE:
p_hs = tl.make_block_ptr(hs + ((boh + NS - 1) * H + i_h) * K *
V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_ht = tl.make_block_ptr(ht + i_nh * K * V, (K, V), (V, 1), (
i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_h += tl.load(p_hs, boundary_check=(0, 1)).to(tl.float32)
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1)
)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_split.py |
19ce5a53-d804-465c-95c2-1902ab6d7de8 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/rwkv6/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
num_warps=8)], key=['BC'])
@triton.jit
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra_merge(A, A2, offsets, indices,
B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, BT: tl.constexpr, BC:
tl.constexpr, NK: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST:
tl.constexpr):
i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
all = T
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
all = B * T
if i_t * BT + i_c * BC >= T:
return
b_A = tl.zeros([BC, BC], dtype=tl.float32)
for i_k in range(0, NK):
if HEAD_FIRST:
p_A = tl.make_block_ptr(A + (i_k * B * H + i_bh) * T * BC, (T,
BC), (BC, 1), (i_t * BT + i_c * BC, 0), (BC, BC), (1, 0))
else:
p_A = tl.make_block_ptr(A + (i_k * all + bos) * H * BC + i_h *
BC, (T, BC), (H * BC, 1), (i_t * BT + i_c * BC, 0), (BC, BC
), (1, 0))
b_A += tl.load(p_A, boundary_check=(0, 1))
if HEAD_FIRST:
p_A2 = tl.make_block_ptr(A2 + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
BT + i_c * BC, i_c * BC), (BC, BC), (1, 0))
else:
p_A2 = tl.make_block_ptr(A2 + (bos * H + i_h) * BT, (T, BT), (H *
BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0))
tl.store(p_A2, b_A.to(A2.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Recurrent Neural Networks"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Memory-Bound",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/chunk.py |
cdc37f44-be66-44db-8bec-5e91db230ff7 | _quantize.py | IBM/qattn | qattn/nn/functional/_quantize.py | 07ceda0aceb9afd299d622325944c0c0471827fe | 0 | @triton.jit
def dequantize(x: tl.tensor, scale: tl.tensor) ->tl.tensor:
"""Dequantize quantized tensor to floating point.
Args:
x (tl.tensor): quantized tensor.
scale (tl.tensor): quantization scaling factor
Returns:
tl.tensor: Dequantized floating-point tensor.
"""
return (x * scale).to(tl.float32)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Quantization"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/IBM/qattn/blob/07ceda0aceb9afd299d622325944c0c0471827fe/qattn/nn/functional/_quantize.py |
fba78c1a-b444-4758-891c-009b933f193d | conv.py | chengzeyi/stable-fast | src/sfast/triton/ops/conv.py | 3a6f35c7045f8f6812515957ca62ef37260ff080 | 0 | @conv_heuristics()
@triton.jit
def _kernel_delta_x_hwc(x, w, bias, y, stride_xn, stride_xc, stride_xh,
stride_xw, stride_wn, stride_wc, stride_wh, stride_ww, stride_yn,
stride_yc, stride_yh, stride_yw, delta_xh_ptr, delta_xw_ptr,
delta_xc_ptr, BATCH, IN_C, IN_H, IN_W, KERNEL_N, KERNEL_H, KERNEL_W,
OUT_H, OUT_W, stride_h, stride_w, padding_h, padding_w, dilation_h,
dilation_w, output_padding_h, output_padding_w, groups, ACC_TYPE: tl.
constexpr, CONV1X1_NHWC: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N:
tl.constexpr, BLOCK_K: tl.constexpr, GROUP_H: tl.constexpr, WITH_BIAS:
tl.constexpr):
"""
each program instance computes a [BLOCK_BATCH, BLOCK_N, BLOCK_H, BLOCK_W] block of y
"""
pid_nhw = tl.program_id(0)
pid_k = tl.program_id(1)
off_y_k = pid_k * BLOCK_N + tl.arange(0, BLOCK_N)
off_y_nhw = pid_nhw * BLOCK_M + tl.arange(0, BLOCK_M)
off_y_n = off_y_nhw // (OUT_H * OUT_W)
off_y_hw = off_y_nhw % (OUT_H * OUT_W)
off_y_h = off_y_hw // OUT_W + output_padding_h
off_y_w = off_y_hw % OUT_W + output_padding_w
off_x_n = off_y_n
off_x_h = off_y_h * stride_h - padding_h
off_x_w = off_y_w * stride_w - padding_w
off_x_nhw = off_x_n * stride_xn + off_x_h * stride_xh + off_x_w * stride_xw
off_x_crs = tl.arange(0, BLOCK_K)
CRS = IN_C * KERNEL_H * KERNEL_W
if not CONV1X1_NHWC:
delta_xh_ptrs = delta_xh_ptr + off_x_crs
delta_xw_ptrs = delta_xw_ptr + off_x_crs
delta_xc_ptrs = delta_xc_ptr + off_x_crs
delta_xh = tl.load(delta_xh_ptrs, mask=off_x_crs < CRS, other=0)
delta_xw = tl.load(delta_xw_ptrs, mask=off_x_crs < CRS, other=0)
delta_xc = tl.load(delta_xc_ptrs, mask=off_x_crs < CRS, other=0)
off_x_crs_unpacked = (delta_xh * stride_xh + delta_xw * stride_xw +
delta_xc * stride_xc)
x_ptrs = x + off_x_nhw[:, None] + off_x_crs_unpacked[None, :]
else:
x_ptrs = x + off_x_nhw[:, None] + off_x_crs[None, :]
delta_xh = 0
delta_xw = 0
mask_x = (off_x_n < BATCH)[:, None] & (off_x_crs < CRS)[None, :] & (
off_x_h[:, None] + delta_xh[None, :] >= 0) & (off_x_h[:, None] +
delta_xh[None, :] < IN_H) & (off_x_w[:, None] + delta_xw[None, :] >= 0
) & (off_x_w[:, None] + delta_xw[None, :] < IN_W)
off_w_crs = tl.arange(0, BLOCK_K)
off_w_k = off_y_k
w_ptrs = w + off_w_crs[:, None] + off_w_k[None, :] * stride_wn
mask_w = (off_x_crs < CRS)[:, None] & (off_w_k < KERNEL_N)[None, :]
matrix_x = tl.load(x_ptrs, mask=mask_x, other=0.0)
matrix_w = tl.load(w_ptrs, mask=mask_w, other=0.0)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
for crs in range(0, CRS, BLOCK_K):
acc += tl.dot(matrix_x, matrix_w, out_dtype=ACC_TYPE)
w_ptrs += BLOCK_K
off_x_crs = crs + BLOCK_K + tl.arange(0, BLOCK_K)
if not CONV1X1_NHWC:
delta_xh_ptrs += BLOCK_K
delta_xw_ptrs += BLOCK_K
delta_xc_ptrs += BLOCK_K
delta_xh = tl.load(delta_xh_ptrs, mask=off_x_crs < CRS, other=0)
delta_xw = tl.load(delta_xw_ptrs, mask=off_x_crs < CRS, other=0)
delta_xc = tl.load(delta_xc_ptrs, mask=off_x_crs < CRS, other=0)
off_x_crs_unpacked = (delta_xh * stride_xh + delta_xw *
stride_xw + delta_xc * stride_xc)
x_ptrs = x + off_x_nhw[:, None] + off_x_crs_unpacked[None, :]
else:
x_ptrs += BLOCK_K
mask_x = (off_x_n < BATCH)[:, None] & (off_x_crs < CRS)[None, :] & (
off_x_h[:, None] + delta_xh[None, :] >= 0) & (off_x_h[:, None] +
delta_xh[None, :] < IN_H) & (off_x_w[:, None] + delta_xw[None,
:] >= 0) & (off_x_w[:, None] + delta_xw[None, :] < IN_W)
mask_w = (off_x_crs < CRS)[:, None] & (off_w_k < KERNEL_N)[None, :]
matrix_x = tl.load(x_ptrs, mask=mask_x, other=0.0)
matrix_w = tl.load(w_ptrs, mask=mask_w, other=0.0)
if WITH_BIAS:
acc += tl.load(bias + off_y_k)[None, :]
acc = acc.to(y.dtype.element_ty)
off_y_k = pid_k * BLOCK_N + tl.arange(0, BLOCK_N)
off_y_nhw = pid_nhw * BLOCK_M + tl.arange(0, BLOCK_M)
off_y_n = off_y_nhw // (OUT_H * OUT_W)
off_y_hw = off_y_nhw % (OUT_H * OUT_W)
off_y_h = off_y_hw // OUT_W + output_padding_h
off_y_w = off_y_hw % OUT_W + output_padding_w
y_ptrs = y + off_y_n[:, None] * stride_yn + off_y_h[:, None
] * stride_yh + off_y_w[:, None] * stride_yw + off_y_k[None, :
] * stride_yc
mask_y = (off_y_n < BATCH)[:, None] & (off_y_h < OUT_H + output_padding_h)[
:, None] & (off_y_w < OUT_W + output_padding_w)[:, None] & (off_y_k <
KERNEL_N)[None, :]
tl.store(y_ptrs, acc, mask=mask_y)
return
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Tiled",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/conv.py |
c0a72086-6095-4821-ae15-cdbb362b3308 | cluster_test.py | jax-ml/jax-triton | tests/cluster_test.py | 859cc392bec876d132bd0790ea6c00b6c246dd2b | 0 | @triton.jit
def dummy_kernel(x_ptr, o_ptr):
offs = tl.program_id(axis=0) * 4 + tl.arange(0, 4)
tl.store(o_ptr + offs, tl.load(x_ptr + offs))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Low Latency"
]
} | [
"Apache"
] | https://github.com/jax-ml/jax-triton/blob/859cc392bec876d132bd0790ea6c00b6c246dd2b/tests/cluster_test.py |
99f349d5-d5b7-4d07-b2cd-6f21651e8219 | flash_attention.py | falkaer/multi-scale-music | seq/flash_attention.py | a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d | 0 | @triton.jit
def _fwd_kernel(Q, K, V, S, Out, sm_scale, TMP, L, M, stride_qz, stride_qh,
stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vn, stride_vk, stride_oz, stride_oh,
stride_om, stride_ok, stride_tz, stride_th, stride_tm, stride_lz,
stride_lh, stride_lm, stride_mz, stride_mh, stride_mm, M_Q, N_CTX,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.
constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, CAUSAL: tl.
constexpr, USE_ALIBI: tl.constexpr):
start_m = tl.program_id(0) * BLOCK_M
off_h = tl.program_id(1)
off_z = tl.program_id(2)
offs_m = start_m + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
off_q = off_z * stride_qz + off_h * stride_qh + offs_m[:, None
] * stride_qm + offs_d[None, :] * stride_qk
off_k = off_z * stride_kz + off_h * stride_kh + offs_n[:, None
] * stride_kn + offs_d[None, :] * stride_kk
off_v = off_z * stride_vz + off_h * stride_vh + offs_n[:, None
] * stride_vn + offs_d[None, :] * stride_vk
q_ptrs = Q + off_q
k_ptrs = K + off_k
v_ptrs = V + off_v
t_ptrs = TMP + off_z * stride_tz + off_h * stride_th + offs_m * stride_tm
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
if EVEN_M:
q = tl.load(q_ptrs)
else:
q = tl.load(q_ptrs, mask=offs_m[:, None] < M_Q, other=0)
q = q.to(tl.float16)
if USE_ALIBI:
slope = tl.load(S + off_h)
if CAUSAL & EVEN_M & EVEN_N:
bound = start_m + BLOCK_M
else:
bound = N_CTX
for start_n in range(0, bound, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
if EVEN_N:
k = tl.load(k_ptrs)
else:
k = tl.load(k_ptrs, mask=start_n + offs_n[:, None] < N_CTX, other=0
)
k = k.to(tl.float16)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k, trans_b=True)
qk *= sm_scale
if USE_ALIBI & CAUSAL:
qk += causal_alibi_mask(slope, offs_m, start_n + offs_n, M_Q,
N_CTX, EVEN_M, EVEN_N)
elif USE_ALIBI:
qk += symmetric_alibi_mask(slope, offs_m, start_n + offs_n, M_Q,
N_CTX, EVEN_M, EVEN_N)
elif CAUSAL:
qk += causal_mask(offs_m, start_n + offs_n, M_Q, N_CTX, EVEN_M,
EVEN_N)
else:
qk += bounds_mask(offs_m, start_n + offs_n, M_Q, N_CTX, EVEN_M,
EVEN_N)
m_ij = tl.maximum(tl.max(qk, axis=1), -10000)
p = tl.exp(qk - m_ij[:, None])
l_ij = tl.sum(p, axis=1)
m_i_new = tl.maximum(m_i, m_ij)
alpha = tl.exp(m_i - m_i_new)
beta = tl.exp(m_ij - m_i_new)
l_i_new = alpha * l_i + beta * l_ij
p_scale = beta / l_i_new
p = p * p_scale[:, None]
acc_scale = l_i / l_i_new * alpha
tl.store(t_ptrs, acc_scale)
acc_scale = tl.load(t_ptrs)
acc = acc * acc_scale[:, None]
if EVEN_N:
v = tl.load(v_ptrs)
else:
v = tl.load(v_ptrs, mask=start_n + offs_n[:, None] < N_CTX, other=0
)
v = v.to(tl.float16)
p = p.to(tl.float16)
acc += tl.dot(p, v)
l_i = l_i_new
m_i = m_i_new
v_ptrs += BLOCK_N * stride_vn
k_ptrs += BLOCK_N * stride_kn
offs_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
l_ptrs = L + off_z * stride_lz + off_h * stride_lh + offs_m * stride_lm
m_ptrs = M + off_z * stride_mz + off_h * stride_mh + offs_m * stride_mm
if EVEN_M:
tl.store(l_ptrs, l_i)
tl.store(m_ptrs, m_i)
else:
tl.store(l_ptrs, l_i, mask=offs_m < M_Q)
tl.store(m_ptrs, m_i, mask=offs_m < M_Q)
offs_d = tl.arange(0, BLOCK_DMODEL)
off_o = off_z * stride_oz + off_h * stride_oh + offs_m[:, None
] * stride_om + offs_d[None, :] * stride_ok
out_ptrs = Out + off_o
if EVEN_M:
tl.store(out_ptrs, acc)
else:
tl.store(out_ptrs, acc, mask=offs_m[:, None] < M_Q)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Softmax"
],
"Memory Access Pattern": [
"Tiled",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py |
e528bce6-ce8b-4667-9ce7-53bb2e0fbc58 | chunk_fuse.py | elephantmipt/rebased_minimal | flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py | e7b945509972fab9f9c1c7be431abf7d6bf62c95 | 0 | @triton.jit
def chunk_abc_bwd_kernel_dk(q, k, rk, ck, ds, dk, dsk, s_qk_h, s_qk_t,
s_qk_d, s_sk_h, s_sk_t, s_sk_m, T, BT: tl.constexpr, BK: tl.constexpr,
BM: tl.constexpr, DK: tl.constexpr, DM: tl.constexpr, NT: tl.constexpr):
i_k, i_m, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
n_bh = tl.num_programs(2)
p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (
(NT - 1) * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (
i_k * BK, (NT - 1) * BT), (BK, BT), (0, 1))
p_rk = tl.make_block_ptr(rk + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m,),
(i_m * BM,), (BM,), (0,))
p_ck = tl.make_block_ptr(ck + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m),
((NT - 1) * BT, i_m * BM), (BT, BM), (1, 0))
p_ds = tl.make_block_ptr(ds + i_bh * s_sk_h, (DM, T), (s_sk_m, s_sk_t),
(i_m * BM, (NT - 1) * BT), (BM, BT), (0, 1))
p_dk = tl.make_block_ptr(dk + (i_m * n_bh + i_bh) * s_qk_h, (T, DK), (
s_qk_t, s_qk_d), ((NT - 1) * BT, i_k * BK), (BT, BK), (1, 0))
p_dsk = tl.make_block_ptr(dsk + (i_k * n_bh + i_bh) * s_sk_h, (T, DM),
(s_sk_t, s_sk_m), ((NT - 1) * BT, i_m * BM), (BT, BM), (1, 0))
o_i = tl.arange(0, BT)
m_s, m_t = o_i[:, None] <= o_i[None, :], o_i[:, None] >= o_i[None, :]
b_dhk = tl.zeros([BM, BK], dtype=tl.float32)
for i in range(NT):
p_rk = tl.make_block_ptr(rk + i_bh * s_sk_t * NT, (NT * DM,), (
s_sk_m,), ((NT - i) % NT * DM + i_m * BM,), (BM,), (0,))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_rk = tl.load(p_rk, boundary_check=(0,))
b_ck = tl.load(p_ck, boundary_check=(0, 1))
b_ds = tl.load(p_ds, boundary_check=(0, 1))
b_inter = tl.dot((b_ck * b_rk[None, :]).to(b_q.dtype), b_dhk.to(b_q
.dtype), allow_tf32=False)
b_intra = tl.dot(tl.where(m_s, tl.dot(b_ck, b_ds, allow_tf32=False),
0.0).to(b_q.dtype), b_q, allow_tf32=False)
b_dk = b_inter + b_intra
b_inter = tl.dot(b_dhk.to(b_k.dtype), b_k, allow_tf32=False) * b_rk[
:, None]
b_intra = tl.dot(b_ds, tl.where(m_t, tl.dot(b_q, b_k, allow_tf32=
False), 0.0).to(b_q.dtype), allow_tf32=False)
b_dsk = b_ck * tl.trans(b_inter + b_intra)
b_dhk = b_dhk * b_rk[:, None] + tl.dot(b_ds, b_q, allow_tf32=False)
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dsk, b_dsk.to(p_dsk.dtype.element_ty), boundary_check=(0, 1)
)
p_q = tl.advance(p_q, (-BT, 0))
p_k = tl.advance(p_k, (0, -BT))
p_ck = tl.advance(p_ck, (-BT, 0))
p_ds = tl.advance(p_ds, (0, -BT))
p_dk = tl.advance(p_dk, (-BT, 0))
p_dsk = tl.advance(p_dsk, (-BT, 0))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py |
47a0737b-519d-4b88-a3af-0251a50b9828 | fused_recurrent.py | sustcsonglin/flash-linear-attention | fla/ops/linear_attn/fused_recurrent.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def fused_recurrent_linear_attn_bwd_kernel(q, k, v, do, dq, dk, dv, h0,
s_k_h, s_v_h, scale, B, H, T, K: tl.constexpr, V: tl.constexpr, BK: tl.
constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr):
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV)
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV)
p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK)
mask_bk = i_k * BK + tl.arange(0, BK) < K
mask_bv = i_v * BV + tl.arange(0, BV) < V
b_h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
mask_kv = mask_bk[:, None] & mask_bv[None, :]
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]
) * V + (i_v * BV + tl.arange(0, BV)[None, :])
b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
for _ in range(0, T):
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
b_h += b_k[:, None] * b_v[None, :]
_d_q = b_h * b_do[None, :]
d_q = tl.sum(_d_q, axis=1) * scale
tl.store(p_dq, d_q.to(p_dq.dtype.element_ty), mask=mask_bk)
p_k += K
p_do += V
p_v += V
p_dq += K
tl.debug_barrier()
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (T - 1) * K
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + (T - 1) * V
p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + (T
- 1) * K
p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + (T
- 1) * V
d_h = tl.zeros([BK, BV], dtype=tl.float32)
for _ in range(T):
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
d_h += b_q[:, None] * b_do[None, :]
d_k = tl.sum(d_h * b_v[None, :], axis=1)
d_v = tl.sum(d_h * b_k[:, None], axis=0)
tl.store(p_dk, d_k.to(p_dk.dtype.element_ty), mask=mask_bk)
tl.store(p_dv, d_v.to(p_dv.dtype.element_ty), mask=mask_bv)
p_do -= V
p_q -= K
p_k -= K
p_v -= V
p_dk -= K
p_dv -= V
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Recurrent Neural Networks",
"Backpropagation"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/fused_recurrent.py |
47931159-10d0-421b-8cec-3607da49ce15 | scratch.py | falkaer/multi-scale-music | seq/scratch.py | a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d | 0 | @triton.jit
def apply_dropout(x, offsets, p, seed, mask_val=0.0):
scale = 1 / (1 - p)
rand = tl.rand(seed, offsets)
return tl.where(rand > p, x * scale, mask_val)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/scratch.py |
3dcdbcd6-e7fc-47f6-a45e-152876ac2a6c | gemm_postop_gelu_benchmark.py | intel/intel-xpu-backend-for-triton | benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py | 6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256,
'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode':
'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M':
256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4,
'grf_mode': 'large'}, num_stages=3, num_warps=32), triton.Config({
'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K':
32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32
), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 512,
'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages
=2, num_warps=32)], key=['M', 'N', 'K'])
@triton.jit
def matmul_kernel_with_block_pointers(a_ptr, b_ptr, c_ptr, M: tl.constexpr,
N: tl.constexpr, K: tl.constexpr, stride_am: tl.constexpr, stride_ak:
tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl.constexpr,
stride_cm: tl.constexpr, stride_cn: tl.constexpr, BLOCK_SIZE_M: tl.
constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
a_block_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=(
stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0),
block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0))
b_block_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=(
stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N),
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0))
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for _ in range(0, K, BLOCK_SIZE_K):
a = tl.load(a_block_ptr, boundary_check=(0, 1))
b = tl.load(b_block_ptr, boundary_check=(0, 1))
accumulator += tl.dot(a, b)
a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K))
b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0))
c = gelu(accumulator)
c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=(
stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n *
BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0))
tl.store(c_block_ptr, c, boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Activation Functions"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py |
c2013b8d-c916-45ca-9e2e-44a7016851d9 | swiglu.py | ardywibowo/triton-mode | kernels/swiglu.py | 5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1 | 0 | @triton.jit
def triton_swiglu_forward(input_a_ptr, input_b_ptr, output_ptr, row_stride,
num_columns: tl.constexpr, BLOCK_SIZE: tl.constexpr):
prog_id = tl.program_id(0).to(tl.int64)
input_a_ptr += prog_id * row_stride
input_b_ptr += prog_id * row_stride
output_ptr += prog_id * row_stride
column_offsets = tl.arange(0, BLOCK_SIZE)
active_mask = column_offsets < num_columns
input_a_row = tl.load(input_a_ptr + column_offsets, mask=active_mask,
other=0).to(tl.float32)
input_b_row = tl.load(input_b_ptr + column_offsets, mask=active_mask,
other=0)
result_row = silu(input_a_row) * input_b_row
tl.store(output_ptr + column_offsets, result_row, mask=active_mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/swiglu.py |
852c0812-545a-4d54-a311-09ef7b9a1c60 | gemm_benchmark.py | intel/intel-xpu-backend-for-triton | benchmarks/triton_kernels_benchmark/gemm_benchmark.py | 6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256,
'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode':
'large'}, num_stages=s, num_warps=32) for s in [1, 2, 3]] + [triton.
Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32,
'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=s, num_warps=32) for
s in [2, 3, 4]] + [triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N':
128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'},
num_stages=s, num_warps=32) for s in [2]] + [triton.Config({
'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 512, 'BLOCK_SIZE_K': 64,
'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages=s, num_warps=32) for
s in [2, 3]], key=['M', 'N', 'K'])
@triton.jit
def matmul_kernel_with_block_pointers(a_ptr, b_ptr, c_ptr, M: tl.constexpr,
N: tl.constexpr, K: tl.constexpr, stride_am: tl.constexpr, stride_ak:
tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl.constexpr,
stride_cm: tl.constexpr, stride_cn: tl.constexpr, BLOCK_SIZE_M: tl.
constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
a_block_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=(
stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0),
block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0))
b_block_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=(
stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N),
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0))
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for _ in range(0, K, BLOCK_SIZE_K):
a = tl.load(a_block_ptr, boundary_check=(0, 1))
b = tl.load(b_block_ptr, boundary_check=(0, 1))
accumulator += tl.dot(a, b)
a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K))
b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0))
c = accumulator.to(tl.float32)
c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=(
stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n *
BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0))
tl.store(c_block_ptr, c, boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_benchmark.py |
8fca3bd0-a9e4-43f9-9d3d-89cfd7925602 | bnrelu.py | neuro-ml/kerops | kerops/kernels/bnrelu.py | 735336775e825d5cb06b8850d25423661b12d1ac | 0 | @triton.jit
def _ApplyBNReLU_cl3d_impl(X_ptr, Out_ptr, Weight_ptr, Bias_ptr,
numel_no_channels, BLOCK_SIZE: tl.constexpr, num_channels: tl.constexpr,
block_other: tl.constexpr):
pid = tl.program_id(0)
X_ptr += pid * BLOCK_SIZE
Out_ptr += pid * BLOCK_SIZE
channels_offset = tl.arange(0, num_channels)
other_offset = tl.arange(0, block_other)
offset = channels_offset[None, :] + other_offset[:, None] * num_channels
mask = (other_offset < numel_no_channels - pid * block_other)[:, None]
x = tl.load(X_ptr + offset, mask=mask, other=0).to(tl.float32)
weight = tl.load(Weight_ptr + channels_offset[None, :])
bias = tl.load(Bias_ptr + channels_offset[None, :])
output = x * weight + bias
output = tl.maximum(output, 0.0)
tl.store(Out_ptr + offset, output, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization",
"Activation Functions"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/bnrelu.py |
817c1276-c556-4c1d-b4c5-f46a380bd438 | test_autodiff.py | srush/triton-autodiff | tests/test_autodiff.py | f9d1a04d048e3252bfd222646db7175ad60a3c7c | 0 | @triton.jit
def tr2(X, dX, dY):
r = tl.arange(0, 16)
r2 = tl.arange(0, 16)[:, None]
x = tl.load(X + r)
dy = tl.load(dY + 16 * r2 + r)
tl.static_print('shape', dy.shape)
dx = dcomp2dx(x, dy)
tl.static_print('shape', dx.shape)
tl.store(dX + r, dx)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/srush/triton-autodiff/blob/f9d1a04d048e3252bfd222646db7175ad60a3c7c/tests/test_autodiff.py |
0390ce58-3047-487a-b922-61daab851d88 | kernels.py | pytorch-labs/tritonbench | tritonbench/operators/launch_latency/kernels.py | 3a5dccb159834968567a2e45e561dc1aeaa8f8a8 | 0 | @triton.jit
def nop_kernel():
pass
| {
"Data Type": [],
"Functionality": [],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"BSD"
] | https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/launch_latency/kernels.py |
a2951d7f-12bc-4c56-a281-b5e60b0cf38c | 3_mat_mul.py | DataLama/triton-tutorials | tutorials/basic/3_mat_mul.py | 95fb36429bdae3333cfcde76b18a00781ba5953e | 0 | @triton.jit
def matmul_kernel(x_ptr, y_ptr, z_ptr, m_size, k_size, n_size, m_block_size:
tl.constexpr, k_block_size: tl.constexpr, n_block_size: tl.constexpr):
pid = tl.program_id(0)
num_n_blocks = tl.cdiv(n_size, n_block_size)
m_block = pid // num_n_blocks
n_block = pid % num_n_blocks
m_offsets = tl.arange(0, m_block_size) + m_block * m_block_size
n_offsets = tl.arange(0, n_block_size) + n_block * n_block_size
k_offsets = tl.arange(0, k_block_size)
x_ptrs = x_ptr + m_offsets[:, None] * k_size + k_offsets[None, :]
y_ptrs = y_ptr + k_offsets[:, None] * n_size + n_offsets[None, :]
z_ptrs = z_ptr + m_offsets[:, None] * n_size + n_offsets[None, :]
z = tl.zeros((m_block_size, n_block_size), dtype=tl.float32)
for _ in range(0, k_size, k_block_size):
x_sub = tl.load(x_ptrs)
y_sub = tl.load(y_ptrs)
z += tl.dot(x_sub, y_sub, allow_tf32=False)
x_ptrs += k_block_size
y_ptrs += k_block_size * n_size
tl.store(z_ptrs, z)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/DataLama/triton-tutorials/blob/95fb36429bdae3333cfcde76b18a00781ba5953e/tutorials/basic/3_mat_mul.py |
d5aed4cd-281b-47ba-b953-7ad565ff7b41 | test_inductor.py | triton-lang/kernels | test/test_inductor.py | eeeebdd8be7d13629de22d600621e6234057eed3 | 0 | @triton.jit
def triton_(in_ptr0, out_ptr0, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x5 = xindex
tmp0 = -1 + x1
tmp1 = -1 + x0
tmp2 = 2 + x1
tmp3 = 2 + x0
tmp4 = 0
tmp5 = tl.where(tmp0 != tmp0, tmp0, tl.where(tmp0 > tmp4, tmp0, tmp4))
tmp6 = tl.where(tmp1 != tmp1, tmp1, tl.where(tmp1 > tmp4, tmp1, tmp4))
tmp7 = 8
tmp8 = tl.where(tmp2 != tmp2, tmp2, tl.where(tmp2 < tmp7, tmp2, tmp7))
tmp9 = tl.where(tmp3 != tmp3, tmp3, tl.where(tmp3 < tmp7, tmp3, tmp7))
tmp10 = tmp5 + tmp4
tmp11 = tmp6 + tmp4
tmp12 = 1
tmp13 = tmp8 - tmp12
tmp14 = tl.where(tmp10 != tmp10, tmp10, tl.where(tmp10 < tmp13, tmp10,
tmp13))
tmp15 = tmp9 - tmp12
tmp16 = tl.where(tmp11 != tmp11, tmp11, tl.where(tmp11 < tmp15, tmp11,
tmp15))
tmp17 = tl.load(in_ptr0 + (tmp16 + 8 * tmp14 + 64 * x2), None).to(tl.
float32)
tmp18 = tmp17 / 9
tmp19 = tmp10 < tmp8
tmp20 = tmp11 < tmp9
tmp21 = tmp19 & tmp20
tmp22 = 0.0
tmp23 = tl.where(tmp21, tmp18, tmp22)
tmp24 = tmp6 + tmp12
tmp25 = tl.where(tmp24 != tmp24, tmp24, tl.where(tmp24 < tmp15, tmp24,
tmp15))
tmp26 = tl.load(in_ptr0 + (tmp25 + 8 * tmp14 + 64 * x2), None).to(tl.
float32)
tmp27 = tmp26 / 9
tmp28 = tmp24 < tmp9
tmp29 = tmp19 & tmp28
tmp30 = tmp23 + tmp27
tmp31 = tl.where(tmp29, tmp30, tmp23)
tmp32 = 2
tmp33 = tmp6 + tmp32
tmp34 = tl.where(tmp33 != tmp33, tmp33, tl.where(tmp33 < tmp15, tmp33,
tmp15))
tmp35 = tl.load(in_ptr0 + (tmp34 + 8 * tmp14 + 64 * x2), None).to(tl.
float32)
tmp36 = tmp35 / 9
tmp37 = tmp33 < tmp9
tmp38 = tmp19 & tmp37
tmp39 = tmp31 + tmp36
tmp40 = tl.where(tmp38, tmp39, tmp31)
tmp41 = tmp5 + tmp12
tmp42 = tl.where(tmp41 != tmp41, tmp41, tl.where(tmp41 < tmp13, tmp41,
tmp13))
tmp43 = tl.load(in_ptr0 + (tmp16 + 8 * tmp42 + 64 * x2), None).to(tl.
float32)
tmp44 = tmp43 / 9
tmp45 = tmp41 < tmp8
tmp46 = tmp45 & tmp20
tmp47 = tmp40 + tmp44
tmp48 = tl.where(tmp46, tmp47, tmp40)
tmp49 = tl.load(in_ptr0 + (tmp25 + 8 * tmp42 + 64 * x2), None).to(tl.
float32)
tmp50 = tmp49 / 9
tmp51 = tmp45 & tmp28
tmp52 = tmp48 + tmp50
tmp53 = tl.where(tmp51, tmp52, tmp48)
tmp54 = tl.load(in_ptr0 + (tmp34 + 8 * tmp42 + 64 * x2), None).to(tl.
float32)
tmp55 = tmp54 / 9
tmp56 = tmp45 & tmp37
tmp57 = tmp53 + tmp55
tmp58 = tl.where(tmp56, tmp57, tmp53)
tmp59 = tmp5 + tmp32
tmp60 = tl.where(tmp59 != tmp59, tmp59, tl.where(tmp59 < tmp13, tmp59,
tmp13))
tmp61 = tl.load(in_ptr0 + (tmp16 + 8 * tmp60 + 64 * x2), None).to(tl.
float32)
tmp62 = tmp61 / 9
tmp63 = tmp59 < tmp8
tmp64 = tmp63 & tmp20
tmp65 = tmp58 + tmp62
tmp66 = tl.where(tmp64, tmp65, tmp58)
tmp67 = tl.load(in_ptr0 + (tmp25 + 8 * tmp60 + 64 * x2), None).to(tl.
float32)
tmp68 = tmp67 / 9
tmp69 = tmp63 & tmp28
tmp70 = tmp66 + tmp68
tmp71 = tl.where(tmp69, tmp70, tmp66)
tmp72 = tl.load(in_ptr0 + (tmp34 + 8 * tmp60 + 64 * x2), None).to(tl.
float32)
tmp73 = tmp72 / 9
tmp74 = tmp63 & tmp37
tmp75 = tmp71 + tmp73
tmp76 = tl.where(tmp74, tmp75, tmp71)
tl.store(out_ptr0 + (x5 + tl.zeros([XBLOCK], tl.int32)), tmp76, None)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/triton-lang/kernels/blob/eeeebdd8be7d13629de22d600621e6234057eed3/test/test_inductor.py |
e039d6a9-bf1b-4d2b-a12a-b4c00fb3c499 | chunk_fuse.py | elephantmipt/rebased_minimal | flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py | e7b945509972fab9f9c1c7be431abf7d6bf62c95 | 0 | @triton.jit
def chunk_abc_bwd_kernel_dv(do, v, rv, cv, p, dv, dsv, s_qk_h, s_qk_t,
s_qk_d, s_sk_h, s_sk_t, s_sk_m, T, BT: tl.constexpr, BV: tl.constexpr,
BM: tl.constexpr, DV: tl.constexpr, DM: tl.constexpr, NT: tl.constexpr):
i_v, i_m, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
n_bh = tl.num_programs(2)
p_do = tl.make_block_ptr(do + i_bh * s_qk_h, (T, DV), (s_qk_t, s_qk_d),
((NT - 1) * BT, i_v * BV), (BT, BV), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * s_qk_h, (DV, T), (s_qk_d, s_qk_t), (
i_v * BV, (NT - 1) * BT), (BV, BT), (0, 1))
p_rv = tl.make_block_ptr(rv + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m,),
(i_m * BM,), (BM,), (0,))
p_cv = tl.make_block_ptr(cv + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m),
((NT - 1) * BT, i_m * BM), (BT, BM), (1, 0))
p_p = tl.make_block_ptr(p + i_bh * s_sk_h, (DM, T), (s_sk_m, s_sk_t), (
i_m * BM, (NT - 1) * BT), (BM, BT), (0, 1))
p_dv = tl.make_block_ptr(dv + (i_m * n_bh + i_bh) * s_qk_h, (T, DV), (
s_qk_t, s_qk_d), ((NT - 1) * BT, i_v * BV), (BT, BV), (1, 0))
p_dsv = tl.make_block_ptr(dsv + (i_v * n_bh + i_bh) * s_sk_h, (T, DM),
(s_sk_t, s_sk_m), ((NT - 1) * BT, i_m * BM), (BT, BM), (1, 0))
o_i = tl.arange(0, BT)
m_s, m_t = o_i[:, None] <= o_i[None, :], o_i[:, None] >= o_i[None, :]
b_dhv = tl.zeros([BM, BV], dtype=tl.float32)
for i in range(NT):
p_rv = tl.make_block_ptr(rv + i_bh * s_sk_t * NT, (NT * DM,), (
s_sk_m,), ((NT - i) % NT * DM + i_m * BM,), (BM,), (0,))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_rv = tl.load(p_rv, boundary_check=(0,))
b_cv = tl.load(p_cv, boundary_check=(0, 1))
b_p = tl.load(p_p, boundary_check=(0, 1))
b_inter = tl.dot((b_cv * b_rv[None, :]).to(b_do.dtype), b_dhv.to(
b_do.dtype), allow_tf32=False)
b_intra = tl.dot(tl.where(m_s, tl.dot(b_cv, b_p, allow_tf32=False),
0.0).to(b_do.dtype), b_do, allow_tf32=False)
b_dv = b_inter + b_intra
b_inter = tl.dot(b_dhv.to(b_v.dtype), b_v, allow_tf32=False) * b_rv[
:, None]
b_intra = tl.dot(b_p, tl.where(m_t, tl.dot(b_do, b_v, allow_tf32=
False), 0.0).to(b_do.dtype), allow_tf32=False)
b_dsv = b_cv * tl.trans(b_inter + b_intra)
b_dhv = b_dhv * b_rv[:, None] + tl.dot(b_p, b_do, allow_tf32=False)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dsv, b_dsv.to(p_dsv.dtype.element_ty), boundary_check=(0, 1)
)
p_do = tl.advance(p_do, (-BT, 0))
p_v = tl.advance(p_v, (0, -BT))
p_cv = tl.advance(p_cv, (-BT, 0))
p_p = tl.advance(p_p, (0, -BT))
p_dv = tl.advance(p_dv, (-BT, 0))
p_dsv = tl.advance(p_dsv, (-BT, 0))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py |
b6e5ba5c-cdbe-470c-b934-3a35c1c5bedd | cumsum.py | sustcsonglin/flash-linear-attention | fla/ops/utils/cumsum.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BS': BS}, num_warps=num_warps) for
BS in [16, 32, 64] for num_warps in [2, 4, 8]], key=['S', 'BT'])
@triton.jit
def chunk_local_reversed_cumsum_vector_kernel(s, o, offsets, indices, T: tl
.constexpr, H: tl.constexpr, S: tl.constexpr, BT: tl.constexpr, BS: tl.
constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr):
i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
o_i = tl.arange(0, BT)
m_s = tl.where(o_i[:, None] <= o_i[None, :], 1.0, 0.0)
if HEAD_FIRST:
p_s = tl.make_block_ptr(s + i_bh * T * S, (T, S), (S, 1), (i_t * BT,
i_s * BS), (BT, BS), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * T * S, (T, S), (S, 1), (i_t * BT,
i_s * BS), (BT, BS), (1, 0))
else:
p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H * S, 1),
(i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_o = tl.make_block_ptr(o + (bos * H + i_h) * S, (T, S), (H * S, 1),
(i_t * BT, i_s * BS), (BT, BS), (1, 0))
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.dot(m_s, b_s, allow_tf32=False)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/cumsum.py |
7f6f8b3f-9d2a-4ae0-a2ad-35655192d89f | _flash_attention.py | IBM/qattn | qattn/nn/functional/_flash_attention.py | 07ceda0aceb9afd299d622325944c0c0471827fe | 0 | @triton.autotune(configs=_get_configs(), key=['N_CTX', 'H', 'Z'])
@triton.heuristics({'EVEN_CTX': lambda args: args['N_CTX'] % args['BLOCK_M'
] == 0})
@triton.jit
def _fwd_kernel(Q, K, V, sm_scale, qkv_scale_ptr, out_scale_ptr, Out,
stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh,
stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn,
stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, EVEN_CTX: tl.
constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N:
tl.constexpr):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64
) * stride_qh
Q_block_ptr = tl.make_block_ptr(base=Q + qvk_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
K_block_ptr = tl.make_block_ptr(base=K + qvk_offset, shape=(
BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0
), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1))
V_block_ptr = tl.make_block_ptr(base=V + qvk_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0))
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
qkv_scale = tl.load(qkv_scale_ptr)
qk_scale = qkv_scale * qkv_scale * sm_scale * 1.44269504
if EVEN_CTX:
q = tl.load(Q_block_ptr)
else:
q = tl.load(Q_block_ptr, boundary_check=(0,), padding_option='zero')
for start_n in range(0, N_CTX, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
if EVEN_CTX:
k = tl.load(K_block_ptr)
else:
k = tl.load(K_block_ptr, boundary_check=(1,), padding_option='zero'
)
qk = tl.dot(q, k, allow_tf32=False, out_dtype=tl.int32)
qk_fp32 = qk * qk_scale
m_ij = tl.maximum(m_i, tl.max(qk_fp32, 1))
p = tl.math.exp2(qk_fp32 - m_ij[:, None])
alpha = tl.math.exp2(m_i - m_ij)
m_i = m_ij
if EVEN_CTX:
v = tl.load(V_block_ptr)
else:
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero'
)
v = (v * qkv_scale).to(tl.bfloat16)
acc *= alpha[:, None]
acc += tl.dot(p.to(tl.bfloat16), v, allow_tf32=True)
l_i = l_i * alpha + tl.sum(p, 1)
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
out_scale = tl.load(out_scale_ptr)
acc = tl.math.llrint(acc / (l_i[:, None] * out_scale)).to(tl.int8)
O_block_ptr = tl.make_block_ptr(base=Out + qvk_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
if EVEN_CTX:
tl.store(O_block_ptr, acc)
else:
tl.store(O_block_ptr, acc, boundary_check=(0,))
| {
"Data Type": [
"bf16",
"int8"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication",
"Quantization"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/IBM/qattn/blob/07ceda0aceb9afd299d622325944c0c0471827fe/qattn/nn/functional/_flash_attention.py |
e981bb06-78d6-48a1-8fb8-10d5a6f3bfc8 | mhmoe.py | dtadpole/triton-playground | mhmoe.py | 2d317976722d63080133b1bf88b1f0cdec98f831 | 0 | @triton.jit
def d_sigmoid(o):
return o * (1 - o)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions",
"Backpropagation"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe.py |
f79fde84-d03b-40dd-bc48-598749dc2167 | layer_norm_dquant.py | AlibabaPAI/FLASHNN | flashnn/triton_kernels/layer_norm_dquant.py | 528a9301587f5fb135b25d973a87ba0a40a703a7 | 0 | @triton.jit
def _layer_norm_dquant_kernel(X, Y, W, B, out, scale, stride, N, eps,
BLOCK_SIZE: tl.constexpr):
row = tl.program_id(0)
Y += row * stride
X += row * stride
out += row * stride
_mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
a = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
_mean += a
mean = tl.sum(_mean, axis=0) / N
_var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
x = tl.where(cols < N, x - mean, 0.0)
_var += x * x
var = tl.sum(_var, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
_max_x = 0.0
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
mask = cols < N
w = tl.load(W + cols, mask=mask)
b = tl.load(B + cols, mask=mask)
x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32)
_norm = (x - mean) * rstd * w + b
tl.store(out + cols, _norm, mask=mask)
_max_x = tl.maximum(_max_x, tl.max(tl.abs(_norm), axis=0))
scale_x = _max_x / 127.0
tl.store(scale + row, scale_x)
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
mask = cols < N
_norm = tl.load(out + cols, mask=mask, other=0.0)
_norm = _norm / scale_x + 0.5
tl.store(Y + cols, _norm.to(tl.int8), mask=mask)
| {
"Data Type": [
"int8",
"fp32"
],
"Functionality": [
"Normalization",
"Quantization"
],
"Memory Access Pattern": [
"Coalesced",
"Register Intensive"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"Apache"
] | https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/layer_norm_dquant.py |
4e233564-be5f-4852-b99c-34dbe18c056e | sparse_copy.py | ServiceNow/Fast-LLM | fast_llm/functional/triton/sparse_copy.py | 8b46289079da67cba99628448a6b6083dac083cf | 0 | @triton.jit
def copy_dense_to_sparse_kernel(input_ptr, output_ptr, scores_ptr,
sparse_rows_ptr, num_columns: tl.constexpr, num_experts_per_token: tl.
constexpr, block_size: tl.constexpr):
dense_row = tl.program_id(0)
offsets = tl.arange(0, block_size) + block_size * tl.program_id(1)
mask = None if num_columns % block_size == 0 else offsets < num_columns
out = tl.load(input_ptr + dense_row * num_columns + offsets, mask=mask)
for top_index in range(num_experts_per_token):
sparse_row = tl.load(sparse_rows_ptr + dense_row *
num_experts_per_token + top_index)
out_scaled = out if scores_ptr is None else out * tl.load(
scores_ptr + dense_row * num_experts_per_token + top_index).to(tl
.float32)
tl.store(output_ptr + sparse_row * num_columns + offsets,
out_scaled, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Top-K Selection"
],
"Memory Access Pattern": [
"Coalesced",
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/sparse_copy.py |
82c88b83-f264-4ebd-b42a-842e936a1e5b | activation.py | chengzeyi/stable-fast | src/sfast/triton/ops/activation.py | 3a6f35c7045f8f6812515957ca62ef37260ff080 | 0 | @triton.jit
def silu(x):
return x * tl.sigmoid(x.to(tl.float32)).to(x.dtype)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/activation.py |
0ea9b7a0-8530-4964-b178-926fbf55411b | triton_kernels.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/triton_kernels.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def _triton_fourth_order_bwd(x_ptr: tl.tensor, y_ptr: tl.tensor, z_ptr: tl.
tensor, g_x_ptr: tl.tensor, g_y_ptr: tl.tensor, g_z_ptr: tl.tensor,
g_1_0_ptr: tl.tensor, g_1_1_ptr: tl.tensor, g_1_2_ptr: tl.tensor,
g_2_0_ptr: tl.tensor, g_2_1_ptr: tl.tensor, g_2_2_ptr: tl.tensor,
g_2_3_ptr: tl.tensor, g_2_4_ptr: tl.tensor, g_3_0_ptr: tl.tensor,
g_3_1_ptr: tl.tensor, g_3_2_ptr: tl.tensor, g_3_3_ptr: tl.tensor,
g_3_4_ptr: tl.tensor, g_3_5_ptr: tl.tensor, g_3_6_ptr: tl.tensor,
g_4_0_ptr: tl.tensor, g_4_1_ptr: tl.tensor, g_4_2_ptr: tl.tensor,
g_4_3_ptr: tl.tensor, g_4_4_ptr: tl.tensor, g_4_5_ptr: tl.tensor,
g_4_6_ptr: tl.tensor, g_4_7_ptr: tl.tensor, g_4_8_ptr: tl.tensor,
BLOCK_SIZE: tl.constexpr, vector_length: tl.constexpr):
sqrt_3 = 3 ** 0.5
sqrt_5 = 5 ** 0.5
sqrt_15 = 15 ** 0.5
block_id = tl.program_id(0)
offset = tl.arange(0, BLOCK_SIZE) + BLOCK_SIZE * block_id
x_row_start = x_ptr + offset
y_row_start = y_ptr + offset
z_row_start = z_ptr + offset
x = tl.load(x_row_start, mask=offset < vector_length)
y = tl.load(y_row_start, mask=offset < vector_length)
z = tl.load(z_row_start, mask=offset < vector_length)
g_1_0 = tl.load(g_1_0_ptr + offset, mask=offset < vector_length)
g_1_1 = tl.load(g_1_1_ptr + offset, mask=offset < vector_length)
g_1_2 = tl.load(g_1_2_ptr + offset, mask=offset < vector_length)
g_x = sqrt_3 * g_1_0
g_y = sqrt_3 * g_1_1
g_z = sqrt_3 * g_1_2
g_2_0 = tl.load(g_2_0_ptr + offset, mask=offset < vector_length)
g_2_1 = tl.load(g_2_1_ptr + offset, mask=offset < vector_length)
g_2_2 = tl.load(g_2_2_ptr + offset, mask=offset < vector_length)
g_2_3 = tl.load(g_2_3_ptr + offset, mask=offset < vector_length)
g_2_4 = tl.load(g_2_4_ptr + offset, mask=offset < vector_length)
g_x += sqrt_15 * z * g_2_0
g_z += sqrt_15 * x * g_2_0
g_x += sqrt_15 * y * g_2_1
g_y += sqrt_15 * x * g_2_1
g_y += sqrt_15 * z * g_2_2
g_z += sqrt_15 * y * g_2_2
g_x += -1.0 * sqrt_5 * x * g_2_3
g_y += 2.0 * sqrt_5 * y * g_2_3
g_z += -1.0 * sqrt_5 * z * g_2_3
g_x += -1.0 * sqrt_15 * x * g_2_4
g_z += sqrt_15 * z * g_2_4
g_3_0 = tl.load(g_3_0_ptr + offset, mask=offset < vector_length)
g_3_1 = tl.load(g_3_1_ptr + offset, mask=offset < vector_length)
g_3_2 = tl.load(g_3_2_ptr + offset, mask=offset < vector_length)
g_3_3 = tl.load(g_3_3_ptr + offset, mask=offset < vector_length)
g_3_4 = tl.load(g_3_4_ptr + offset, mask=offset < vector_length)
g_3_5 = tl.load(g_3_5_ptr + offset, mask=offset < vector_length)
g_3_6 = tl.load(g_3_6_ptr + offset, mask=offset < vector_length)
sq_x = x * x
sq_y = y * y
sq_z = z * z
cu_z = sq_z * z
cu_x = sq_x * x
cu_y = sq_y * y
g_x += sqrt_15 * g_3_0 * (-1.62018517460196 * sq_x + 1.08012344973464 *
sq_z + 0.540061724867322 * sq_z)
g_x += 2.64575131106459 * sqrt_15 * g_3_1 * y * z
g_x -= g_3_2 * (4.8605555238059 * sq_x - 6.48074069840786 * sq_y +
1.62018517460197 * sq_z)
g_x -= 7.93725393319377 * g_3_3 * x * y
g_x -= 3.24037034920393 * g_3_4 * x * z
g_x -= 2.64575131106459 * sqrt_15 * g_3_5 * x * y
g_x -= sqrt_15 * g_3_6 * z * (1.08012344973464 * x + 2.16024689946929 * x)
g_y += 2.64575131106459 * sqrt_15 * g_3_1 * x * z
g_y += 12.9614813968157 * g_3_2 * x * y
g_y -= g_3_3 * (3.96862696659689 * sq_x - 7.93725393319377 * sq_y +
3.96862696659689 * sq_z)
g_y += 12.9614813968157 * g_3_4 * y * z
g_y -= 1.3228756555323 * sqrt_15 * g_3_5 * (sq_x - sq_z)
g_z += sqrt_15 * g_3_0 * x * (1.08012344973464 * z + 2.16024689946929 * z)
g_z += 2.64575131106459 * sqrt_15 * g_3_1 * x * y
g_z -= 3.24037034920393 * g_3_2 * x * z
g_z -= 7.93725393319377 * g_3_3 * y * z
g_z -= g_3_4 * (1.62018517460197 * sq_x - 6.48074069840786 * sq_y +
4.8605555238059 * sq_z)
g_z += 2.64575131106459 * sqrt_15 * g_3_5 * y * z
g_z -= sqrt_15 * g_3_6 * (1.08012344973464 * sq_x + 0.540061724867322 *
sq_x - 1.62018517460196 * sq_z)
g_4_0 = tl.load(g_4_0_ptr + offset, mask=offset < vector_length)
g_4_1 = tl.load(g_4_1_ptr + offset, mask=offset < vector_length)
g_4_2 = tl.load(g_4_2_ptr + offset, mask=offset < vector_length)
g_4_3 = tl.load(g_4_3_ptr + offset, mask=offset < vector_length)
g_4_4 = tl.load(g_4_4_ptr + offset, mask=offset < vector_length)
g_4_5 = tl.load(g_4_5_ptr + offset, mask=offset < vector_length)
g_4_6 = tl.load(g_4_6_ptr + offset, mask=offset < vector_length)
g_4_7 = tl.load(g_4_7_ptr + offset, mask=offset < vector_length)
g_4_8 = tl.load(g_4_8_ptr + offset, mask=offset < vector_length)
g_x -= sqrt_15 * g_4_0 * (3.43693177121688 * sq_x * z +
3.43693177121688 * sq_x * z - 1.14564392373896 * cu_z -
1.14564392373896 * cu_z)
g_x += sqrt_15 * g_4_1 * y * (-4.8605555238059 * sq_x +
3.24037034920393 * sq_z + 1.62018517460197 * sq_z)
g_x -= g_4_2 * (0.649519052838329 * sqrt_15 * sq_x * z +
7.54672942406179 * sq_x * z - 2.59807621135332 * sqrt_15 * sq_y * z -
10.0623058987491 * sq_y * z + 0.21650635094611 * sqrt_15 * cu_z +
2.51557647468726 * cu_z)
g_x -= g_4_3 * y * (0.918558653543692 * sqrt_15 * sq_x +
16.0090306546024 * sq_x - 9.48683298050514 * sq_y +
0.918558653543692 * sqrt_15 * sq_z + 5.33634355153414 * sq_z +
0.459279326771846 * sqrt_15 * (sq_x - sq_z))
g_x += g_4_4 * (-9.0 * x * sq_y + 2.25 * x * sq_z - 9.0 * x * sq_y +
2.25 * x * sq_z + 4.5 * cu_x)
g_x -= g_4_5 * y * z * (-0.918558653543692 * sqrt_15 * x +
10.6726871030683 * x + 1.83711730708738 * sqrt_15 * x)
g_x -= g_4_6 * (2.59807621135332 * sqrt_15 * x * sq_y -
0.21650635094611 * sqrt_15 * x * sq_z + 2.51557647468726 * x * sq_z +
10.0623058987491 * x * sq_y - 2.51557647468726 * x * sq_z +
0.21650635094611 * sqrt_15 * x * sq_z - 5.03115294937453 * cu_x -
0.433012701892219 * sqrt_15 * cu_x)
g_x -= sqrt_15 * g_4_7 * y * z * (3.24037034920393 * x +
6.48074069840786 * x)
g_x -= sqrt_15 * g_4_8 * (1.14564392373896 * x * sq_z +
4.58257569495584 * x * sq_z + 1.14564392373896 * x * sq_z -
2.29128784747792 * cu_x)
g_y += sqrt_15 * g_4_1 * x * (-1.62018517460197 * sq_x +
3.24037034920393 * sq_z + 1.62018517460197 * sq_z)
g_y += g_4_2 * x * z * (5.19615242270663 * sqrt_15 * y +
20.1246117974981 * y)
g_y -= g_4_3 * x * (5.33634355153414 * sq_x - 28.4604989415154 * sq_y +
0.918558653543692 * sqrt_15 * sq_z + 5.33634355153414 * sq_z +
0.459279326771846 * sqrt_15 * (sq_x - sq_z))
g_y -= g_4_4 * (9.0 * sq_x * y + 9.0 * sq_x * y + 9.0 * y * sq_z + 9.0 *
y * sq_z - 12.0 * cu_y)
g_y -= g_4_5 * z * (0.918558653543692 * sqrt_15 * sq_x +
5.33634355153414 * sq_x - 28.4604989415154 * sq_y +
5.33634355153414 * sq_z - 0.459279326771846 * sqrt_15 * (sq_x - sq_z))
g_y -= g_4_6 * (10.0623058987491 * sq_x * y + 2.59807621135332 *
sqrt_15 * y * (sq_x - sq_z) - 10.0623058987491 * y * sq_z)
g_y -= sqrt_15 * g_4_7 * z * (3.24037034920393 * sq_x +
1.62018517460197 * sq_x - 1.62018517460197 * sq_z)
g_z -= sqrt_15 * g_4_0 * (1.14564392373896 * cu_x - 3.43693177121688 *
x * sq_z - 3.43693177121688 * x * sq_z + 1.14564392373896 * cu_x)
g_z += sqrt_15 * g_4_1 * x * y * (3.24037034920393 * z +
6.48074069840786 * z)
g_z -= g_4_2 * (0.21650635094611 * sqrt_15 * cu_x - 2.59807621135332 *
sqrt_15 * x * sq_y - 10.0623058987491 * x * sq_y +
0.649519052838329 * sqrt_15 * x * sq_z + 7.54672942406179 * x *
sq_z + 2.51557647468726 * cu_x)
g_z -= g_4_3 * x * y * (-0.918558653543692 * sqrt_15 * z +
10.6726871030683 * z + 1.83711730708738 * sqrt_15 * z)
g_z += g_4_4 * (2.25 * sq_x * z + 2.25 * sq_x * z - 9.0 * sq_y * z -
9.0 * sq_y * z + 4.5 * cu_z)
g_z -= g_4_5 * y * (0.918558653543692 * sqrt_15 * sq_x +
5.33634355153414 * sq_x - 9.48683298050514 * sq_y +
0.918558653543692 * sqrt_15 * sq_z + 16.0090306546024 * sq_z -
0.459279326771846 * sqrt_15 * (sq_x - sq_z))
g_z += g_4_6 * (-0.21650635094611 * sqrt_15 * sq_x * z +
2.51557647468726 * sq_x * z - 2.51557647468726 * sq_x * z +
0.21650635094611 * sqrt_15 * sq_x * z + 2.59807621135332 * sqrt_15 *
sq_y * z + 10.0623058987491 * sq_y * z - 5.03115294937453 * cu_z -
0.433012701892219 * sqrt_15 * cu_z)
g_z -= sqrt_15 * g_4_7 * y * (3.24037034920393 * sq_x +
1.62018517460197 * sq_x - 4.8605555238059 * sq_z)
g_z -= sqrt_15 * g_4_8 * (1.14564392373896 * sq_x * z +
4.58257569495584 * sq_x * z + 1.14564392373896 * sq_x * z -
2.29128784747792 * cu_z)
tl.store(g_x_ptr + offset, g_x, mask=offset < vector_length)
tl.store(g_y_ptr + offset, g_y, mask=offset < vector_length)
tl.store(g_z_ptr + offset, g_z, mask=offset < vector_length)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced",
"Register Intensive"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/triton_kernels.py |
77276a0a-ca29-4f47-ba40-e00bfa0d002c | kernels.py | pytorch-labs/tritonbench | tritonbench/operators/sum/kernels.py | 3a5dccb159834968567a2e45e561dc1aeaa8f8a8 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE_N': b_n,
'BLOCK_SIZE_K': b_k}, num_warps=w) for b_n, b_k, w in itertools.product
([(4 ** n) for n in range(7)], [(4 ** n) for n in range(4)], [2, 4, 8])
], key=['N'])
@triton.jit
def triton_sum_kernel_2D_result_dim_1_buffer_then_sum(input_ptr, output_ptr,
M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, BLOCK_SIZE_N: tl.
constexpr, BLOCK_SIZE_K: tl.constexpr):
pid = tl.program_id(axis=0)
pid_m = pid // tl.cdiv(K, BLOCK_SIZE_K)
pid_k = pid % tl.cdiv(K, BLOCK_SIZE_K)
buffer = tl.zeros((BLOCK_SIZE_N, BLOCK_SIZE_K), dtype=tl.float32)
block_start_k = pid_k * BLOCK_SIZE_K
offsets_k = block_start_k + tl.arange(0, BLOCK_SIZE_K)
mask_k = offsets_k < K
for block_start_n in range(0, N, BLOCK_SIZE_N):
offsets_n = block_start_n + tl.arange(0, BLOCK_SIZE_N)
mask_n = offsets_n < N
idxs_base = offsets_n[:, None] * K + offsets_k
idxs = idxs_base + pid_m * N * K
mask = mask_n[:, None] & mask_k
input = tl.load(input_ptr + idxs, mask=mask, other=0)
buffer += input
output = tl.sum(buffer, axis=0)
output_offsets = pid_m * K + offsets_k
tl.store(output_ptr + output_offsets, output, mask=mask_k)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"BSD"
] | https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/sum/kernels.py |
819bf337-44ca-4907-932b-9e1c4bbf4365 | pointwise.py | ServiceNow/Fast-LLM | fast_llm/functional/triton/pointwise.py | 8b46289079da67cba99628448a6b6083dac083cf | 0 | @triton.jit
def triton_fill_kernel(input_ptr, value: tl.constexpr, numel: tl.constexpr,
dtype: tl.constexpr, block_size: tl.constexpr):
block_start = tl.program_id(axis=0).to(tl.int64) * block_size
offsets = block_start + tl.arange(0, block_size)
mask = offsets < numel
tl.store(input_ptr + offsets, tl.full((block_size,), value, dtype),
mask=mask)
| {
"Data Type": [],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput",
"Memory-Bound"
]
} | [
"Apache"
] | https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/pointwise.py |
903ee2c1-1f8e-43cb-94cc-41866b2e116f | math.py | BobMcDear/attorch | attorch/math.py | da06cb6236bb47195e33fe3986ed21c675ed94cc | 0 | @triton.jit
def calc_p_loss(input, target, size, p_loss: tl.constexpr, reduction: tl.
constexpr):
"""
Measures the L1 or squared L2 norm of the difference between the input
and target (i.e., mean absolute error or mean squared error).
Args:
input: Input.
The input must be of shape [BLOCK_SIZE].
target: Target.
The target must be of shape [BLOCK_SIZE].
size: Number of elements in the input and target.
This value is used only if reduction is 'mean'.
p_loss: p-norm used to compute the error.
Options are 1 for MAE and 2 for MSE.
reduction: Reduction strategy for the output.
Options are 'none' for no reduction, 'mean' for averaging the error
across all entries, and 'sum' for summing the error across all entries.
Returns:
Error.
"""
input = input.to(tl.float32)
target = target.to(tl.float32)
diff = input - target
if p_loss == 1:
error = tl.abs(diff)
elif p_loss == 2:
error = diff * diff
if reduction == 'none':
output = error
elif reduction == 'mean':
output = tl.sum(error) / size
elif reduction == 'sum':
output = tl.sum(error)
return output
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py |
cc350db1-2b6c-4dc4-9911-76e59d19de8e | quant_per_block.py | rodjjo/editorium | editorium/app/server/pipelines/cogvideo/sageattention/quant_per_block.py | 7b92e2c92a144bf23bbe6fe88e3d513ffcf7d694 | 0 | @triton.jit
def q_kernel_per_block_int8(X, X_int8, BLK: tl.constexpr, Scale, L, C: tl.
constexpr, scale_stride):
off_b = tl.program_id(1)
off_blk = tl.program_id(0)
x_offset = off_b * L * C
offs_m = off_blk * BLK + tl.arange(0, BLK)
offs_k = tl.arange(0, C)
x_ptrs = X + x_offset + offs_m[:, None] * C + offs_k[None, :]
x_int8_ptrs = X_int8 + x_offset + offs_m[:, None] * C + offs_k[None, :]
scale_ptrs = Scale + off_b * scale_stride + off_blk
x = tl.load(x_ptrs, mask=offs_m[:, None] < L)
x *= C ** -0.5 * 1.44269504
scale = tl.max(tl.abs(x)) / 127.0
x_int8 = x / scale
x_int8 += 0.5 * tl.where(x_int8 >= 0, 1, -1)
x_int8 = x_int8.to(tl.int8)
tl.store(x_int8_ptrs, x_int8, mask=offs_m[:, None] < L)
tl.store(scale_ptrs, scale)
| {
"Data Type": [
"int8",
"fp32"
],
"Functionality": [
"Quantization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"Apache"
] | https://github.com/rodjjo/editorium/blob/7b92e2c92a144bf23bbe6fe88e3d513ffcf7d694/editorium/app/server/pipelines/cogvideo/sageattention/quant_per_block.py |
f225f117-ee5a-49a5-a8cd-9527e6e0e161 | triton_mars_adamw.py | lessw2020/MARS-AdamW-PyTorch | triton_mars_adamw.py | c312b763d079f38291492bc911e8ea8aa1967433 | 0 | @triton.jit
def mars_adamw_kernel(param_ptr, grad_ptr, exp_avg_ptr, exp_avg_sq_ptr,
prev_grad_ptr, lr, beta1, beta2, eps, weight_decay, gamma,
max_grad_norm, step, bias_correction1, bias_correction2, n_elements,
BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
param = tl.load(param_ptr + offsets, mask=mask)
grad = tl.load(grad_ptr + offsets, mask=mask)
exp_avg = tl.load(exp_avg_ptr + offsets, mask=mask)
exp_avg_sq = tl.load(exp_avg_sq_ptr + offsets, mask=mask)
prev_grad = tl.load(prev_grad_ptr + offsets, mask=mask)
grad_diff = grad - prev_grad
correction = gamma * beta1 / (1 - beta1) * grad_diff
c_t = grad + correction
c_t_norm = tl.sqrt(tl.sum(c_t * c_t))
scale = tl.where(c_t_norm > max_grad_norm, max_grad_norm / c_t_norm, 1.0)
c_t = c_t * scale
exp_avg = beta1 * exp_avg + (1 - beta1) * c_t
exp_avg_sq = beta2 * exp_avg_sq + (1 - beta2) * (c_t * c_t)
tl.store(prev_grad_ptr + offsets, grad, mask=mask)
step_size = lr / bias_correction1
denom = tl.sqrt(exp_avg_sq) / tl.sqrt(bias_correction2) + eps
update = exp_avg / denom
param = param - step_size * (update + weight_decay * param)
tl.store(param_ptr + offsets, param, mask=mask)
tl.store(exp_avg_ptr + offsets, exp_avg, mask=mask)
tl.store(exp_avg_sq_ptr + offsets, exp_avg_sq, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/lessw2020/MARS-AdamW-PyTorch/blob/c312b763d079f38291492bc911e8ea8aa1967433/triton_mars_adamw.py |
4282b81a-47ee-476a-b8f3-60d4b209555f | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/abc/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_abc_bwd_kernel_K(q, k, v, z, h, A, do, dh, dq, dk, dv, dA, s_k_h,
s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, s_h_h, s_h_t, s_h_d, scale, T: tl.
constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.
constexpr, BV: tl.constexpr):
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_p = tl.maximum(i_t * BT - 1, 0)
n_bh = tl.num_programs(2)
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_A = tl.make_block_ptr(A + (i_k * n_bh + i_bh) * T * BT, (T, BT), (BT,
1), (i_t * BT, 0), (BT, BT), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_A = tl.dot((b_q * scale).to(b_q.dtype), tl.trans(b_k), allow_tf32=False)
b_A = tl.where(m_s, b_A, 0.0)
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
for i_v in range(tl.cdiv(V, BV)):
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_zp = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), (i_p *
V + i_v * BV,), (BV,), (0,))
p_zc = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), ((
i_t * BT + BT - 1) * V + i_v * BV,), (BV,), (0,))
p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (V, K), (
s_h_d, s_h_t), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h + i_t * K * V, (K, V), (
s_h_t, s_h_d), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + (i_k * n_bh + i_bh) * s_v_h, (T, V),
(s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_zp = tl.load(p_zp, boundary_check=(0,))
b_zc = tl.load(p_zc, boundary_check=(0,))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_v = tl.exp(b_v - b_zc[None, :]).to(b_v.dtype)
b_z = tl.load(p_z, boundary_check=(0, 1))
b_z = tl.exp(b_zp[None, :] - b_z)
b_h = tl.load(p_h, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_do = (b_do * b_z * scale).to(b_do.dtype)
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_dq += tl.dot(b_do, b_h, allow_tf32=False)
b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False)
b_dv = b_v * tl.dot(b_k, b_dh, allow_tf32=False)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
BT, 0), (BT, BT), (1, 0))
b_dA = tl.load(p_dA, boundary_check=(0, 1))
b_dq += tl.dot(b_dA, b_k, allow_tf32=False)
b_dk += tl.dot(tl.trans(b_dA).to(b_k.dtype), b_q, allow_tf32=False)
p_dq = tl.make_block_ptr(dq + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access",
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings",
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py |
adfad45d-a068-444b-b194-56d3022e2f4a | scratch.py | falkaer/multi-scale-music | seq/scratch.py | a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d | 0 | @triton.jit
def _dropout(X, O, stride_x1, stride_x2, stride_o1, stride_o2, dropout_prob,
dropout_seed, M, N, BLOCK: tl.constexpr):
offs_m = tl.program_id(0) * BLOCK + tl.arange(0, BLOCK)
offs_n = tl.program_id(1) * BLOCK + tl.arange(0, BLOCK)
X = X + offs_m[:, None] * stride_x1 + offs_n[None, :] * stride_x2
x = tl.load(X, mask=(offs_m[:, None] < M) & (offs_n[None, :] < N))
offsets = offs_m[:, None] * M + offs_n[None, :]
x = apply_dropout(x, offsets, dropout_prob, dropout_seed)
O = O + offs_m[:, None] * stride_o1 + offs_n[None, :] * stride_o2
tl.store(O, x, mask=(offs_m[:, None] < M) & (offs_n[None, :] < N))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access",
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput",
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/scratch.py |
dbf37971-a262-44ef-989d-77aeac137b61 | utils.py | huyz2023/2by4-pretrain | sparse/utils.py | 9e330125dea71e5a3dee235f4efb8869f9e4cdd0 | 0 | @triton.jit
def _sparse24(x0, x1, x2, x3):
a1, a2, a3, a4, a5, a6 = tl.abs(x0) > tl.abs(x1), tl.abs(x0) > tl.abs(x2
), tl.abs(x0) > tl.abs(x3), tl.abs(x1) > tl.abs(x2), tl.abs(x1
) > tl.abs(x3), tl.abs(x2) > tl.abs(x3)
m0, m1, m2, m3 = (a2 & a3 | a1 & a2 | a1 & a3, ~a1 & a5 | a4 & a5 | ~a1 &
a4, ~a2 & ~a4 | ~a2 & a6 | ~a4 & a6, ~a3 & ~a5 | ~a3 & ~a6 | ~a5 & ~a6)
return x0, x1, x2, x3, m0, m1, m2, m3
| {
"Data Type": [],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"BSD"
] | https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/utils.py |
52dd01fd-ccd7-4456-9d0e-9fcf7c68fc38 | GELUglu.py | huyz2023/2by4-pretrain | sparse/GELUglu.py | 9e330125dea71e5a3dee235f4efb8869f9e4cdd0 | 0 | @triton.jit
def _gelu_glu_fwd_kernel_(output_ptr, input_ptr, output_row_stride,
input_row_stride, output_col_stride, input_col_stride, n_rows, n_cols,
BLOCK_SIZE: tl.constexpr):
col_idx = tl.program_id(0)
row_idx = tl.arange(0, BLOCK_SIZE)
x = tl.load(input_ptr + row_idx * input_row_stride + col_idx *
input_col_stride, mask=tl.arange(0, BLOCK_SIZE) < n_rows, other=-
float('inf'))
gate = tl.load(input_ptr + row_idx * input_row_stride + (col_idx +
n_cols // 2) * input_col_stride, mask=tl.arange(0, BLOCK_SIZE) <
n_rows, other=-float('inf'))
gate_cube = gate * gate * gate
beta = 0.7978845608028654
kappa = 0.044715
inner = beta * (gate + kappa * gate_cube)
inner_tanh = tanh(inner)
gate_gelu = 0.5 * gate * (inner_tanh + 1)
gelu_glu = gate_gelu * x
tl.store(output_ptr + row_idx * output_row_stride + col_idx *
output_col_stride, gelu_glu, mask=tl.arange(0, BLOCK_SIZE) < n_rows)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [
"Strided Access",
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"BSD"
] | https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/GELUglu.py |
38d42e7c-347d-4ccf-b10b-1860c22d5877 | chunk_h_parallel.py | sustcsonglin/flash-linear-attention | fla/ops/common/chunk_h_parallel.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not
None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
num_warps, num_stages=num_stages) for BK in [32, 64, 128] for BV in [32,
64, 128] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=[
'BT', 'USE_G', 'USE_GK', 'USE_GV'])
@triton.jit
def chunk_fwd_kernel_h_parallel(k, v, h, g, gk, gv, h0, ht, offsets,
indices, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.
constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_G:
tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr,
USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr):
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
NV = tl.cdiv(V, BV)
i_k, i_v = i_kv // NV, i_kv % NV
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
bos, eos = i_b * T, i_b * T + T
NT = tl.cdiv(T, BT)
i_n, i_tg = i_b, i_b * NT + i_t
i_nh = i_n * H + i_h
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k * BK,
i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT,
i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K * V, (K, V), (V,
1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H * K),
(i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (K, V), (V, 1
), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
if i_t == 0:
if USE_INITIAL_STATE:
p_h0 = tl.make_block_ptr(h0 + i_nh * K * V, (K, V), (V, 1), (
i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
else:
b_h = tl.zeros([BK, BV], dtype=tl.float32)
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_v = tl.load(p_v, boundary_check=(0, 1))
last_idx = min(i_t * BT + BT, T) - 1
if USE_G:
if HEAD_FIRST:
b_g_last = tl.load(g + i_bh * T + last_idx)
p_g = g + i_bh * T + i_t * BT + tl.arange(0, BT)
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
else:
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
p_g = g + bos * H + (i_t * BT + tl.arange(0, BT)) * H + i_h
b_g = tl.load(p_g, mask=i_t * BT + tl.arange(0, BT) < T, other=0.0)
b_v = (b_v * tl.exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
if USE_GK:
if HEAD_FIRST:
p_gk = tl.make_block_ptr(gk + i_bh * T * K, (K, T), (1, K), (
i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = (gk + i_bh * T * K + last_idx * K + i_k * BK + tl.
arange(0, BK))
else:
p_gk = tl.make_block_ptr(gk + (bos * H + i_h) * K, (K, T), (1,
H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + (bos + last_idx
) * H * K + i_h * K + i_k * BK + tl.arange(0, BK)
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) < K,
other=0.0)
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_k = (b_k * tl.exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
if USE_GV:
if HEAD_FIRST:
p_gv = tl.make_block_ptr(gv + i_bh * T * V, (T, V), (V, 1), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = (gv + i_bh * T * V + last_idx * V + i_v * BV + tl.
arange(0, BV))
else:
p_gv = tl.make_block_ptr(gv + (bos * H + i_h) * V, (T, V), (H *
V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + (bos + last_idx
) * H * V + i_h * V + i_v * BV + tl.arange(0, BV)
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) < V,
other=0.0)
b_gv = tl.load(p_gv, boundary_check=(0, 1))
b_v = (b_v * tl.exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
b_h = tl.dot(b_k, b_v)
if i_t < NT - 1:
if HEAD_FIRST:
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t + 1) * K * V, (K,
V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_h = tl.make_block_ptr(h + ((i_tg + 1) * H + i_h) * K * V, (K,
V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
elif STORE_FINAL_STATE:
p_ht = tl.make_block_ptr(ht + i_nh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Tiled",
"Blocked Access"
],
"Parallelization Strategy": [
"Cooperative Groups",
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_parallel.py |
fa2c1086-b9be-4a8b-ae3e-2b5cda3eb8d6 | fused_chunk.py | sustcsonglin/flash-linear-attention | fla/ops/gla/fused_chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def prepare_qg_kg(q, k, g, qg, kg, s_k_h, scale, K: tl.constexpr, BT: tl.
constexpr, BK: tl.constexpr):
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_q = q + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK)
p_g = g + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK)
p_k = k + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK)
p_qg = qg + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK)
p_kg = kg + i_bh * s_k_h + i_c * BT * K + i_k * BK + tl.arange(0, BK)
mask = i_k * BK + tl.arange(0, BK) < K
last_decay = tl.load(g + i_bh * s_k_h + (i_c * BT + BT - 1) * K + i_k *
BK + tl.arange(0, BK))
for i in range(BT):
b_q = tl.load(p_q, mask=mask, other=0)
b_k = tl.load(p_k, mask=mask, other=0)
_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_q *= tl.exp(_g) * scale
b_k *= tl.exp(last_decay - _g)
tl.store(p_kg, b_k.to(p_kg.dtype.element_ty), mask=mask)
tl.store(p_qg, b_q.to(p_qg.dtype.element_ty), mask=mask)
p_q += K
p_g += K
p_k += K
p_kg += K
p_qg += K
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/fused_chunk.py |
c79e3bed-77f3-4997-8cb9-825857d15dba | blocksparse_attention_kernel.py | Charlie-XIAO/sparse-vllm | vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py | d228909a30b0c245c35417fb7d2acdf9a3690042 | 0 | @triton.heuristics({'M_LT_N': lambda kwargs: kwargs['BLOCK_M'] < kwargs[
'BLOCK_N']})
@triton.jit
def _fwd_kernel_batch_inference(Q, K, V, Out, sm_scale, q_batch_starts,
q_batch_ends, k_batch_starts, k_batch_ends, q_batch_ids, q_start_sids,
stride_qb, stride_qt, stride_qh, stride_qd, stride_kb, stride_kt,
stride_kh, stride_kd, stride_vb, stride_vt, stride_vh, stride_vd,
stride_ob, stride_ot, stride_oh, stride_od, layout_crow_ptr,
layout_col_ptr, layout_crow_stride_h, layout_crow_stride_m,
layout_col_stride_h, layout_col_stride_m, q_k_ratio, HAS_BATCH_DIM: tl.
constexpr, D_HEAD: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.
constexpr, BLOCK_D: tl.constexpr, BLOCK_M_LOADING: tl.constexpr, EVEN_D:
tl.constexpr, M_LT_N: tl.constexpr):
"""
NOTATION:
pid: position id
sid: storage id
sbid: storage block id
pbid: position block id
offs_m, offs_n: storage offsets of m-dim(q, row) and n-dim(k, col)
TODO(linxihui):
Optimize grouped-attn
"""
off_zm = tl.program_id(0)
off_h = tl.program_id(1)
off_h_for_kv = off_h // q_k_ratio
if HAS_BATCH_DIM:
off_z = tl.program_id(2)
Q += off_z * stride_qb
K += off_z * stride_kb
V += off_z * stride_vb
Out += off_z * stride_ob
start_m = off_zm
q_start_sid = start_m * BLOCK_M
else:
off_z = tl.load(q_batch_ids + off_zm).to(tl.int32)
q_start_sid = tl.load(q_start_sids + off_zm)
start_m = q_start_sid // BLOCK_M
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M_LOADING)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_D)
q_cu_start = tl.load(q_batch_starts + off_z).to(tl.int32)
q_seqlen = tl.load(q_batch_ends + off_z).to(tl.int32) - q_cu_start
k_cu_start = tl.load(k_batch_starts + off_z).to(tl.int32)
k_seqlen = tl.load(k_batch_ends + off_z).to(tl.int32) - k_cu_start
past_len = k_seqlen - q_seqlen
Q += q_cu_start * stride_qt + off_h * stride_qh
K += k_cu_start * stride_kt + off_h_for_kv * stride_kh
V += k_cu_start * stride_vt + off_h_for_kv * stride_vh
Out += q_cu_start * stride_ot + off_h * stride_oh
q_pbid = (past_len + q_start_sid) // BLOCK_M
if EVEN_D:
q = tl.load(Q + offs_m[:, None] * stride_qt + offs_d[None, :] *
stride_qd, mask=offs_m[:, None] < q_seqlen)
else:
q = tl.load(Q + offs_m[:, None] * stride_qt + offs_d[None, :] *
stride_qd, mask=(offs_m[:, None] < q_seqlen) & (offs_d[None, :] <
D_HEAD), other=0)
sparse_crow_ptr = (layout_crow_ptr + off_h * layout_crow_stride_h +
q_pbid * layout_crow_stride_m)
k_block_start = tl.load(sparse_crow_ptr).to(tl.int32)
k_block_end = tl.load(sparse_crow_ptr + 1).to(tl.int32)
m_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32)
acc = tl.zeros([BLOCK_M_LOADING, BLOCK_D], dtype=tl.float32)
k_ptrs = K + offs_n[None, :] * stride_kt + offs_d[:, None] * stride_kd
v_ptrs = V + offs_n[:, None] * stride_vt + offs_d[None, :] * stride_vd
sm_scale *= 1.44269504
for k_block_col_idx in range(k_block_start, k_block_end - 1):
acc, l_i, m_i = _fwd_kernel_inner(acc, l_i, m_i, q, Q,
k_block_col_idx, layout_col_ptr, layout_col_stride_h,
layout_col_stride_m, k_ptrs, v_ptrs, off_h, offs_m, offs_n,
offs_d, stride_kt, stride_vt, sm_scale, k_seqlen, past_len,
False, BLOCK_M_LOADING, BLOCK_N, D_HEAD, EVEN_D, M_LT_N)
acc, l_i, m_i = _fwd_kernel_inner(acc, l_i, m_i, q, Q, k_block_end - 1,
layout_col_ptr, layout_col_stride_h, layout_col_stride_m, k_ptrs,
v_ptrs, off_h, offs_m, offs_n, offs_d, stride_kt, stride_vt,
sm_scale, k_seqlen, past_len, True, BLOCK_M_LOADING, BLOCK_N,
D_HEAD, EVEN_D, M_LT_N)
m_i += tl.math.log2(l_i)
acc = acc / l_i[:, None]
if EVEN_D:
tl.store(Out + offs_m[:, None] * stride_ot + offs_d[None, :] *
stride_od, acc, mask=offs_m[:, None] < q_seqlen)
else:
tl.store(Out + offs_m[:, None] * stride_ot + offs_d[None, :] *
stride_od, acc, mask=(offs_m[:, None] < q_seqlen) & (offs_d[
None, :] < D_HEAD))
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py |
c300b4e5-1dbd-46a8-8b9f-f7553220381b | activations.py | sustcsonglin/flash-linear-attention | fla/modules/activations.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
num_warps=8), triton.Config({}, num_warps=16), triton.Config({},
num_warps=32)], key=['D'])
@triton.jit
def logsigmoid_bwd_kernel(x, dx, dy, temperature, T: tl.constexpr, D: tl.
constexpr, B: tl.constexpr):
i = tl.program_id(0)
o_i = i * B + tl.arange(0, B)
m_i = o_i < T
b_x = tl.load(x + o_i, mask=m_i, other=0.0).to(tl.float32)
b_dy = tl.load(dy + o_i, mask=m_i, other=0.0).to(tl.float32)
b_dx = b_dy * (1.0 - tl.sigmoid(b_x)) / temperature
tl.store(dx + o_i, b_dx.to(dx.dtype.element_ty), mask=m_i)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Activation Functions"
],
"Memory Access Pattern": [
"Coalesced",
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/activations.py |
b43d8c40-6f78-4266-94b9-fa7ef9d6e79b | fused_attention.py | jax-ml/jax-triton | examples/fused_attention.py | 859cc392bec876d132bd0790ea6c00b6c246dd2b | 0 | @triton.jit
def fused_attention_kernel(Q, K, V, stride_qz, stride_qh, stride_qm,
stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz,
stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om,
stride_on, Z, H, N_CTX, L, M, Out, BLOCK_M: tl.constexpr, BLOCK_DMODEL:
tl.constexpr, BLOCK_N: tl.constexpr):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :
] * stride_qk
off_k = off_hz * stride_qh + offs_n[None, :] * stride_kn + offs_d[:, None
] * stride_kk
off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :
] * stride_qk
q_ptrs = Q + off_q
k_ptrs = K + off_k
v_ptrs = V + off_v
m_prev = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_prev = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
q = tl.load(q_ptrs)
for start_n in range(0, (start_m + 1) * BLOCK_M, BLOCK_N):
k = tl.load(k_ptrs)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
m_curr = tl.maximum(tl.max(qk, 1), m_prev)
l_prev *= tl.exp(m_prev - m_curr)
p = tl.exp(qk - m_curr[:, None])
l_curr = tl.sum(p, 1) + l_prev
l_rcp = 1.0 / l_curr
p *= l_rcp
acc *= (l_prev * l_rcp)[:, None]
p = p.to(tl.float16)
v = tl.load(v_ptrs)
acc += tl.dot(p, v)
l_prev = l_curr
m_prev = m_curr
k_ptrs += BLOCK_N * stride_kn
v_ptrs += BLOCK_N * stride_vk
start_m = tl.program_id(0)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
l_ptrs = L + off_hz * N_CTX + offs_m
m_ptrs = M + off_hz * N_CTX + offs_m
tl.store(l_ptrs, l_prev)
tl.store(m_ptrs, m_prev)
offs_n = tl.arange(0, BLOCK_DMODEL)
off_o = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :
] * stride_on
out_ptrs = Out + off_o
tl.store(out_ptrs, acc)
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/jax-ml/jax-triton/blob/859cc392bec876d132bd0790ea6c00b6c246dd2b/examples/fused_attention.py |
4cfcaf22-7a0b-419b-aee9-80c0e072e341 | p_loss_kernels.py | BobMcDear/attorch | attorch/p_loss_kernels.py | da06cb6236bb47195e33fe3986ed21c675ed94cc | 0 | @triton.autotune(configs=element_wise_kernel_configs(), key=['size'])
@triton.jit
def p_loss_forward_kernel(input_pointer, target_pointer, output_pointer,
size, p_loss: tl.constexpr, reduction: tl.constexpr, BLOCK_SIZE: tl.
constexpr):
"""
Measures the L1 or squared L2 norm of the difference between the input
and target (i.e., mean absolute error or mean squared error).
Args:
input_pointer: Pointer to the input.
The input must be of shape [size].
target_pointer: Pointer to the target.
The target must be of shape [size].
output_pointer: Pointer to a container the error is written to.
The container must be of shape [size] if reduction is 'none',
and otherwise of shape [size/BLOCK_SIZE].
size: Number of elements in the input and target.
p_loss: p-norm used to compute the error.
Options are 1 for MAE and 2 for MSE.
reduction: Reduction strategy for the output.
Options are 'none' for no reduction, 'mean' for averaging the error
across all entries, and 'sum' for summing the error across all entries.
If a reduction method is specified, the reduced result of each
program is written to a separate index in the output container,
which should later be summed.
BLOCK_SIZE: Block size.
"""
pid = tl.program_id(axis=0)
offset = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offset < size
input = tl.load(input_pointer + offset, mask=mask).to(tl.float32)
target = tl.load(target_pointer + offset, mask=mask).to(tl.float32)
diff = input - target
if p_loss == 1:
error = tl.abs(diff)
elif p_loss == 2:
error = diff * diff
if reduction == 'none':
tl.store(output_pointer + offset, error, mask=mask)
elif reduction == 'mean':
tl.store(output_pointer + pid, tl.sum(error) / size)
elif reduction == 'sum':
tl.store(output_pointer + pid, tl.sum(error))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced",
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput",
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/p_loss_kernels.py |
06715f51-47ba-4d5e-b5b1-762ebe00b772 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/abc/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_abc_bwd_kernel_rcum_inter(s, z, ss, doo, s_s_h, s_s_t, s_s_d, T:
tl.constexpr, S: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, NT:
tl.constexpr):
i_m, i_bh = tl.program_id(0), tl.program_id(1)
b_sp = tl.zeros([BS], dtype=tl.float32)
b_zp = tl.full([BS], float('inf'), dtype=tl.float32)
for i_t in range(NT - 1, -1, -1):
p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (
i_t * BT, i_m * BS), (BT, BS), (1, 0))
p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (
i_t * BT, i_m * BS), (BT, BS), (1, 0))
p_zc = tl.make_block_ptr(z + i_bh * s_s_h, (T * S,), (s_s_d,), (i_t *
BT * S + i_m * BS,), (BS,), (0,))
p_ss = tl.make_block_ptr(ss + i_bh * s_s_h, (T, S), (s_s_t, s_s_d),
(i_t * BT, i_m * BS), (BT, BS), (1, 0))
p_doo = tl.make_block_ptr(doo + i_bh * s_s_h, (T, S), (s_s_t, s_s_d
), (i_t * BT, i_m * BS), (BT, BS), (1, 0))
b_zc = tl.load(p_zc, boundary_check=(0,))
b_s = tl.load(p_s, boundary_check=(0, 1))
b_z = tl.load(p_z, boundary_check=(0, 1))
b_ss = tl.load(p_ss, boundary_check=(0, 1))
b_doo = tl.exp(b_s - b_zp[None, :]) * b_sp[None, :]
tl.store(p_doo, b_doo.to(p_doo.dtype.element_ty), boundary_check=(0, 1)
)
b_sp = b_sp * tl.exp(b_zc - b_zp) + tl.sum(b_ss * tl.exp(b_zc[None,
:] - b_z), 0)
b_zp = b_zc
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py |
a7157c38-ed86-4b92-a574-24221d10c58b | RzLinearBackward.py | apd10/RzLinear | python/rz_linear/impl/RzLinearBackward.py | eb56657b2de0a97f398f88af421b0fbcbc5469c9 | 0 | @triton.jit
def rz_linear_backward_input_grad_core(a_ptr, b_ptr, c_ptr, init_factor, M,
N, K, H, stride_am, stride_an, stride_cm, stride_ck, R7: int, R6: int,
R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, allow_tf32: tl.
constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr):
"""Kernel for computing the matmul C = (A x B^T)
A has shape (M, N), B has shape H->(K, N) and C has shape (M, K)
"""
pid = tl.program_id(axis=0)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
pid_m = pid // num_pid_k
pid_k = pid % num_pid_k
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_an = tl.arange(0, BLOCK_SIZE_N)
a_ptrs = a_ptr + offs_am[:, None] * stride_am + offs_an[None, :
] * stride_an
b_offset = b_ptr + tl.arange(0, BLOCK_SIZE_N)[:, None] + tl.arange(0,
BLOCK_SIZE_K)[None, :] * BLOCK_SIZE_N
b_ptrs = b_offset + ((pid_k * R3 + 0 * R2 + R1) % R0 * R0 + (pid_k * R7 +
0 * R5 + R4) % R0) % (H - BLOCK_SIZE_K * BLOCK_SIZE_N)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_ck = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
a_zero = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
b_zero = tl.zeros((BLOCK_SIZE_N, BLOCK_SIZE_K), dtype=tl.float32)
c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
for n in range(0, tl.cdiv(N, BLOCK_SIZE_N)):
offs_n = n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
a_mask = (offs_cm[:, None] < M) & (offs_n[None, :] < N)
b_mask = (offs_n[:, None] < N) & (offs_ck[None, :] < K)
a = tl.load(a_ptrs, mask=a_mask, other=a_zero)
b = tl.load(b_ptrs, mask=b_mask, other=b_zero)
c += tl.dot(a, b, allow_tf32=allow_tf32)
a_ptrs += BLOCK_SIZE_N * stride_an
b_ptrs = b_offset + ((pid_k * R3 + (n + 1) * R2 + R1) % R0 * R0 + (
pid_k * R7 + (n + 1) * R5 + R4) % R0) % (H - BLOCK_SIZE_K *
BLOCK_SIZE_N)
offs_ck = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_ck * offs_ck[None, :
]
c_mask = (offs_cm[:, None] < M) & (offs_ck[None, :] < K)
tl.store(c_ptrs, c * init_factor, mask=c_mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Backpropagation"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced",
"Blocked Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearBackward.py |
05d08524-53cf-4f3e-9cb8-78a7df7efc34 | y_6.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/direct/y_6.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def sixth_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor,
sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.
constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr,
output_stride: tl.constexpr):
block_id = tl.program_id(0)
coord_stride = 3
coord_striding = tl.arange(0, block_size) * coord_stride
coord_row_offset = coord_striding + block_size * coord_stride * block_id
x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 <
coord_numel)
z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 <
coord_numel)
output_striding = tl.arange(0, block_size) * output_stride
output_row_offset = (output_striding + block_size * output_stride *
block_id + col_offset)
g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset <
output_numel)
g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask=
output_row_offset + 1 < output_numel)
g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask=
output_row_offset + 2 < output_numel)
g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask=
output_row_offset + 3 < output_numel)
g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask=
output_row_offset + 4 < output_numel)
g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask=
output_row_offset + 5 < output_numel)
g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask=
output_row_offset + 6 < output_numel)
g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask=
output_row_offset + 7 < output_numel)
g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask=
output_row_offset + 8 < output_numel)
g_9 = tl.load(sph_grad_ptr + output_row_offset + 9, mask=
output_row_offset + 9 < output_numel)
g_10 = tl.load(sph_grad_ptr + output_row_offset + 10, mask=
output_row_offset + 10 < output_numel)
g_11 = tl.load(sph_grad_ptr + output_row_offset + 11, mask=
output_row_offset + 11 < output_numel)
g_12 = tl.load(sph_grad_ptr + output_row_offset + 12, mask=
output_row_offset + 12 < output_numel)
CONST000 = 2.0
CONST002 = 4.0
CONST003 = 3.0
CONST004 = 6.53117523880657
CONST006 = 8.94318001328386
CONST007 = 8.38944649544891
CONST008 = 10.3266947761614
CONST009 = 9.79676285820985
CONST013 = 16.3279380970164
CONST014 = 17.8863600265677
CONST015 = 16.5227116418583
CONST016 = 20.6533895523229
CONST017 = 20.2812259244849
CONST018 = 21.6333076527839
CONST020 = 17.8863600265677
CONST022 = 29.3902885746295
CONST024 = 35.7727200531355
CONST026 = 40.5624518489699
CONST028 = 41.9472324772445
CONST029 = 48.9838142910493
CONST030 = 51.6334738808072
CONST035 = 71.5454401062709
CONST037 = 81.1249036979398
CONST039 = 82.6135582092915
CONST040 = -3.26558761940328
CONST042 = 117.561154298518
CONST046 = 208.99760764181
CONST048 = -251.683394863467
CONST049 = -214.636320318813
CONST050 = -214.636320318813
CONST051 = 16.5227116418583
CONST052 = -167.788929908978
CONST053 = -156.748205731358
CONST054 = -145.309475774982
CONST055 = -123.920337313937
CONST056 = -117.561154298518
CONST057 = 3.26558761940328
CONST058 = -108.16653826392
CONST059 = -107.318160159406
CONST060 = -104.498803820905
CONST061 = -104.498803820905
CONST062 = -83.8944649544891
CONST063 = -82.6135582092915
CONST064 = -78.3741028656788
CONST065 = -72.6547378874909
CONST066 = -71.5454401062709
CONST067 = -58.7805771492591
CONST068 = -54.0832691319598
CONST069 = -52.2494019104525
CONST070 = -52.2494019104525
CONST071 = -48.9838142910492
CONST072 = -41.3067791046458
CONST073 = -39.1870514328394
CONST074 = -35.7727200531355
CONST075 = -29.3902885746295
CONST076 = -27.0416345659799
CONST077 = -26.1247009552263
CONST078 = -26.1247009552263
CONST079 = -19.5935257164197
CONST080 = -14.5309475774982
CONST081 = -13.52081728299
CONST082 = -10.7318160159406
CONST083 = -9.79676285820985
CONST084 = -7.15454401062709
CONST085 = -6.76040864149498
CONST086 = -3.38020432074749
CONST087 = -1.63279380970164
VAR07 = x * x * x
VAR08 = x * x
VAR05 = VAR07 * VAR08
VAR06 = VAR08 * VAR08
VAR16 = y * y * y
VAR17 = y * y
VAR14 = VAR16 * VAR17
VAR15 = VAR17 * VAR17
VAR25 = z * z * z
VAR26 = z * z
VAR23 = VAR25 * VAR26
VAR24 = VAR26 * VAR26
g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask=
coord_row_offset + 1 < coord_numel)
g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask=
coord_row_offset + 2 < coord_numel)
g_x += g_0 * (CONST054 * VAR08 * VAR25 - CONST065 * VAR06 * z -
CONST080 * VAR23) + g_1 * y * (CONST028 * VAR06 + CONST028 * VAR24 +
CONST048 * VAR08 * VAR26) + g_10 * (CONST000 * x * (CONST006 *
VAR24 + CONST059 * VAR17 * VAR26) + CONST002 * VAR07 * (CONST006 *
VAR26 + CONST014 * VAR17) + CONST082 * VAR05) + g_11 * y * (-
CONST052 * VAR07 * z + CONST052 * VAR25 * x) + g_12 * (-CONST054 *
VAR07 * VAR26 + CONST065 * VAR24 * x + CONST080 * VAR05) + g_2 * (-
CONST074 * VAR06 * z + CONST084 * VAR23 + VAR17 * (CONST049 * VAR08 *
z - CONST066 * VAR25)) + g_3 * (VAR16 * (CONST064 * VAR08 -
CONST064 * VAR26) + y * (CONST029 * VAR06 + CONST067 * VAR08 *
VAR26 + CONST075 * VAR24)) + g_4 * (CONST003 * VAR08 * (CONST004 *
VAR25 + CONST069 * VAR17 * z) + CONST013 * VAR06 * z - CONST040 *
VAR23 - CONST070 * VAR15 * z + CONST070 * VAR17 * VAR25) + g_5 * (
CONST003 * VAR08 * (CONST016 * VAR26 * y + CONST072 * VAR16) +
CONST008 * VAR24 * y + CONST015 * VAR14 + CONST030 * VAR06 * y +
CONST072 * VAR16 * VAR26) + g_6 * (CONST000 * x * (CONST026 * VAR17 *
VAR26 + CONST076 * VAR15 + CONST086 * VAR24) + CONST002 * VAR07 * (
CONST017 * VAR17 + CONST086 * VAR26) + CONST085 * VAR05) + g_7 * (-
CONST072 * VAR25 * x * y + z * (CONST063 * VAR16 * x - CONST072 *
VAR07 * y)) + g_8 * (CONST000 * x * (CONST077 * VAR15 - CONST087 *
VAR24) + CONST002 * VAR07 * (-CONST077 * VAR17 + CONST087 * VAR26) +
CONST083 * VAR05) + g_9 * (CONST053 * VAR16 * x * z + y * (CONST042 *
VAR07 * z - CONST073 * VAR25 * x))
g_y += CONST000 * g_2 * y * (CONST066 * VAR07 * z - CONST066 * VAR25 * x
) + g_1 * (CONST007 * VAR05 + CONST028 * VAR24 * x + CONST062 *
VAR07 * VAR26) + g_10 * (CONST024 * VAR06 * y + CONST050 * VAR08 *
VAR26 * y - CONST074 * VAR24 * y) + g_11 * (CONST007 * VAR23 +
CONST028 * VAR06 * z + CONST062 * VAR08 * VAR25) + g_3 * (CONST003 *
VAR17 * (-CONST064 * VAR26 * x + CONST078 * VAR07) + CONST009 *
VAR05 + CONST075 * VAR24 * x + CONST079 * VAR07 * VAR26) + g_4 * (
CONST061 * VAR07 * y * z + x * (CONST046 * VAR16 * z + CONST060 *
VAR25 * y)) + g_5 * (CONST008 * VAR05 + VAR07 * (CONST016 * VAR26 +
CONST055 * VAR17) + x * (CONST008 * VAR24 + CONST055 * VAR17 *
VAR26 - CONST063 * VAR15)) + g_6 * (CONST018 * VAR14 + CONST026 *
VAR06 * y + CONST026 * VAR24 * y + CONST058 * VAR16 * VAR26 + VAR08 *
(CONST037 * VAR26 * y + CONST058 * VAR16)) + g_7 * (CONST008 *
VAR23 + VAR25 * (CONST016 * VAR08 + CONST055 * VAR17) + z * (
CONST008 * VAR06 + CONST039 * VAR15 + CONST055 * VAR08 * VAR17)
) + g_8 * (CONST060 * VAR08 * VAR16 - CONST060 * VAR16 * VAR26 +
CONST069 * VAR24 * y - CONST070 * VAR06 * y) + g_9 * (CONST003 *
VAR17 * (CONST064 * VAR08 * z - CONST077 * VAR25) + CONST022 *
VAR06 * z - CONST079 * VAR08 * VAR25 + CONST083 * VAR23)
g_z += g_0 * (CONST054 * VAR07 * VAR26 - CONST065 * VAR24 * x -
CONST080 * VAR05) + g_1 * y * (CONST052 * VAR07 * z - CONST052 *
VAR25 * x) + g_10 * (CONST020 * VAR06 * z + CONST035 * VAR17 *
VAR25 + CONST082 * VAR23 + VAR08 * (CONST050 * VAR17 * z - CONST074 *
VAR25)) + g_11 * y * (CONST028 * VAR06 + CONST028 * VAR24 +
CONST048 * VAR08 * VAR26) + g_12 * (CONST054 * VAR08 * VAR25 -
CONST065 * VAR06 * z - CONST080 * VAR23) + g_2 * (CONST074 * VAR24 *
x - CONST084 * VAR05 + VAR17 * (-CONST049 * VAR26 * x + CONST066 *
VAR07)) + g_3 * (-CONST053 * VAR16 * x * z + y * (CONST056 * VAR25 *
x + CONST073 * VAR07 * z)) + g_4 * (CONST057 * VAR05 + VAR07 * (
CONST069 * VAR17 - CONST079 * VAR26) + x * (CONST013 * VAR24 +
CONST053 * VAR17 * VAR26 - CONST070 * VAR15)) + g_5 * (-CONST072 *
VAR07 * y * z + x * (CONST063 * VAR16 * z - CONST072 * VAR25 * y)
) + g_6 * (CONST037 * VAR17 * VAR25 + CONST068 * VAR15 * z +
CONST085 * VAR06 * z + CONST085 * VAR23 + VAR08 * (CONST037 * VAR17 *
z + CONST081 * VAR25)) + g_7 * (CONST003 * VAR26 * (CONST016 *
VAR08 * y + CONST072 * VAR16) + CONST008 * VAR06 * y + CONST030 *
VAR24 * y + CONST051 * VAR14 + CONST072 * VAR08 * VAR16) + g_8 * (
CONST004 * VAR08 * VAR25 + CONST040 * VAR06 * z + CONST061 * VAR17 *
VAR25 - CONST070 * VAR15 * z - CONST083 * VAR23) + g_9 * (VAR16 * (
CONST064 * VAR08 - CONST064 * VAR26) + y * (CONST022 * VAR06 -
CONST067 * VAR08 * VAR26 + CONST071 * VAR24))
tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset <
coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask=
coord_row_offset + 1 < coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask=
coord_row_offset + 2 < coord_numel)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access",
"Blocked Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_6.py |
a0f70947-0554-494b-86bd-c3544da457a5 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/rwkv6/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
num_warps=8)], key=['BK', 'NC', 'BT'])
@triton.jit
def chunk_rwkv6_bwd_kernel_intra(q, k, gi, ge, dA, dq, dk, offsets, indices,
T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BC:
tl.constexpr, BK: tl.constexpr, NC: tl.constexpr, USE_OFFSETS: tl.
constexpr, HEAD_FIRST: tl.constexpr):
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
i_t, i_i = i_c // NC, i_c % NC
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
else:
bos, eos = i_b * T, i_b * T + T
T = eos - bos
if i_t * BT + i_i * BC >= T:
return
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
if HEAD_FIRST:
p_ge = tl.make_block_ptr(ge + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
p_ge = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
b_ge = tl.load(p_ge, boundary_check=(0, 1))
b_dq = tl.zeros([BC, BK], dtype=tl.float32)
if i_i > 0:
if HEAD_FIRST:
p_gn = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t *
BT + i_i * BC) * K + o_k, BK), BK)
else:
p_gn = tl.max_contiguous(tl.multiple_of(gi + (bos + i_t * BT +
i_i * BC) * H * K + i_h * K + o_k, BK), BK)
b_gn = tl.load(p_gn, mask=m_k, other=0)
for i_j in range(0, i_i):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi + i_bh * T * K, (T, K), (K, 1),
(i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT,
1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi + (bos * H + i_h) * K, (T, K),
(H * K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK),
(1, 0))
p_dA = tl.make_block_ptr(dA + (bos * H + i_h) * BT, (T, BT),
(H * BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC),
(1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_kg = b_k * tl.exp(b_gn[None, :] - b_gk)
b_dA = tl.load(p_dA, boundary_check=(0, 1))
b_dq += tl.dot(b_dA, b_kg)
b_dq *= tl.exp(b_ge - b_gn[None, :])
o_i = tl.arange(0, BC)
m_dA = i_t * BT + i_i * BC + tl.arange(0, BC) < T
if HEAD_FIRST:
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)
) * BT + i_i * BC
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_gkj = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_dq = tl.make_block_ptr(dq + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
o_dA = bos * H * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)
) * H * BT + i_h * BT + i_i * BC
p_kj = tl.max_contiguous(tl.multiple_of(k + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_gkj = tl.max_contiguous(tl.multiple_of(gi + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
b_dA = tl.load(dA + o_dA + j, mask=m_dA, other=0)
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32)
b_gkj = tl.load(p_gkj, mask=m_k, other=0).to(tl.float32)
m_i = o_i[:, None] > j
b_dq += tl.where(m_i, b_dA[:, None] * b_kj[None, :] * tl.exp(b_ge -
b_gkj[None, :]), 0.0)
p_kj += K if HEAD_FIRST else H * K
p_gkj += K if HEAD_FIRST else H * K
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.debug_barrier()
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT +
i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1),
(i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_dk = tl.zeros([BC, BK], dtype=tl.float32)
NC = min(NC, tl.cdiv(T - i_t * BT, BC))
if i_i < NC - 1:
if HEAD_FIRST:
p_gn = tl.max_contiguous(tl.multiple_of(gi + i_bh * T * K + (
i_t * BT + i_i * BC + BC - 1) * K + o_k, BK), BK)
else:
p_gn = tl.max_contiguous(tl.multiple_of(gi + bos * H * K + (i_t *
BT + i_i * BC + BC - 1) * H * K + i_h * K + o_k, BK), BK)
b_gn = tl.load(p_gn, mask=m_k, other=0)
for i_j in range(i_i + 1, NC):
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_ge = tl.make_block_ptr(ge + i_bh * T * K, (T, K), (K, 1),
(i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (BT, T), (1,
BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
else:
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_ge = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K),
(H * K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK),
(1, 0))
p_dA = tl.make_block_ptr(dA + (bos * H + i_h) * BT, (BT, T),
(1, H * BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC),
(0, 1))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_ge = tl.load(p_ge, boundary_check=(0, 1))
b_qg = b_q * tl.exp(b_ge - b_gn[None, :])
b_dA = tl.load(p_dA, boundary_check=(0, 1))
b_dk += tl.dot(b_dA, b_qg)
b_dk *= tl.exp(b_gn[None, :] - b_gk)
if HEAD_FIRST:
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC
) * BT + i_i * BC + tl.arange(0, BC)
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_gqj = tl.max_contiguous(tl.multiple_of(ge + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
o_dA = bos * H * BT + (i_t * BT + i_i * BC
) * H * BT + i_h * BT + i_i * BC + tl.arange(0, BC)
p_qj = tl.max_contiguous(tl.multiple_of(q + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_gqj = tl.max_contiguous(tl.multiple_of(ge + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
b_dA = tl.load(dA + o_dA + j * (1 if HEAD_FIRST else H) * BT)
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32)
b_gqj = tl.load(p_gqj, mask=m_k, other=0).to(tl.float32)
m_i = o_i[:, None] < j
b_dk += tl.where(m_i, b_dA[:, None] * b_qj[None, :] * tl.exp(b_gqj[
None, :] - b_gk), 0.0)
p_qj += K if HEAD_FIRST else H * K
p_gqj += K if HEAD_FIRST else H * K
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/chunk.py |
7dce9668-e8af-4269-bead-36df38944bcf | test_trampolines.py | makslevental/triton-pp | tests/test_trampolines.py | e2b3e2a35d96007fa1ae129432cf8e99f44588a1 | 0 | @triton.jit
def kernel_0123():
c64 = arith.constant(64)
v0 = tl.get_program_id(axis='x')
air.channel('bob')
| {
"Data Type": [],
"Functionality": [],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"Apache"
] | https://github.com/makslevental/triton-pp/blob/e2b3e2a35d96007fa1ae129432cf8e99f44588a1/tests/test_trampolines.py |
4c1cbb13-c951-420c-9482-b1b3dfa04e72 | flash_attn_v2.py | AlibabaPAI/FLASHNN | flashnn/triton_kernels/flash_attn_v2.py | 528a9301587f5fb135b25d973a87ba0a40a703a7 | 0 | @triton.jit
def _triton_attn_fwd(Q, K, V, sm_scale, Out, stride_qz, stride_qh,
stride_qm, stride_qk, stride_kz, stride_kh, stride_km, stride_kk,
stride_vz, stride_vh, stride_vm, stride_vk, stride_oz, stride_oh,
stride_om, stride_ok, Z, H, N_CTX, POWER_OF_2_N_CTX: tl.constexpr,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.
constexpr, STAGE: tl.constexpr, GROUPS: tl.constexpr, ORDER_12: tl.
constexpr):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
off_g = tl.program_id(2)
q_offset = off_z.to(tl.int64) * stride_qz + (off_h * GROUPS + off_g).to(tl
.int64) * stride_qh
k_offset = off_z.to(tl.int64) * stride_kz + off_h.to(tl.int64) * stride_kh
v_offset = off_z.to(tl.int64) * stride_vz + off_h.to(tl.int64) * stride_vh
o_offset = off_z.to(tl.int64) * stride_oz + (off_h * GROUPS + off_g).to(tl
.int64) * stride_oh
Q_block_ptr = tl.make_block_ptr(base=Q + q_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
V_block_ptr = tl.make_block_ptr(base=V + v_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_vm, stride_vk), offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0))
K_block_ptr = tl.make_block_ptr(base=K + k_offset, shape=(BLOCK_DMODEL,
N_CTX), strides=(stride_kk, stride_km), offsets=(0, 0), block_shape
=(BLOCK_DMODEL, BLOCK_N), order=(0, 1))
O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_om, stride_ok), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
qk_scale = sm_scale
qk_scale *= 1.44269504
q = tl.load(Q_block_ptr, boundary_check=(0, 1))
if ORDER_12:
if STAGE & 1:
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, qk_scale, BLOCK_M, BLOCK_DMODEL,
BLOCK_N, 4 - STAGE, offs_m, offs_n, N_CTX)
if STAGE & 2:
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, qk_scale, BLOCK_M, BLOCK_DMODEL,
BLOCK_N, 2, offs_m, offs_n, N_CTX)
else:
if STAGE & 2:
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, qk_scale, BLOCK_M, BLOCK_DMODEL,
BLOCK_N, 2, offs_m, offs_n, N_CTX)
if STAGE & 1:
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, qk_scale, BLOCK_M, BLOCK_DMODEL,
BLOCK_N, 4 - STAGE, offs_m, offs_n, N_CTX)
acc = acc / l_i[:, None]
tl.store(O_block_ptr, acc.to(Out.type.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/flash_attn_v2.py |
5d6abe36-b7ab-46ee-8bc8-8b128a0ced17 | mhmoe_bwd.py | dtadpole/triton-playground | mhmoe_bwd.py | 2d317976722d63080133b1bf88b1f0cdec98f831 | 0 | @triton.jit
def d_leacky_relu_inv_backward(x):
return tl.where(x >= 0, 1.0, 0.01)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Activation Functions"
],
"Memory Access Pattern": [
"Coalesced",
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe_bwd.py |
ded8c553-2ca2-4e7d-9912-b022a9f954cd | seqlen_utils.py | Kitsunetic/kitsu | kitsu/nn/seqlen_utils.py | 826967a493c89753ac2cf1e28b52b79998fc9076 | 0 | @triton.jit
def code_to_seqlen_kernel(code_ptr, seqlen_ptr, B, N, BLK: tl.constexpr):
pid = tl.program_id(0)
out = tl.zeros((1,), dtype=tl.int32)
for nidx in range(tl.cdiv(N, BLK)):
offs_n = nidx * BLK + tl.arange(0, BLK)
mask_n = offs_n < N
code = tl.load(code_ptr + offs_n, mask=mask_n, other=32767 << 48)
bidx = (code >> 48 & 32767).to(tl.int32)
x = tl.min((bidx == pid).to(tl.int32) * (offs_n - 65535), axis=0)
out = tl.minimum(out, x)
out = tl.where(out == 0, -1, out + 65535)
tl.store(seqlen_ptr + pid + tl.arange(0, 1), out)
tl.store(seqlen_ptr + B, N, mask=pid == B - 1)
| {
"Data Type": [],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/Kitsunetic/kitsu/blob/826967a493c89753ac2cf1e28b52b79998fc9076/kitsu/nn/seqlen_utils.py |
6138d269-eae2-4f97-9029-ca31d8e08751 | triton_gather_gemv.py | pytorch-labs/tritonbench | tritonbench/operators/gather_gemv/triton_gather_gemv.py | 3a5dccb159834968567a2e45e561dc1aeaa8f8a8 | 0 | @triton.autotune(configs=[triton.Config({'XBLOCK': 1, 'RBLOCK': 2048},
num_stages=1, num_warps=8), triton.Config({'XBLOCK': 64, 'RBLOCK': 8},
num_stages=1, num_warps=8), triton.Config({'XBLOCK': 64, 'RBLOCK': 4},
num_stages=1, num_warps=8), triton.Config({'XBLOCK': 8, 'RBLOCK': 512},
num_stages=1, num_warps=8), triton.Config({'XBLOCK': 8, 'RBLOCK': 256},
num_stages=1, num_warps=8), triton.Config({'XBLOCK': 64, 'RBLOCK': 64},
num_stages=1, num_warps=8)], key=['xnumel', 'rnumel'])
@triton.jit
def triton_red_fused_mv_0(in_ptr0, in_ptr1, in_ptr2, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xoffset = tl.program_id(0).to(tl.int64) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None].to(tl.int64)
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :].to(tl.int64)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 // rnumel, None, eviction_policy='evict_last')
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp7 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last').to(tl
.float32)
tmp1 = tmp0 + 8
tmp2 = tmp0 < 0
tmp3 = tl.where(tmp2, tmp1, tmp0)
tmp4 = tl.load(in_ptr1 + (r1 + rnumel * (x0 % rnumel) + rnumel *
rnumel * tmp3), None, eviction_policy='evict_first')
tmp5 = tmp4.to(tl.float32)
tmp6 = tmp5.to(tl.float32)
tmp8 = tmp7.to(tl.float32)
tmp9 = tmp6 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tmp12
tmp11 = tl.sum(_tmp11, 1)[:, None]
tmp13 = tmp11.to(tl.float32)
tl.store(out_ptr1 + x0, tmp13, None)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"BSD"
] | https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/gather_gemv/triton_gather_gemv.py |
98971ea6-db2e-4e5f-a174-4421a69d2430 | parallel.py | sustcsonglin/flash-linear-attention | fla/ops/retention/parallel.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def parallel_retention_bwd_kernel_dkv(i_bh, i_t, i_k, i_v, i_h, q, k, v, do,
dk, dv, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl
.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl
.constexpr, BV: tl.constexpr):
b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0))
d_b = tl.math.exp2(b_b * BS)
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT,
i_k * BK), (BT, BK), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT,
i_v * BV), (BT, BV), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
b_v = tl.load(p_v, boundary_check=(0, 1))
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
NTS = tl.cdiv(T, BS)
d_h = tl.math.exp2((BT - tl.arange(0, BT)) * b_b)
b_kd = (b_k * d_h[:, None]).to(b_k.dtype)
d_q = tl.math.exp2(tl.arange(0, BS) * b_b)
for i in range(NTS * BS - BS, (i_t + 1) * BT - BS, -BS):
p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i, i_k *
BK), (BS, BK), (1, 0))
p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i, i_v *
BV), (BS, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_do = (b_do * d_q[:, None]).to(b_do.dtype)
b_dk *= d_b
b_dv *= d_b
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False)
b_s = tl.dot(b_kd, tl.trans(b_q), allow_tf32=False)
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q, allow_tf32=False)
b_dv += tl.dot(b_s.to(b_do.dtype), b_do, allow_tf32=False)
b_dk *= d_h[:, None] * scale
b_dv *= scale
tl.debug_barrier()
o_q, o_k = tl.arange(0, BS), tl.arange(0, BT)
for i in range(i_t * BT, (i_t + 1) * BT, BS):
p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i, i_k *
BK), (BS, BK), (1, 0))
p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i, i_v *
BV), (BS, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
m_s = o_k[:, None] <= o_q[None, :]
d_s = tl.where(m_s, tl.math.exp2((-o_k[:, None] + o_q[None, :]) *
b_b.to(tl.float32)), 0) * scale
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) * d_s
b_s = tl.dot(b_k, tl.trans(b_q), allow_tf32=False) * d_s
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q, allow_tf32=False)
b_dv += tl.dot(b_s.to(b_q.dtype), b_do, allow_tf32=False)
o_q += BS
p_dk = tl.make_block_ptr(dk + (i_v * B * H + i_bh) * T * K, (T, K), (K,
1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dv = tl.make_block_ptr(dv + (i_k * B * H + i_bh) * T * V, (T, V), (V,
1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/parallel.py |
1b335466-e870-434b-8c7d-160154dc930f | k_layer_norm.py | cpuhrsch/torchfused | torchfused/triton/k_layer_norm.py | 6c40ed160dcecbe7825f268f7c86bccd359e0ebf | 0 | @triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, Y, W, B, V, Lock, stride, N,
**META):
GROUP_SIZE_M = META['GROUP_SIZE_M']
BLOCK_SIZE_N = META['BLOCK_SIZE_N']
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE_N)
y_ptrs = Y + row * stride + cols
dy_ptrs = DY + row * stride + cols
w_ptrs = W + cols
b_ptrs = B + cols
lock_id = row % GROUP_SIZE_M
Lock += lock_id
Count = Lock + GROUP_SIZE_M
y = tl.load(y_ptrs, mask=cols < N, other=0).to(tl.float32)
dy = tl.load(dy_ptrs, mask=cols < N, other=0).to(tl.float32)
w = tl.load(w_ptrs, mask=cols < N, other=0).to(tl.float32)
b = tl.load(b_ptrs, mask=cols < N, other=0).to(tl.float32)
rstd = tl.load(V + row)
xhat = (y - b) / w
wdy = w * dy
xhat = tl.where(cols < N, xhat, 0.0)
wdy = tl.where(cols < N, wdy, 0.0)
mean1 = tl.sum(xhat * wdy, axis=0) / N
mean2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat * mean1 + mean2)) * rstd
_store(dx, DX, stride, N, META)
partial_dw = (dy * xhat).to(w.dtype)
partial_db = dy.to(w.dtype)
while tl.atomic_cas(Lock, 0, 1) == 1:
pass
count = tl.load(Count)
dw_ptrs = DW + lock_id * N + cols
db_ptrs = DB + lock_id * N + cols
if count == 0:
tl.atomic_xchg(Count, 1)
else:
partial_dw += tl.load(dw_ptrs, mask=cols < N, other=0.0)
partial_db += tl.load(db_ptrs, mask=cols < N, other=0.0)
tl.store(dw_ptrs, partial_dw, mask=cols < N)
tl.store(db_ptrs, partial_db, mask=cols < N)
tl.atomic_xchg(Lock, 0)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization",
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py |
e5d45e57-5c7b-4d2f-bf3e-65b3b35a34ee | softmax_loop_along_reduce_axis_v1.py | iclementine/optimize_softmax | softmax_loop_along_reduce_axis_v1.py | 6ddeee3481dd5e63f4a30b946c417e97bc4494bf | 0 | @triton.jit
def softmax_kernel_loop_v1(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr):
pid_m = tl.program_id(0)
m = tl.full((), value=-float('inf'), dtype=output_ptr.dtype.element_ty)
for start_n in range(0, N, TILE_N):
n_offsets = start_n + tl.arange(0, TILE_N)
offset = pid_m * N + n_offsets
input_ptrs = input_ptr + offset
mask = n_offsets < N
inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
.dtype.element_ty)
m = tl.maximum(m, tl.max(inp, 0))
z = tl.full((), value=0, dtype=output_ptr.dtype.element_ty)
for start_n in range(0, N, TILE_N):
n_offsets = start_n + tl.arange(0, TILE_N)
offset = pid_m * N + n_offsets
input_ptrs = input_ptr + offset
mask = n_offsets < N
inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
.dtype.element_ty)
e = tl.exp(inp - m)
z += tl.sum(e)
for start_n in range(0, N, TILE_N):
n_offsets = start_n + tl.arange(0, TILE_N)
offset = pid_m * N + n_offsets
input_ptrs = input_ptr + offset
mask = n_offsets < N
inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
.dtype.element_ty)
e = tl.exp(inp - m)
out = e / z
output_ptrs = output_ptr + offset
tl.store(output_ptrs, out, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_loop_along_reduce_axis_v1.py |
5de2aa3e-085e-4400-b082-14c3014eba37 | softplus.py | shawntan/stickbreaking-attention | stickbreaking_attention/sb_varlen/softplus.py | 8dd32ad5e58f0ee0232fd4782dc53d354ff8d283 | 0 | @triton.jit
def softplus(x, is_compiling: tl.constexpr=False):
if is_compiling:
tl.static_print('Using triton softplus.')
out = tl.where(x < 15.0, tl.math.log2(1 + tl.math.exp2(x)), x)
return out
else:
out = tl.inline_asm_elementwise(asm=asm_str, constraints=
constraints_str, pack=NUM_REG, args=[x], dtype=tl.float32,
is_pure=True)
return out
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [
"Non-Tiled"
],
"Parallelization Strategy": [],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/softplus.py |
a68d784e-b08f-44c8-afff-6f1cd84ee225 | gemm_streamk_benchmark.py | intel/intel-xpu-backend-for-triton | benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py | 6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2 | 0 | @triton.jit
def mac_loop(a_ptr, b_ptr, c_ptr, M: tl.constexpr, N: tl.constexpr, K: tl.
constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bk:
tl.constexpr, stride_bn: tl.constexpr, stride_cm: tl.constexpr,
stride_cn: tl.constexpr, iters_per_tile, start_iter, end_iter,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K:
tl.constexpr, GROUP_SIZE_M: tl.constexpr):
tile_id = start_iter // iters_per_tile
remain_iters = start_iter % iters_per_tile
if GROUP_SIZE_M > 0:
pid_m, pid_n = swizzle_tile(tile_id, M, N, K, BLOCK_SIZE_M,
BLOCK_SIZE_N, BLOCK_SIZE_K, GROUP_SIZE_M)
else:
pid_m, pid_n = linear_tile(tile_id, M, N, K, BLOCK_SIZE_M,
BLOCK_SIZE_N, BLOCK_SIZE_K, GROUP_SIZE_M)
a_ptr += BLOCK_SIZE_K * stride_ak * remain_iters
a_block_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=(
stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0),
block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0))
b_ptr += BLOCK_SIZE_K * stride_bk * remain_iters
b_block_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=(
stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N),
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0))
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for _ in range(start_iter, end_iter):
a = tl.load(a_block_ptr, boundary_check=(0, 1))
b = tl.load(b_block_ptr, boundary_check=(0, 1))
acc += tl.dot(a, b)
a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K))
b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0))
if remain_iters == 0 and end_iter % iters_per_tile == 0:
c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=(
stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n *
BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=
(1, 0))
tl.store(c_block_ptr, acc, boundary_check=(0, 1))
else:
rm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
rn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptr_ = c_ptr + rm[:, None] * stride_cm + rn[None, :] * stride_cn
mask = (rm < M)[:, None] & (rn < N)[None, :]
tl.atomic_add(c_ptr_, acc, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py |
a730fe03-8fd6-4e0a-9e86-85418a5bb767 | memory.py | USC-NSL/DisagMoE | disagmoe/ops/memory.py | 6e86ce027a9622109ce81e691af1a48c1d5dbaf2 | 0 | @triton.jit
def _permute_tokens_kernel(out_ptr, in_ptr, mapping, hidden_size,
BLOCK_SIZE: tl.constexpr):
token_id = tl.program_id(axis=0)
block_id = tl.program_id(axis=1)
target_pos = tl.load(mapping + token_id)
src_start = token_id * hidden_size + block_id * BLOCK_SIZE
src_offsets = src_start + tl.arange(0, BLOCK_SIZE)
src_data = tl.load(in_ptr + src_offsets)
target_start = target_pos * hidden_size + block_id * BLOCK_SIZE
target_offsets = target_start + tl.arange(0, BLOCK_SIZE)
tl.store(out_ptr + target_offsets, src_data)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Transposed Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/USC-NSL/DisagMoE/blob/6e86ce027a9622109ce81e691af1a48c1d5dbaf2/disagmoe/ops/memory.py |
dec34255-4bf5-4a35-bd29-31122d76da6e | quantization.py | neuro-ml/kerops | kerops/kernels/quantization.py | 735336775e825d5cb06b8850d25423661b12d1ac | 0 | @triton.jit
def _DequantUint8Window_impl(input_ptr, output_ptr, numel, window,
BLOCK_SIZE: tl.constexpr):
tid = tl.program_id(0)
input_ptr += tid * BLOCK_SIZE
output_ptr += tid * BLOCK_SIZE
offset = tl.arange(0, BLOCK_SIZE)
mask = offset < numel - tid * BLOCK_SIZE
input = tl.load(input_ptr + offset, mask=mask).to(tl.float32)
input = input * (2 * window / 255) - window
tl.store(output_ptr + offset, input, mask=mask)
| {
"Data Type": [
"uint8"
],
"Functionality": [
"Quantization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/quantization.py |
6a43bf82-bfad-4982-8ad6-8c9316f953e6 | math.py | BobMcDear/attorch | attorch/math.py | da06cb6236bb47195e33fe3986ed21c675ed94cc | 0 | @triton.jit
def cross_entropy_loss(input, pred):
"""
Measures the per-row cross entropy loss given
input and predicted logits corresponding to target class.
Args:
input: Input.
The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2].
pred: Predicted logits corresponding to target class.
The predictions must be of shape [BLOCK_SIZE1].
Returns:
Loss.
"""
input = input.to(tl.float32)
pred = pred.to(tl.float32)
mx = tl.max(input, axis=1)
input -= mx[:, None]
loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx
return loss
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py |
115476f9-cb8c-4ec2-895c-340862360239 | fp8_gemm.py | pytorch/FBGEMM | fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py | fe980ab54a6e28818d81c8694b6564e7f804418b | 0 | @triton.autotune(configs=MATMUL_CONFIGS, key=['m_key', 'n_key', 'k_key'],
prune_configs_by={'early_config_prune': prune_configs_block,
'perf_model': estimate_matmul_time, 'top_k': 10})
@triton.heuristics({'EVEN_K': lambda args: args['K'] % (args['BLOCK_K'] *
args['SPLIT_K']) == 0})
@triton.jit
def _kernel_matmul_fp8_block_fastacc(A, B, C, M, N, K, m_key, n_key, k_key,
A_scale, B_scale, scale_block_m: tl.constexpr, scale_block_n: tl.
constexpr, scale_block_k: tl.constexpr, stride_am, stride_ak, stride_bn,
stride_bk, stride_cm, stride_cn, stride_scale_am, stride_scale_ak,
stride_scale_bn, stride_scale_bk, dot_out_dtype: tl.constexpr,
allow_tf32: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl.constexpr,
EVEN_K: tl.constexpr, AB_DTYPE: tl.constexpr) ->None:
"""Matmul kernel of [M, K] @ [N, K] with block-wise scales
Performs swizzled matmul in [BLOCK_M, BLOCK_K] with [BLOCK_K, BLOCK_N] tiles and
A and B scaled by a scaling factor per [scale_block_m, scale_block_k] and
[scale_block_n, scale_block_k] tiles
respectively.
Todo:
* Support scale_block_{mnk} < BLOCK{MNK} for each dim.
Args:
A (TensorWrapper): [M, K] input tensor.
B (TensorWrapper): [N, K] input tensor.
C (TensorWrapper): [M, N] output tensor.
M (int): M dimension of input tensor.
N (int): N dimension of input tensor.
K (int): K dimension of input tensor.
m_key (int): Autotuning key for M dimension of input tensor.
n_key (int): Autotuning key for N dimension of input tensor.
k_key (int): Autotuning key for K dimension of input tensor.
A_scale (TensorWrapper): [cdiv(M, scale_block_m), cdiv(K, scale_block_k)] reciprocal scale tensor per block. A * A_scale = original A
B_scale (TensorWrapper): [cdiv(N, scale_block_n), cdiv(K, scale_block_k)] reciprocal scale tensor per block. B * B_scale = original B
scale_block_m (int): Block size for M dimension of A_scale.
scale_block_n (int): Block size for N dimension of B_scale.
scale_block_k (int): Block size for K dimension of A_scale and B_scale.
stride_am (int): Stride of M dimension of A.
stride_ak (int): Stride of K dimension of A.
stride_bn (int): Stride of N dimension of B.
stride_bk (int): Stride of K dimension of B.
stride_cm (int): Stride of M dimension of C.
stride_cn (int): Stride of N dimension of C.
stride_scale_am (int): Stride of M dimension of A_scale.
stride_scale_ak (int): Stride of K dimension of A_scale.
stride_scale_bn (int): Stride of N dimension of B_scale.
stride_scale_bk (int): Stride of K dimension of B_scale.
dot_out_dtype (torch.dtype): Output type of tensor core.
allow_tf32 (bool): Whether to use TF32 for tensor core.
fp8_fast_accum (bool): Whether to use fast accumulation for tensor core.
BLOCK_M (int): Block size for M dimension.
BLOCK_N (int): Block size for N dimension.
BLOCK_K (int): Block size for K dimension.
GROUP_M (int): Number of groups for M dimension swizzle.
SPLIT_K (int): Number of SM's to launch per row.
EVEN_K (bool): Whether K is evenly divisible by BLOCK_K * SPLIT_K.
AB_DTYPE (bool): Wether to cast A and B to C.dtype before tensor core.
"""
assert BLOCK_M < scale_block_m
assert BLOCK_N < scale_block_n
assert BLOCK_K < scale_block_k
pid = tl.program_id(0)
pid_z = tl.program_id(1)
grid_m = tl.cdiv(M, BLOCK_M)
grid_n = tl.cdiv(N, BLOCK_N)
width = GROUP_M * grid_n
group_id = pid // width
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
pid_m = group_id * GROUP_M + pid % group_size
pid_n = pid % width // group_size
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K)
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype)
_0 = tl.zeros((1, 1), dtype=C.dtype.element_ty)
scale_m = pid_m * BLOCK_M // scale_block_m
scale_n = pid_n * BLOCK_N // scale_block_n
k_multiple = scale_block_k // BLOCK_K
for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)):
k_remaining = K - k * (BLOCK_K * SPLIT_K)
if EVEN_K:
a = tl.load(A)
b = tl.load(B)
else:
a = tl.load(A, mask=rk[None, :] < k_remaining, other=_0)
b = tl.load(B, mask=rk[:, None] < k_remaining, other=_0)
if AB_DTYPE:
a = a.to(C.dtype.element_ty)
b = b.to(C.dtype.element_ty)
acc = tl.dot(a, b, acc, out_dtype=dot_out_dtype, allow_tf32=allow_tf32)
A += BLOCK_K * SPLIT_K * stride_ak
B += BLOCK_K * SPLIT_K * stride_bk
pid_k = k * SPLIT_K + pid_z
if (pid_k + 1) % k_multiple == 0 or k_remaining < BLOCK_K * SPLIT_K:
scale_k = pid_k // k_multiple
scale_k_next = scale_k + 1
a_scale = tl.load(A_scale + scale_m * stride_scale_am + scale_k *
stride_scale_ak)
b_scale = tl.load(B_scale + scale_n * stride_scale_bn + scale_k *
stride_scale_bk)
scale = a_scale * b_scale
if k + 1 == tl.cdiv(K, BLOCK_K * SPLIT_K):
scale_next_inv_scale = scale
else:
a_scale_next = tl.load(A_scale + scale_m * stride_scale_am +
scale_k_next * stride_scale_ak)
b_scale_next = tl.load(B_scale + scale_n * stride_scale_bn +
scale_k_next * stride_scale_bk)
scale_next = a_scale_next * b_scale_next
scale_next_inv_scale = scale / scale_next
acc *= scale_next_inv_scale
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
acc = acc.to(C.dtype.element_ty)
c = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
mask = (rm < M)[:, None] & (rn < N)[None, :]
if SPLIT_K == 1:
tl.store(c, acc, mask=mask)
else:
tl.atomic_add(c, acc, mask=mask)
| {
"Data Type": [],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"BSD",
"MIT"
] | https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py |
5514dae5-9a0b-4b86-9296-8b765d29d9a5 | math.py | BobMcDear/attorch | attorch/math.py | da06cb6236bb47195e33fe3986ed21c675ed94cc | 0 | @triton.jit
def update_welford(input, prev_count, prev_mean, prev_var, curr_count, mask:
tl.constexpr):
"""
Updates count, mean, and variance (M2) statistics for Welford's algorithm.
Args:
input: Input used to update statistics.
The input must be of the same shape as the mask.
prev_count: Previous count statistic to update.
prev_mean: Previous mean statistic to update.
prev_var: Previous variance (M2) statistic to update.
curr_count: Count of elements in current input.
mask: Mask indicating which elements should be included in the calculations.
The mask must be of the same shape as the input.
Returns:
Updated count, mean, and variance (M2) statistics
"""
input = input.to(tl.float32)
count = prev_count + curr_count
mean = (tl.sum(input) - curr_count * prev_mean) / count
deltas = tl.where(mask, (input - mean) * (input - prev_mean), 0.0)
var = prev_var + tl.sum(deltas)
return count, mean, var
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py |
094af577-4f53-4a31-868b-1e8681830008 | outer_softmax.py | iclementine/optimize_softmax | outer_softmax.py | 6ddeee3481dd5e63f4a30b946c417e97bc4494bf | 0 | @triton.jit
def softmax_kernel(output_ptr, input_ptr, M, N, K, TILE_N: tl.constexpr,
TILE_K: tl.constexpr):
pid_k = tl.program_id(0)
pid_m = tl.program_id(1)
k_offsets = pid_k * TILE_K + tl.arange(0, TILE_K)
n_offsets = tl.arange(0, TILE_N)
offset = pid_m * N * K + n_offsets[:, None] * K + k_offsets
mask = (n_offsets[:, None] < N) & (k_offsets < K)
input_ptrs = input_ptr + offset
inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
.type.element_ty)
m = tl.max(inp, 0)
e = tl.exp(inp - m[None, :])
z = tl.sum(e, 0)
out = e / z
output_ptrs = output_ptr + offset
tl.store(output_ptrs, out, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"BSD"
] | https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/outer_softmax.py |
0a7754cd-aa42-48c9-a0f9-486516dcd1a4 | group_norm.py | chengzeyi/stable-fast | src/sfast/triton/ops/group_norm.py | 3a6f35c7045f8f6812515957ca62ef37260ff080 | 0 | @eval(
"""triton.heuristics({
'ROW_SIZE':
lambda kwargs: triton.next_power_of_2(kwargs['C'] // kwargs['groups']),
'BLOCK_SIZE':
lambda kwargs: max(
1, min(triton.next_power_of_2(kwargs['cluster_size']),
4096 // (triton.next_power_of_2(kwargs['C'] // kwargs['groups']))
)),
})"""
)
@eval(
"""triton.heuristics({
'num_warps':
lambda kwargs: max(1, min(16, kwargs['ROW_SIZE'] * kwargs['BLOCK_SIZE'] // 128)),
'C_G': lambda kwargs: kwargs['C'] // kwargs['groups'],
})"""
)
@triton.jit
def group_norm_4d_channels_last_forward_collect_stats_kernel_stage_1(input_ptr,
N, C, HxW, groups, cluster_size, cluster_num, cluster_mean_ptr,
cluster_m2_ptr, cluster_weight_ptr, C_G, ROW_SIZE: tl.constexpr,
BLOCK_SIZE: tl.constexpr):
group = tl.program_id(0)
cluster = tl.program_id(1)
pid_batch = tl.program_id(2)
offset = pid_batch * C * HxW + group * C_G
X = input_ptr + offset
_mean = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32)
_m2 = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32)
_weight = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32)
row = tl.arange(0, ROW_SIZE)
start = cluster * cluster_size
end = start + cluster_size
end = min(end, HxW)
for off in range(start, end, BLOCK_SIZE):
r = off + tl.arange(0, BLOCK_SIZE)
m2_ = tl.zeros((BLOCK_SIZE, ROW_SIZE), dtype=tl.float32)
mask = (r < end)[:, None] & (row[None, :] < C_G)
weight_ = mask.to(tl.float32)
x = tl.load(X + (r * C)[:, None] + row[None, :], mask=mask).to(tl.
float32)
_mean, _m2, _weight = welford_combine(_mean, _m2, _weight, x, m2_,
weight_)
_mean = tl.view(_mean, (BLOCK_SIZE * ROW_SIZE,))
_m2 = tl.view(_m2, (BLOCK_SIZE * ROW_SIZE,))
_weight = tl.view(_weight, (BLOCK_SIZE * ROW_SIZE,))
mean, m2, weight = tl.reduce((_mean, _m2, _weight), 0, welford_combine)
offset = pid_batch * groups * cluster_num + group * cluster_num + cluster
tl.store(cluster_mean_ptr + offset, mean)
tl.store(cluster_m2_ptr + offset, m2)
tl.store(cluster_weight_ptr + offset, weight)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/group_norm.py |
fd13e143-89d0-45f8-b215-8f6705c789eb | blocksparse_matmul.py | kimiasa/Experiments | src/models/attention/blocksparse_matmul.py | c4e73bfefd8290695ec52b6386b6b81838ca94a1 | 0 | @triton.jit
def _kernel(A, B, C, stride_za, stride_ha, stride_ma, stride_ka, stride_zb,
stride_hb, stride_kb, stride_nb, stride_zc, stride_hc, stride_mc,
stride_nc, DS0, DS1, SDD_K, SDD_off_width, lut, locks, nlocks, **meta):
TM = meta['TM']
TN = meta['TN']
TK = meta['TK']
TZ = meta['TZ']
BLOCK = meta['BLOCK']
pid0 = tl.program_id(0)
pid1 = tl.program_id(1)
pidz = tl.program_id(2)
if meta['SDD']:
pid1 = pid1 + SDD_off_width
blockidm = tl.arange(0, TM) // BLOCK
blockidn = tl.arange(0, TN) // BLOCK
offlutm = blockidm * (TN // BLOCK) * 4
offlutn = blockidn * 4
header = lut + pid1 * (TM // BLOCK) * (TN // BLOCK) * 4
z = tl.load(header + 0)
i = tl.load(header + 1 + offlutm)
j = tl.load(header + 2 + offlutn)
AS1 = SDD_K // TZ
lockid = tl.where(TZ > 1, 1, 0)
offka = pid0 * AS1
offkb = pid0 * AS1
offmc = 0
offnc = 0
offpa = 0
offpb = 0
maxid = TZ
offhc = 0
offha = z
offhb = z
ram = i * BLOCK + tl.arange(0, TM) % BLOCK
rbn = j * BLOCK + tl.arange(0, TN) % BLOCK
else:
header = lut + pid0 * 6
offset = tl.load(header + 0)
AS1 = tl.load(header + 1)
column = tl.load(header + 2)
depth = tl.load(header + 3)
lockid = tl.load(header + 4)
maxid = tl.load(header + 5)
pinc = lut + offset
offhc = depth
if meta['DSD']:
offnc = pid1 * TN
offmc = column * TM
offpc = 0
offnb = pid1 * TN
offkb = tl.load(pinc)
offkb = tl.multiple_of(offkb, 8)
offpb = 0
offma = 0
offka = 0
offpa = tl.load(pinc + 1)
offpa = tl.multiple_of(offpa, 8)
offpa = offpa * BLOCK * BLOCK
offha = 0
offhb = depth
else:
offmc = pid1 * TM
offnc = column * TN
offpc = 0
offma = pid1 * TM
offka = tl.load(pinc)
offka = tl.multiple_of(offka, 8)
offpa = 0
offnb = 0
offkb = 0
offpb = tl.load(pinc + 1)
offpb = tl.multiple_of(offpb, 8)
offpb = offpb * BLOCK * BLOCK
offha = depth
offhb = 0
ram = offma + tl.arange(0, TM)
rbn = offnb + tl.arange(0, TN)
rka = offka + tl.arange(0, TK)
rkb = offkb + tl.arange(0, TK)
pa = A + pidz * stride_za + offha * stride_ha + offpa + ram[:, None
] * stride_ma + rka[None, :] * stride_ka
pb = B + pidz * stride_zb + offhb * stride_hb + offpb + rbn[None, :
] * stride_nb + rkb[:, None] * stride_kb
if meta['DDS']:
checkam = ram[:, None] < DS0
else:
checkam = AS1 > 0
if meta['DSD']:
checkbn = rbn[None, :] < DS0
else:
checkbn = AS1 > 0
a = tl.load(pa, mask=checkam, other=0.0)
b = tl.load(pb, mask=checkbn, other=0.0)
acc = tl.zeros((TM, TN), dtype=tl.float32)
for k in range(AS1, 0, -TK):
acc += tl.dot(a, b)
if meta['SDD']:
inc_a = TK * stride_ka
inc_b = TK * stride_kb
else:
pinc += 2
if meta['DSD']:
inc_b = tl.load(pinc)
inc_a = tl.load(pinc + 1)
inc_b = tl.multiple_of(inc_b, 8)
inc_a = tl.multiple_of(inc_a, 8)
inc_b = inc_b * stride_kb
if meta['DDS']:
inc_a = tl.load(pinc)
inc_b = tl.load(pinc + 1)
inc_a = tl.multiple_of(inc_a, 8)
inc_b = tl.multiple_of(inc_b, 8)
inc_a = inc_a * stride_ka
pa += inc_a
pb += inc_b
checkak = k > TK
checkbk = k > TK
checka = checkam & checkak
checkb = checkbn & checkbk
a = tl.load(pa, mask=checka)
b = tl.load(pb, mask=checkb)
c = acc.to(C.dtype.element_ty)
if meta['SDD']:
checkc = True
rr_blockidm = tl.arange(0, TM) // BLOCK
rr_blockidn = tl.arange(0, TN) // BLOCK
rr_offlutm = rr_blockidm * (TN // BLOCK) * 4
rr_offlutn = rr_blockidn * 4
off_bkid = 3 + rr_offlutm[:, None] + rr_offlutn[None, :]
bkid = tl.load(header + off_bkid)
offpc = bkid * BLOCK * BLOCK
rcm = tl.arange(0, TM) % BLOCK
rcn = tl.arange(0, TN) % BLOCK
else:
rcm = offmc + tl.arange(0, TM)
rcn = offnc + tl.arange(0, TN)
if meta['DSD']:
checkc = rcn[None, :] < DS0
if meta['DDS']:
checkc = rcm[:, None] < DS0
pc = C + offpc + offhc * stride_hc + pidz * stride_zc + rcm[:, None
] * stride_mc + rcn[None, :] * stride_nc
if lockid == 0:
tl.store(pc, c, mask=checkc)
else:
plock = locks + tl.program_id(2) * nlocks * tl.num_programs(1
) + tl.program_id(1) * nlocks + lockid - 1
pcount = plock + tl.num_programs(2) * tl.num_programs(1) * nlocks
while tl.atomic_cas(plock, 0, 1) == 1:
pass
count = tl.load(pcount)
if count == 0:
tl.store(pc, c, mask=checkc)
else:
d = tl.load(pc, mask=checkc)
tl.store(pc, d + c, mask=checkc)
tl.atomic_xchg(pcount, (count + 1) % maxid)
tl.atomic_xchg(plock, 0)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Coalesced",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"Apache"
] | https://github.com/kimiasa/Experiments/blob/c4e73bfefd8290695ec52b6386b6b81838ca94a1/src/models/attention/blocksparse_matmul.py |
9822ff51-7759-462c-94c3-f99295b342b9 | seqlen_utils.py | Kitsunetic/kitsu | kitsu/nn/seqlen_utils.py | 826967a493c89753ac2cf1e28b52b79998fc9076 | 0 | @triton.jit
def padding_index_kernel(seqlen_ptr, new_seqlen_ptr, new_max_seqlen,
idx_ptr, window_size, BLK_N: tl.constexpr):
pid_b = tl.program_id(0)
i1 = tl.load(seqlen_ptr + pid_b).to(tl.int32)
j1 = tl.load(seqlen_ptr + pid_b + 1).to(tl.int32)
i2 = tl.load(new_seqlen_ptr + pid_b).to(tl.int32)
j2 = tl.load(new_seqlen_ptr + pid_b + 1).to(tl.int32)
for pid_n in range(tl.cdiv(new_max_seqlen, BLK_N)):
offs_idx = pid_n * BLK_N + tl.arange(0, BLK_N)
mask_idx = offs_idx < j2 - i2
idx_ptrs = idx_ptr + i2 + offs_idx
idx = i1 + offs_idx.to(tl.int32)
tmp = clamp(idx - window_size, i1, j1 - 1)
idx_out = tl.where(idx < j1, idx, tmp)
tl.store(idx_ptrs, idx_out, mask=mask_idx)
| {
"Data Type": [],
"Functionality": [],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/Kitsunetic/kitsu/blob/826967a493c89753ac2cf1e28b52b79998fc9076/kitsu/nn/seqlen_utils.py |
176b1708-5add-44dc-a5d9-163681f5d85f | triton_sll.py | pytorch/FBGEMM | fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py | fe980ab54a6e28818d81c8694b6564e7f804418b | 0 | @triton.jit
def _multi_head_jagged_flash_attention_bwd_preprocess_kernel(o_ptr,
o_offset_ptr, do_ptr, delta_ptr, stride_oh, stride_om, stride_od,
stride_delta_h, num_heads: tl.constexpr, max_seq_len: tl.constexpr, D:
tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_D: tl.constexpr):
pid_m = tl.program_id(axis=0)
pid_bh = tl.program_id(axis=1)
pid_batch = pid_bh // num_heads
pid_head = pid_bh % num_heads
begin_o = tl.load(o_offset_ptr + pid_batch)
end_o = tl.load(o_offset_ptr + pid_batch + 1)
M = end_o - begin_o
M = tl.minimum(M, max_seq_len)
if M == 0:
return
offs_om = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_od = tl.arange(0, BLOCK_D)
o_offsets = offs_om[:, None] * stride_om + offs_od[None, :
] * stride_od + pid_head * stride_oh + begin_o * stride_om
o_ptrs = o_ptr + o_offsets
do_ptrs = do_ptr + o_offsets
o_mask = (offs_om[:, None] < M) & (offs_od[None, :] < D)
o = tl.load(o_ptrs, mask=o_mask)
do = tl.load(do_ptrs, mask=o_mask)
delta = tl.sum(o * do, axis=1)
tl.store(delta_ptr + pid_head * stride_delta_h + begin_o + offs_om,
delta, mask=offs_om < M)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD",
"MIT"
] | https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py |
8f0a1ee8-5be7-4e8c-824f-b08939f27687 | y_8.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/direct/y_8.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def eighth_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor,
sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.
constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr,
output_stride: tl.constexpr):
block_id = tl.program_id(0)
coord_stride = 3
coord_striding = tl.arange(0, block_size) * coord_stride
coord_row_offset = coord_striding + block_size * coord_stride * block_id
x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 <
coord_numel)
z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 <
coord_numel)
output_striding = tl.arange(0, block_size) * output_stride
output_row_offset = (output_striding + block_size * output_stride *
block_id + col_offset)
g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset <
output_numel)
g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask=
output_row_offset + 1 < output_numel)
g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask=
output_row_offset + 2 < output_numel)
g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask=
output_row_offset + 3 < output_numel)
g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask=
output_row_offset + 4 < output_numel)
g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask=
output_row_offset + 5 < output_numel)
g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask=
output_row_offset + 6 < output_numel)
g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask=
output_row_offset + 7 < output_numel)
g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask=
output_row_offset + 8 < output_numel)
g_9 = tl.load(sph_grad_ptr + output_row_offset + 9, mask=
output_row_offset + 9 < output_numel)
g_10 = tl.load(sph_grad_ptr + output_row_offset + 10, mask=
output_row_offset + 10 < output_numel)
g_11 = tl.load(sph_grad_ptr + output_row_offset + 11, mask=
output_row_offset + 11 < output_numel)
g_12 = tl.load(sph_grad_ptr + output_row_offset + 12, mask=
output_row_offset + 12 < output_numel)
g_13 = tl.load(sph_grad_ptr + output_row_offset + 13, mask=
output_row_offset + 13 < output_numel)
g_14 = tl.load(sph_grad_ptr + output_row_offset + 14, mask=
output_row_offset + 14 < output_numel)
g_15 = tl.load(sph_grad_ptr + output_row_offset + 15, mask=
output_row_offset + 15 < output_numel)
g_16 = tl.load(sph_grad_ptr + output_row_offset + 16, mask=
output_row_offset + 16 < output_numel)
CONST000 = 2.0
CONST001 = 3.0
CONST002 = 4.50964677801932
CONST004 = 5.0
CONST005 = 6.78376969317208
CONST006 = 4.0
CONST007 = 9.01929355603863
CONST008 = 6.76447016702898
CONST009 = 6.0
CONST011 = 13.5675393863442
CONST012 = 15.0965641786467
CONST013 = 13.136713523081
CONST015 = 13.136713523081
CONST017 = 19.4042118494929
CONST019 = -489.184589393411
CONST020 = 24.738633753706
CONST023 = 26.2734270461621
CONST024 = 27.0578806681159
CONST025 = 24.738633753706
CONST026 = 32.9848450049413
CONST027 = 33.9188484658604
CONST028 = 550.332663067587
CONST030 = -978.369178786822
CONST031 = 48.5105296237322
CONST033 = 51.744564931981
CONST035 = 48.9184589393411
CONST041 = 65.6835676154051
CONST043 = -1467.55376818023
CONST045 = -12.2296147348353
CONST047 = 582.126355484786
CONST048 = -437.890450769368
CONST049 = -434.108258927137
CONST050 = -434.108258927137
CONST052 = -432.926090689854
CONST054 = -1447.02752975712
CONST055 = 91.9569946615672
CONST056 = -420.374832738593
CONST057 = 6.46807061649763
CONST058 = 97.0210592474644
CONST061 = 103.489129863962
CONST062 = -407.026181590325
CONST063 = 108.231522672464
CONST065 = 110.066532613517
CONST066 = 110.066532613517
CONST067 = 620.934779183772
CONST068 = -396.284809689477
CONST070 = 132.094936563159
CONST071 = 434.108258927137
CONST073 = 649.389136034781
CONST076 = -366.888442045058
CONST077 = -366.888442045058
CONST078 = -361.756882439281
CONST080 = -6.78376969317208
CONST082 = -350.312360615494
CONST083 = -346.340872551883
CONST084 = -346.340872551883
CONST085 = 173.170436275942
CONST086 = 173.170436275942
CONST088 = 183.444221022529
CONST089 = 183.444221022529
CONST090 = -325.62094527226
CONST091 = -13.5289403340579
CONST092 = -13.5675393863442
CONST093 = 194.042118494929
CONST095 = 197.050702846215
CONST096 = -11.3224231339851
CONST097 = 203.513090795162
CONST098 = -814.05236318065
CONST102 = -814.05236318065
CONST104 = 217.054129463568
CONST105 = 216.463045344927
CONST106 = 220.133065227035
CONST107 = -291.063177742393
CONST108 = 220.133065227035
CONST109 = -792.569619378954
CONST111 = -271.350787726883
CONST112 = 244.592294696705
CONST113 = 244.592294696706
CONST114 = 244.592294696706
CONST115 = -776.168473979715
CONST116 = -262.734270461621
CONST117 = -259.755654413913
CONST118 = -258.722824659905
CONST120 = 262.734270461621
CONST121 = -244.215708954195
CONST122 = 271.350787726883
CONST124 = -236.460843415458
CONST127 = -217.054129463568
CONST128 = -216.463045344927
CONST129 = -216.463045344927
CONST130 = -216.463045344927
CONST131 = -723.513764878561
CONST133 = -210.187416369296
CONST134 = -210.187416369296
CONST135 = 814.05236318065
CONST136 = -197.050702846215
CONST137 = 317.027847751582
CONST138 = -194.042118494929
CONST139 = -13.136713523081
CONST140 = 324.694568017391
CONST142 = 324.694568017391
CONST143 = -175.156180307747
CONST146 = -162.81047263613
CONST147 = -162.347284008695
CONST148 = 865.852181379709
CONST149 = -158.513923875791
CONST151 = -144.702752975712
CONST152 = -649.389136034782
CONST153 = -129.877827206956
CONST154 = -129.361412329953
CONST155 = 388.084236989858
CONST157 = -115.446957517294
CONST158 = -108.231522672464
CONST159 = -108.231522672464
CONST160 = 407.026181590325
CONST161 = -103.489129863962
CONST162 = -97.0210592474644
CONST163 = -94.7025823384056
CONST165 = -91.9569946615672
CONST167 = -87.5780901538735
CONST168 = -85.6073031438469
CONST169 = -85.6073031438469
CONST170 = -81.1736420043477
CONST171 = 432.926090689854
CONST172 = -79.2569619378954
CONST173 = -81.1736420043477
CONST177 = -79.2569619378954
CONST178 = -72.3513764878561
CONST179 = -72.1543484483091
CONST180 = -70.0624721230988
CONST181 = -72.1543484483091
CONST182 = -67.8376969317208
CONST183 = -65.6835676154052
CONST184 = -61.1480736741764
CONST185 = -1085.27064731784
CONST186 = -61.1480736741764
CONST187 = -1085.40315090753
CONST188 = -57.7234787586472
CONST189 = -12.9361412329953
CONST190 = -1085.27064731784
CONST191 = -52.8379746252636
CONST192 = -51.744564931981
CONST193 = -1585.13923875791
CONST194 = -48.5105296237322
CONST195 = -47.4863878522046
CONST197 = 978.369178786822
CONST198 = -517.44564931981
CONST199 = -40.7026181590325
CONST200 = -40.5868210021738
CONST201 = -39.4101405692431
CONST202 = -40.7026181590325
CONST203 = -36.0771742241545
CONST204 = -1056.75949250527
CONST205 = -29.1063177742393
CONST206 = 485.105296237322
CONST207 = -26.2734270461621
CONST208 = -26.4189873126318
CONST209 = -1050.93708184648
CONST210 = -22.6382471577417
CONST211 = -20.6718218536732
CONST212 = -19.4042118494929
CONST213 = -20.3513090795162
CONST214 = -528.379746252636
CONST215 = -15.0965641786467
CONST216 = -13.5675393863442
CONST217 = -525.468540923241
CONST218 = -11.3224231339851
CONST219 = -13.5289403340579
CONST220 = -9.70210592474644
CONST221 = -10.3359109268366
CONST222 = -6.46807061649763
CONST223 = -13.136713523081
CONST224 = -12.2296147348353
CONST225 = -3.23403530824881
CONST226 = -1034.89129863962
VAR06 = x * x * x * x
VAR07 = x * x * x
VAR08 = x * x
VAR03 = VAR06 * VAR07
VAR04 = VAR07 * VAR07
VAR05 = VAR07 * VAR08
VAR15 = y * y * y * y
VAR16 = y * y * y
VAR17 = y * y
VAR12 = VAR15 * VAR16
VAR13 = VAR16 * VAR16
VAR14 = VAR16 * VAR17
VAR24 = z * z * z * z
VAR25 = z * z * z
VAR26 = z * z
VAR21 = VAR24 * VAR25
VAR22 = VAR25 * VAR25
VAR23 = VAR25 * VAR26
g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask=
coord_row_offset + 1 < coord_numel)
g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask=
coord_row_offset + 2 < coord_numel)
g_x += g_0 * (CONST049 * VAR08 * VAR23 - CONST131 * VAR06 * VAR25 +
CONST151 * VAR04 * z - CONST211 * VAR21) + g_1 * y * (CONST178 *
VAR04 - CONST178 * VAR22 + CONST185 * VAR08 * VAR24 - CONST190 *
VAR06 * VAR26) + g_10 * (CONST017 * VAR05 * VAR26 + CONST161 *
VAR13 * x - CONST189 * VAR03 - CONST198 * VAR07 * VAR15 + CONST222 *
VAR22 * x + VAR17 * (CONST058 * VAR24 * x + CONST107 * VAR05 +
CONST138 * VAR07 * VAR26)) + g_11 * (CONST056 * VAR14 * x * z +
VAR16 * (-CONST082 * VAR25 * x - CONST209 * VAR07 * z) + y * (
CONST116 * VAR07 * VAR25 + CONST124 * VAR05 * z + CONST207 * VAR23 * x)
) + g_12 * (CONST011 * VAR03 + CONST182 * VAR07 * VAR24 + CONST199 *
VAR05 * VAR26 + CONST216 * VAR22 * x + VAR15 * (CONST098 * VAR26 *
x + CONST122 * VAR07) + VAR17 * (-CONST102 * VAR07 * VAR26 +
CONST121 * VAR05 + CONST160 * VAR24 * x)) + g_13 * (VAR16 * (-
CONST030 * VAR07 * z + CONST030 * VAR25 * x) + y * (CONST076 *
VAR05 * z + CONST106 * VAR23 * x + CONST112 * VAR07 * VAR25)
) + g_14 * (CONST012 * VAR03 + CONST149 * VAR05 * VAR26 - CONST191 *
VAR22 * x + VAR17 * (CONST109 * VAR24 * x + CONST149 * VAR05 -
CONST193 * VAR07 * VAR26)) + g_15 * y * (CONST050 * VAR05 * z +
CONST050 * VAR23 * x - CONST054 * VAR07 * VAR25) + g_16 * (CONST050 *
VAR05 * VAR26 - CONST131 * VAR07 * VAR24 + CONST151 * VAR22 * x -
CONST211 * VAR03) + g_2 * (CONST001 * VAR08 * (-CONST208 * VAR23 +
CONST214 * VAR17 * VAR25) + CONST004 * VAR06 * (-CONST149 * VAR17 *
z - CONST208 * VAR25) - CONST149 * VAR17 * VAR23 + CONST172 * VAR04 *
z + CONST218 * VAR21) + g_3 * (VAR16 * (CONST043 * VAR08 * VAR26 +
CONST113 * VAR06 + CONST114 * VAR24) + y * (CONST028 * VAR06 *
VAR26 + CONST088 * VAR08 * VAR24 + CONST168 * VAR04 + CONST184 * VAR22)
) + g_4 * (CONST001 * VAR08 * (CONST005 * VAR23 + CONST111 * VAR15 *
z) + CONST004 * VAR06 * (CONST080 * VAR25 - CONST146 * VAR17 * z) +
CONST005 * VAR21 - CONST111 * VAR15 * VAR25 + CONST146 * VAR17 *
VAR23 + CONST195 * VAR04 * z) + g_5 * (VAR14 * (CONST133 * VAR08 -
CONST134 * VAR26) + VAR16 * (-CONST048 * VAR06 + CONST116 * VAR24 +
CONST217 * VAR08 * VAR26) + y * (CONST041 * VAR06 * VAR26 +
CONST095 * VAR08 * VAR24 + CONST165 * VAR04 - CONST201 * VAR22)
) + g_6 * (CONST001 * VAR08 * (CONST093 * VAR17 * VAR25 + CONST118 *
VAR15 * z + CONST220 * VAR23) + CONST004 * VAR06 * (-CONST162 *
VAR17 * z + CONST220 * VAR25) + CONST118 * VAR15 * VAR25 - CONST161 *
VAR13 * z - CONST162 * VAR17 * VAR23 + CONST210 * VAR04 * z +
CONST225 * VAR21) + g_7 * (CONST001 * VAR08 * (-CONST128 * VAR16 *
VAR26 + CONST153 * VAR14 + CONST200 * VAR24 * y) + CONST004 * VAR06 *
(CONST063 * VAR16 + CONST200 * VAR26 * y) + CONST020 * VAR12 +
CONST153 * VAR14 * VAR26 - CONST158 * VAR16 * VAR24 + CONST163 *
VAR04 * y + CONST219 * VAR22 * y) + g_8 * (CONST000 * x * (CONST002 *
VAR22 - CONST128 * VAR15 * VAR26 + CONST158 * VAR17 * VAR24 +
CONST188 * VAR13) + CONST006 * VAR07 * (CONST008 * VAR24 - CONST158 *
VAR15 + CONST159 * VAR17 * VAR26) + CONST007 * VAR03 + CONST009 *
VAR05 * (CONST002 * VAR26 + CONST203 * VAR17)) + g_9 * (CONST173 *
VAR23 * x * y + VAR25 * (CONST147 * VAR07 * y + CONST171 * VAR16 *
x) + z * (CONST117 * VAR14 * x + CONST170 * VAR05 * y + CONST171 *
VAR07 * VAR16))
g_y += CONST000 * g_14 * y * (-CONST068 * VAR06 * VAR26 + CONST068 *
VAR08 * VAR24 + CONST208 * VAR04 - CONST208 * VAR22) + g_1 * (
CONST078 * VAR07 * VAR24 + CONST104 * VAR05 * VAR26 - CONST178 *
VAR22 * x + CONST221 * VAR03) + g_10 * (CONST000 * y * (CONST031 *
VAR08 * VAR24 + CONST031 * VAR22 + CONST194 * VAR04 + CONST194 *
VAR06 * VAR26) + CONST006 * VAR16 * (-CONST154 * VAR06 + CONST154 *
VAR24) + CONST009 * VAR14 * (CONST033 * VAR26 + CONST192 * VAR08)
) + g_11 * (CONST001 * VAR17 * (-CONST116 * VAR06 * z - CONST143 *
VAR08 * VAR25 + CONST167 * VAR23) + CONST004 * VAR15 * (CONST134 *
VAR08 * z - CONST180 * VAR25) + CONST013 * VAR21 + CONST183 * VAR06 *
VAR25 + CONST201 * VAR04 * z + CONST223 * VAR08 * VAR23) + g_12 * (
CONST000 * y * (CONST097 * VAR06 * VAR26 + CONST097 * VAR08 * VAR24 +
CONST199 * VAR04 + CONST199 * VAR22) + CONST006 * VAR16 * (CONST062 *
VAR08 * VAR26 - CONST182 * VAR06 - CONST182 * VAR24)) + g_13 * (
CONST001 * VAR17 * (CONST019 * VAR08 * VAR25 + CONST035 * VAR23 +
CONST113 * VAR06 * z) + CONST065 * VAR08 * VAR23 - CONST184 * VAR06 *
VAR25 + CONST186 * VAR04 * z + CONST224 * VAR21) + g_15 * (-
CONST078 * VAR06 * VAR25 + CONST127 * VAR08 * VAR23 + CONST178 *
VAR04 * z - CONST221 * VAR21) + g_2 * (CONST137 * VAR05 * y * z +
CONST137 * VAR23 * x * y + CONST204 * VAR07 * VAR25 * y) + g_3 * (
CONST001 * VAR17 * (CONST019 * VAR07 * VAR26 + CONST035 * VAR05 +
CONST114 * VAR24 * x) + CONST045 * VAR03 + CONST066 * VAR05 * VAR26 +
CONST184 * VAR22 * x - CONST186 * VAR07 * VAR24) + g_4 * (-CONST090 *
VAR05 * y * z + CONST187 * VAR07 * VAR16 * z + x * (CONST090 *
VAR23 * y - CONST187 * VAR16 * VAR25)) + g_5 * (CONST001 * VAR17 *
(CONST116 * VAR24 * x + CONST143 * VAR07 * VAR26 - CONST167 * VAR05
) + CONST004 * VAR15 * (-CONST134 * VAR26 * x + CONST180 * VAR07) +
CONST015 * VAR05 * VAR26 + CONST041 * VAR07 * VAR24 + CONST139 *
VAR03 - CONST201 * VAR22 * x) + g_6 * (-CONST138 * VAR05 * y * z +
VAR07 * (CONST155 * VAR25 * y + CONST226 * VAR16 * z) + x * (
CONST067 * VAR14 * z - CONST138 * VAR23 * y + CONST226 * VAR16 * VAR25)
) + g_7 * (CONST219 * VAR03 + VAR05 * (CONST142 * VAR17 + CONST200 *
VAR26) + VAR07 * (CONST152 * VAR15 - CONST152 * VAR17 * VAR26 +
CONST200 * VAR24) + x * (CONST085 * VAR13 + CONST140 * VAR17 *
VAR24 + CONST152 * VAR15 * VAR26 + CONST219 * VAR22)) + g_8 * (
CONST026 * VAR12 - CONST052 * VAR16 * VAR24 + CONST084 * VAR14 *
VAR26 + CONST179 * VAR04 * y + CONST181 * VAR22 * y + VAR06 * (-
CONST052 * VAR16 + CONST129 * VAR26 * y) + VAR08 * (CONST083 *
VAR14 + CONST128 * VAR24 * y + CONST148 * VAR16 * VAR26)) + g_9 * (
CONST219 * VAR21 + VAR23 * (CONST142 * VAR17 + CONST200 * VAR08) +
VAR25 * (CONST073 * VAR08 * VAR17 + CONST152 * VAR15 + CONST200 *
VAR06) + z * (CONST086 * VAR13 + CONST091 * VAR04 + CONST142 *
VAR06 * VAR17 + CONST152 * VAR08 * VAR15))
g_z += g_0 * (-CONST049 * VAR05 * VAR26 + CONST131 * VAR07 * VAR24 -
CONST151 * VAR22 * x + CONST211 * VAR03) + g_1 * y * (-CONST050 *
VAR23 * x + CONST054 * VAR07 * VAR25 + CONST071 * VAR05 * z) + g_10 * (
CONST057 * VAR04 * z + CONST061 * VAR13 * z + CONST189 * VAR21 +
CONST198 * VAR15 * VAR25 + CONST212 * VAR08 * VAR23 + VAR17 * (
CONST093 * VAR08 * VAR25 - CONST107 * VAR23 + CONST162 * VAR06 * z)
) + g_11 * (VAR14 * (-CONST133 * VAR26 + CONST134 * VAR08) + VAR16 *
(CONST048 * VAR24 - CONST116 * VAR06 - CONST217 * VAR08 * VAR26) +
y * (CONST055 * VAR22 + CONST136 * VAR06 * VAR26 + CONST183 * VAR08 *
VAR24 + CONST201 * VAR04)) + g_12 * (CONST011 * VAR21 + CONST092 *
VAR04 * z + CONST182 * VAR06 * VAR25 + CONST202 * VAR08 * VAR23 +
VAR15 * (CONST098 * VAR08 * z + CONST122 * VAR25) + VAR17 * (-
CONST102 * VAR08 * VAR25 + CONST121 * VAR23 + CONST160 * VAR06 * z)
) + g_13 * (VAR16 * (CONST043 * VAR08 * VAR26 + CONST113 * VAR06 +
CONST113 * VAR24) + y * (CONST028 * VAR08 * VAR24 + CONST089 *
VAR06 * VAR26 + CONST169 * VAR22 + CONST186 * VAR04)) + g_14 * (-
CONST149 * VAR08 * VAR23 + CONST191 * VAR04 * z + CONST215 * VAR21 +
VAR17 * (-CONST109 * VAR06 * z - CONST149 * VAR23 + CONST193 *
VAR08 * VAR25)) + g_15 * y * (CONST178 * VAR04 - CONST178 * VAR22 -
CONST185 * VAR06 * VAR26 + CONST190 * VAR08 * VAR24) + g_16 * (
CONST050 * VAR08 * VAR23 - CONST131 * VAR06 * VAR25 + CONST151 *
VAR04 * z - CONST211 * VAR21) + g_2 * (CONST096 * VAR03 + VAR05 * (
-CONST149 * VAR17 - CONST177 * VAR26) + VAR07 * (CONST070 * VAR24 +
CONST193 * VAR17 * VAR26) + x * (-CONST109 * VAR17 * VAR24 +
CONST177 * VAR22)) + g_3 * (VAR16 * (CONST030 * VAR07 * z +
CONST197 * VAR25 * x) + y * (CONST077 * VAR23 * x + CONST108 *
VAR05 * z + CONST114 * VAR07 * VAR25)) + g_4 * (CONST080 * VAR03 +
VAR05 * (-CONST146 * VAR17 + CONST213 * VAR26) + VAR07 * (CONST027 *
VAR24 + CONST111 * VAR15) + x * (CONST102 * VAR17 * VAR24 +
CONST135 * VAR15 * VAR26 - CONST195 * VAR22)) + g_5 * (-CONST056 *
VAR14 * x * z + VAR16 * (CONST082 * VAR07 * z + CONST209 * VAR25 *
x) + y * (CONST023 * VAR05 * z + CONST120 * VAR07 * VAR25 -
CONST124 * VAR23 * x)) + g_6 * (CONST225 * VAR03 + VAR05 * (-
CONST162 * VAR17 + CONST205 * VAR26) + VAR07 * (CONST047 * VAR17 *
VAR26 + CONST118 * VAR15 + CONST194 * VAR24) + x * (CONST115 *
VAR15 * VAR26 - CONST161 * VAR13 + CONST206 * VAR17 * VAR24 +
CONST210 * VAR22)) + g_7 * (CONST173 * VAR05 * y * z + VAR07 * (-
CONST052 * VAR16 * z + CONST147 * VAR25 * y) + x * (-CONST052 *
VAR16 * VAR25 + CONST117 * VAR14 * z + CONST173 * VAR23 * y)) + g_8 * (
CONST007 * VAR04 * z + CONST007 * VAR21 - CONST052 * VAR15 * VAR25 +
CONST130 * VAR17 * VAR23 + CONST157 * VAR13 * z + VAR06 * (CONST024 *
VAR25 + CONST129 * VAR17 * z) + VAR08 * (CONST024 * VAR23 -
CONST052 * VAR15 * z + CONST052 * VAR17 * VAR25)) + g_9 * (CONST001 *
VAR26 * (CONST105 * VAR08 * VAR16 + CONST153 * VAR14 + CONST200 *
VAR06 * y) + CONST004 * VAR24 * (CONST063 * VAR16 + CONST200 *
VAR08 * y) + CONST025 * VAR12 + CONST063 * VAR06 * VAR16 + CONST091 *
VAR04 * y + CONST153 * VAR08 * VAR14 + CONST163 * VAR22 * y)
tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset <
coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask=
coord_row_offset + 1 < coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask=
coord_row_offset + 2 < coord_numel)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_8.py |
e6ddf2c9-7f59-4c42-b78f-bc7715065c3e | cumsum.py | sustcsonglin/flash-linear-attention | fla/ops/utils/cumsum.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BT': BT}, num_warps=num_warps) for
BT in [16, 32, 64] for num_warps in [2, 4, 8]], key=['S'])
@triton.jit
def chunk_global_reversed_cumsum_vector_kernel(s, z, offsets, T: tl.
constexpr, H: tl.constexpr, S: tl.constexpr, BT: tl.constexpr, BS: tl.
constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr):
i_s, i_bh = tl.program_id(0), tl.program_id(1)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_b).to(tl.int32), tl.load(offsets +
i_b + 1).to(tl.int32)
else:
bos, eos = i_b * T, i_b * T + T
T = eos - bos
o_i = tl.arange(0, BT)
m_s = tl.where(o_i[:, None] <= o_i[None, :], 1.0, 0.0)
b_z = tl.zeros([BS], dtype=tl.float32)
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
if HEAD_FIRST:
p_s = tl.make_block_ptr(s + i_bh * T * S, (T, S), (S, 1), (i_t *
BT, i_s * BS), (BT, BS), (1, 0))
p_z = tl.make_block_ptr(z + i_bh * T * S, (T, S), (S, 1), (i_t *
BT, i_s * BS), (BT, BS), (1, 0))
else:
p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H * S,
1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_z = tl.make_block_ptr(z + (bos * H + i_h) * S, (T, S), (H * S,
1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
b_c = b_z[None, :] + tl.dot(m_s, b_s, allow_tf32=False)
tl.store(p_z, b_c.to(p_z.dtype.element_ty), boundary_check=(0, 1))
if i_t >= 0:
b_z += tl.sum(b_s, 0)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/cumsum.py |
f0ab72b8-9381-4758-a492-d2577626d98d | flash_triton.py | MayDomine/Burst-Attention | burst_attn/flash_triton.py | b088c554072935074ea9c643de5ee363be5ab1f6 | 0 | @triton.jit
def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh,
stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q,
seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.
constexpr):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_HEADDIM)
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:,
None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] <
seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:,
None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] <
seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
delta = tl.sum(o * do, axis=1)
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/MayDomine/Burst-Attention/blob/b088c554072935074ea9c643de5ee363be5ab1f6/burst_attn/flash_triton.py |
278158ef-9d13-42d9-9403-ad874e38674a | shape.py | 2niuhe/triton_utils | src/triton_utils/shape.py | 6184906ac3b86dac3ccbfac128ec393ccecde5df | 0 | @triton.jit
def store_full_2d(vals, ptr, sz0: tl.constexpr, sz1: tl.constexpr, stride0=
None, stride1=1):
"""Store 2d block into matrix (defined by ptr)"""
stride0 = stride0 or sz1
offs = get_2d_offset(tl.arange(0, sz0), tl.arange(0, sz1), stride0, stride1
)
mask = get_2d_mask(tl.arange(0, sz0), tl.arange(0, sz1), sz0, sz1)
tl.store(ptr + offs, vals, mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Low Latency"
]
} | [
"Apache"
] | https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py |
b0e2d0fb-4469-4b96-82eb-ab68f3187e7b | triton_kernel.py | yann-Choho/projet_PPML | notebooks/triton_kernel.py | 9274e0561443b01f029ee6e0737f922f71d2da39 | 0 | @triton.autotune(configs=get_autotune_config(), key=['M', 'N', 'K'])
@triton.jit
def ff_llama(a_ptr, w1_ptr, w3_ptr, out_ptr, M, N, K, stride_am, stride_ak,
stride_w1k, stride_w1n, stride_w3k, stride_w3n, stride_outm,
stride_outn, USE_FP8: tl.constexpr, EPS: tl.constexpr, BLOCK_SIZE_M: tl
.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr):
"""
w1 and w3 are weights (linear layers)
F.silu(w1(x)) * w3(x)
"""
pid = tl.program_id(axis=0)
pid_m = pid // tl.cdiv(N, BLOCK_SIZE_N)
pid_n = pid % tl.cdiv(N, BLOCK_SIZE_N)
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] *
stride_ak)
w1_ptrs = w1_ptr + (offs_k[:, None] * stride_w1k + offs_bn[None, :] *
stride_w1n)
w3_ptrs = w3_ptr + (offs_k[:, None] * stride_w3k + offs_bn[None, :] *
stride_w3n)
acc1 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
acc2 = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for _ in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs)
b = tl.load(w1_ptrs)
if USE_FP8:
b = b.to(tl.float8e5, bitcast=True)
b = b.to(tl.float32)
b = b.to(tl.float16)
acc1 += tl.dot(a, b)
c = tl.load(w3_ptrs)
if USE_FP8:
c = c.to(tl.float8e5, bitcast=True)
c = c.to(tl.float32)
c = c.to(tl.float16)
acc2 += tl.dot(a, c)
a_ptrs += BLOCK_SIZE_K * stride_ak
w1_ptrs += BLOCK_SIZE_K * stride_w1k
w3_ptrs += BLOCK_SIZE_K * stride_w3k
acc1 = acc1
acc2 = acc2
accumulator = acc1 * tl.sigmoid(acc1) * acc2
offs_outm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_outn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
out_ptrs = out_ptr + (stride_outm * offs_outm[:, None] + stride_outn *
offs_outn[None, :])
out_mask = (offs_outm[:, None] < M) & (offs_outn[None, :] < N)
tl.store(out_ptrs, accumulator, mask=out_mask)
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Activation Functions",
"Matrix Multiplication",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/yann-Choho/projet_PPML/blob/9274e0561443b01f029ee6e0737f922f71d2da39/notebooks/triton_kernel.py |
ea665a0c-9ad0-4547-bcd9-8f5d72e5f94b | mlstm_matmul.py | LukasBluebaum/xLSTM-Triton-CUDA-Implementation | mlstm_matmul.py | 6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b | 0 | @triton.jit
def mlstm_matmul_kernel(Q, K, V, F, I, M, B, H, NH: tl.constexpr, S: tl.
constexpr, D: tl.constexpr, SB: tl.constexpr):
bh_id = tl.program_id(0)
sb_id = tl.program_id(1)
batch_id = bh_id // NH
head_id = bh_id % NH
batch_offset_q = batch_id * NH * S * D + head_id * S * D
batch_offset_f = batch_id * NH * S + head_id * S
offset_q = tl.arange(0, SB) + sb_id * SB
offset_k = tl.arange(0, SB) + sb_id * SB
d_range = tl.arange(0, D)
q_range = batch_offset_q + offset_q[:, None] * D + d_range[None, :]
q_mask = (offset_q[:, None] < S) & (d_range[None, :] < D)
q = tl.load(Q + q_range, q_mask)
f = tl.load(F + batch_offset_f + offset_q, offset_q < S)
f = tl.cumsum(tl.log(tl.sigmoid(f)))
c_acc = tl.zeros((SB, D), dtype=tl.float32)
b_acc = tl.zeros((SB,), dtype=tl.float32)
m_acc = tl.zeros((SB,), dtype=tl.float32) - float('inf')
for j in range(sb_id, -1, -1):
kv_range = batch_offset_q + offset_k[:, None] * D + d_range[None, :]
kv_mask = (offset_k[:, None] < S) & (d_range[None, :] < D)
k = tl.load(K + kv_range, kv_mask) / tl.sqrt(tl.full((1,), D, dtype
=tl.float32))
v = tl.load(V + kv_range, kv_mask)
f_next = tl.load(F + batch_offset_f + offset_k, offset_k < S)
i = tl.load(I + batch_offset_f + offset_k, offset_k < S)
f_next = tl.log(tl.sigmoid(f_next))
if j == sb_id:
f_next = tl.cumsum(f_next)
d = f[:, None] - f_next[None, :] + i[None, :]
mask = offset_q[:, None] >= offset_k[None, :]
d = tl.where(mask, d, -float('inf'))
else:
f += tl.sum(f_next)
f_next = tl.cumsum(f_next)
d = f[:, None] - f_next[None, :] + i[None, :]
m = tl.maximum(tl.max(d, 1), m_acc)
d = tl.exp(d - m[:, None])
c = matrix_mult(q, tl.trans(k), SB) * d
b_acc = b_acc * tl.exp(m_acc - m) + tl.sum(c, 1)
c = matrix_mult(c, v, SB)
c_acc = c_acc * tl.exp(m_acc - m)[:, None] + c
m_acc = m
offset_k -= SB
n = tl.maximum(tl.abs(b_acc), tl.exp(-m_acc)) + 1e-06
h = c_acc / n[:, None]
tl.store(H + q_range, h, q_mask)
tl.store(B + batch_offset_f + offset_q, b_acc, offset_q < S)
tl.store(M + batch_offset_f + offset_q, m_acc, offset_q < S)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Recurrent Neural Networks"
],
"Memory Access Pattern": [
"Strided Access",
"Transposed Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_matmul.py |
27fc8e86-3d25-4ff7-b9cb-308bd627ca58 | sequential_rnn_scan.py | TushaarGVS/linear-rnn | linear_rnn/triton/sequential_rnn_scan.py | 48320589b73154484be7d09a144923a2b9e56b85 | 0 | @triton.jit
def _sequential_rnn_scan_fwd_kernel(x_ptr, a_ptr, h0_ptr, out_ptr,
stride_x_batch, stride_x_len, stride_x_dim, stride_a_batch,
stride_a_len, stride_a_dim, stride_h0_batch, stride_h0_dim,
stride_out_batch, stride_out_dim, seq_len: tl.constexpr, BLOCK_SIZE: tl
.constexpr):
pid_batch = tl.program_id(0)
pid_dim = tl.program_id(1)
x_ptr += pid_batch * stride_x_batch
a_ptr += pid_batch * stride_a_batch
ht_ptr = h0_ptr + pid_batch * stride_h0_batch
out_ptr += pid_batch * stride_out_batch
offsets = pid_dim * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
x_ptrs = x_ptr + offsets * stride_x_dim
a_ptrs = a_ptr + offsets * stride_a_dim
ht_ptrs = ht_ptr + offsets * stride_h0_dim
out_ptrs = out_ptr + offsets * stride_out_dim
h_t = tl.load(ht_ptrs).to(tl.float32)
for t in range(seq_len):
x_t = tl.load(x_ptrs).to(tl.float32)
a_t = tl.load(a_ptrs).to(tl.float32)
h_t = a_t * h_t + x_t
if t < seq_len - 1:
x_ptrs += stride_x_len
a_ptrs += stride_a_len
tl.store(out_ptrs, h_t.to(out_ptr.dtype.element_ty))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Recurrent Neural Networks",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"Apache"
] | https://github.com/TushaarGVS/linear-rnn/blob/48320589b73154484be7d09a144923a2b9e56b85/linear_rnn/triton/sequential_rnn_scan.py |
70061971-e534-482c-8c08-07c373e9ef4d | mse.py | l1351868270/implicit_gemm.triton | triton_kernel/mse.py | 64eb8548ccf4576883c928f6315be8b24680a455 | 0 | @triton.jit
def _ld_mse_fwd_kernel(loss_ptr, input_ptr, target_ptr, loss_row_stride,
input_row_stride, target_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.
constexpr):
pid = tl.program_id(0)
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
input_ptrs = input_ptr + pid * input_row_stride + col_offsets
target_ptrs = target_ptr + pid * target_row_stride + col_offsets
input = tl.load(input_ptrs, mask=mask, other=0.0)
target = tl.load(target_ptrs, mask=mask, other=0.0)
loss = tl.sum((input - target) * (input - target)) / n_cols
loss_ptrs = loss_ptr + pid
tl.store(loss_ptrs, loss, mask=pid < n_rows)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/l1351868270/implicit_gemm.triton/blob/64eb8548ccf4576883c928f6315be8b24680a455/triton_kernel/mse.py |
e6c654b9-0a74-43ae-8353-03aef9101762 | snake.py | falkaer/multi-scale-music | snake.py | a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d | 0 | @triton.autotune(configs=[triton.Config({}, num_warps=4), triton.Config({},
num_warps=8), triton.Config({}, num_warps=16)], key=['C'])
@triton.jit
def _snake_fwd_triton(X, OUT, ALPHA, CR, X_stride1, X_stride2, X_stride3,
OUT_stride1, OUT_stride2, OUT_stride3, A_stride, C_stride, C, N, CORR:
tl.constexpr, BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(0)
batch_idx = pid // C
channel_idx = pid % C
block_start = tl.program_id(1) * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
X = X + batch_idx * X_stride1 + channel_idx * X_stride2
x = tl.load(X + offsets * X_stride3, mask=offsets < N)
alpha = tl.load(ALPHA + channel_idx * A_stride)
sinax = tl.sin((alpha * x).to(tl.float32)).to(x.type)
out = x + sinax * sinax / alpha
if CORR:
cr = tl.load(CR + channel_idx * C_stride)
out = out / cr
OUT = OUT + batch_idx * OUT_stride1 + channel_idx * OUT_stride2
tl.store(OUT + offsets * OUT_stride3, out, mask=offsets < N)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations",
"Activation Functions"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/snake.py |
b05a8075-2ff7-49c6-891a-44aefc01ecb3 | softmax.py | sustcsonglin/flash-linear-attention | fla/ops/utils/softmax.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
num_warps=8), triton.Config({}, num_warps=16), triton.Config({},
num_warps=32)], key=['D'])
@triton.jit
def softmax_bwd_kernel(p, dp, ds, D: tl.constexpr, B: tl.constexpr):
i_n = tl.program_id(0)
o_d = tl.arange(0, B)
m_d = o_d < D
b_p = tl.load(p + i_n * D + o_d, mask=m_d, other=0.0)
b_dp = tl.load(dp + i_n * D + o_d, mask=m_d, other=0.0)
b_pp = tl.sum(b_p * b_dp, 0)
b_ds = b_p * b_dp - b_p * b_pp
tl.store(ds + i_n * D + o_d, b_ds.to(ds.dtype.element_ty), mask=m_d)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax",
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/softmax.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.