uuid
stringlengths
36
36
file_name
stringlengths
5
50
repo_name
stringclasses
110 values
file_path
stringlengths
7
112
commit_hash
stringclasses
110 values
starcount
int64
0
0
input
stringlengths
39
33.8k
category
dict
licenses
sequencelengths
1
2
github_url
stringlengths
94
193
c5940182-0af6-4902-b164-e9d9776bf1ee
_quantize.py
IBM/qattn
qattn/nn/functional/_quantize.py
07ceda0aceb9afd299d622325944c0c0471827fe
0
@triton.jit def clamp(x: tl.tensor, min_val, max_val) ->tl.tensor: """Clamps all elements in `x` into range [min, max]. Args: x (tl.tensor): the input tensor. min_val (Number): lower bound of the range. max_val (Number): upper bound of the range. Returns: tl.tensor: the output tensor. """ return tl.math.min(tl.math.max(x, min_val), max_val)
{ "Data Type": [], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/IBM/qattn/blob/07ceda0aceb9afd299d622325944c0c0471827fe/qattn/nn/functional/_quantize.py
cb753c39-8d4d-492d-af54-91bdf9d9f3a8
triton_fused_attention.py
pytorch-labs/tritonbench
tritonbench/kernels/triton_fused_attention.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(list(filter(keep, configsTmaWS)), key=['N_CTX']) @triton.jit def _attn_fwd_tma_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.constexpr, STAGE: tl.constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE: tl. constexpr, ENABLE_WS: tl.constexpr): tl.static_assert(BLOCK_N <= HEAD_DIM) pid = tl.program_id(0) off_hz = tl.program_id(1) _attn_fwd_compute_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid, Z, H, N_CTX, BLOCK_M, BLOCK_N, HEAD_DIM, STAGE, ENABLE_TMA, LOOP_SCHEDULE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py
9391ce5d-adac-414a-92ce-2ca0faecd484
copy_strided.py
triton-lang/triton
python/examples/copy_strided.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.jit def kernel(X, stride_xm, Z, stride_zn, BLOCK_M: tl.constexpr, BLOCK_N: tl. constexpr): off_m = tl.arange(0, BLOCK_M) off_n = tl.arange(0, BLOCK_N) Xs = X + off_m[:, None] * stride_xm + off_n[None, :] * 1 Zs = Z + off_m[:, None] * 1 + off_n[None, :] * stride_zn tl.store(Zs, tl.load(Xs))
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/examples/copy_strided.py
04bd883d-3bc8-46e4-9259-5f5271e53a83
y_7.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_7.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def seventh_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl. constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): coord_stride = 3 block_id = tl.program_id(0) coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) CONST002 = 3.87298334620742 CONST008 = 11.7655316231354 CONST010 = 16.5555704843566 CONST012 = 20.4939015319192 CONST013 = 20.4939015319192 CONST014 = 22.0740939791422 CONST015 = 23.5310632462709 CONST017 = 36.7901566319036 CONST019 = 38.4260653723485 CONST020 = 38.4260653723485 CONST021 = 38.4260653723485 CONST023 = -4.9916923169903 CONST025 = 47.0621264925418 CONST026 = 50.8329064189723 CONST028 = 55.1852349478554 CONST029 = 56.2781179722634 CONST030 = 56.2781179722634 CONST032 = 66.5558975598707 CONST033 = 75.2994023880668 CONST037 = 101.665812837945 CONST038 = 110.370469895711 CONST041 = 147.160626527614 CONST042 = -1.66389743899677 CONST043 = -9.37968632871057 CONST044 = -1.66389743899677 CONST045 = -220.740939791422 CONST046 = -220.740939791422 CONST047 = -1.60108605718119 CONST048 = -187.593726574211 CONST049 = -9.1975391579759 CONST050 = -1.83950783159518 CONST051 = -1.83950783159518 CONST052 = -4.80325817154356 CONST053 = -147.160626527614 CONST054 = -140.695294930659 CONST055 = -133.111795119741 CONST056 = -125.499003980111 CONST057 = -125.499003980111 CONST058 = -99.833846339806 CONST059 = -87.7389315936062 CONST060 = -76.852130744697 CONST061 = -66.5558975598707 CONST062 = -62.7495019900557 CONST063 = -52.6433589561637 CONST064 = -44.1481879582843 CONST065 = -44.3705983732471 CONST066 = -40.6663251351779 CONST067 = -40.6663251351779 CONST068 = -8.31948719498384 CONST069 = -37.6497011940334 CONST070 = -33.2779487799353 CONST071 = -25.4164532094862 CONST072 = -25.4164532094862 CONST073 = -17.5477863187212 CONST074 = -11.7655316231354 CONST075 = -11.0370469895711 CONST076 = -9.1975391579759 CONST077 = -8.47215106982872 CONST078 = -4.80325817154356 CONST079 = -2.50682661696018 CONST080 = -1.60108605718119 VAR06 = x * x * x * x VAR07 = x * x * x VAR08 = x * x VAR03 = VAR06 * VAR07 VAR04 = VAR07 * VAR07 VAR05 = VAR07 * VAR08 VAR15 = y * y * y * y VAR16 = y * y * y VAR17 = y * y VAR12 = VAR15 * VAR16 VAR13 = VAR16 * VAR16 VAR14 = VAR16 * VAR17 VAR24 = z * z * z * z VAR25 = z * z * z VAR26 = z * z VAR21 = VAR24 * VAR25 VAR22 = VAR25 * VAR25 VAR23 = VAR25 * VAR26 Y00 = (CONST059 * VAR07 * VAR24 - CONST063 * VAR05 * VAR26 - CONST073 * VAR22 * x + CONST079 * VAR03) Y01 = y * (CONST029 * VAR23 * x + CONST030 * VAR05 * z + CONST048 * VAR07 * VAR25) Y02 = CONST050 * VAR03 + VAR05 * (CONST010 * VAR26 + CONST014 * VAR17 ) + VAR07 * (CONST045 * VAR17 * VAR26 - CONST076 * VAR24) + x * ( CONST038 * VAR17 * VAR24 + CONST076 * VAR22) Y03 = VAR16 * (CONST041 * VAR25 * x + CONST053 * VAR07 * z) + y * (- CONST064 * VAR05 * z + CONST064 * VAR23 * x) Y04 = CONST042 * VAR03 + VAR05 * (-CONST042 * VAR26 - CONST070 * VAR17 ) + VAR07 * (CONST061 * VAR17 * VAR26 + CONST065 * VAR15 - CONST068 * VAR24) + x * (-CONST023 * VAR22 - CONST055 * VAR15 * VAR26 + CONST058 * VAR17 * VAR24) Y05 = CONST015 * VAR05 * y * z + VAR07 * (CONST025 * VAR25 * y + CONST057 * VAR16 * z) + x * (CONST015 * VAR23 * y + CONST033 * VAR14 * z + CONST056 * VAR16 * VAR25) Y06 = CONST047 * VAR03 + VAR05 * (CONST020 * VAR17 + CONST078 * VAR26 ) + VAR07 * (CONST052 * VAR24 + CONST060 * VAR15 - CONST060 * VAR17 * VAR26) + x * (CONST012 * VAR13 + CONST019 * VAR17 * VAR24 + CONST060 * VAR15 * VAR26 + CONST080 * VAR22) Y07 = CONST002 * VAR12 + VAR14 * (CONST066 * VAR08 + CONST067 * VAR26 ) + VAR16 * (CONST026 * VAR06 + CONST026 * VAR24 + CONST037 * VAR08 * VAR26) + y * (CONST071 * VAR06 * VAR26 + CONST072 * VAR08 * VAR24 + CONST077 * VAR04 + CONST077 * VAR22) Y08 = CONST047 * VAR21 + VAR23 * (CONST020 * VAR17 + CONST052 * VAR08 ) + VAR25 * (CONST052 * VAR06 - CONST060 * VAR08 * VAR17 + CONST060 * VAR15) + z * (CONST013 * VAR13 + CONST021 * VAR06 * VAR17 + CONST047 * VAR04 + CONST060 * VAR08 * VAR15) Y09 = VAR14 * (CONST069 * VAR08 - CONST069 * VAR26) + VAR16 * (- CONST062 * VAR06 + CONST062 * VAR24) + y * (CONST008 * VAR08 * VAR24 + CONST074 * VAR04 + CONST074 * VAR06 * VAR26 - CONST074 * VAR22) Y10 = -CONST042 * VAR21 + VAR23 * (CONST044 * VAR08 + CONST070 * VAR17 ) + VAR25 * (CONST032 * VAR08 * VAR17 - CONST065 * VAR15 + CONST068 * VAR06) + z * (CONST023 * VAR04 + CONST055 * VAR08 * VAR15 - CONST058 * VAR06 * VAR17) Y11 = VAR16 * (CONST017 * VAR06 + CONST017 * VAR24 + CONST046 * VAR08 * VAR26) + y * (CONST028 * VAR06 * VAR26 + CONST028 * VAR08 * VAR24 + CONST075 * VAR04 + CONST075 * VAR22) Y12 = CONST051 * VAR21 + VAR23 * (CONST010 * VAR08 + CONST014 * VAR17 ) + VAR25 * (CONST045 * VAR08 * VAR17 - CONST049 * VAR06) + z * ( CONST038 * VAR06 * VAR17 + CONST049 * VAR04) Y13 = y * (CONST043 * VAR04 - CONST043 * VAR22 - CONST054 * VAR06 * VAR26 + CONST054 * VAR08 * VAR24) Y14 = (-CONST059 * VAR06 * VAR25 + CONST063 * VAR08 * VAR23 + CONST073 * VAR04 * z - CONST079 * VAR21) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) tl.store(output_ptr + output_row_offset, Y00, mask=output_row_offset < output_numel) tl.store(output_ptr + output_row_offset + 1, Y01, mask= output_row_offset + 1 < output_numel) tl.store(output_ptr + output_row_offset + 2, Y02, mask= output_row_offset + 2 < output_numel) tl.store(output_ptr + output_row_offset + 3, Y03, mask= output_row_offset + 3 < output_numel) tl.store(output_ptr + output_row_offset + 4, Y04, mask= output_row_offset + 4 < output_numel) tl.store(output_ptr + output_row_offset + 5, Y05, mask= output_row_offset + 5 < output_numel) tl.store(output_ptr + output_row_offset + 6, Y06, mask= output_row_offset + 6 < output_numel) tl.store(output_ptr + output_row_offset + 7, Y07, mask= output_row_offset + 7 < output_numel) tl.store(output_ptr + output_row_offset + 8, Y08, mask= output_row_offset + 8 < output_numel) tl.store(output_ptr + output_row_offset + 9, Y09, mask= output_row_offset + 9 < output_numel) tl.store(output_ptr + output_row_offset + 10, Y10, mask= output_row_offset + 10 < output_numel) tl.store(output_ptr + output_row_offset + 11, Y11, mask= output_row_offset + 11 < output_numel) tl.store(output_ptr + output_row_offset + 12, Y12, mask= output_row_offset + 12 < output_numel) tl.store(output_ptr + output_row_offset + 13, Y13, mask= output_row_offset + 13 < output_numel) tl.store(output_ptr + output_row_offset + 14, Y14, mask= output_row_offset + 14 < output_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_7.py
ad543ac2-d2ac-447e-8a53-c871539d272e
y_2.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_2.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def second_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor, sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl. constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): block_id = tl.program_id(0) coord_stride = 3 coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) CONST_00 = 3.87298334620742 CONST_01 = 2.23606797749979 CONST_02 = 4.47213595499958 g_Y20 = tl.load(sph_grad_ptr + output_row_offset, mask= output_row_offset < output_numel) g_Y21 = tl.load(sph_grad_ptr + output_row_offset + 1, mask= output_row_offset + 1 < output_numel) g_Y22 = tl.load(sph_grad_ptr + output_row_offset + 2, mask= output_row_offset + 2 < output_numel) g_Y23 = tl.load(sph_grad_ptr + output_row_offset + 3, mask= output_row_offset + 3 < output_numel) g_Y24 = tl.load(sph_grad_ptr + output_row_offset + 4, mask= output_row_offset + 4 < output_numel) g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask= coord_row_offset + 1 < coord_numel) g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask= coord_row_offset + 2 < coord_numel) g_x += (CONST_00 * g_Y20 * z + CONST_00 * g_Y21 * y - CONST_01 * g_Y22 * x - CONST_00 * g_Y24 * x) g_y += CONST_00 * g_Y21 * x + CONST_02 * g_Y22 * y + CONST_00 * g_Y23 * z g_z += (CONST_00 * g_Y20 * x - CONST_01 * g_Y22 * z + CONST_00 * g_Y23 * y + CONST_00 * g_Y24 * z) tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask= coord_row_offset + 1 < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask= coord_row_offset + 2 < coord_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_2.py
28f5b112-be8c-4f0b-8096-f9ab7e3bb85c
mhmoe.py
dtadpole/triton-playground
mhmoe.py
2d317976722d63080133b1bf88b1f0cdec98f831
0
@triton.jit def _mlp_wide_kernel_bwd_dx(dx, pid_h, pid_b, x_ptr, w1_ptr, w2_ptr, o_ptr, dx_ptr, dw1_ptr, dw2_ptr, do_ptr, H, B, D: tl.constexpr, E, stride_xb, stride_xd, stride_w1d, stride_w1e, stride_w2e, stride_w2d, stride_ob, stride_od, stride_dxb, stride_dxd, stride_dw1d, stride_dw1e, stride_dw2e, stride_dw2d, stride_dob, stride_dod, BLOCK_SIZE_B: tl. constexpr, BLOCK_SIZE_E: tl.constexpr, ACTIVATION: tl.constexpr): """Kernel for computing the mlp_bwd_dx Z = X @ W1, H = f(Z), O = H @ W2 - X has shape (B, D) - W1 has shape (D, E) - W2 has shape (E, D) - O has shape (B, D) - dX has shape (B, D) - dW1 has shape (D, E) - dW2 has shape (E, D) - dO has shape (B, D) """ TARGET_TYPE = x_ptr.type.element_ty offs_b = tl.arange(0, BLOCK_SIZE_B) offs_d = tl.arange(0, D) offs_e = tl.arange(0, BLOCK_SIZE_E) x_ptrs = x_ptr + ((pid_h * B + pid_b * BLOCK_SIZE_B + offs_b[:, None]) * stride_xb + offs_d[None, :] * stride_xd) x_mask = (offs_b[:, None] < B - pid_b * BLOCK_SIZE_B) & (offs_d[None, : ] < D) do_ptrs = do_ptr + ((pid_h * B + pid_b * BLOCK_SIZE_B + offs_b[:, None] ) * stride_dob + offs_d[None, :] * stride_dod) do_mask = (offs_b[:, None] < B - pid_b * BLOCK_SIZE_B) & (offs_d[None, :] < D) w1_ptrs = w1_ptr + ((pid_h * D + offs_d[:, None]) * stride_w1d + offs_e [None, :] * stride_w1e) w2_ptrs = w2_ptr + ((pid_h * E + offs_e[:, None]) * stride_w2e + offs_d [None, :] * stride_w2d) dw1_ptrs = dw1_ptr + ((pid_h * D + offs_d[:, None]) * stride_dw1d + offs_e[None, :] * stride_dw1e) dw2_ptrs = dw2_ptr + ((pid_h * E + offs_e[:, None]) * stride_dw2e + offs_d[None, :] * stride_dw2d) x = tl.load(x_ptrs, mask=x_mask, other=0.0) do = tl.load(do_ptrs, mask=do_mask, other=0.0) for e in range(0, tl.cdiv(E, BLOCK_SIZE_E)): w1_mask = (offs_d[:, None] < D) & (offs_e[None, :] < E - e * BLOCK_SIZE_E) w2_mask = (offs_e[:, None] < E - e * BLOCK_SIZE_E) & (offs_d[None, :] < D) w1 = tl.load(w1_ptrs, mask=w1_mask, other=0.0) w2 = tl.load(w2_ptrs, mask=w2_mask, other=0.0) z = tl.dot(x, w1, out_dtype=tl.float32) if ACTIVATION == 'leaky_relu': h = leaky_relu(z).to(TARGET_TYPE) elif ACTIVATION == 'silu': h = silu(z).to(TARGET_TYPE) elif ACTIVATION == 'sigmoid': h = tl.sigmoid(z).to(TARGET_TYPE) else: h = z.to(TARGET_TYPE) dh = tl.dot(do, tl.trans(w2), out_dtype=tl.float32) if ACTIVATION == 'leaky_relu': dz = (dh * d_leacky_relu(z)).to(TARGET_TYPE) elif ACTIVATION == 'silu': dz = (dh * d_silu(z, h)).to(TARGET_TYPE) elif ACTIVATION == 'sigmoid': dz = (dh * d_sigmoid(h)).to(TARGET_TYPE) else: dz = dh.to(TARGET_TYPE) dx += tl.dot(dz, tl.trans(w1), out_dtype=tl.float32) w1_ptrs += BLOCK_SIZE_E * stride_w1e w2_ptrs += BLOCK_SIZE_E * stride_w2e dw1_ptrs += BLOCK_SIZE_E * stride_dw1e dw2_ptrs += BLOCK_SIZE_E * stride_dw2e return dx
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Activation Functions", "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe.py
9a05112d-23d7-43f7-92f8-e3e2e3cd9ee0
flash_attention.py
falkaer/multi-scale-music
seq/flash_attention.py
a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d
0
@triton.jit def _bwd_kernel(Q, K, V, S, sm_scale, DO, DQ, DK, DV, M, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vn, stride_vk, stride_doz, stride_doh, stride_dom, stride_dok, stride_dqz, stride_dqh, stride_dqm, stride_dqk, stride_dkz, stride_dkh, stride_dkn, stride_dkk, stride_dvz, stride_dvh, stride_dvn, stride_dvk, stride_mz, stride_mh, stride_mm, stride_dz, stride_dh, stride_dm, M_Q, N_CTX, BLOCK_DMODEL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, CAUSAL: tl.constexpr, USE_ALIBI: tl.constexpr): off_h = tl.program_id(0) off_z = tl.program_id(1) Q += off_z * stride_qz + off_h * stride_qh K += off_z * stride_kz + off_h * stride_kh V += off_z * stride_vz + off_h * stride_vh DO += off_z * stride_doz + off_h * stride_doh DQ += off_z * stride_dqz + off_h * stride_dqh DK += off_z * stride_dkz + off_h * stride_dkh DV += off_z * stride_dvz + off_h * stride_dvh if USE_ALIBI: slope = tl.load(S + off_h) for start_n in range(0, N_CTX, BLOCK_N): offs_n_curr = start_n + tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) offs_m = tl.arange(0, BLOCK_M) k_ptrs = K + (offs_n_curr[:, None] * stride_kn + offs_d[None, :] * stride_kk) v_ptrs = V + (offs_n_curr[:, None] * stride_vn + offs_d[None, :] * stride_vk) q_ptrs = Q + (offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk ) dq_ptrs = DQ + (offs_m[:, None] * stride_dqm + offs_d[None, :] * stride_dqk) do_ptrs = DO + (offs_m[:, None] * stride_dom + offs_d[None, :] * stride_dok) m_ptrs = M + off_z * stride_mz + off_h * stride_mh + offs_m * stride_mm D_ptrs = D + off_z * stride_dz + off_h * stride_dh + offs_m * stride_dm dv = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32) if EVEN_N: k = tl.load(k_ptrs) v = tl.load(v_ptrs) else: k = tl.load(k_ptrs, mask=offs_n_curr[:, None] < N_CTX, other=0) v = tl.load(v_ptrs, mask=offs_n_curr[:, None] < N_CTX, other=0) k = k.to(tl.float16) v = v.to(tl.float16) if CAUSAL: begin = start_n + M_Q - N_CTX dq_ptrs += begin * stride_dqm q_ptrs += begin * stride_qm do_ptrs += begin * stride_dom m_ptrs += begin * stride_mm D_ptrs += begin * stride_dm else: begin = 0 for start_m in range(begin, M_Q, BLOCK_M): offs_m_curr = start_m + offs_m if EVEN_M: q = tl.load(q_ptrs) else: q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < M_Q, other=0) q = q.to(tl.float16) qk = tl.dot(q, k, trans_b=True) qk *= sm_scale if USE_ALIBI & CAUSAL: qk += causal_alibi_mask(slope, offs_m_curr, offs_n_curr, M_Q, N_CTX, EVEN_M, EVEN_N) elif USE_ALIBI: qk += symmetric_alibi_mask(slope, offs_m_curr, offs_n_curr, M_Q, N_CTX, EVEN_M, EVEN_N) elif CAUSAL: qk += causal_mask(offs_m_curr, offs_n_curr, M_Q, N_CTX, EVEN_M, EVEN_N) if EVEN_M: m = tl.load(m_ptrs) Di = tl.load(D_ptrs) do = tl.load(do_ptrs) else: m = tl.load(m_ptrs, mask=offs_m_curr < M_Q, other=0) Di = tl.load(D_ptrs, mask=offs_m_curr < M_Q, other=0) do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < M_Q, other=0) do = do.to(tl.float16) p = tl.exp(qk - m[:, None]) dv += tl.dot(p.to(tl.float16), do, trans_a=True) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] dp += tl.dot(do, v, trans_b=True) ds = p * dp * sm_scale dk += tl.dot(ds.to(tl.float16), q, trans_a=True) if EVEN_M: dq = tl.load(dq_ptrs, eviction_policy='evict_last') else: dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < M_Q, other=0, eviction_policy='evict_last') dq += tl.dot(ds.to(tl.float16), k) if EVEN_M: tl.store(dq_ptrs, dq, eviction_policy='evict_last') else: tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < M_Q, eviction_policy='evict_last') q_ptrs += BLOCK_M * stride_qm dq_ptrs += BLOCK_M * stride_dqm do_ptrs += BLOCK_M * stride_dom m_ptrs += BLOCK_M * stride_mm D_ptrs += BLOCK_M * stride_dm offs_d = tl.arange(0, BLOCK_DMODEL) dv_ptrs = DV + (offs_n_curr[:, None] * stride_dvn + offs_d[None, :] * stride_dvk) dk_ptrs = DK + (offs_n_curr[:, None] * stride_dkn + offs_d[None, :] * stride_dkk) if EVEN_N: tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) else: tl.store(dv_ptrs, dv, mask=offs_n_curr[:, None] < N_CTX) tl.store(dk_ptrs, dk, mask=offs_n_curr[:, None] < N_CTX)
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py
4db0e91c-60b7-4181-91a9-99d1f7995e1e
flash_triton.py
MayDomine/Burst-Attention
burst_attn/flash_triton.py
b088c554072935074ea9c643de5ee363be5ab1f6
0
@triton.jit def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl. constexpr): if EVEN_N & EVEN_M: if EVEN_HEADDIM: tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) else: tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) elif EVEN_HEADDIM: tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) else: tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[ None, :] < headdim)) tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[ None, :] < headdim))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/MayDomine/Burst-Attention/blob/b088c554072935074ea9c643de5ee363be5ab1f6/burst_attn/flash_triton.py
743113b7-b1b8-41f3-ae0c-36089061283a
matmul.py
sustcsonglin/flash-linear-attention
fla/ops/utils/matmul.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'HAS_INPUT': lambda args: args['input'] is not None, 'HAS_ALPHA': lambda args: args['alpha'] is not None, 'HAS_BETA': lambda args: args['beta'] is not None}) @triton.autotune(configs=[triton.Config({'BM': 128, 'BK': 64, 'BN': 256, 'G': 4}, num_stages=3, num_warps=8), triton.Config({'BM': 64, 'BK': 32, 'BN': 256, 'G': 4}, num_stages=4, num_warps=4), triton.Config({'BM': 128, 'BK': 32, 'BN': 128, 'G': 4}, num_stages=4, num_warps=4), triton. Config({'BM': 128, 'BK': 32, 'BN': 64, 'G': 4}, num_stages=4, num_warps =4), triton.Config({'BM': 64, 'BK': 32, 'BN': 128, 'G': 4}, num_stages= 4, num_warps=4), triton.Config({'BM': 128, 'BK': 32, 'BN': 32, 'G': 4}, num_stages=4, num_warps=4), triton.Config({'BM': 64, 'BK': 32, 'BN': 32, 'G': 4}, num_stages=5, num_warps=2), triton.Config({'BM': 32, 'BK': 32, 'BN': 64, 'G': 4}, num_stages=5, num_warps=2), triton.Config({'BM': 128, 'BK': 128, 'BN': 256, 'G': 4}, num_stages=3, num_warps=8), triton. Config({'BM': 256, 'BK': 128, 'BN': 128, 'G': 4}, num_stages=3, num_warps=8), triton.Config({'BM': 256, 'BK': 128, 'BN': 64, 'G': 4}, num_stages=4, num_warps=4), triton.Config({'BM': 64, 'BK': 128, 'BN': 256, 'G': 4}, num_stages=4, num_warps=4), triton.Config({'BM': 128, 'BK': 128, 'BN': 128, 'G': 4}, num_stages=4, num_warps=4), triton. Config({'BM': 128, 'BK': 64, 'BN': 64, 'G': 4}, num_stages=4, num_warps =4), triton.Config({'BM': 64, 'BK': 64, 'BN': 128, 'G': 4}, num_stages= 4, num_warps=4), triton.Config({'BM': 128, 'BK': 64, 'BN': 32, 'G': 4}, num_stages=4, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def matmul_kernel(a, b, c, input, alpha, beta, M, N, K, s_am, s_ak, s_bk, s_bn, s_cm, s_cn, BM: tl.constexpr, BK: tl.constexpr, BN: tl.constexpr, G: tl.constexpr, ACTIVATION: tl.constexpr, HAS_INPUT: tl.constexpr, HAS_ALPHA: tl.constexpr, HAS_BETA: tl.constexpr): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ NM, NN = tl.num_programs(0), tl.num_programs(1) i_m, i_n = tl.program_id(0), tl.program_id(1) i_m, i_n = tl.swizzle2d(i_m, i_n, NM, NN, G) o_am = (i_m * BM + tl.arange(0, BM)) % M o_bn = (i_n * BN + tl.arange(0, BN)) % N o_k = tl.arange(0, BK) p_a = a + (o_am[:, None] * s_am + o_k[None, :] * s_ak) p_b = b + (o_k[:, None] * s_bk + o_bn[None, :] * s_bn) b_acc = tl.zeros((BM, BN), dtype=tl.float32) for k in range(0, tl.cdiv(K, BK)): b_a = tl.load(p_a, mask=o_k[None, :] < K - k * BK, other=0.0) b_b = tl.load(p_b, mask=o_k[:, None] < K - k * BK, other=0.0) b_acc += tl.dot(b_a, b_b, allow_tf32=False) p_a += BK * s_ak p_b += BK * s_bk o_cm = i_m * BM + tl.arange(0, BM) o_cn = i_n * BN + tl.arange(0, BN) mask = (o_cm[:, None] < M) & (o_cn[None, :] < N) b_c = b_acc if ACTIVATION == 'leaky_relu': b_c = leaky_relu(b_c) if HAS_ALPHA: b_c *= tl.load(alpha) if HAS_INPUT: p_i = input + s_cm * o_cm[:, None] + s_cn * o_cn[None, :] b_i = tl.load(p_i, mask=mask, other=0.0).to(tl.float32) if HAS_BETA: b_i *= tl.load(beta) b_c += b_i p_c = c + s_cm * o_cm[:, None] + s_cn * o_cn[None, :] tl.store(p_c, b_c.to(c.dtype.element_ty), mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/matmul.py
41d7f9ea-8351-46ef-aa36-57ca4cdd7d75
06-fused-attention.py
triton-lang/triton
python/tutorials/06-fused-attention.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.jit def _attn_bwd_dq(dq, q, K, V, do, m, D, stride_tok, stride_d, H, N_CTX, BLOCK_M2: tl.constexpr, BLOCK_N2: tl.constexpr, HEAD_DIM: tl.constexpr, start_m, start_n, num_steps, MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M2) offs_n = start_n + tl.arange(0, BLOCK_N2) offs_k = tl.arange(0, HEAD_DIM) kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d Di = tl.load(D + offs_m) tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0) curr_n = start_n step_n = BLOCK_N2 for blk_idx in range(num_steps): kT = tl.load(kT_ptrs) vT = tl.load(vT_ptrs) qk = tl.dot(q, kT) p = tl.math.exp2(qk - m) if MASK: offs_n = curr_n + tl.arange(0, BLOCK_N2) mask = offs_m[:, None] >= offs_n[None, :] p = tl.where(mask, p, 0.0) dp = tl.dot(do, vT).to(tl.float32) ds = p * (dp - Di[:, None]) ds = ds.to(tl.float16) dq += tl.dot(ds, tl.trans(kT)) curr_n += step_n kT_ptrs += step_n * stride_tok vT_ptrs += step_n * stride_tok return dq
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/06-fused-attention.py
f12f4856-2ba8-4fdf-accd-606056062839
sparse_linear.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/sparse_linear.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.autotune(configs=autotune_configs, key=['row_dense_dim', 'row_sparse_dim', 'col_dim']) @triton.jit def input_row_sparse_matmul_kernel(lhs_ptr, rhs_ptr, out_ptr, expert_ends_ptr, expert_pad_begins_ptr, row_dense_dim: tl.constexpr, row_sparse_dim: tl.constexpr, col_dim: tl.constexpr, inner_dim: tl. constexpr, lhs_stride_row: tl.constexpr, lhs_stride_inner: tl.constexpr, rhs_stride_inner: tl.constexpr, rhs_stride_col: tl.constexpr, out_stride_row: tl.constexpr, out_stride_col: tl.constexpr, accumulate: tl.constexpr, block_size_row: tl.constexpr, block_size_col: tl. constexpr, block_size_inner: tl.constexpr, group_size_row: tl.constexpr): tl.static_assert(row_sparse_dim % block_size_row == 0) tl.static_assert(col_dim % block_size_col == 0) tl.static_assert(inner_dim % block_size_inner == 0) tl.static_assert(row_dense_dim % row_sparse_dim == 0) pid_row, pid_col = tl.swizzle2d(tl.program_id(axis=0), tl.program_id( axis=1), row_dense_dim // block_size_row, col_dim // block_size_col, group_size_row) row_dense_offset = pid_row * block_size_row sparse_index = row_dense_offset // row_sparse_dim row_sparse_offset = row_dense_offset % row_sparse_dim col_offset = pid_col * block_size_col inner_begin = tl.load(expert_ends_ptr + sparse_index - 1, mask= sparse_index > 0, other=0) inner_end = tl.load(expert_pad_begins_ptr + sparse_index) inner_offset = inner_begin // block_size_inner * block_size_inner row_range = tl.arange(0, block_size_row)[:, None] col_range = tl.arange(0, block_size_col)[None, :] inner_range = tl.arange(0, block_size_inner) + inner_offset lhs_ptr += (row_sparse_offset + row_range) * lhs_stride_row rhs_ptr += (col_offset + col_range) * rhs_stride_col out_ptr += (row_dense_offset + row_range) * out_stride_row + (col_offset + col_range) * out_stride_col mask = (inner_begin <= inner_range) & (inner_range < inner_end) out = tl.dot(tl.load(lhs_ptr + inner_range[None, :] * lhs_stride_inner, mask=mask[None, :], other=0), tl.load(rhs_ptr + inner_range[:, None ] * rhs_stride_inner, mask=mask[:, None], other=0)) for i in range(1, tl.cdiv(inner_end - inner_offset, block_size_inner)): inner_range += block_size_inner mask = (inner_begin <= inner_range) & (inner_range < inner_end) out += tl.dot(tl.load(lhs_ptr + inner_range[None, :] * lhs_stride_inner, mask=mask[None, :], other=0), tl.load(rhs_ptr + inner_range[:, None] * rhs_stride_inner, mask=mask[:, None], other=0)) if accumulate: out += tl.load(out_ptr) tl.store(out_ptr, out)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/sparse_linear.py
45c898a1-7e30-4f2d-bdf7-18b7ae8654ae
shape.py
2niuhe/triton_utils
src/triton_utils/shape.py
6184906ac3b86dac3ccbfac128ec393ccecde5df
0
@triton.jit def load_2d(ptr, sz0: tl.constexpr, sz1: tl.constexpr, n0, n1, max0, max1, stride0=None, stride1=1): """Chunk 2d matrix (defined by ptr) into 2d grid, where each chunk has size (sz0,sz1). Load the (n0,n1)th chunk. Ie, load [n0*sz0,...,(n0+1)*sz0-1] x [n1*sz1,...,(n1+1)*sz1-1]. """ stride0 = stride0 or sz1 offs0 = get_1d_offest(sz0, n0) offs1 = get_1d_offest(sz1, n1) offs = get_2d_offset(offs0, offs1, stride0, stride1) mask = get_2d_mask(offs0, offs1, max0, max1) return tl.load(ptr + offs, mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [] }
[ "Apache" ]
https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py
5558131b-8910-430e-bfcb-0a8e3e1e1a06
pointwise.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/pointwise.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def triton_add_kernel(input_ptr, other_ptr, out_ptr, numel: tl.constexpr, block_size: tl.constexpr): block_start = tl.program_id(axis=0).to(tl.int64) * block_size offsets = block_start + tl.arange(0, block_size) mask = offsets < numel input_ = tl.load(input_ptr + offsets, mask=mask) other = tl.load(other_ptr + offsets, mask=mask) tl.store(out_ptr + offsets, input_ + other, mask=mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/pointwise.py
3ba95bb3-c419-4af2-b7ce-b7e0d81c14fd
group_norm.py
chengzeyi/stable-fast
src/sfast/triton/ops/group_norm.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@eval( """triton.heuristics({ 'BLOCK_SIZE': lambda kwargs: triton.next_power_of_2(kwargs['cluster_num']), })""" ) @eval( """triton.heuristics({ 'num_warps': lambda kwargs: max(1, min(16, kwargs['BLOCK_SIZE'] // 128)), })""" ) @triton.jit def group_norm_4d_channels_last_forward_collect_stats_kernel_stage_2( cluster_mean_ptr, cluster_m2_ptr, cluster_weight_ptr, N, groups, cluster_num, eps, mean_ptr, rstd_ptr, BLOCK_SIZE: tl.constexpr): group = tl.program_id(0) pid_batch = tl.program_id(1) block = tl.arange(0, BLOCK_SIZE) mask = block < cluster_num offset = pid_batch * groups * cluster_num + group * cluster_num + block cluster_mean = tl.load(cluster_mean_ptr + offset, mask=mask) cluster_m2 = tl.load(cluster_m2_ptr + offset, mask=mask) cluster_weight = tl.load(cluster_weight_ptr + offset, mask=mask) mean, m2, weight = tl.reduce((cluster_mean, cluster_m2, cluster_weight), 0, welford_combine) var = m2 / weight rstd = 1.0 / tl.sqrt(var + eps) offset = pid_batch * groups + group tl.store(mean_ptr + offset, mean) tl.store(rstd_ptr + offset, rstd)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/group_norm.py
5e7d7488-136e-4938-aca1-8982d4c280bf
paged_attn.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/paged_attn.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _inner_paged_attn_unroll_2_kernel(q, k_cache, v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope, block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE: tl.constexpr, LO: tl.constexpr, HI: tl. constexpr): for block_idx in range(LO, HI, 2): offs_kv_0 = tl.load(block_base_ptrs + block_idx + 0 ) * stride_km + base_offs_kv offs_kv_1 = tl.load(block_base_ptrs + block_idx + 1 ) * stride_km + base_offs_kv k_0 = tl.load(k_cache + offs_kv_0) k_1 = tl.load(k_cache + offs_kv_1) v_0 = tl.load(v_cache + offs_kv_0) v_1 = tl.load(v_cache + offs_kv_1) _qk_0 = tl.sum((q[None, :] * k_0).to(tl.float32), axis=1) _qk_1 = tl.sum((q[None, :] * k_1).to(tl.float32), axis=1) if alibi_slope is not None: _qk_0 += alibi_slope * ((block_idx + 0) * BLOCK_SIZE + block_offs - seq_len + 1) _qk_1 += alibi_slope * ((block_idx + 1) * BLOCK_SIZE + block_offs - seq_len + 1) _qk_max = tl.maximum(tl.max(_qk_0, axis=0), qk_max) _qk_max = tl.maximum(tl.max(_qk_1, axis=0), _qk_max) exp_tmp = tl.exp(_qk_0 - _qk_max) + tl.exp(_qk_1 - _qk_max) _exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(exp_tmp, axis=0) qkv_sum_tmp = tl.exp(_qk_0[:, None] - _qk_max).to(v_cache.dtype. element_ty) * v_0 + tl.exp(_qk_1[:, None] - _qk_max).to(v_cache .dtype.element_ty) * v_1 qkv = (qkv * (exp_sum * tl.exp(qk_max - _qk_max)) + qkv_sum_tmp ) / _exp_sum qk_max = _qk_max exp_sum = _exp_sum return qkv, qk_max, exp_sum
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn.py
3db55c15-f4b1-4305-b51b-6e73a82136ea
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_INITIAL_STATE': lambda args: args['dh0'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4]], key=['BT', 'BK', 'BV']) @triton.jit def chunk_delta_rule_bwd_kernel_dhu(q, k, d, dht, dh0, do, dh, dv, dv2, offsets, chunk_offsets, scale, T: tl.constexpr, H: tl.constexpr, K: tl. constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl. constexpr, BV: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_dht = tl.make_block_ptr(dht + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dht, boundary_check=(0, 1)) for i_t in range(NT - 1, -1, -1): if HEAD_FIRST: p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_dh = tl.make_block_ptr(dh + ((boh + i_t) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32) for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_nh * T * K, (K, T), (1, K), ( i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_k = tl.make_block_ptr(k + i_nh * T * K, (T, K), (K, 1), ( i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_d = tl.make_block_ptr(d + i_nh * T * K, (K, T), (1, K), ( i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_dv = tl.make_block_ptr(dv + i_nh * T * V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_nh * T * V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_dv2 = tl.make_block_ptr(dv2 + i_nh * T * V, (T, V), (V, 1 ), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_d = tl.make_block_ptr(d + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_dv2 = tl.make_block_ptr(dv2 + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) b_d = tl.load(p_d, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dv = tl.load(p_dv, boundary_check=(0, 1)) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) tl.store(p_dv2, b_dv.to(p_dv.dtype.element_ty), boundary_check= (0, 1)) b_dh_tmp += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False) b_dh_tmp -= tl.dot(b_d, b_dv.to(b_q.dtype), allow_tf32=False) b_dh += b_dh_tmp if USE_INITIAL_STATE: p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/chunk.py
1e01284c-e8e1-42a2-b16b-7529e9d7459b
cross_entropy_loss.py
tdrussell/qlora-pipe
kernels/cross_entropy_loss.py
6fb7c8eeae52a0e36c41f00628985f29d8330684
0
@triton.heuristics({'DO_LOGIT_SCALING': lambda args: args['DO_LOGIT_SCALING']}) @triton.jit def _cross_entropy_forward(logits_ptr, logits_row_stride, loss_ptr, logsumexp_ptr, labels_ptr, VOCAB_SIZE: tl.constexpr, BLOCK_SIZE: tl. constexpr, DO_LOGIT_SCALING: tl.constexpr, LOGIT_SCALE: tl.constexpr): """ Cross Entropy Loss = 1/n sum [ -yi log(Pi) ] Pi = exp(xi) / sum(exp(xi)) CE_i = -y log(p) = -y log[ exp(x) / sum(exp(x)) ] = -y [ x - log[sum(exp(x))] ] = y * (log[sum(exp(x))] - x) If y == 0: CE_i = 0 If y == 1: CE_i = logsumexp - x logsumexp is also stable Take y = log[sum(exp(x))] exp(y) = sum(exp(x)) exp(y) = sum(exp(x - c)*exp(c)) Since e^(x-c)*e^c = e^x exp(y) = exp(c)*sum(exp(x - c)) y = log(exp(c)*sum(exp(x - c))) y = c + log[sum(exp(x - c))] This means we can set c = max(x) to make sure exp(x - c) always is exp(x - max(x)). This ensures exp(x - max(x))'s maximum is 1 as exp(0) = 1. """ row_idx = tl.program_id(0) logits_ptr += row_idx * logits_row_stride.to(tl.int64) loss_ptr += row_idx logsumexp_ptr += row_idx labels_ptr += row_idx col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < VOCAB_SIZE label_idx = tl.load(labels_ptr).to(tl.int32) logits = tl.load(logits_ptr + col_offsets, mask=mask, other=-float('inf') ).to(tl.float32) if DO_LOGIT_SCALING: logits = LOGIT_SCALE * logits pass c = tl.max(logits, 0) logsumexp = c + tl.log(tl.sum(tl.exp(logits - c), 0)) if label_idx != -100: x = tl.load(logits_ptr + label_idx).to(tl.float32) if DO_LOGIT_SCALING: x = LOGIT_SCALE * x pass loss = logsumexp - x else: loss = 0.0 tl.store(logsumexp_ptr, logsumexp) tl.store(loss_ptr, loss)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax", "Cross Entropy" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/tdrussell/qlora-pipe/blob/6fb7c8eeae52a0e36c41f00628985f29d8330684/kernels/cross_entropy_loss.py
da158db8-4576-47cc-be40-fffdcc99f725
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/rwkv6/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BS': 16}, num_warps=2), triton. Config({'BS': 16}, num_warps=4), triton.Config({'BS': 16}, num_warps=8), triton.Config({'BS': 32}, num_warps=2), triton.Config({'BS': 32}, num_warps=4), triton.Config({'BS': 32}, num_warps=8), triton.Config({ 'BS': 64}, num_warps=2), triton.Config({'BS': 64}, num_warps=4), triton .Config({'BS': 64}, num_warps=8)], key=['S', 'BT']) @triton.jit def chunk_rwkv6_fwd_cumsum_kernel(s, oi, oe, offsets, indices, T: tl. constexpr, H: tl.constexpr, S: tl.constexpr, BT: tl.constexpr, BS: tl. constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr): i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T o_i = tl.arange(0, BT) m_i = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0) m_e = tl.where(o_i[:, None] > o_i[None, :], 1.0, 0.0) if HEAD_FIRST: p_s = tl.make_block_ptr(s + i_bh * T * S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_oi = tl.make_block_ptr(oi + i_bh * T * S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_oe = tl.make_block_ptr(oe + i_bh * T * S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) else: p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H * S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_oi = tl.make_block_ptr(oi + (bos * H + i_h) * S, (T, S), (H * S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_oe = tl.make_block_ptr(oe + (bos * H + i_h) * S, (T, S), (H * S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32) b_oi = tl.dot(m_i, b_s, allow_tf32=False) b_oe = tl.dot(m_e, b_s, allow_tf32=False) tl.store(p_oi, b_oi.to(p_oi.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_oe, b_oe.to(p_oe.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/chunk.py
8312c2c2-b06b-4313-beab-8941ed39ad2b
triton_jagged_tensor_ops.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_jagged_elementwise_arithmetic_ops(x_ptr, y_ptr, M: tl.constexpr, N: tl.constexpr, stride_row: tl.constexpr, stride_col: tl.constexpr, output, thread_block_row_size: tl.constexpr, thread_block_col_size: tl. constexpr, ops_func: tl.constexpr) ->None: pid = tl.program_id(0) num_group_n = (N + thread_block_col_size - 1) // thread_block_col_size pid_n = pid % num_group_n pid_m = pid // num_group_n offset_m = pid_m * thread_block_row_size + tl.arange(0, thread_block_row_size) offset_n = pid_n * thread_block_col_size + tl.arange(0, thread_block_col_size) mask = (offset_m[:, None] < M) & (offset_n[None, :] < N) offset = offset_m[:, None] * stride_row + offset_n[None, :] * stride_col x_ptr += offset y_ptr += offset x = tl.load(x_ptr, mask=mask) y = tl.load(y_ptr, mask=mask) if ops_func == 'add': z = tensor_elementwise_add(x, y) else: z = tensor_elementwise_mul(x, y) output += offset tl.store(output, z, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
e91acd67-c457-4e0b-98c0-f49971d6f6da
simulate.py
Aalanli/AMDGPUExperiments
simulate.py
2a6fd9e1e81d1916e3d87db4dda930e2fa417527
0
@triton.jit def simulate_kernel(output, n_steps, seed, p, start, block_size: tl.constexpr): n_program = tl.num_programs(axis=0) pid = tl.program_id(axis=0) block_start = pid * block_size offsets = block_start + tl.arange(0, block_size) state = tl.full([block_size], start, dtype=tl.uint32) for _ in range(n_steps): this_seed = tl.randint(seed, pid) rand = tl.rand(this_seed, offsets) state = tl.where(state == 0, state, tl.where(rand < p, state - 1, state + 1)) pid += n_program fall_off = state == 0 prob = tl.sum(fall_off.to(tl.int64)) tl.store(output + tl.program_id(0), prob)
{ "Data Type": [], "Functionality": [ "Elementwise Operations", "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/Aalanli/AMDGPUExperiments/blob/2a6fd9e1e81d1916e3d87db4dda930e2fa417527/simulate.py
caf594ae-0007-42f3-a11f-df8a6e031d08
triton_fused_local_attn2.py
LouChao98/vqtree
ops/triton_fused_local_attn2.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, sm_scale, K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, SEQLEN_K: tl.constexpr, WINDOW_SIZE: tl. constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, EVEN_MN: tl. constexpr, STAGE: tl.constexpr): if STAGE == 1: lo = start_m * BLOCK_M - WINDOW_SIZE hi = start_m * BLOCK_M if lo < 0: lo = 0 else: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) hi = min(hi, SEQLEN_K) EVEN_MASK_FREE = EVEN_MN & ((STAGE == 1) | (STAGE == 2)) K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) if EVEN_MASK_FREE: k = tl.load(K_block_ptr) else: k = tl.load(K_block_ptr, boundary_check=(1,), padding_option='zero' ) qk = tl.dot(q, k) * (sm_scale * RCP_LN2) if STAGE == 3: mask = offs_m[:, None] >= start_n + offs_n[None, :] qk += tl.where(mask, 0, NEGINF) if not EVEN_MASK_FREE: qk += tl.where((start_n + offs_n)[None, :] < SEQLEN_K, 0, NEGINF) m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) acc *= alpha[:, None] if EVEN_MASK_FREE: v = tl.load(V_block_ptr) else: v = tl.load(V_block_ptr, boundary_check=(1,), padding_option='zero' ) acc += tl.dot(p.to(V_block_ptr.dtype.element_ty), v) l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) return acc, l_i, m_i
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Blocked Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_local_attn2.py
85d4ae25-63a1-4dfe-83dc-04295de1183a
copy.py
chengzeyi/stable-fast
src/sfast/triton/ops/copy.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@eval( """triton.heuristics({ 'BLOCK_M': lambda kwargs: min(64, triton.next_power_of_2(kwargs['size_inp_0'])), 'BLOCK_N': lambda kwargs: min(64, triton.next_power_of_2(kwargs['size_inp_1'])), 'BATCH_STRIDE_INP_IS_1': lambda kwargs: kwargs['batch_stride_inp'] == 1, 'STRIDE_INP_0_IS_1': lambda kwargs: kwargs['stride_inp_0'] == 1, 'STRIDE_INP_1_IS_1': lambda kwargs: kwargs['stride_inp_1'] == 1, 'BATCH_STRIDE_OUT_IS_1': lambda kwargs: kwargs['batch_stride_out'] == 1, 'STRIDE_OUT_0_IS_1': lambda kwargs: kwargs['stride_out_0'] == 1, 'STRIDE_OUT_1_IS_1': lambda kwargs: kwargs['stride_out_1'] == 1, })""" ) @eval( """triton.heuristics({ 'num_warps': lambda kwargs: max(1, min(16, kwargs['BLOCK_M'] * kwargs['BLOCK_N'] // 32)), })""" ) @triton.jit def copy_3d_kernel(output_ptr, input_ptr, bs, size_inp_0, size_inp_1, batch_stride_inp, stride_inp_0, stride_inp_1, batch_stride_out, stride_out_0, stride_out_1, BATCH_STRIDE_INP_IS_1: tl.constexpr, STRIDE_INP_0_IS_1: tl.constexpr, STRIDE_INP_1_IS_1: tl.constexpr, BATCH_STRIDE_OUT_IS_1: tl.constexpr, STRIDE_OUT_0_IS_1: tl.constexpr, STRIDE_OUT_1_IS_1: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl. constexpr): pid = tl.program_id(0) pid_batch = tl.program_id(1) grid_m = tl.cdiv(size_inp_0, BLOCK_M) grid_n = tl.cdiv(size_inp_1, BLOCK_N) pid_m = pid // grid_n pid_n = pid - pid_m * grid_n rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) A = input_ptr + (1 if BATCH_STRIDE_INP_IS_1 else batch_stride_inp ) * pid_batch + (rm[:, None] * (1 if STRIDE_INP_0_IS_1 else stride_inp_0) + rn[None, :] * (1 if STRIDE_INP_1_IS_1 else stride_inp_1)) B = output_ptr + (1 if BATCH_STRIDE_OUT_IS_1 else batch_stride_out ) * pid_batch + (rm[:, None] * (1 if STRIDE_OUT_0_IS_1 else stride_out_0) + rn[None, :] * (1 if STRIDE_OUT_1_IS_1 else stride_out_1)) mask = (rm < size_inp_0)[:, None] & (rn < size_inp_1)[None, :] a = tl.load(A, mask=mask) tl.store(B, a, mask=mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/copy.py
0ba1eec5-4ae0-4399-a078-20d80cf2ab46
gemm_postop_gelu_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.jit def gelu(x): """ GeLU_ activation - Gaussian error linear unit .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf """ return 0.5 * x * (1 + tanh(kAlpha * (x + 0.044715 * x * x * x)))
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py
1e8d66ac-783c-4e08-bacd-8c8629067011
softmax_online_v2_spec_rev.py
iclementine/optimize_softmax
softmax_online_v2_spec_rev.py
6ddeee3481dd5e63f4a30b946c417e97bc4494bf
0
@triton.jit def softmax_kernel_online_v2(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr ): pid_m = tl.program_id(0) m = tl.full((TILE_N,), value=-float('inf'), dtype=output_ptr.dtype. element_ty) z = tl.full((TILE_N,), value=0, dtype=output_ptr.dtype.element_ty) prev_multiple = prev_multiple_of(N, TILE_N) for start_n in range(0, prev_multiple, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset inp = tl.load(input_ptrs).to(output_ptr.dtype.element_ty) new_m = tl.maximum(m, inp) new_z = tl.exp(m - new_m) * z + tl.exp(inp - new_m) m = new_m z = new_z for start_n in range(prev_multiple, N, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) new_m = tl.maximum(m, inp) new_z = tl.exp(m - new_m) * z + tl.exp(inp - new_m) m = new_m z = new_z final_m = tl.max(m, 0) z = tl.sum(tl.exp(m - final_m) * z) m = final_m prev_multiple = prev_multiple_of(N, TILE_N) for start_n in range(0, TILE_N, TILE_N): n_offsets = prev_multiple - start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) e = tl.exp(inp - m) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out, mask=mask) for start_n in range(TILE_N, N, TILE_N): n_offsets = prev_multiple - start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset inp = tl.load(input_ptrs).to(output_ptr.dtype.element_ty) e = tl.exp(inp - m) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out)
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Softmax", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "BSD" ]
https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_online_v2_spec_rev.py
a454fb7a-be17-4207-aa7f-74a5ac3b9ee8
attn_qk_int8_per_block_hd128_causal.py
rodjjo/editorium
editorium/app/server/pipelines/cogvideo/sageattention/attn_qk_int8_per_block_hd128_causal.py
7b92e2c92a144bf23bbe6fe88e3d513ffcf7d694
0
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, q_scale, K_ptrs, K_scale_ptr, V_ptrs, start_m, BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl. constexpr, STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl. constexpr, N_CTX: tl.constexpr): if STAGE == 1: lo, hi = 0, start_m * BLOCK_M elif STAGE == 2: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) K_scale_ptr += lo // BLOCK_N K_ptrs += HEAD_DIM * lo V_ptrs += HEAD_DIM * lo for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) k_mask = offs_n[None, :] < N_CTX - start_n k = tl.load(K_ptrs, mask=k_mask) k_scale = tl.load(K_scale_ptr) qk = tl.dot(q, k).to(tl.float32) * q_scale * k_scale if STAGE == 2: mask = offs_m[:, None] >= start_n + offs_n[None, :] qk = qk + tl.where(mask, 0, -1000000.0) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk -= m_ij[:, None] else: m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk = qk - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij acc = acc * alpha[:, None] v = tl.load(V_ptrs, mask=offs_n[:, None] < N_CTX - start_n) p = p.to(tl.float16) acc += tl.dot(p, v, out_dtype=tl.float16) m_i = m_ij K_ptrs += BLOCK_N * HEAD_DIM K_scale_ptr += 1 V_ptrs += BLOCK_N * HEAD_DIM return acc, l_i, m_i
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Blocked Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "Apache" ]
https://github.com/rodjjo/editorium/blob/7b92e2c92a144bf23bbe6fe88e3d513ffcf7d694/editorium/app/server/pipelines/cogvideo/sageattention/attn_qk_int8_per_block_hd128_causal.py
4149e45f-a98a-46f3-9ba5-1d39130b86ec
sparse_linear.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/sparse_linear.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.autotune(configs=autotune_configs, key=['col_sparse_dim', 'inner_dim', 'sparse_dim']) @triton.jit def output_sparse_matmul_kernel(lhs_ptr, rhs_ptr, out_ptr, expert_ends_ptr, row_dim: tl.constexpr, col_sparse_dim: tl.constexpr, inner_dim: tl. constexpr, sparse_dim: tl.constexpr, padded_sparse_dim: tl.constexpr, lhs_stride_row: tl.constexpr, lhs_stride_inner: tl.constexpr, rhs_stride_inner: tl.constexpr, rhs_stride_col: tl.constexpr, out_stride_row: tl.constexpr, out_stride_col: tl.constexpr, accumulate: tl.constexpr, block_size_row: tl.constexpr, block_size_col: tl. constexpr, block_size_inner: tl.constexpr, group_size_row: tl.constexpr): tl.static_assert(row_dim % block_size_row == 0) tl.static_assert(col_sparse_dim % block_size_col == 0) tl.static_assert(inner_dim % block_size_inner == 0) tl.static_assert(sparse_dim <= padded_sparse_dim) pid_row, pid_col = tl.swizzle2d(tl.program_id(axis=0), tl.program_id( axis=1), row_dim // block_size_row, col_sparse_dim // block_size_col, group_size_row) row_offset = pid_row * block_size_row col_sparse_offset = pid_col * block_size_col sparse_range = tl.arange(0, padded_sparse_dim) expert_ends = tl.load(expert_ends_ptr + sparse_range, mask=sparse_range < sparse_dim, other=row_dim) sparse_index = tl.sum((expert_ends <= row_offset).to(tl.int64)) if sparse_index == sparse_dim: return col_dense_offset = col_sparse_offset + sparse_index * col_sparse_dim row_range = tl.arange(0, block_size_row)[:, None] col_range = tl.arange(0, block_size_col)[None, :] inner_range = tl.arange(0, block_size_inner) lhs_ptr += (row_offset + row_range) * lhs_stride_row + inner_range[None, : ] * lhs_stride_inner rhs_ptr += inner_range[:, None] * rhs_stride_inner + (col_dense_offset + col_range) * rhs_stride_col out_ptr += (row_offset + row_range) * out_stride_row + (col_sparse_offset + col_range) * out_stride_col out = tl.dot(tl.load(lhs_ptr), tl.load(rhs_ptr), out_dtype=tl.float32) for k in range(1, inner_dim // block_size_inner): lhs_ptr += block_size_inner * lhs_stride_inner rhs_ptr += block_size_inner * rhs_stride_inner out += tl.dot(tl.load(lhs_ptr), tl.load(rhs_ptr)) if accumulate: out += tl.load(out_ptr) tl.store(out_ptr, out)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access", "Tiled" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput", "Memory-Bound", "Compute Bound" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/sparse_linear.py
c4bde555-085f-4158-9b7e-4d8f039195cf
mlstm_matmul.py
LukasBluebaum/xLSTM-Triton-CUDA-Implementation
mlstm_matmul.py
6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b
0
@triton.jit def mlstm_matmul_kernel_df(dF, F, NH: tl.constexpr, S: tl.constexpr): bh_id = tl.program_id(0) batch_id = bh_id // NH head_id = bh_id % NH batch_offset_f = batch_id * NH * S + head_id * S offset_f = tl.arange(0, S) df = tl.load(dF + batch_offset_f + offset_f, offset_f < S) df = tl.associative_scan(df, 0, scan_add_op) f = tl.load(F + batch_offset_f + offset_f, offset_f < S) df = tl.sigmoid(-f) * df tl.store(dF + batch_offset_f + offset_f, df, offset_f < S)
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Recurrent Neural Networks", "Elementwise Operations", "Activation Functions" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_matmul.py
5b75cd56-ee47-4e6f-a821-a5604495112c
test_triton_varargs.py
facebookresearch/xformers
tests/test_triton_varargs.py
a2f37f8c5f4e3ae0d3459a92e42cd1aeb45b03bc
0
@triton.jit def sumN(output_ptr, scaling_ptr, *inputs, BLOCK_SIZE: tl.constexpr): offset = tl.arange(0, BLOCK_SIZE) output = tl.zeros([BLOCK_SIZE], tl.float32) scaling: 'VAR_ARGS_ARRAY' for i in range(len(scaling)): scaling[i] = tl.load(scaling_ptr + i) for i in range(2): for j in range(len(inputs)): output = output + tl.load(inputs[j] + offset) * scaling[j] tl.store(output_ptr + offset, output)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/facebookresearch/xformers/blob/a2f37f8c5f4e3ae0d3459a92e42cd1aeb45b03bc/tests/test_triton_varargs.py
f62e413e-399f-406a-a6fb-44c3e664e00d
dw.py
Forkxz/TritonDeepLearningKernel
kernel/dropconnect/dw.py
add54b6318e8fa5fdbf8c7b47659de9fceaa5691
0
@triton.jit def dropconnect_dx_kernel(dy_ptr, x_ptr, dw_ptr, seed, M, K, N, stride_dym, stride_dyn, stride_xm, stride_xk, stride_dm, stride_dk, stride_dn, stride_dwk, stride_dwn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl. constexpr, BLOCK_SIZE_K: tl.constexpr, ALLOWTF32: tl.constexpr): """ dY_m = Y.grad dO_m = dY_m.view(M,1,N).broadcast_to(M,K,N) dWD_m = dO_m * x_m_cast dw_m_cast = dWD_m * D dw_m = dw_m_cast.sum(dim=0) """ pid_k = tl.program_id(0) pid_n = tl.program_id(1) offset_m = 0 offset_k = pid_k * BLOCK_SIZE_K offset_n = pid_n * BLOCK_SIZE_N dy_offsets = block_offsets_2d(M, N, stride_dym, stride_dyn, offset_m, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_N) x_offsets = block_offsets_2d(M, K, stride_xm, stride_xk, offset_m, offset_k, BLOCK_SIZE_M, BLOCK_SIZE_K) d_offsets = block_offsets_3d(M, K, N, stride_dm, stride_dk, stride_dn, offset_m, offset_k, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_K, BLOCK_SIZE_N) dy_offsets = dy_offsets.reshape(BLOCK_SIZE_M, 1, BLOCK_SIZE_N) x_offsets = x_offsets.reshape(BLOCK_SIZE_M, BLOCK_SIZE_K, 1) offs_m = tl.arange(0, BLOCK_SIZE_M) dy_tile = dy_ptr + dy_offsets x_tile = x_ptr + x_offsets ASM: tl.constexpr = 'cvt.rna.tf32.f32 $0, $1;' accumulator = tl.zeros((BLOCK_SIZE_K, BLOCK_SIZE_N), dtype=tl.float32) for m in range(0, tl.cdiv(M, BLOCK_SIZE_M)): random_masks = tl.random.rand(seed, d_offsets) > 0.5 m_mask = offs_m[:, None, None] < M - m * BLOCK_SIZE_M dy_load = tl.load(dy_tile, mask=m_mask, other=0.0) x_load = tl.load(x_tile, mask=m_mask, other=0.0) dy = tl.where(random_masks, dy_load, 0.0) wd = tl.where(random_masks, x_load, 0.0) mul = dy * wd accumulator += tl.sum(mul, axis=0) dy_tile += BLOCK_SIZE_M * stride_dym x_tile += BLOCK_SIZE_M * stride_xm d_offsets += BLOCK_SIZE_M * stride_dm dw_offset, dw_mask = block_offsets_2d(K, N, stride_dwk, stride_dwn, offset_k, offset_n, BLOCK_SIZE_K, BLOCK_SIZE_N, True) dw_tile = dw_ptr + dw_offset dw = accumulator.to(dw_tile.dtype.element_ty) tl.store(dw_tile, dw, mask=dw_mask)
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/Forkxz/TritonDeepLearningKernel/blob/add54b6318e8fa5fdbf8c7b47659de9fceaa5691/kernel/dropconnect/dw.py
0ef41aca-fbb5-44bb-ae73-f97ff2bac77e
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4)], key=['BT', 'BK']) @triton.jit def fused_chunk_delta_rule_fwd_kernel(q, k, v, v_new, d, o, initial_state, final_state, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, B, H, T, scale, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, DK: tl.constexpr, DV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, CHECK: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_h = tl.zeros([BK, BV], dtype=tl.float32) p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, DK), (s_k_t, s_k_d), (0, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (DK, T), (s_k_d, s_k_t), (i_k * BK, 0), (BK, BT), (0, 1)) p_d = tl.make_block_ptr(d + i_bh * s_k_h, (T, DK), (s_k_t, s_k_d), (0, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, DV), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (i_bh + i_k * B * H) * s_v_h, (T, DV), ( s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) p_v_new = tl.make_block_ptr(v_new + i_bh * s_v_h, (T, DV), (s_v_t, s_v_d), (0, i_v * BV), (BT, BV), (1, 0)) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(initial_state + i_bh * DK * DV, (DK, DV), ( DV, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) for i in range(0, tl.cdiv(T, BT)): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_d = tl.load(p_d, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_k.dtype) b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = tl.where(m_s, b_s, 0) b_v_prime = tl.dot(b_d, b_h.to(b_q.dtype), allow_tf32=False) b_v = b_v - b_v_prime tl.store(p_v_new, b_v.to(p_v.dtype.element_ty), boundary_check=(0, 1)) b_o = tl.dot(b_s.to(b_q.dtype), b_v.to(b_q.dtype), allow_tf32=False) if CHECK and i == 0: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_k, b_v.to(b_k.dtype), allow_tf32=False) else: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_k, b_v.to(b_k.dtype), allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_v = tl.advance(p_v, (BT, 0)) p_v_new = tl.advance(p_v_new, (BT, 0)) p_o = tl.advance(p_o, (BT, 0)) p_d = tl.advance(p_d, (BT, 0)) if STORE_FINAL_STATE: p_final = tl.make_block_ptr(final_state + i_bh * DK * DV, (DK, DV), (DV, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_final, b_h.to(p_final.dtype.element_ty), boundary_check= (0, 1))
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms", "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Blocked Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/fused_chunk.py
07031280-262d-4433-ae3a-7a2222f9099b
gemm_postop_gelu_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=3, num_warps=32), triton.Config({ 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32 ), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 512, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages =2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages=2, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def matmul_kernel_with_block_pointers_batched(a_ptr, b_ptr, c_ptr, B: tl. constexpr, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, stride_az: tl.constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bz: tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl. constexpr, stride_cz: tl.constexpr, stride_cm: tl.constexpr, stride_cn: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): bid = tl.program_id(axis=0) pid = tl.program_id(axis=1) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % group_size_m pid_n = pid % num_pid_in_group // group_size_m offset_a = bid.to(tl.int64) * stride_az offset_b = bid.to(tl.int64) * stride_bz a_block_ptr = tl.make_block_ptr(base=a_ptr + offset_a, shape=(M, K), strides=(stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0)) b_block_ptr = tl.make_block_ptr(base=b_ptr + offset_b, shape=(K, N), strides=(stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0)) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for _ in range(0, K, BLOCK_SIZE_K): a = tl.load(a_block_ptr, boundary_check=(0, 1)) b = tl.load(b_block_ptr, boundary_check=(0, 1)) accumulator += tl.dot(a, b) a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K)) b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0)) c = gelu(accumulator) offset_c = bid.to(tl.int64) * stride_cz c_block_ptr = tl.make_block_ptr(base=c_ptr + offset_c, shape=(M, N), strides=(stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0)) tl.store(c_block_ptr, c, boundary_check=(0, 1))
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Matrix Multiplication", "Activation Functions" ], "Memory Access Pattern": [ "Blocked Access", "Tiled" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py
1fa87111-7ad0-4833-a0b9-b14824dfba0a
dequant_kernel.py
drisspg/transformer_nuggets
transformer_nuggets/quant/dequant_kernel.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def dequantize(inputs, nf4_lut): """Dequantizes the nf4 data to bfloat16""" return tl.load(nf4_lut + inputs)
{ "Data Type": [ "bf16" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Memory-Bound" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/quant/dequant_kernel.py
c184d15a-84bd-4dc9-90d1-69aa80226eab
gemm_postop_addmatrix_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_postop_addmatrix_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=3, num_warps=32), triton.Config({ 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32 ), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 512, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages =2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages=2, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def matmul_kernel_with_block_pointers_batched(a_ptr, b_ptr, c_ptr, d_ptr, B: tl.constexpr, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, stride_az: tl.constexpr, stride_am: tl.constexpr, stride_ak: tl. constexpr, stride_bz: tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl.constexpr, stride_cz: tl.constexpr, stride_cm: tl.constexpr, stride_cn: tl.constexpr, stride_dz: tl.constexpr, stride_dm: tl. constexpr, stride_dn: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): bid = tl.program_id(axis=0) pid = tl.program_id(axis=1) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % group_size_m pid_n = pid % num_pid_in_group // group_size_m offset_a = bid.to(tl.int64) * stride_az offset_b = bid.to(tl.int64) * stride_bz a_block_ptr = tl.make_block_ptr(base=a_ptr + offset_a, shape=(M, K), strides=(stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0)) b_block_ptr = tl.make_block_ptr(base=b_ptr + offset_b, shape=(K, N), strides=(stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0)) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for _ in range(0, K, BLOCK_SIZE_K): a = tl.load(a_block_ptr, boundary_check=(0, 1)) b = tl.load(b_block_ptr, boundary_check=(0, 1)) accumulator += tl.dot(a, b) a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K)) b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0)) offset_d = bid.to(tl.int64) * stride_dz d_block_ptr = tl.make_block_ptr(base=d_ptr + offset_d, shape=(M, N), strides=(stride_dm, stride_dn), offsets=(pid_m * BLOCK_SIZE_M, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0)) d = tl.load(d_block_ptr, boundary_check=(0, 1)) c = accumulator + d offset_c = bid.to(tl.int64) * stride_cz c_block_ptr = tl.make_block_ptr(base=c_ptr + offset_c, shape=(M, N), strides=(stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0)) tl.store(c_block_ptr, c, boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_postop_addmatrix_benchmark.py
e1abcb7f-d624-4f0f-adf5-1a9471e35d14
fp8_gemm.py
pytorch/FBGEMM
fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.autotune(configs=MATMUL_CONFIGS, key=['m_key', 'n_key', 'k_key']) @triton.jit def _kernel_matmul_fp8_row(A_ptr, B_ptr, C_ptr, M, N, K, m_key, n_key, k_key, A_scale, B_scale, Bias, stride_am, stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, dot_out_dtype: tl.constexpr, allow_tf32: tl.constexpr, fp8_fast_accum: tl.constexpr, BLOCK_M: tl. constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl. constexpr, SPLIT_K: tl.constexpr, USE_BIAS: tl.constexpr, AB_DTYPE: tl. constexpr, NUM_SMS: tl.constexpr) ->None: """Matmul kernel of [M, K] @ [N, K] with row-wise scales performs swizzled matmul in [BLOCK_M, BLOCK_K] with [BLOCK_K, BLOCK_N] tiles. Args: A (TensorWrapper): [M, K] input tensor. B (TensorWrapper): [N, K] input tensor. C (TensorWrapper): [M, N] output tensor. M (int): M dimension of input tensor. N (int): N dimension of input tensor. K (int): K dimension of input tensor. m_key (int): Autotuning key for M dimension of input tensor. n_key (int): Autotuning key for N dimension of input tensor. k_key (int): Autotuning key for K dimension of input tensor. A_scale (TensorWrapper): [M] reciprocal scale tensor per row. A * A_scale = original A. B_scale (TensorWrapper): [N] reciprocal scale tensor per row. B * B_scale = original B. Bias (tensorWrapper): [N] Optional bias tensor. stride_am (int): Stride of M dimension of A. stride_ak (int): Stride of K dimension of A. stride_bn (int): Stride of N dimension of B. stride_bk (int): Stride of K dimension of B. stride_cm (int): Stride of M dimension of C. stride_cn (int): Stride of N dimension of C. dot_out_dtype (torch.dtype): Output type of tensor core. allow_tf32 (bool): Whether to use TF32 for tensor core. fp8_fast_accum (bool): Whether to use fast accumulation for tensor core. BLOCK_M (int): Block size for M dimension. BLOCK_N (int): Block size for N dimension. BLOCK_K (int): Block size for K dimension. GROUP_M (int): Number of groups for M dimension swizzle. SPLIT_K (int): Number of SM's to launch per row. USE_BIAS (bool): Whether to use bias. EVEN_K (bool): Whether K is evenly divisible by BLOCK_K * SPLIT_K. AB_DTYPE (bool): Wether to cast A and B to C.dtype before tensor core. """ start_pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_M) num_pid_n = tl.cdiv(N, BLOCK_N) k_tiles = tl.cdiv(K, BLOCK_K) num_tiles = num_pid_m * num_pid_n tiles_per_SM = num_tiles // NUM_SMS if start_pid < num_tiles % NUM_SMS: tiles_per_SM += 1 tile_id = start_pid - NUM_SMS ki = -1 offs_k_for_mask = tl.arange(0, BLOCK_K) num_pid_in_group = GROUP_M * num_pid_n pid_m = 0 pid_n = 0 offs_am = tl.arange(0, BLOCK_M) offs_bn = tl.arange(0, BLOCK_N) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype) for _ in range(0, k_tiles * tiles_per_SM): ki = tl.where(ki == k_tiles - 1, 0, ki + 1) if ki == 0: tile_id += NUM_SMS group_id = tile_id // num_pid_in_group first_pid_m = group_id * GROUP_M group_size_m = min(num_pid_m - first_pid_m, GROUP_M) pid_m = first_pid_m + tile_id % group_size_m pid_n = tile_id % num_pid_in_group // group_size_m start_m = pid_m * BLOCK_M start_n = pid_n * BLOCK_N offs_am = start_m + tl.arange(0, BLOCK_M) offs_bn = start_n + tl.arange(0, BLOCK_N) offs_am = tl.where(offs_am < M, offs_am, 0) offs_bn = tl.where(offs_bn < N, offs_bn, 0) offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_M), BLOCK_M) offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_N), BLOCK_N) offs_k = ki * BLOCK_K + tl.arange(0, BLOCK_K) A = A_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak ) B = B_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn ) a = tl.load(A, mask=offs_k_for_mask[None, :] < K - ki * BLOCK_K, other=0.0) b = tl.load(B, mask=offs_k_for_mask[:, None] < K - ki * BLOCK_K, other=0.0) acc = tl.dot(a, b, acc, out_dtype=dot_out_dtype, allow_tf32=allow_tf32) if ki == k_tiles - 1: rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) a_scale = tl.load(A_scale + rm, mask=rm < M) b_scale = tl.load(B_scale + rn, mask=rn < N) scale = a_scale[:, None] * b_scale[None, :] acc *= scale if USE_BIAS: bias = tl.load(Bias + rn, mask=rn < N) acc += bias[None, :] acc = acc.to(C_ptr.dtype.element_ty) C = C_ptr + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] tl.store(C, acc, mask=mask) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype)
{ "Data Type": [ "int8" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
2923d2d3-cffb-4408-8fa9-e9794bb2be61
05-layer-norm.py
triton-lang/triton
python/tutorials/05-layer-norm.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.jit def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, BLOCK_SIZE_M: tl .constexpr, BLOCK_SIZE_N: tl.constexpr): pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.0) db += tl.load(DB + offs, mask=mask, other=0.0) sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) tl.store(FINAL_DB + cols, sum_db, mask=cols < N)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/05-layer-norm.py
d99050b5-9c96-4233-a447-a34ac46ac1f1
_semi_structured_conversions.py
huyz2023/2by4-pretrain
sparse/_semi_structured_conversions.py
9e330125dea71e5a3dee235f4efb8869f9e4cdd0
0
@triton.jit def _sparse_semi_structured_to_dense_kernel(sparse_ptr, meta_reordered_ptr, dense_ptr, m, k, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) group, interweave = 32, 4 dest_row = row_idx // 32 * 32 + row_idx % 8 * 4 + row_idx % group // 8 if dest_row % 2 == 0: dest_row_ = (row_idx // 32 * 32 + row_idx % 8 * 4 + row_idx % group // 8 + tl.arange(0, BLOCK_SIZE // 16) % 2) dest_col_ = tl.arange(0, BLOCK_SIZE // 16) // 2 * 2 index = dest_col_ // 2 * m * 2 + dest_row_ * 2 + dest_col_ % 2 meta = tl.load(meta_reordered_ptr + index, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) else: dest_row_ = (row_idx // 32 * 32 + row_idx % 8 * 4 + row_idx % group // 8 - (tl.arange(0, BLOCK_SIZE // 16) + 1) % 2) dest_col_ = tl.arange(0, BLOCK_SIZE // 16) // 2 * 2 + 1 index = dest_col_ // 2 * m * 2 + dest_row_ * 2 + dest_col_ % 2 meta = tl.load(meta_reordered_ptr + index, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) meta_20 = (meta & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16)) meta_21 = (meta >> 2 & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16)) meta_22 = (meta >> 4 & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16) + 4) meta_23 = (meta >> 6 & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16) + 4) meta_24 = (meta >> 8 & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16) + 8) meta_25 = (meta >> 10 & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16) + 8) meta_26 = (meta >> 12 & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16) + 12) meta_27 = (meta >> 14 & 3) + (row_idx * k + 16 * tl.arange(0, BLOCK_SIZE // 16) + 12) row0 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16), mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) row1 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16) + 1, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) row2 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16) + 2, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) row3 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16) + 3, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) row4 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16) + 4, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) row5 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16) + 5, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) row6 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16) + 6, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) row7 = tl.load(sparse_ptr + row_idx * k // 2 + 8 * tl.arange(0, BLOCK_SIZE // 16) + 7, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16, other=-float('inf')) tl.store(dense_ptr + meta_20, row0, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16) tl.store(dense_ptr + meta_21, row1, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16) tl.store(dense_ptr + meta_22, row2, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16) tl.store(dense_ptr + meta_23, row3, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16) tl.store(dense_ptr + meta_24, row4, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16) tl.store(dense_ptr + meta_25, row5, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16) tl.store(dense_ptr + meta_26, row6, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16) tl.store(dense_ptr + meta_27, row7, mask=tl.arange(0, BLOCK_SIZE // 16) < k // 16)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Transposed Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Memory-Bound" ] }
[ "BSD" ]
https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/_semi_structured_conversions.py
0fff7131-f1c9-4588-b8ed-1ddc2f4a032b
mas_triton.py
uthree/tts_impl
src/tts_impl/functional/monotonic_align/mas_triton.py
a9d9a66b26a0de4694e502dedfdff7be26d99ddd
0
@triton.jit def _maximum_path(path, value, t_x, t_y, B, T, S, max_neg_val, BLOCK_SIZE_X: tl.constexpr): batch = tl.program_id(axis=0) path += batch * T * S value += batch * T * S x_length = tl.load(t_x + batch) y_length = tl.load(t_y + batch) offs_prev = tl.arange(0, BLOCK_SIZE_X) init = tl.where(offs_prev == 0, tl.load(value), max_neg_val) tl.store(value + offs_prev * S, init, mask=offs_prev < x_length) for j in range(1, y_length, 1): v_cur = tl.load(value + offs_prev * S + (j - 1), mask=offs_prev < x_length, other=max_neg_val) v_prev = tl.load(value + (offs_prev - 1) * S + (j - 1), mask=(0 < offs_prev) & (offs_prev < x_length), other=max_neg_val) v = tl.maximum(v_cur, v_prev) + tl.load(value + offs_prev * S + j, mask=offs_prev < x_length) tl.store(value + offs_prev * S + j, v, mask=offs_prev < x_length) index = x_length - 1 for j in range(y_length - 1, -1, -1): tl.store(path + index * S + j, 1) if index > 0: v_left = tl.load(value + index * S + j - 1) v_leftdown = tl.load(value + (index - 1) * S + j - 1) if v_left < v_leftdown: index += -1
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/uthree/tts_impl/blob/a9d9a66b26a0de4694e502dedfdff7be26d99ddd/src/tts_impl/functional/monotonic_align/mas_triton.py
031b0c3d-1c3a-4448-87a8-dbf9c6afc3b9
cross_entropy_loss.py
tdrussell/qlora-pipe
kernels/cross_entropy_loss.py
6fb7c8eeae52a0e36c41f00628985f29d8330684
0
@triton.heuristics({'DO_LOGIT_SCALING': lambda args: args['DO_LOGIT_SCALING']}) @triton.jit def _cross_entropy_backward(logits_ptr, logits_row_stride, dloss_ptr, dloss_row_stride, logsumexp_ptr, labels_ptr, VOCAB_SIZE: tl.constexpr, BLOCK_SIZE: tl.constexpr, DO_LOGIT_SCALING: tl.constexpr, LOGIT_SCALE: tl.constexpr): """ CE_i = -y log(P) = y * (log[sum(exp(x))] - x) dC/dx = d/dx (y * log[sum(exp(x))] - x * y) From https://en.wikipedia.org/wiki/LogSumExp d/dx logsumexp = exp(x) / sum(exp(x)) = softmax(x) dC/dx = y * exp(x) / sum(exp(x)) - d/dx (x * y) dC/dx = y * exp[ log[exp(x) / sum(exp(x))] ] using x = exp(log(x)) trick dC/dx = y * exp[x - logsumexp] - d/dx (x * y) If y == 0: dC/dx = 0 If y == 1 and x == label: dC/dlabel = exp[x - logsumexp] - 1 If y == 1 and x != label: dC/dx = exp[x - logsumexp] """ row_idx = tl.program_id(0) block_idx = tl.program_id(1) logits_ptr += row_idx * logits_row_stride.to(tl.int64) dloss_ptr += row_idx * dloss_row_stride col_offsets = block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = col_offsets < VOCAB_SIZE label_idx = tl.load(labels_ptr + row_idx).to(tl.int32) if label_idx != -100: dloss = tl.load(dloss_ptr) else: dloss = 0.0 x = tl.load(logits_ptr + col_offsets, mask=mask, other=-float('inf')).to(tl .float32) if DO_LOGIT_SCALING: x = LOGIT_SCALE * x pass logsumexp = tl.load(logsumexp_ptr + row_idx) y = tl.exp(x - logsumexp) y = tl.where(col_offsets == label_idx, y - 1.0, y) if DO_LOGIT_SCALING: y = LOGIT_SCALE * y pass tl.store(logits_ptr + col_offsets, dloss * y, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/tdrussell/qlora-pipe/blob/6fb7c8eeae52a0e36c41f00628985f29d8330684/kernels/cross_entropy_loss.py
0269e925-e1dc-4528-851c-455458868afd
sb_varlen_fwd.py
shawntan/stickbreaking-attention
stickbreaking_attention/sb_varlen/sb_varlen_fwd.py
8dd32ad5e58f0ee0232fd4782dc53d354ff8d283
0
@triton.jit def load_kv(K_blk_ptrs, V_blk_ptrs, N_mask, NO_N_MASK, D_mask, NO_D_MASK: tl.constexpr): if NO_D_MASK: if NO_N_MASK: k = tl.load(K_blk_ptrs) v = tl.load(V_blk_ptrs) else: k = tl.load(K_blk_ptrs, mask=N_mask[:, None]) v = tl.load(V_blk_ptrs, mask=N_mask[:, None]) else: mask = N_mask[:, None] & D_mask[None, :] k = tl.load(K_blk_ptrs, mask=mask) v = tl.load(V_blk_ptrs, mask=mask) return k, v
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "Apache" ]
https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_fwd.py
d237c845-8362-47df-b7e1-eaff14494c4f
mhmoe.py
dtadpole/triton-playground
mhmoe.py
2d317976722d63080133b1bf88b1f0cdec98f831
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_B': 32, 'BLOCK_SIZE_E': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_B': 64, 'BLOCK_SIZE_E': 32}, num_stages=2, num_warps=4), triton.Config({ 'BLOCK_SIZE_B': 32, 'BLOCK_SIZE_E': 64}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_B': 64, 'BLOCK_SIZE_E': 64}, num_stages=2, num_warps=4)], key=['H', 'B', 'D', 'E']) @triton.jit def mlp_wide_kernel_bwd2(x_ptr, w1_ptr, w2_ptr, o_ptr, dx_ptr, dw1_ptr, dw2_ptr, do_ptr, H, B, D: tl.constexpr, E, stride_xb, stride_xd, stride_w1d, stride_w1e, stride_w2e, stride_w2d, stride_ob, stride_od, stride_dxb, stride_dxd, stride_dw1d, stride_dw1e, stride_dw2e, stride_dw2d, stride_dob, stride_dod, BLOCK_SIZE_B: tl.constexpr, BLOCK_SIZE_E: tl.constexpr, ACTIVATION: tl.constexpr): """Kernel for computing the mlp Z = X @ W1, H = f(Z), O = H @ W2 - X has shape (B, D) - W1 has shape (D, E) - W2 has shape (E, D) - O has shape (B, D) - dX has shape (B, D) - dW1 has shape (D, E) - dW2 has shape (E, D) - dO has shape (B, D) """ pid = tl.program_id(axis=0) pid_x_w = 0 batch_groups_e = tl.cdiv(E, BLOCK_SIZE_E) batch_groups_b = tl.cdiv(B, BLOCK_SIZE_B) idx = pid % (batch_groups_e + batch_groups_b) pid_h = pid // (batch_groups_e + batch_groups_b) TARGET_TYPE = x_ptr.type.element_ty offs_b = tl.arange(0, BLOCK_SIZE_B) offs_d = tl.arange(0, D) offs_e = tl.arange(0, BLOCK_SIZE_E) if idx >= batch_groups_e: pid_b = idx - batch_groups_e dx_ptrs = dx_ptr + ((pid_h * B + pid_b * BLOCK_SIZE_B + offs_b[:, None]) * stride_dxb + offs_d[None, :] * stride_dxd) dx_mask = (offs_b[:, None] < B - pid_b * BLOCK_SIZE_B) & (offs_d[ None, :] < D) dx = tl.zeros((BLOCK_SIZE_B, D), dtype=tl.float32) dx = _mlp_wide_kernel_bwd_dx(dx, pid_h, pid_b, x_ptr, w1_ptr, w2_ptr, o_ptr, dx_ptr, dw1_ptr, dw2_ptr, do_ptr, H, B, D, E, stride_xb, stride_xd, stride_w1d, stride_w1e, stride_w2e, stride_w2d, stride_ob, stride_od, stride_dxb, stride_dxd, stride_dw1d, stride_dw1e, stride_dw2e, stride_dw2d, stride_dob, stride_dod, BLOCK_SIZE_B, BLOCK_SIZE_E, ACTIVATION) tl.store(dx_ptrs, dx.to(TARGET_TYPE), mask=dx_mask) else: pid_e = idx dw1_ptrs = dw1_ptr + ((pid_h * D + offs_d[:, None]) * stride_dw1d + (pid_e * BLOCK_SIZE_E + offs_e[None, :]) * stride_dw1e) dw1_mask = (offs_d[:, None] < D) & (offs_e[None, :] < E - pid_e * BLOCK_SIZE_E) dw2_ptrs = dw2_ptr + ((pid_h * E + pid_e * BLOCK_SIZE_E + offs_e[:, None]) * stride_dw2e + offs_d[None, :] * stride_dw2d) dw2_mask = (offs_e[:, None] < E - pid_e * BLOCK_SIZE_E) & (offs_d[ None, :] < D) dw1 = tl.zeros((D, BLOCK_SIZE_E), dtype=tl.float32) dw2 = tl.zeros((BLOCK_SIZE_E, D), dtype=tl.float32) dw1, dw2 = _mlp_wide_kernel_bwd_dw1w2(dw1, dw2, pid_h, pid_e, x_ptr, w1_ptr, w2_ptr, o_ptr, dx_ptr, dw1_ptr, dw2_ptr, do_ptr, H, B, D, E, stride_xb, stride_xd, stride_w1d, stride_w1e, stride_w2e, stride_w2d, stride_ob, stride_od, stride_dxb, stride_dxd, stride_dw1d, stride_dw1e, stride_dw2e, stride_dw2d, stride_dob, stride_dod, BLOCK_SIZE_B, BLOCK_SIZE_E, ACTIVATION) tl.store(dw1_ptrs, dw1.to(TARGET_TYPE), mask=dw1_mask) tl.store(dw2_ptrs, dw2.to(TARGET_TYPE), mask=dw2_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe.py
a20e0fd8-9354-44cf-b64c-1476d6ce796a
fused_norm_gate.py
sustcsonglin/flash-linear-attention
fla/modules/fused_norm_gate.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'RECOMPUTE_OUTPUT': lambda args: args['Y'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32)], key=['N', 'HAS_DRESIDUAL', 'STORE_DRESIDUAL', 'IS_RMS_NORM', 'HAS_BIAS']) @triton.jit def layer_norm_bwd_kernel(X, O, W, B, Y, DY, DX, DO, DW, DB, DRESIDUAL, DRESIDUAL_IN, Mean, Rstd, stride_x_row, stride_y_row, stride_dy_row, stride_dx_row, stride_dres_row, stride_dres_in_row, M, N, eps, rows_per_program, IS_RMS_NORM: tl.constexpr, BLOCK_N: tl.constexpr, HAS_DRESIDUAL: tl.constexpr, STORE_DRESIDUAL: tl.constexpr, HAS_WEIGHT: tl.constexpr, HAS_BIAS: tl.constexpr, RECOMPUTE_OUTPUT: tl.constexpr): row_block_id = tl.program_id(0) row_start = row_block_id * rows_per_program cols = tl.arange(0, BLOCK_N) mask = cols < N X += row_start * stride_x_row O += row_start * stride_x_row if HAS_DRESIDUAL: DRESIDUAL += row_start * stride_dres_row if STORE_DRESIDUAL: DRESIDUAL_IN += row_start * stride_dres_in_row DY += row_start * stride_dy_row DX += row_start * stride_dx_row DO += row_start * stride_dx_row if RECOMPUTE_OUTPUT: Y += row_start * stride_y_row if HAS_WEIGHT: w = tl.load(W + cols, mask=mask).to(tl.float32) dw = tl.zeros((BLOCK_N,), dtype=tl.float32) if RECOMPUTE_OUTPUT and HAS_BIAS: b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32) if HAS_BIAS: db = tl.zeros((BLOCK_N,), dtype=tl.float32) row_end = min((row_block_id + 1) * rows_per_program, M) for row in range(row_start, row_end): x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) o = tl.load(O + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) if not IS_RMS_NORM: mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd xhat = tl.where(mask, xhat, 0.0) y = xhat * w if HAS_WEIGHT else xhat if HAS_BIAS: y = y + b if RECOMPUTE_OUTPUT: tl.store(Y + cols, y, mask=mask) sigmoid_o = tl.sigmoid(o) do = dy * y * (sigmoid_o + o * sigmoid_o * (1 - sigmoid_o)) dy = dy * o * sigmoid_o wdy = dy if HAS_WEIGHT: wdy = dy * w dw += dy * xhat if HAS_BIAS: db += dy if not IS_RMS_NORM: c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd else: c1 = tl.sum(xhat * wdy, axis=0) / N dx = (wdy - xhat * c1) * rstd if HAS_DRESIDUAL: dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32) dx += dres if STORE_DRESIDUAL: tl.store(DRESIDUAL_IN + cols, dx, mask=mask) tl.store(DX + cols, dx, mask=mask) tl.store(DO + cols, do, mask=mask) X += stride_x_row O += stride_x_row if HAS_DRESIDUAL: DRESIDUAL += stride_dres_row if STORE_DRESIDUAL: DRESIDUAL_IN += stride_dres_in_row if RECOMPUTE_OUTPUT: Y += stride_y_row DY += stride_dy_row DX += stride_dx_row DO += stride_dx_row if HAS_WEIGHT: tl.store(DW + row_block_id * N + cols, dw, mask=mask) if HAS_BIAS: tl.store(DB + row_block_id * N + cols, db, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/fused_norm_gate.py
d5f138ed-d6b1-4147-92bd-4d9d2bf1a5a2
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/simple_gla/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'NV': lambda args: triton.cdiv(args['V'], args['BV']), 'OUTPUT_ATTENTIONS': lambda args: args['attn'] is not None}) @triton.jit def parallel_simple_gla_fwd_kernel(q, k, v, g, o, attn, s_k_h, s_k_t, s_v_h, s_v_t, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl. constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl. constexpr, BV: tl.constexpr, NV: tl.constexpr, OUTPUT_ATTENTIONS: tl. constexpr): i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_k, i_v = i_kv // NV, i_kv % NV p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn + (i_k * B * H + i_bh) * T * T, (T, T), (T, 1), (i_t * BT, 0), (BT, BS), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_o = tl.zeros([BT, BV], dtype=tl.float32) for i_s in range(0, i_t * BT, BS): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (1, s_k_t), (i_k * BK, i_s), (BK, BS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, 1), (i_s, i_v * BV), (BS, BV), (1, 0)) p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_s,), (BS,), (0,)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_g = tl.load(p_g, boundary_check=(0,)) b_gn = tl.load(g + i_bh * T + min(i_s + BS, T) - 1) b_gp = tl.load(g + i_bh * T + i_s - 1) if i_s % BT > 0 else 0.0 b_kg = (b_k * tl.exp(b_gn - b_g)).to(b_k.dtype) b_s = tl.dot(b_q, b_kg, allow_tf32=False) if i_s > 0: b_o = b_o * tl.exp(b_gn - b_gp) b_o += tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) if OUTPUT_ATTENTIONS: tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) p_a = tl.advance(p_a, (0, BS)) tl.debug_barrier() p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) b_gq = tl.load(p_g, boundary_check=(0,)) b_o *= tl.exp(b_gq)[:, None] if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn + (i_k * B * H + i_bh) * T * T, (T, T), (T, 1), (i_t * BT, i_t * BT), (BT, BS), (1, 0)) o_q = i_t * BT + tl.arange(0, BT) o_k = i_t * BT + tl.arange(0, BS) for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (1, s_k_t), (i_k * BK, i_s), (BK, BS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, 1), (i_s, i_v * BV), (BS, BV), (1, 0)) p_gk = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_s,), (BS,), (0,)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_gk = tl.load(p_gk, boundary_check=(0,)) m_s = o_q[:, None] >= o_k[None, :] b_s = tl.where(m_s, tl.dot(b_q, b_k, allow_tf32=False) * tl.exp( b_gq[:, None] - b_gk[None, :]), 0) b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) if OUTPUT_ATTENTIONS: tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) p_a = tl.advance(p_a, (0, BS)) o_k += BS p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * s_v_h, (T, V), ( s_v_t, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/simple_gla/parallel.py
24e6a887-0de6-4d46-817d-187228e035a0
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gsa/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def chunk_gsa_fwd_k_kernel_intra(v, g, o, A, offsets, indices, T: tl. constexpr, HQ: tl.constexpr, H: tl.constexpr, V: tl.constexpr, BT: tl. constexpr, BC: tl.constexpr, BV: tl.constexpr, NC: tl.constexpr, NG: tl .constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_bg = i_bh // NG i_b, i_hq = i_bh // HQ, i_bh % HQ i_h = i_hq // NG i_t, i_i = i_c // NC, i_c % NC if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T o_v = i_v * BV + tl.arange(0, BV) m_v = o_v < V if i_t * BT + i_i * BC > T: return if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + min(i_t * BT + i_i * BC, T) * V + o_v, BV), BV) else: p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_gn = tl.max_contiguous(tl.multiple_of(g + (bos + min(i_t * BT + i_i * BC, T)) * H * V + i_h * V + o_v, BV), BV) b_gn = tl.load(p_gn, mask=m_v, other=0) b_o = tl.zeros([BC, BV], dtype=tl.float32) for i_j in range(0, i_i): if HEAD_FIRST: p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), ( i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) p_v = tl.make_block_ptr(v + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) p_gv = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) else: p_A = tl.make_block_ptr(A + (bos * HQ + i_hq) * BT, (T, BT), ( HQ * BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) p_gv = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_gv = tl.load(p_gv, boundary_check=(0, 1)) b_vg = (b_v * tl.exp(b_gn[None, :] - b_gv)).to(b_v.dtype) b_A = tl.load(p_A, boundary_check=(0, 1)) b_o += tl.dot(b_A, b_vg) b_g = tl.load(p_g, boundary_check=(0, 1)) b_o *= tl.exp(b_g - b_gn[None, :]) o_i = tl.arange(0, BC) if HEAD_FIRST: o_A = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC) ) * BT + i_i * BC else: o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC) ) * HQ * BT + i_hq * BT + i_i * BC m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T for j in range(0, min(BC, T - i_t * BT - i_i * BC)): if HEAD_FIRST: p_v = tl.max_contiguous(tl.multiple_of(v + i_bg * T * V + (i_t * BT + i_i * BC + j) * V + o_v, BV), BV) p_gv = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + (i_t * BT + i_i * BC + j) * V + o_v, BV), BV) else: p_v = tl.max_contiguous(tl.multiple_of(v + (bos + i_t * BT + i_i * BC + j) * H * V + i_h * V + o_v, BV), BV) p_gv = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_i * BC + j) * H * V + i_h * V + o_v, BV), BV) b_A = tl.load(A + o_A + j, mask=m_A, other=0) b_v = tl.load(p_v, mask=m_v, other=0).to(tl.float32) b_gv = tl.load(p_gv, mask=m_v, other=0).to(tl.float32) b_vg = b_v[None, :] * tl.exp(b_g - b_gv[None, :]) b_o += tl.where(o_i[:, None] >= j, b_A[:, None] * b_vg, 0.0) if HEAD_FIRST: p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) else: p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) b_o += tl.load(p_o, boundary_check=(0, 1)) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gsa/chunk.py
7a21ee06-6228-4111-8cca-8a85dc7cb97b
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged2_to_padded_dense_kernel(x_ptr, lengths_ptr, offsets_ptr, output_dense_ptr, stride_b, stride_m, stride_n, max_length, BLOCK_M: tl .constexpr, BLOCK_N: tl.constexpr): pid_batch = tl.program_id(2) pid_m = tl.program_id(0) pid_n = tl.program_id(1) begin = tl.load(offsets_ptr + pid_batch) seqlen = tl.load(lengths_ptr + pid_batch) seqlen = tl.minimum(seqlen, max_length) if seqlen == 0: return offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) x_ptrs = x_ptr + begin + offs_m[:, None] * seqlen + offs_n[None, :] x = tl.load(x_ptrs, mask=(offs_m[:, None] < seqlen) & (offs_n[None, :] < seqlen)) out_ptrs = output_dense_ptr + pid_batch * stride_b + offs_m[:, None ] * stride_m + offs_n[None, :] * stride_n tl.store(out_ptrs, x, mask=(offs_m[:, None] < seqlen) & (offs_n[None, : ] < seqlen))
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
1bcc5bf5-0201-4106-9714-19fc02c62ac9
p_loss_kernels.py
BobMcDear/attorch
attorch/p_loss_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=element_wise_kernel_configs(), key=['size']) @triton.jit def p_loss_backward_kernel(output_grad_pointer, input_pointer, target_pointer, input_grad_pointer, target_grad_pointer, size, p_loss: tl.constexpr, reduction: tl.constexpr, BLOCK_SIZE: tl.constexpr): """ Calculates the input gradient of the mean absolute error or mean squared error. Args: output_grad_pointer: Pointer to the error's output gradients. The output gradients must be a scalar or of shape [size]. input_pointer: Pointer to the input. The input must be of shape [size]. target_pointer: Pointer to the target. The target must be of shape [size]. input_grad_pointer: Pointer to a container the input's gradients are written to. The container must be of shape [size]. target_grad_pointer: Pointer to a container the target's gradients are written to. The container must be of shape [size]. size: Number of elements in the input and target. p_loss: p-norm used to compute the error whose gradient is calculated. Options are 1 for MAE and 2 for MSE. reduction: Reduction strategy for the output whose gradient is calculated. Options are 'none' for no reduction, 'mean' for averaging the error across all entries, and 'sum' for summing the error across all entries. BLOCK_SIZE: Block size. """ pid = tl.program_id(axis=0) offset = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offset < size output_grad_mask = None if reduction == 'none': output_grad_pointer += offset output_grad_mask = mask input = tl.load(input_pointer + offset, mask=mask).to(tl.float32) target = tl.load(target_pointer + offset, mask=mask).to(tl.float32) output_grad = tl.load(output_grad_pointer, mask=output_grad_mask).to(tl .float32) if p_loss == 1: input_grad = tl.where(target <= input, 1, -1) elif p_loss == 2: input_grad = 2 * (input - target) if reduction == 'mean': input_grad /= size input_grad *= output_grad tl.store(input_grad_pointer + offset, input_grad, mask=mask) tl.store(target_grad_pointer + offset, -input_grad, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/p_loss_kernels.py
1e4b6bf4-c537-4599-9578-cf786aca1b31
single.py
shawntan/scattermoe
scattermoe/kernels/single.py
63b76a2f5f28c052fb4cd7c34479a54158354052
0
@triton.jit def _single2scatter(X_ptr, stride_xm, stride_xk, W_ptr, stride_we, stride_wk, stride_wn, Y_ptr, stride_ym, stride_yn, expert_idxs_ptr, FAN_OUT: tl.constexpr, K: tl.constexpr, N: tl.constexpr, E: tl. constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, ACC_TYPE: tl. constexpr): pid0 = tl.program_id(axis=0) pid1 = tl.program_id(axis=1) N_block_id = pid0 if FAN_OUT == 1: in_idx = pid1 else: in_idx = 0 out_idx = pid1 K_block = tl.arange(0, BLOCK_K) N_block = tl.max_contiguous(tl.multiple_of((N_block_id * BLOCK_N + tl. arange(0, BLOCK_N)) % N, BLOCK_N), BLOCK_N) E_idx = tl.load(expert_idxs_ptr + pid1) X_blk_ptrs = X_ptr + in_idx * stride_xm + K_block[:, None] * stride_xk W_blk_ptrs = W_ptr + E_idx * stride_we + K_block[:, None ] * stride_wk + N_block[None, :] * stride_wn acc = tl.zeros((1, BLOCK_N), dtype=ACC_TYPE) for K_block_id in range(0, tl.cdiv(K, BLOCK_K)): x = tl.load(X_blk_ptrs) w = tl.load(W_blk_ptrs) acc += tl.sum(x * w, axis=0)[None, :] X_blk_ptrs += BLOCK_K * stride_xk W_blk_ptrs += BLOCK_K * stride_wk Y_blk_ptrs = Y_ptr + out_idx * stride_ym + N_block[None, :] * stride_yn tl.store(Y_blk_ptrs, acc)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/shawntan/scattermoe/blob/63b76a2f5f28c052fb4cd7c34479a54158354052/scattermoe/kernels/single.py
4a649b03-1ebe-4b88-b47e-1980960298a0
W4A16_MatMul.py
MDK8888/GPTFast
GPTFast/Kernels/Triton/GPTQ/Matmul/W4A16_MatMul.py
926b7553cfbaf1ec2a702a4bfb477132ce98c2e1
0
@triton.autotune(configs=[triton.Config({'BLOCK_M': 16, 'BLOCK_N': 32, 'BLOCK_K': 64}, num_stages=2, num_warps=2), triton.Config({'BLOCK_M': 16, 'BLOCK_N': 32, 'BLOCK_K': 64}, num_stages=3, num_warps=4), triton. Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'BLOCK_K': 64}, num_stages=2, num_warps=2), triton.Config({'BLOCK_M': 16, 'BLOCK_N': 32, 'BLOCK_K': 64}, num_stages=3, num_warps=4)], key=[]) @triton.jit def int4_matmul_kernel_3d(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales_n, stride_scales_g, stride_zeros_n, stride_zeros_g, M, N, K, groupsize, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl .constexpr): m_id = tl.program_id(0) n_id = tl.program_id(1) k_id = tl.program_id(2) offs_am = m_id * BLOCK_M + tl.arange(0, BLOCK_M) offs_bn = n_id * BLOCK_N + tl.arange(0, BLOCK_N) offs_k = k_id * BLOCK_K + tl.arange(0, BLOCK_K) mask_m = offs_am < M a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + offs_k[:, None] // 8 * stride_bk + offs_bn[None, : ] * stride_bn scales_ptrs = scales_ptr + offs_bn[None, :] * stride_scales_n + offs_k[ :, None] // groupsize * stride_scales_g zeros_ptrs = zeros_ptr + offs_bn[None, :] * stride_zeros_n + offs_k[:, None ] // groupsize * stride_zeros_g a = tl.load(a_ptrs, mask=mask_m[:, None], other=0.0) b = tl.load(b_ptrs) scales = tl.load(scales_ptrs) zeros = tl.load(zeros_ptrs) mask = tl.arange(0, BLOCK_K)[:, None] % 8 b = b >> mask * 4 & 15 b = (b - 8) * scales + zeros acc = tl.dot(a, b.to(tl.float16)) c_ptrs = c_ptr + (offs_am[:, None] * stride_cm + offs_bn[None, :] * stride_cn) tl.atomic_add(c_ptrs, acc.to(tl.float16))
{ "Data Type": [ "int8" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/MDK8888/GPTFast/blob/926b7553cfbaf1ec2a702a4bfb477132ce98c2e1/GPTFast/Kernels/Triton/GPTQ/Matmul/W4A16_MatMul.py
ecca4ed7-6a0c-4e5e-845f-085135f8040b
ops.py
shawntan/scattermoe
scattermoe/kernels/ops.py
63b76a2f5f28c052fb4cd7c34479a54158354052
0
@triton.autotune(configs=_config_XtY(), key=['M', 'N', 'K']) @triton.heuristics({'NO_K_MASK': lambda args: args['K'] % args['BLOCK_K'] == 0, 'NO_N_MASK': lambda args: args['N'] % args['BLOCK_N'] == 0}) @triton.jit def _groupXtY(DY_ptr, stride_dym, stride_dyk, X_ptr, stride_xm, stride_xn, DW_ptr, stride_dwe, stride_dwk, stride_dwn, expert_offsets_ptr, M, K: tl.constexpr, N: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl. constexpr, BLOCK_K: tl.constexpr, ACC_TYPE: tl.constexpr, allow_tf32: tl.constexpr, NO_K_MASK: tl.constexpr, NO_N_MASK: tl.constexpr): pid0 = tl.program_id(axis=0) pid1 = tl.program_id(axis=1) num0 = tl.num_programs(0) num1 = tl.num_programs(1) pid0, pid1 = tl.swizzle2d(pid0, pid1, num0, num1, 4) K_BLOCK_COUNT = tl.cdiv(K, BLOCK_K) E_idx = pid0 // K_BLOCK_COUNT K_block_id = pid0 % K_BLOCK_COUNT N_block_id = pid1 if E_idx == 0: start_idx = 0 else: start_idx = tl.load(expert_offsets_ptr + E_idx - 1).to(tl.int32) end_idx = tl.load(expert_offsets_ptr + E_idx).to(tl.int32) if end_idx > start_idx: M_block = tl.max_contiguous(start_idx + tl.arange(0, BLOCK_M), BLOCK_M) K_block = K_block_id * BLOCK_K + tl.arange(0, BLOCK_K) K_mask = K_block < K K_block = tl.max_contiguous(tl.multiple_of(K_block % K, BLOCK_K), BLOCK_K) N_block = N_block_id * BLOCK_N + tl.arange(0, BLOCK_N) N_mask = N_block < N N_block = tl.max_contiguous(tl.multiple_of(N_block % N, BLOCK_N), BLOCK_N) M_idxs = M_block xt_blk_ptrs = X_ptr + K_block[:, None] * stride_xn + M_idxs[None, : ] * stride_xm dy_blk_ptrs = DY_ptr + M_idxs[:, None] * stride_dym + N_block[None, : ] * stride_dyk acc = tl.zeros((BLOCK_K, BLOCK_N), dtype=ACC_TYPE) iters = tl.cdiv(end_idx - start_idx, BLOCK_M) for i in range(0, iters): M_mask = i * BLOCK_M + M_block < end_idx if NO_K_MASK: xt = tl.load(xt_blk_ptrs, mask=M_mask[None, :]) else: xt = tl.load(xt_blk_ptrs, mask=K_mask[:, None] & M_mask[ None, :]) if NO_N_MASK: dy = tl.load(dy_blk_ptrs, mask=M_mask[:, None]) else: dy = tl.load(dy_blk_ptrs, mask=M_mask[:, None] & N_mask[ None, :]) xt_blk_ptrs += BLOCK_M * stride_xm dy_blk_ptrs += BLOCK_M * stride_dym acc += tl.dot(xt, dy, out_dtype=ACC_TYPE, allow_tf32=allow_tf32) DW_blk_ptrs = DW_ptr + E_idx * stride_dwe + K_block[:, None ] * stride_dwk + N_block[None, :] * stride_dwn acc = acc.to(DW_blk_ptrs.dtype.element_ty) tl.store(DW_blk_ptrs, acc, mask=K_mask[:, None] & N_mask[None, :])
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/shawntan/scattermoe/blob/63b76a2f5f28c052fb4cd7c34479a54158354052/scattermoe/kernels/ops.py
87fdafb5-a70c-4967-b40f-bb70db039d6c
flash_attention.py
falkaer/multi-scale-music
seq/flash_attention.py
a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d
0
@triton.jit def apply_dropout(x, offsets, p, seed, mask_val=float('-inf')): rand = tl.rand(seed, offsets) scale = 1 / (1 - p) return tl.where(rand > p, x * scale, mask_val)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Low Latency" ] }
[ "MIT" ]
https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py
0f85b722-d956-44c9-8c49-e98decba5b86
y_3.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_3.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def third_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor, sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl. constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): block_id = tl.program_id(0) coord_stride = 3 coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset < output_numel) g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask= output_row_offset + 1 < output_numel) g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask= output_row_offset + 2 < output_numel) g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask= output_row_offset + 3 < output_numel) g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask= output_row_offset + 4 < output_numel) g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask= output_row_offset + 5 < output_numel) g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask= output_row_offset + 6 < output_numel) CONST002 = 6.48074069840786 CONST005 = 12.9614813968157 CONST007 = -3.96862696659689 CONST008 = -12.5499003980111 CONST009 = -10.2469507659596 CONST010 = -7.93725393319377 CONST011 = -6.27495019900557 CONST012 = -5.1234753829798 CONST013 = -4.8605555238059 CONST014 = -3.24037034920393 CONST015 = -1.62018517460197 VAR08 = x * x VAR17 = y * y VAR26 = z * z g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask= coord_row_offset + 1 < coord_numel) g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask= coord_row_offset + 2 < coord_numel) g_x += (CONST008 * g_6 * x * z - CONST009 * g_1 * y * z + CONST009 * g_5 * x * y + CONST010 * g_3 * x * y + CONST014 * g_4 * x * z + g_0 * (CONST011 * VAR08 - CONST011 * VAR26) + g_2 * (CONST002 * VAR17 + CONST013 * VAR08 + CONST015 * VAR26)) g_y += (CONST005 * g_2 * x * y + CONST005 * g_4 * y * z - CONST009 * g_1 * x * z + g_3 * (CONST007 * VAR08 + CONST007 * VAR26 - CONST010 * VAR17) + g_5 * (CONST012 * VAR08 - CONST012 * VAR26)) g_z += (-CONST008 * g_0 * x * z - CONST009 * g_1 * x * y - CONST009 * g_5 * y * z + CONST010 * g_3 * y * z + CONST014 * g_2 * x * z + g_4 * (CONST002 * VAR17 + CONST013 * VAR26 + CONST015 * VAR08) + g_6 * ( CONST011 * VAR08 - CONST011 * VAR26)) tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask= coord_row_offset + 1 < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask= coord_row_offset + 2 < coord_numel)
{ "Data Type": [], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_3.py
08bb518c-fbda-4604-9322-dfac40c7b421
apply_token_bitmask_inplace_triton.py
mlc-ai/xgrammar
python/xgrammar/kernels/apply_token_bitmask_inplace_triton.py
49655f4e5992a0c00183c9bd43d78b49c4e668ab
0
@triton.jit def apply_token_bitmask_inplace_kernel(logits_ptr, bitmask_ptr, indices_ptr, num_rows, vocab_size, bitmask_size, NUM_SMS: tl.constexpr, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(0) num_blocks = tl.cdiv(vocab_size, BLOCK_SIZE) for work_id in tl.range(pid, num_rows * num_blocks, NUM_SMS): block_offset = work_id % num_blocks * BLOCK_SIZE row_id = work_id // num_blocks batch_id = tl.load(indices_ptr + row_id) offsets = block_offset + tl.arange(0, BLOCK_SIZE) bitmask_offsets = block_offset // 32 + tl.arange(0, BLOCK_SIZE // 32) vocab_mask = offsets < vocab_size packed_bitmask_mask = bitmask_offsets < bitmask_size packed_bitmask = tl.load(bitmask_ptr + batch_id * bitmask_size + bitmask_offsets, packed_bitmask_mask) bitmask = packed_bitmask[:, None] >> tl.arange(0, 32)[None, :] & 1 == 0 bitmask = bitmask.reshape(BLOCK_SIZE) tl.store(logits_ptr + batch_id * vocab_size + offsets, -float('inf' ), vocab_mask & bitmask)
{ "Data Type": [], "Functionality": [ "Softmax", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/mlc-ai/xgrammar/blob/49655f4e5992a0c00183c9bd43d78b49c4e668ab/python/xgrammar/kernels/apply_token_bitmask_inplace_triton.py
e7510983-2f6d-4849-8c80-611f47f2a9cc
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps) for BK in [32, 64] for BV in [64, 128] for num_warps in [2, 4, 8]], key=['BT']) @triton.jit def chunk_gla_bwd_kernel_inter(q, k, v, h, g, do, dh, dq, dk, dq2, dk2, dg, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl. constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl. constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T o_k = i_k * BK + tl.arange(0, BK) m_k = o_k < K if HEAD_FIRST: p_gk = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_gn = tl.max_contiguous(tl.multiple_of(g + i_bh * T * K + (min(T, i_t * BT + BT) - 1) * K + o_k, BK), BK) else: p_gk = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H * K, 1 ), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_gn = tl.max_contiguous(tl.multiple_of(g + (bos + min(T, i_t * BT + BT) - 1) * H * K + i_h * K + o_k, BK), BK) b_gn = tl.load(p_gn, mask=m_k, other=0) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_dgk = tl.zeros([BK], dtype=tl.float32) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + i_bh * NT * K * V + i_t * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + i_bh * NT * K * V + i_t * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (V, K), ( 1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)) b_dh = tl.load(p_dh, boundary_check=(0, 1)) b_dgk += tl.sum(b_h * b_dh, axis=0) b_dq += tl.dot(b_do, b_h.to(b_do.dtype)) b_dk += tl.dot(b_v, b_dh.to(b_v.dtype)) b_dgk *= tl.exp(b_gn) b_dq *= scale b_gk = tl.load(p_gk, boundary_check=(0, 1)) b_dq = b_dq * tl.exp(b_gk) b_dk = b_dk * tl.exp(b_gn[None, :] - b_gk) if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_dgk += tl.sum(b_dk * b_k, axis=0) b_dq += tl.load(p_dq, boundary_check=(0, 1)) b_dk += tl.load(p_dk, boundary_check=(0, 1)) b_dg = b_q * b_dq - b_k * b_dk b_dg = b_dg - tl.cumsum(b_dg, axis=0) + tl.sum(b_dg, axis=0)[None, : ] + b_dgk[None, :] if HEAD_FIRST: p_dq = tl.make_block_ptr(dq2 + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk2 + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dg = tl.make_block_ptr(dg + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_dq = tl.make_block_ptr(dq2 + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk2 + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dg = tl.make_block_ptr(dg + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py
735840ce-064d-4ebd-af98-c2aba99b4e2a
copy.py
chengzeyi/stable-fast
src/sfast/triton/ops/copy.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@eval( """triton.heuristics({ 'BLOCK_M': lambda kwargs: min(32, triton.next_power_of_2(kwargs['size_inp_0'])), 'BLOCK_N': lambda kwargs: min(32, triton.next_power_of_2(kwargs['size_inp_1'])), 'BLOCK_K': lambda kwargs: min(32, triton.next_power_of_2(kwargs['size_inp_2'])), 'BATCH_STRIDE_INP_IS_1': lambda kwargs: kwargs['batch_stride_inp'] == 1, 'STRIDE_INP_0_IS_1': lambda kwargs: kwargs['stride_inp_0'] == 1, 'STRIDE_INP_1_IS_1': lambda kwargs: kwargs['stride_inp_1'] == 1, 'STRIDE_INP_2_IS_1': lambda kwargs: kwargs['stride_inp_2'] == 1, 'BATCH_STRIDE_OUT_IS_1': lambda kwargs: kwargs['batch_stride_out'] == 1, 'STRIDE_OUT_0_IS_1': lambda kwargs: kwargs['stride_out_0'] == 1, 'STRIDE_OUT_1_IS_1': lambda kwargs: kwargs['stride_out_1'] == 1, 'STRIDE_OUT_2_IS_1': lambda kwargs: kwargs['stride_out_2'] == 1, })""" ) @eval( """triton.heuristics({ 'num_warps': lambda kwargs: max(1, min(16, kwargs['BLOCK_M'] * kwargs['BLOCK_N'] * kwargs['BLOCK_K'] // 32)), })""" ) @triton.jit def copy_4d_kernel(output_ptr, input_ptr, bs, size_inp_0, size_inp_1, size_inp_2, batch_stride_inp, stride_inp_0, stride_inp_1, stride_inp_2, batch_stride_out, stride_out_0, stride_out_1, stride_out_2, BATCH_STRIDE_INP_IS_1: tl.constexpr, STRIDE_INP_0_IS_1: tl.constexpr, STRIDE_INP_1_IS_1: tl.constexpr, STRIDE_INP_2_IS_1: tl.constexpr, BATCH_STRIDE_OUT_IS_1: tl.constexpr, STRIDE_OUT_0_IS_1: tl.constexpr, STRIDE_OUT_1_IS_1: tl.constexpr, STRIDE_OUT_2_IS_1: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr): pid = tl.program_id(0) pid_batch = tl.program_id(1) grid_m = tl.cdiv(size_inp_0, BLOCK_M) grid_n = tl.cdiv(size_inp_1, BLOCK_N) grid_k = tl.cdiv(size_inp_2, BLOCK_K) pid_m = pid // (grid_n * grid_k) pid_nk = pid - pid_m * (grid_n * grid_k) pid_n = pid_nk // grid_k pid_k = pid_nk - pid_n * grid_k rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) rk = pid_k * BLOCK_K + tl.arange(0, BLOCK_K) A = input_ptr + (1 if BATCH_STRIDE_INP_IS_1 else batch_stride_inp ) * pid_batch + (rm[:, None, None] * (1 if STRIDE_INP_0_IS_1 else stride_inp_0) + rn[None, :, None] * (1 if STRIDE_INP_1_IS_1 else stride_inp_1) + rk[None, None, :] * (1 if STRIDE_INP_2_IS_1 else stride_inp_2)) B = output_ptr + (1 if BATCH_STRIDE_OUT_IS_1 else batch_stride_out ) * pid_batch + (rm[:, None, None] * (1 if STRIDE_OUT_0_IS_1 else stride_out_0) + rn[None, :, None] * (1 if STRIDE_OUT_1_IS_1 else stride_out_1) + rk[None, None, :] * (1 if STRIDE_OUT_2_IS_1 else stride_out_2)) mask = (rm < size_inp_0)[:, None, None] & (rn < size_inp_1)[None, :, None ] & (rk < size_inp_2)[None, None, :] a = tl.load(A, mask=mask) tl.store(B, a, mask=mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/copy.py
7856aa29-242e-4335-8d5c-122814a3f128
attn_torch_function.py
ROCm/aotriton
tritonsrc/attn_torch_function.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.autotune(configs=TRITON_CONFIG_LIST_FWD, key=['max_seqlen_q', 'max_seqlen_k', 'CAUSAL']) @triton.jit def tuned_attn_fwd(Q, K, V, B, sm_scale, M, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_on, num_head_q, num_head_k, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed_ptr, philox_offset1, philox_offset2, philox_seed_output, philox_offset_output, encoded_softmax, CAUSAL: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, pre_load_v: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl.constexpr): bare_attn_fwd(Q, K, V, B, sm_scale, M, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_on, num_head_q, num_head_k, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed_ptr, philox_offset1, philox_offset2, philox_seed_output, philox_offset_output, encoded_softmax, CAUSAL, BLOCK_M, BLOCK_DMODEL, BLOCK_N, pre_load_v, ENABLE_DROPOUT, RETURN_ENCODED_SOFTMAX, PADDED_HEAD, BIAS_TYPE=BIAS_TYPE)
{ "Data Type": [], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/attn_torch_function.py
cda10c52-c03b-4cd3-bcd2-bf5e77672cfe
triton_rms_norm.py
vladmandic/dcae
dcae/nn/triton_rms_norm.py
5223970c7e6c6acfe282e18be7e3821b61511673
0
@triton.jit def _rms_norm_2d_bwd_dx_fused(DX, DY, DW, DB, X, W, B, Rrms, M, C, N, num_blocks, eps, GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE: tl.constexpr, BLOCK_SIZE_C: tl.constexpr): m_n = tl.program_id(0) m, n = m_n // num_blocks, m_n % num_blocks X += m * C * N DY += m * C * N DX += m * C * N Rrms += m * N cols = n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = cols < N DW = DW + m_n * C DB = DB + m_n * C rrms = tl.load(Rrms + cols, mask=mask, other=1) c1 = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, C): pos = off * N + cols x = tl.load(X + pos, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + pos, mask=mask, other=0).to(tl.float32) w = tl.load(W + off).to(tl.float32) xhat = x * rrms wdy = w * dy xhat = tl.where(mask, xhat, 0.0) wdy = tl.where(mask, wdy, 0.0) c1 += xhat * wdy tl.store(DW + off, tl.sum((dy * xhat).to(w.dtype), axis=0)) tl.store(DB + off, tl.sum(dy.to(w.dtype), axis=0)) c1 /= C for off in range(0, C): pos = off * N + cols x = tl.load(X + pos, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + pos, mask=mask, other=0).to(tl.float32) w = tl.load(W + off).to(tl.float32) xhat = x * rrms wdy = w * dy dx = (wdy - xhat * c1) * rrms tl.store(DX + pos, dx, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/vladmandic/dcae/blob/5223970c7e6c6acfe282e18be7e3821b61511673/dcae/nn/triton_rms_norm.py
f37fbd18-5828-4317-9496-ead47311db58
partition_k.py
pytorch-labs/tritonbench
tritonbench/operators/gemm/partition_k.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64}, num_stages=4, num_warps=2), triton.Config({ 'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64}, num_stages =5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64}, num_stages=6, num_warps=2), triton.Config({ 'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128}, num_stages=4, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128}, num_stages=5, num_warps=2), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128}, num_stages=6, num_warps=2)], key=['M', 'N', 'K', 'PK']) @triton.jit def _matmul_partition_k(a_ptr, b_ptr, c_buf_ptr, M, N, K, PK, PK_SIZE, stride_am, stride_ak, stride_bk, stride_bn, stride_cb_m, stride_cb_n, stride_cb_k, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ pid_m = tl.program_id(axis=0) pid_n = tl.program_id(axis=1) pid_pk = tl.program_id(axis=2) offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = (pid_pk * PK_SIZE + tl.arange(0, BLOCK_SIZE_K)) % K a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(PK_SIZE, BLOCK_SIZE_K)): a = tl.load(a_ptrs) b = tl.load(b_ptrs) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk acc = accumulator.to(tl.float16) offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_ck = pid_pk c_buf_ptrs = c_buf_ptr + stride_cb_m * offs_cm[:, None, None ] + stride_cb_n * offs_cn[None, :, None] + stride_cb_k * offs_ck[ None, None, :] tl.store(c_buf_ptrs, acc[:, :, None])
{ "Data Type": [ "fp16" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/gemm/partition_k.py
c8196583-7032-4955-b22f-e6dfe1c1f392
RzLinearBackward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearBackward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.jit def rz_linear_backward_weight_grad_kernel_notune(a_ptr, b_ptr, c_ptr, init_factor, M, N, K, H, stride_am, stride_ak, stride_bm, stride_bn, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, allow_tf32: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl. constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): rz_linear_backward_weight_grad_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr= c_ptr, init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am= stride_am, stride_ak=stride_ak, stride_bm=stride_bm, stride_bn= stride_bn, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1=R1, R0=R0, allow_tf32=allow_tf32, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N= BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearBackward.py
4ee02cfd-0063-451e-9188-dd563dfe40c5
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/retention/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_chunk_retention_fwd_kernel(q, k, v, o, h0, ht, scale, B: tl. constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl. constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, CHECK: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h = i_bh % H o_i = tl.arange(0, BT) b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) d_b, d_o, d_h = tl.math.exp2(BT * b_b), tl.math.exp2((o_i + 1) * b_b ), tl.math.exp2((BT - o_i - 1) * b_b) m_s = o_i[:, None] >= o_i[None, :] d_s = tl.where(m_s, tl.math.exp2((o_i[:, None] - o_i[None, :]) * b_b), 0) b_h = tl.zeros([BK, BV], dtype=tl.float32) p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (0, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k * BK, 0), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (i_bh + i_k * B * H) * T * V, (T, V), (V, 1 ), (0, i_v * BV), (BT, BV), (1, 0)) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) NT = tl.cdiv(T, BT) for i in range(0, NT): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_k.dtype) b_s = tl.dot(b_q, b_k, allow_tf32=False) * d_s b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) if CHECK and i == 0: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) * d_o[:, None] b_h = d_b * b_h + tl.dot(b_k, (b_v * d_h[:, None]).to(b_k.dtype ), allow_tf32=False) else: b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False) * d_o[:, None] if i == NT - 1 and T % BT != 0: d_b = tl.math.exp2(T % BT * b_b) d_h = tl.math.exp2((T % BT - o_i - 1) * b_b) b_h = d_b * b_h + tl.dot(b_k, (b_v * d_h[:, None]).to(b_k.dtype ), allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_v = tl.advance(p_v, (BT, 0)) p_o = tl.advance(p_o, (BT, 0)) if STORE_FINAL_STATE: p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/fused_chunk.py
dbd509cd-7029-42a7-9a9f-50d56a9e82f4
normalization.py
ai-compiler-study/triton-kernels
triton_kernels/kernels/normalization.py
2308e5e9d965059fe2d19b4d535debac4970b69e
0
@triton.jit def _rms_norm_bwd(dY, dX, dW, X, W, Rstd, stride, N, BLOCK_SIZE: tl.constexpr): row = tl.program_id(0) X += row * stride dY += row * stride dX += row * stride dW += row * stride cols = tl.arange(0, BLOCK_SIZE) mask = cols < N dy = tl.load(dY + cols, mask=mask, other=0.0) x = tl.load(X + cols, mask=mask, other=0.0) w = tl.load(W + cols, mask=mask, other=0.0) rstd = tl.load(Rstd + row) m = dy * w dx = rstd * m dx += rstd * -(1 / N) * rstd * rstd * tl.sum(m * x, axis=0) * x dw = dy * (x * rstd) tl.store(dX + cols, dx, mask=mask) tl.store(dW + cols, dw, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/kernels/normalization.py
10c2ce56-9173-429f-9c4d-35c04a889c0f
triton_ops.py
imoneoi/bf16_fused_adam
bf16_fused_adam/triton_ops.py
66375343b528a00a483646a58a8a851a90834f9e
0
@triton.jit def bit_split_kernel(x_ptr, output_hi_ptr, output_lo_ptr, n_elements, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x_ptr + offsets, mask=mask).to(tl.uint32, bitcast=True) output_hi = (x >> 16).to(tl.uint16).to(tl.bfloat16, bitcast=True) output_lo = x.to(tl.uint16).to(tl.bfloat16, bitcast=True) tl.store(output_hi_ptr + offsets, output_hi, mask=mask) tl.store(output_lo_ptr + offsets, output_lo, mask=mask)
{ "Data Type": [ "bf16" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/imoneoi/bf16_fused_adam/blob/66375343b528a00a483646a58a8a851a90834f9e/bf16_fused_adam/triton_ops.py
f5633053-7e55-4be5-a160-add1d765c266
test_autodiff.py
srush/triton-autodiff
tests/test_autodiff.py
f9d1a04d048e3252bfd222646db7175ad60a3c7c
0
@triton.jit def ub1(X, Y): r = tl.arange(0, 16) r2 = tl.arange(0, 32) x = tl.load(X + 16 * r2[:, None] + r) y = triton_unbroadcast(x, tl.arange(0, 16).shape) tl.store(Y + r, y)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/srush/triton-autodiff/blob/f9d1a04d048e3252bfd222646db7175ad60a3c7c/tests/test_autodiff.py
0a8208c8-85ba-4efb-b976-49ac81225dd3
chunk_h.py
sustcsonglin/flash-linear-attention
fla/ops/common/chunk_h.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for num_warps in [1, 2, 4, 8] for num_stages in [2, 3, 4]], key=['BT', 'USE_G', 'USE_GK', 'USE_GV']) @triton.jit def chunk_fwd_kernel_h(k, v, h, g, gk, gv, h0, ht, offsets, chunk_offsets, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_G: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr, USE_INITIAL_STATE: tl. constexpr, STORE_FINAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = tl.make_block_ptr(h0 + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32) for i_t in range(NT): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_nh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_nh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) last_idx = min((i_t + 1) * BT, T) - 1 if USE_G: if HEAD_FIRST: b_g_last = tl.load(g + i_nh * T + last_idx) p_g = g + i_nh * T + i_t * BT + tl.arange(0, BT) p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT) else: b_g_last = tl.load(g + bos * H + last_idx * H + i_h) p_g = g + bos * H + (i_t * BT + tl.arange(0, BT)) * H + i_h b_h *= tl.exp(b_g_last) b_g = tl.load(p_g, mask=i_t * BT + tl.arange(0, BT) < T, other=0.0) b_v = (b_v * tl.exp(b_g_last - b_g)[:, None]).to(b_v.dtype) if USE_GK: if HEAD_FIRST: p_gk = tl.make_block_ptr(gk + i_nh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_gk_last = (gk + i_nh * T * K + last_idx * K + i_k * BK + tl.arange(0, BK)) else: p_gk = tl.make_block_ptr(gk + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_gk_last = gk + (bos + last_idx ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK) b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) < K, other=0.0) b_h *= tl.exp(b_gk_last)[:, None] b_gk = tl.load(p_gk, boundary_check=(0, 1)) b_k = (b_k * tl.exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype) if USE_GV: if HEAD_FIRST: p_gv = tl.make_block_ptr(gv + i_nh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_gv_last = (gv + i_nh * T * V + last_idx * V + i_v * BV + tl.arange(0, BV)) else: p_gv = tl.make_block_ptr(gv + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_gv_last = gv + (bos + last_idx ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV) b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) < V, other=0.0) b_h *= tl.exp(b_gv_last)[None, :] b_gv = tl.load(p_gv, boundary_check=(0, 1)) b_v = (b_v * tl.exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype) b_h += tl.dot(b_k, b_v) if STORE_FINAL_STATE: p_ht = tl.make_block_ptr(ht + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h.py
bd50fa8d-7a93-45f1-be5a-1848956128a7
matmul.py
jax-ml/jax-triton
examples/matmul.py
859cc392bec876d132bd0790ea6c00b6c246dd2b
0
@triton.jit def relu(x): return tl.where(x >= 0, x, 0)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/jax-ml/jax-triton/blob/859cc392bec876d132bd0790ea6c00b6c246dd2b/examples/matmul.py
24bff4b0-3174-46f7-90f5-71dbb3e12644
softmax_naive.py
iclementine/optimize_softmax
softmax_naive.py
6ddeee3481dd5e63f4a30b946c417e97bc4494bf
0
@triton.jit def softmax_kernel(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr): pid_m = tl.program_id(0) n_offsets = tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) m = tl.max(inp, 0) e = tl.exp(inp - m) z = tl.sum(e, 0) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_naive.py
8a498a79-9878-41b0-9e3c-3a83716b2886
swiglu.py
shauray8/continuity
continuity/diffusion_engine/models/triton_kernels/swiglu.py
a52ad077e4ed3162576c7417f302e792ccdf5eca
0
@triton.jit def _fg_kernel(e, g, h, n_elements, BLOCK_SIZE: tl.constexpr): block_idx = tl.program_id(0) offsets = block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements e_row = tl.load(e + offsets, mask=mask, other=0).to(tl.float32) g_row = tl.load(g + offsets, mask=mask, other=0) f_row = e_row * tl.sigmoid(e_row) f_row = f_row.to(g_row.dtype) h_row = f_row * g_row tl.store(h + offsets, h_row, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/shauray8/continuity/blob/a52ad077e4ed3162576c7417f302e792ccdf5eca/continuity/diffusion_engine/models/triton_kernels/swiglu.py
891bbd59-6bf6-4383-a905-e03f4293b257
ops.py
srush/triton-autodiff
triton_autodiff/ops.py
f9d1a04d048e3252bfd222646db7175ad60a3c7c
0
@triton.jit def add_grad(left, right): right = triton_unbroadcast(right, left.shape) return left + right
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/srush/triton-autodiff/blob/f9d1a04d048e3252bfd222646db7175ad60a3c7c/triton_autodiff/ops.py
f4342a00-1b63-4e9d-90eb-9cd669123177
activation.py
chengzeyi/stable-fast
src/sfast/triton/ops/activation.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@triton.jit def gelu(x): return 0.5 * x * (1.0 + tl.tanh(0.7978845608028654 * (x + 0.044715 * x * x * x)))
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/activation.py
1f58dd3e-6916-457c-a58e-f4b968d69485
activation.py
chengzeyi/stable-fast
src/sfast/triton/ops/activation.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@triton.jit def identity(x): return x
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/activation.py
810d1a75-8358-49ce-890d-2b567c12cecf
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gated_delta_rule/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=4)], key=['BT', 'BK', 'BV']) @triton.jit def chunk_gated_delta_rule_fwd_kernel_o(q, k, v, h, g, o, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl. constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_o = tl.zeros([BT, BV], dtype=tl.float32) b_s = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (K, V), ( V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)) b_o += tl.dot(b_q, b_h, allow_tf32=False) b_s += tl.dot(b_q, b_k, allow_tf32=False) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT, ), (0,)) p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_g = tl.load(p_g, boundary_check=(0,)) b_o = b_o * tl.exp(b_g)[:, None] b_s = b_s * tl.exp(b_g[:, None] - b_g[None, :]) b_s = tl.where(m_s, b_s, 0) b_v = tl.load(p_v, boundary_check=(0, 1)) b_o = (b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) * scale tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access", "Transposed Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/chunk.py
f634d81f-eff7-4c83-ac4b-f2cf21f8ff28
rope.py
ardywibowo/triton-mode
kernels/rope.py
5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1
0
@triton.jit def triton_rope(q_buffer, q_buffer_stride, k_buffer, k_buffer_stride, cos_values, cos_values_stride, sin_values, sin_values_stride, seq_length, batch_size: tl.constexpr, num_q_heads: tl.constexpr, num_k_heads: tl.constexpr, head_dim: tl.constexpr, padded_num_q_heads: tl.constexpr, padded_num_k_heads: tl.constexpr, padded_head_dim: tl. constexpr, TILE_SIZE: tl.constexpr, IS_BACKWARD: tl.constexpr=False): prog_id = tl.program_id(0) q_buffer = q_buffer + prog_id * q_buffer_stride k_buffer = k_buffer + prog_id * k_buffer_stride cos_index = prog_id % seq_length cos_values = cos_values + cos_index * cos_values_stride sin_values = sin_values + cos_index * sin_values_stride cos_indices = tl.arange(0, padded_head_dim // 2) cos_active_mask = cos_indices < head_dim // 2 cos_vec = tl.load(cos_values + cos_indices, mask=cos_active_mask, other=0) sin_vec = tl.load(sin_values + cos_indices, mask=cos_active_mask, other=0) q_half_offsets = tl.arange(0, padded_num_q_heads)[:, None ] * head_dim + tl.arange(0, padded_head_dim // 2)[None, :] k_half_offsets = tl.arange(0, padded_num_k_heads)[:, None ] * head_dim + tl.arange(0, padded_head_dim // 2)[None, :] q_mask = (tl.arange(0, padded_num_q_heads)[:, None] < num_q_heads) & (tl .arange(0, padded_head_dim // 2)[None, :] < head_dim // 2) k_mask = (tl.arange(0, padded_num_k_heads)[:, None] < num_k_heads) & (tl .arange(0, padded_head_dim // 2)[None, :] < head_dim // 2) q_tile_part1 = tl.load(q_buffer + q_half_offsets, mask=q_mask, other=0).to( sin_vec.dtype) k_tile_part1 = tl.load(k_buffer + k_half_offsets, mask=k_mask, other=0).to( sin_vec.dtype) q_half2_offsets = q_half_offsets + head_dim // 2 k_half2_offsets = k_half_offsets + head_dim // 2 q_half2_mask = q_mask k_half2_mask = k_mask q_tile_part2 = tl.load(q_buffer + q_half2_offsets, mask=q_half2_mask, other=0).to(sin_vec.dtype) k_tile_part2 = tl.load(k_buffer + k_half2_offsets, mask=k_half2_mask, other=0).to(sin_vec.dtype) if not IS_BACKWARD: updated_q_part1 = q_tile_part1 * cos_vec - q_tile_part2 * sin_vec tl.store(q_buffer + q_half_offsets, updated_q_part1, mask=q_mask) updated_q_part2 = q_tile_part2 * cos_vec + q_tile_part1 * sin_vec tl.store(q_buffer + q_half2_offsets, updated_q_part2, mask=q_half2_mask ) updated_k_part1 = k_tile_part1 * cos_vec - k_tile_part2 * sin_vec tl.store(k_buffer + k_half_offsets, updated_k_part1, mask=k_mask) updated_k_part2 = k_tile_part2 * cos_vec + k_tile_part1 * sin_vec tl.store(k_buffer + k_half2_offsets, updated_k_part2, mask=k_half2_mask ) else: reversed_q_part1 = q_tile_part1 * cos_vec + q_tile_part2 * sin_vec tl.store(q_buffer + q_half_offsets, reversed_q_part1, mask=q_mask) reversed_q_part2 = q_tile_part2 * cos_vec - q_tile_part1 * sin_vec tl.store(q_buffer + q_half2_offsets, reversed_q_part2, mask= q_half2_mask) reversed_k_part1 = k_tile_part1 * cos_vec + k_tile_part2 * sin_vec tl.store(k_buffer + k_half_offsets, reversed_k_part1, mask=k_mask) reversed_k_part2 = k_tile_part2 * cos_vec - k_tile_part1 * sin_vec tl.store(k_buffer + k_half2_offsets, reversed_k_part2, mask= k_half2_mask)
{ "Data Type": [ "fp16", "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access", "Transposed Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/rope.py
9636248c-a664-44e8-a77b-6cdc6b314b7e
silu.py
ai-compiler-study/triton-kernels
triton_kernels/ops/silu.py
2308e5e9d965059fe2d19b4d535debac4970b69e
0
@triton.jit def triton_silu(x_ptr, b_ptr, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x = tl.load(x_ptr + x0, mask=xmask).to(tl.float32) output = (x * tl.sigmoid(x)).to(tl.float32) tl.store(b_ptr + x0, output, xmask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/ops/silu.py
736db1ea-c332-43df-a318-da529e0545d7
rms_norm.py
dame-cell/Triformer
triformer/rms_norm.py
0712537d576166b93fa09aa9509b2661b9ed8a68
0
@triton.jit def rmsnorm_forward(Y, Y_row_stride, X, X_row_stride, W, r, n_cols, eps, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < n_cols Y_ptr = Y + row_idx * Y_row_stride X_ptr = X + row_idx * X_row_stride r_ptr = r + row_idx X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0).to(tl.float32) W_row = tl.load(W + col_offsets, mask=mask, other=0).to(tl.float32) X_squared = X_row * X_row mean_X_squared = tl.sum(X_squared, axis=0) / n_cols rms = tl.math.rsqrt(mean_X_squared + eps) tl.store(r_ptr, rms) output = X_row * rms * W_row tl.store(Y_ptr + col_offsets, output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/rms_norm.py
395d36cc-ba19-422f-b9e3-4d3f977cec4b
block_sparse_attention_lut.py
sparklesea/sparse-quant
sparse-attention/muxi/playground/kernels/block_sparse_attention_lut.py
e3d8b6ecab208c31b744913ed8c3caaa43605f86
0
@triton.jit def _sparse_attention_decode_fwd_kernel(Q, K, V, sm_scale, Out, L, M, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, stride_luth, NNZ: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, lut): start_n = tl.program_id(0) off_hz = tl.program_id(1) start_nnz = tl.load(lut + off_hz * stride_luth + start_n) kv_offset = off_hz * stride_kh q_offset = off_hz * stride_qh o_offset = off_hz * stride_oh Q_block_ptr = tl.make_block_ptr(base=Q + q_offset, shape=(1, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(0, 0), block_shape=(1, BLOCK_DMODEL), order=(1, 0)) K_block_ptr = tl.make_block_ptr(base=K + kv_offset, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, start_nnz * BLOCK_N), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) V_block_ptr = tl.make_block_ptr(base=V + kv_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(start_nnz * BLOCK_N, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0)) O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(NNZ, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_n, 0), block_shape=(1, BLOCK_DMODEL), order=(1, 0)) qk_scale = sm_scale * 1.44269504 q = tl.load(Q_block_ptr) q = (q * qk_scale).to(tl.float16) k = tl.load(K_block_ptr) qk = tl.expand_dims(tl.sum(tl.trans(q) * k, axis=0), axis=0).to(tl.float32) k_indices = start_nnz * BLOCK_N + tl.arange(0, BLOCK_N) qk = tl.where(k_indices < N_CTX, qk, float('-inf')) m = tl.max(qk, axis=1, return_indices=False) p = tl.math.exp2(qk - m) l = tl.sum(p, axis=1) v = tl.load(V_block_ptr).to(tl.float16) p = p.to(tl.float16) acc = tl.expand_dims(tl.sum(tl.trans(p) * v, axis=0), axis=0) tl.store(O_block_ptr, acc) l_ptrs = L + off_hz * NNZ + start_n + tl.arange(0, 1) m_ptrs = M + off_hz * NNZ + start_n + tl.arange(0, 1) tl.store(l_ptrs, l) tl.store(m_ptrs, m)
{ "Data Type": [ "fp16", "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access", "Transposed Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache", "BSD" ]
https://github.com/sparklesea/sparse-quant/blob/e3d8b6ecab208c31b744913ed8c3caaa43605f86/sparse-attention/muxi/playground/kernels/block_sparse_attention_lut.py
89a686ef-90d0-45ff-bfe3-19e9d5250c8f
wy_fast.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/wy_fast.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16]], key=['BK']) @triton.jit def fwd_prepare_wy_repr_kernel_chunk64(k, beta, A, offsets, indices, T: tl. constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl. constexpr, BC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl. constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T b_A = tl.zeros([BC, BC], dtype=tl.float32) b_A2 = tl.zeros([BC, BC], dtype=tl.float32) b_A3 = tl.zeros([BC, BC], dtype=tl.float32) if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BC,), (0,)) else: p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BC,), (0,)) b_beta = tl.load(p_beta, boundary_check=(0,)) if HEAD_FIRST: p_beta2 = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT + BC,), (BC,), (0,)) else: p_beta2 = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT + BC,), (BC,), (0,)) b_beta2 = tl.load(p_beta2, boundary_check=(0,)) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0)) p_k2 = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0)) p_k2 = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_kb = (b_k * b_beta[:, None]).to(b_k.dtype) b_k2 = tl.load(p_k2, boundary_check=(0, 1)) b_kb2 = (b_k2 * b_beta2[:, None]).to(b_k2.dtype) b_A += tl.dot(b_kb, tl.trans(b_k), allow_tf32=False) b_A2 += tl.dot(b_kb2, tl.trans(b_k2), allow_tf32=False) b_A3 += tl.dot(b_kb2, tl.trans(b_k), allow_tf32=False) b_A = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A, 0) b_A2 = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A2, 0) for i in range(1, BC): mask = tl.arange(0, BC) == i b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0) b_a2 = tl.sum(tl.where(mask[:, None], b_A2, 0), 0) b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BC) < i) b_a2 = b_a2 + tl.sum(b_a2[:, None] * b_A2, 0) * (tl.arange(0, BC) < i) b_A = tl.where(mask[:, None], b_a, b_A) b_A2 = tl.where(mask[:, None], b_a2, b_A2) b_A += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_A2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :] b_A3 = -tl.dot(tl.dot(b_A2, b_A3, allow_tf32=False), b_A, allow_tf32=False) if HEAD_FIRST: p_A1 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) p_A2 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) p_A3 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) p_A4 = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) else: p_A1 = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BC, BC), (1, 0)) p_A2 = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0)) p_A3 = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0)) p_A4 = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, BC), (BC, BC), (1, 0)) tl.store(p_A1, b_A.to(p_A1.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_A2, b_A2.to(p_A2.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_A3, b_A3.to(p_A3.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_A4, tl.zeros([BC, BC], dtype=tl.float32).to(p_A4.dtype. element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access", "Transposed Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/wy_fast.py
6ed4de31-dcc6-4dc9-a02d-409ffb40b3d9
math.py
BobMcDear/attorch
attorch/math.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def update_ema(prev_ema, new_val, momentum): """ Updates exponential moving average. Args: prev_ema: Previous exponential moving average. new_val: Value used to update the exponential moving average. momentum: Momentum. Returns: Updated running statistic. """ return (1 - momentum) * prev_ema + momentum * new_val
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Single Instance" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py
f6af2c0f-1b6e-4f7e-a6be-7ccf22bd5782
y_3.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_3.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def third_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): coord_stride = 3 block_id = tl.program_id(0) coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) CONST000 = 2.64575131106459 CONST002 = 5.1234753829798 CONST004 = 6.48074069840786 CONST005 = 10.2469507659596 CONST006 = -2.09165006633519 CONST007 = -1 CONST008 = -6.27495019900557 CONST009 = -3.96862696659689 CONST010 = -1.62018517460197 VAR07 = x * x * x VAR08 = x * x VAR16 = y * y * y VAR17 = y * y VAR25 = z * z * z VAR26 = z * z Y00 = CONST006 * VAR07 - CONST008 * VAR26 * x Y01 = CONST005 * x * y * z Y02 = CONST010 * VAR07 + x * (CONST004 * VAR17 + CONST010 * VAR26) Y03 = CONST000 * VAR16 + CONST009 * VAR08 * y + CONST009 * VAR26 * y Y04 = CONST010 * VAR25 + z * (CONST004 * VAR17 + CONST010 * VAR08) Y05 = CONST002 * y * (CONST007 * VAR08 + VAR26) Y06 = -CONST006 * VAR25 + CONST008 * VAR08 * z output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) tl.store(output_ptr + output_row_offset, Y00, mask=output_row_offset < output_numel) tl.store(output_ptr + output_row_offset + 1, Y01, mask= output_row_offset + 1 < output_numel) tl.store(output_ptr + output_row_offset + 2, Y02, mask= output_row_offset + 2 < output_numel) tl.store(output_ptr + output_row_offset + 3, Y03, mask= output_row_offset + 3 < output_numel) tl.store(output_ptr + output_row_offset + 4, Y04, mask= output_row_offset + 4 < output_numel) tl.store(output_ptr + output_row_offset + 5, Y05, mask= output_row_offset + 5 < output_numel) tl.store(output_ptr + output_row_offset + 6, Y06, mask= output_row_offset + 6 < output_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_3.py
318e31bb-32df-41cc-97f5-6c170ad3dd15
triton_kernels.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/triton_kernels.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def _triton_third_order_bwd(x_ptr: tl.tensor, y_ptr: tl.tensor, z_ptr: tl. tensor, g_x_ptr: tl.tensor, g_y_ptr: tl.tensor, g_z_ptr: tl.tensor, g_1_0_ptr: tl.tensor, g_1_1_ptr: tl.tensor, g_1_2_ptr: tl.tensor, g_2_0_ptr: tl.tensor, g_2_1_ptr: tl.tensor, g_2_2_ptr: tl.tensor, g_2_3_ptr: tl.tensor, g_2_4_ptr: tl.tensor, g_3_0_ptr: tl.tensor, g_3_1_ptr: tl.tensor, g_3_2_ptr: tl.tensor, g_3_3_ptr: tl.tensor, g_3_4_ptr: tl.tensor, g_3_5_ptr: tl.tensor, g_3_6_ptr: tl.tensor, BLOCK_SIZE: tl.constexpr, vector_length: tl.constexpr): sqrt_3 = 3 ** 0.5 sqrt_5 = 5 ** 0.5 sqrt_15 = 15 ** 0.5 block_id = tl.program_id(0) offset = tl.arange(0, BLOCK_SIZE) + BLOCK_SIZE * block_id x_row_start = x_ptr + offset y_row_start = y_ptr + offset z_row_start = z_ptr + offset x = tl.load(x_row_start, mask=offset < vector_length) y = tl.load(y_row_start, mask=offset < vector_length) z = tl.load(z_row_start, mask=offset < vector_length) g_1_0 = tl.load(g_1_0_ptr + offset, mask=offset < vector_length) g_1_1 = tl.load(g_1_1_ptr + offset, mask=offset < vector_length) g_1_2 = tl.load(g_1_2_ptr + offset, mask=offset < vector_length) g_x = sqrt_3 * g_1_0 g_y = sqrt_3 * g_1_1 g_z = sqrt_3 * g_1_2 g_2_0 = tl.load(g_2_0_ptr + offset, mask=offset < vector_length) g_2_1 = tl.load(g_2_1_ptr + offset, mask=offset < vector_length) g_2_2 = tl.load(g_2_2_ptr + offset, mask=offset < vector_length) g_2_3 = tl.load(g_2_3_ptr + offset, mask=offset < vector_length) g_2_4 = tl.load(g_2_4_ptr + offset, mask=offset < vector_length) g_x += sqrt_15 * z * g_2_0 g_z += sqrt_15 * x * g_2_0 g_x += sqrt_15 * y * g_2_1 g_y += sqrt_15 * x * g_2_1 g_y += sqrt_15 * z * g_2_2 g_z += sqrt_15 * y * g_2_2 g_x += -1.0 * sqrt_5 * x * g_2_3 g_y += 2.0 * sqrt_5 * y * g_2_3 g_z += -1.0 * sqrt_5 * z * g_2_3 g_x += -1.0 * sqrt_15 * x * g_2_4 g_z += sqrt_15 * z * g_2_4 g_3_0 = tl.load(g_3_0_ptr + offset, mask=offset < vector_length) g_3_1 = tl.load(g_3_1_ptr + offset, mask=offset < vector_length) g_3_2 = tl.load(g_3_2_ptr + offset, mask=offset < vector_length) g_3_3 = tl.load(g_3_3_ptr + offset, mask=offset < vector_length) g_3_4 = tl.load(g_3_4_ptr + offset, mask=offset < vector_length) g_3_5 = tl.load(g_3_5_ptr + offset, mask=offset < vector_length) g_3_6 = tl.load(g_3_6_ptr + offset, mask=offset < vector_length) sq_x = x * x sq_y = y * y sq_z = z * z g_x += sqrt_15 * g_3_0 * (-1.62018517460196 * sq_x + 1.08012344973464 * sq_z + 0.540061724867322 * sq_z) g_x += 2.64575131106459 * sqrt_15 * g_3_1 * y * z g_x -= g_3_2 * (4.8605555238059 * sq_x - 6.48074069840786 * sq_y + 1.62018517460197 * sq_z) g_x -= 7.93725393319377 * g_3_3 * x * y g_x -= 3.24037034920393 * g_3_4 * x * z g_x -= 2.64575131106459 * sqrt_15 * g_3_5 * x * y g_x -= sqrt_15 * g_3_6 * z * (1.08012344973464 * x + 2.16024689946929 * x) g_y += 2.64575131106459 * sqrt_15 * g_3_1 * x * z g_y += 12.9614813968157 * g_3_2 * x * y g_y -= g_3_3 * (3.96862696659689 * sq_x - 7.93725393319377 * sq_y + 3.96862696659689 * sq_z) g_y += 12.9614813968157 * g_3_4 * y * z g_y -= 1.3228756555323 * sqrt_15 * g_3_5 * (sq_x - sq_z) g_z += sqrt_15 * g_3_0 * x * (1.08012344973464 * z + 2.16024689946929 * z) g_z += 2.64575131106459 * sqrt_15 * g_3_1 * x * y g_z -= 3.24037034920393 * g_3_2 * x * z g_z -= 7.93725393319377 * g_3_3 * y * z g_z -= g_3_4 * (1.62018517460197 * sq_x - 6.48074069840786 * sq_y + 4.8605555238059 * sq_z) g_z += 2.64575131106459 * sqrt_15 * g_3_5 * y * z g_z -= sqrt_15 * g_3_6 * (1.08012344973464 * sq_x + 0.540061724867322 * sq_x - 1.62018517460196 * sq_z) tl.store(g_x_ptr + offset, g_x, mask=offset < vector_length) tl.store(g_y_ptr + offset, g_y, mask=offset < vector_length) tl.store(g_z_ptr + offset, g_z, mask=offset < vector_length)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/triton_kernels.py
6927aecc-280a-412c-8568-2e3046c2cd1c
triton_jagged_tensor_ops.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def triton_jagged_to_dense_optimization_2d(input_jagged_values_ptr, input_jagged_offset_ptr, input_jagged_row_stride, output_dense_ptr, output_dense_row_stride, output_dense_matrix_stride, thread_block_row_size: tl.constexpr, thread_block_col_size: tl. constexpr, padded_value, operation_function: tl.constexpr, operation_dense ) ->None: pid = tl.program_id(0) offset_idx = pid begin = tl.load(input_jagged_offset_ptr + offset_idx) end = tl.load(input_jagged_offset_ptr + offset_idx + 1) cur_jagged_tensor_row_size = end - begin output_dense_ptr += pid * output_dense_matrix_stride input_jagged_values_ptr += begin * input_jagged_row_stride if operation_function is not None: operation_dense += pid * output_dense_matrix_stride offset_row = tl.arange(0, thread_block_row_size) dense_col_size = output_dense_row_stride dense_row_size = output_dense_matrix_stride // output_dense_row_stride for _i in range(0, dense_row_size, thread_block_row_size): offset_col = tl.arange(0, thread_block_col_size) block_offset = offset_row[:, None ] * output_dense_row_stride + offset_col[None, :] for _j in range(0, dense_col_size, thread_block_col_size): dense_mask = (offset_row[:, None] < dense_row_size) & (offset_col [None, :] < dense_col_size) jagged_mask = (offset_row[:, None] < cur_jagged_tensor_row_size ) & (offset_col[None, :] < input_jagged_row_stride) jagged_val = tl.load(input_jagged_values_ptr + block_offset, mask=jagged_mask, other=padded_value) if operation_function is not None: operation_dense_val = tl.load(operation_dense + block_offset, mask=dense_mask, other=0.0) jagged_val = operation_function(operation_dense_val, jagged_val ) tl.store(output_dense_ptr + block_offset, jagged_val, mask= dense_mask) offset_col += thread_block_col_size block_offset += thread_block_col_size offset_row += thread_block_row_size
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
d73689df-125b-497e-b758-19f7ab9950f4
06-fused-attention.py
2lambda123/triton
python/tutorials/06-fused-attention.py
09e27725b89043a07f49c440db6a9aedcfba8432
0
@triton.jit def _bwd_preprocess(Out, DO, Delta, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_n = tl.arange(0, D_HEAD) o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) delta = tl.sum(o * do, axis=1) tl.store(Delta + off_m, delta)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/2lambda123/triton/blob/09e27725b89043a07f49c440db6a9aedcfba8432/python/tutorials/06-fused-attention.py
8f081f68-2198-4cce-a6f5-0e54650bd725
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def padded_dense_to_jagged2_kernel(x_ptr, lengths_ptr, offsets_ptr, output_jagged_ptr, stride_b, stride_m, stride_n, max_length, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): pid_batch = tl.program_id(2) pid_m = tl.program_id(0) pid_n = tl.program_id(1) begin = tl.load(offsets_ptr + pid_batch) seqlen = tl.load(lengths_ptr + pid_batch) seqlen = tl.minimum(seqlen, max_length) if seqlen == 0: return offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) x_ptrs = x_ptr + pid_batch * stride_b + offs_m[:, None ] * stride_m + offs_n[None, :] * stride_n x = tl.load(x_ptrs, mask=(offs_m[:, None] < seqlen) & (offs_n[None, :] < seqlen)) out_ptrs = output_jagged_ptr + begin + offs_m[:, None] * seqlen + offs_n[ None, :] tl.store(out_ptrs, x, mask=(offs_m[:, None] < seqlen) & (offs_n[None, : ] < seqlen))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
6d81ba3a-93a7-42c4-af16-ccbd76925f55
05-layer-norm.py
triton-lang/triton
python/tutorials/05-layer-norm.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.jit def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, Mean, Rstd, Lock, stride, N, GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N X += row * stride DY += row * stride DX += row * stride lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id * N + cols DB = DB + lock_id * N + cols x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) xhat = (x - mean) * rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.0) wdy = tl.where(mask, wdy, 0.0) c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd tl.store(DX + cols, dx, mask=mask) partial_dw = (dy * xhat).to(w.dtype) partial_db = dy.to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) tl.atomic_xchg(Lock, 0)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/05-layer-norm.py
5d85d5a2-0693-4087-ad1a-4430132d743a
gemm_splitk_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_splitk_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'BLOCK_M': 256, 'BLOCK_N': 256, 'BLOCK_K': 32, 'GROUP_M': 4, 'SPLIT_K': 4, 'grf_mode': 'large'}, num_stages=4, num_warps=32)], key=['M', 'N', 'K']) @triton.jit def _kernel(A, B, C, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bk: tl. constexpr, stride_bn: tl.constexpr, stride_cm: tl.constexpr, stride_cn: tl.constexpr, acc_dtype: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl .constexpr): pid = tl.program_id(0) pid_z = tl.program_id(1) grid_m = tl.cdiv(M, BLOCK_M) grid_n = tl.cdiv(N, BLOCK_N) width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + pid % group_size pid_n = pid % width // group_size a_block_ptr = tl.make_block_ptr(base=A, shape=(M, K), strides=( stride_am, stride_ak), offsets=(pid_m * BLOCK_M, pid_z * BLOCK_K), block_shape=(BLOCK_M, BLOCK_K), order=(1, 0)) b_block_ptr = tl.make_block_ptr(base=B, shape=(K, N), strides=( stride_bk, stride_bn), offsets=(pid_z * BLOCK_K, pid_n * BLOCK_N), block_shape=(BLOCK_K, BLOCK_N), order=(1, 0)) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=acc_dtype) for _ in range(0, K, BLOCK_K * SPLIT_K): a = tl.load(a_block_ptr) b = tl.load(b_block_ptr) acc += tl.dot(a, b, out_dtype=acc_dtype) a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_K * SPLIT_K)) b_block_ptr = tl.advance(b_block_ptr, (BLOCK_K * SPLIT_K, 0)) acc = acc.to(C.dtype.element_ty) if SPLIT_K == 1: c_block_ptr = tl.make_block_ptr(base=C, shape=(M, N), strides=( stride_cm, stride_cn), offsets=(pid_m * BLOCK_M, pid_n * BLOCK_N), block_shape=(BLOCK_M, BLOCK_N), order=(1, 0)) tl.store(c_block_ptr, acc, boundary_check=(0, 1)) else: rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] tl.atomic_add(C, acc, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_splitk_benchmark.py
ff71555a-07ff-4b43-bde0-81003adfcfab
flash_attention.py
falkaer/multi-scale-music
seq/flash_attention.py
a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d
0
@triton.jit def causal_mask(offs_m, offs_n, M, N, EVEN_M: tl.constexpr, EVEN_N: tl. constexpr): shift = N - M mask = shift + offs_m[:, None] >= offs_n[None, :] if not EVEN_M & EVEN_N: mask = mask & make_bounds(offs_m, offs_n, M, N, EVEN_M, EVEN_N) return tl.where(mask, 0, float('-inf'))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Latency Sensitive" ] }
[ "MIT" ]
https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py
658e3aea-d371-4a6d-8906-df02e8f90b5c
blocksparse_attention_kernel.py
Charlie-XIAO/sparse-vllm
vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py
d228909a30b0c245c35417fb7d2acdf9a3690042
0
@triton.jit def _fwd_kernel_inner(acc, l_i, m_i, q, Q, k_block_col_idx, layout_col_ptr, layout_col_stride_h, layout_col_stride_m, k_ptrs, v_ptrs, off_h, offs_m, offs_n, offs_d, stride_kt, stride_vt, sm_scale, k_seqlen, past_len, LAST_K_BLOCK: tl.constexpr, BLOCK_M_LOADING: tl.constexpr, BLOCK_N: tl. constexpr, D_HEAD: tl.constexpr, EVEN_D: tl.constexpr, M_LT_N: tl.constexpr ): k_block_id = tl.load(layout_col_ptr + off_h * layout_col_stride_h + k_block_col_idx * layout_col_stride_m).to(tl.int32) start_n = k_block_id * BLOCK_N if LAST_K_BLOCK: if EVEN_D: k = tl.load(k_ptrs + start_n * stride_kt, mask=offs_n[None, :] + start_n < k_seqlen) else: k = tl.load(k_ptrs + start_n * stride_kt, mask=(offs_n[None, :] + start_n < k_seqlen) & (offs_d[:, None] < D_HEAD)) elif EVEN_D: k = tl.load(k_ptrs + start_n * stride_kt) else: k = tl.load(k_ptrs + start_n * stride_kt, mask=offs_d[:, None] < D_HEAD ) qk = tl.zeros([BLOCK_M_LOADING, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) qk *= sm_scale if LAST_K_BLOCK | M_LT_N: qk += tl.where(offs_m[:, None] + past_len >= start_n + offs_n[None, :], 0, float('-inf')) m_ij = tl.maximum(m_i, tl.max(qk, 1)) p = tl.math.exp2(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) alpha = tl.math.exp2(m_i - m_ij) acc = acc * alpha[:, None] m_i = m_ij l_i = l_i * alpha + l_ij p = p.to(Q.dtype.element_ty) if LAST_K_BLOCK: if EVEN_D: v = tl.load(v_ptrs + start_n * stride_vt, mask=offs_n[:, None] + start_n < k_seqlen) else: v = tl.load(v_ptrs + start_n * stride_vt, mask=(offs_n[:, None] + start_n < k_seqlen) & (offs_d[None, :] < D_HEAD)) elif EVEN_D: v = tl.load(v_ptrs + start_n * stride_vt) else: v = tl.load(v_ptrs + start_n * stride_vt, mask=offs_d[None, :] < D_HEAD ) acc += tl.dot(p, v) return acc, l_i, m_i
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Latency Sensitive" ] }
[ "Apache" ]
https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/attention/ops/blocksparse_attention/blocksparse_attention_kernel.py
ca7c4674-22d1-465d-8d7e-f908478548b8
sparse_copy.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/sparse_copy.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def sparse_map_kernel(top_experts_ptr, expert_ends_ptr, expert_pad_begins_ptr, sparse_rows_ptr, num_sparse_rows: tl.constexpr, num_experts: tl.constexpr, pad_to_multiple: tl.constexpr, block_size: tl.constexpr, block_size_expert: tl.constexpr, dtype: tl.constexpr): """ Since the methods we want (histogram, argsort) are not readily available in triton, we use a one-hot representation to get the quantities we want. TODO: Next triton release will support tl.histogram, maybe argsort. """ block_range = tl.arange(0, block_size) expert_range = tl.arange(0, block_size_expert) expert_mask = (None if block_size_expert == num_experts else expert_range < num_experts) if num_sparse_rows >= block_size: expert_index = tl.load(top_experts_ptr + block_range) else: expert_index = tl.load(top_experts_ptr + block_range, mask= block_range < num_sparse_rows, other=num_experts) expert_counts = tl.sum((expert_index[:, None] == expert_range[None, :]) .to(dtype), 0) for i in range(1, tl.cdiv(num_sparse_rows, block_size)): block_range += block_size if num_sparse_rows % block_size == 0: expert_index = tl.load(top_experts_ptr + block_range) else: expert_index = tl.load(top_experts_ptr + block_range, mask= block_range < num_sparse_rows, other=num_experts) expert_counts += tl.sum((expert_index[:, None] == expert_range[None, :]).to(dtype), 0) if pad_to_multiple is None: expert_counts_padded = expert_counts else: expert_counts_padded = (expert_counts + pad_to_multiple - 1 ) // pad_to_multiple * pad_to_multiple expert_ends = tl.cumsum(expert_counts_padded) expert_begins = expert_ends - expert_counts_padded if expert_ends_ptr is not None: tl.store(expert_ends_ptr + expert_range, expert_ends, mask=expert_mask) if expert_pad_begins_ptr is not None: tl.store(expert_pad_begins_ptr + expert_range, expert_begins + expert_counts, mask=expert_mask) if sparse_rows_ptr is not None: block_range = tl.arange(0, block_size) for i in range(tl.cdiv(num_sparse_rows, block_size)): if num_sparse_rows % block_size == 0: mask = None expert_index = tl.load(top_experts_ptr + block_range) else: mask = block_range < num_sparse_rows expert_index = tl.load(top_experts_ptr + block_range, mask= mask, other=num_experts) expert_one_hot = (expert_index[:, None] == expert_range[None, :] ).to(dtype) expert_offsets = (tl.cumsum(expert_one_hot, 0) + expert_begins[ None, :]) * expert_one_hot tl.store(sparse_rows_ptr + block_range, tl.sum(expert_offsets, 1) - 1, mask=mask) expert_begins += tl.sum(expert_one_hot, 0) block_range += block_size
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/sparse_copy.py
8a2be484-de09-45f5-adcd-8c5f11a156e6
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES, BLOCK_SIZES, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_sum_kernel_simple_fused_buffer_then_sum(input_ptr_values, input_ptr_offsets, output_ptr, M, MAX_SEQLEN, BLOCK_SIZE_RAGGED: tl. constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_ragged = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((BLOCK_SIZE_RAGGED, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_ragged ), tl.load(input_ptr_offsets + (pid_ragged + 1)) for block_pos in range(0, MAX_SEQLEN, BLOCK_SIZE_RAGGED): block_start_ragged = ragged_start + block_pos offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m buffer += tl.load(input_ptr_values + idxs, mask=mask, other=0) buffer_sum = tl.sum(buffer, axis=0) buffer_view = buffer_sum.reshape((BLOCK_SIZE_M,)) output_offsets = offsets_m + pid_ragged * M output_mask = output_offsets < M * (pid_ragged + 1) tl.store(output_ptr + output_offsets, buffer_view, mask=output_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_sum/kernels.py
942e12b2-81c0-40e4-966c-b945f0b6e59f
parallel_scan.py
chengkai-liu/RecBLR
parallel_scan.py
66e520c26e28c05a5425ba2e81c9169b7e0176e2
0
@triton.jit def forward_scan(gates, tokens, outputs, SEQUENCE_LENGTH: tl.constexpr): sequence_id = tl.num_programs(axis=1) * tl.program_id(axis=0 ) + tl.program_id(axis=1) strides = tl.arange(0, SEQUENCE_LENGTH) + sequence_id * SEQUENCE_LENGTH tokens_ = tl.load(tokens + strides) gates_ = tl.load(gates + strides) tuples = pack64(tokens_, gates_) output_tuples_ = tl.associative_scan(tuples, axis=0, combine_fn= first_order_op) output_tokens_, output_gates_ = unpack64(output_tuples_) tl.store(outputs + strides, output_tokens_)
{ "Data Type": [], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "Low Latency" ] }
[ "MIT" ]
https://github.com/chengkai-liu/RecBLR/blob/66e520c26e28c05a5425ba2e81c9169b7e0176e2/parallel_scan.py
7d8a010b-7cc8-4d82-8e78-3e637e19e741
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_mean/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES_RAGGED, BLOCK_SIZES_M, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_mean_kernel_simple_fused_sum_then_buffer(input_ptr_values, input_ptr_offsets, output_ptr, M, MAX_SEQLEN, BLOCK_SIZE_RAGGED: tl. constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_b = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((1, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_b), tl.load( input_ptr_offsets + (pid_b + 1)) ragged_len = ragged_end - ragged_start for block_pos in range(0, MAX_SEQLEN, BLOCK_SIZE_RAGGED): block_start_ragged = ragged_start + block_pos offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=0) buffer += tl.sum(input, axis=0) buffer_view = buffer.reshape((BLOCK_SIZE_M,)) buffer_view_mean = buffer_view * (1 / ragged_len) output_offsets = offsets_m + pid_b * M output_mask = output_offsets < M * (pid_b + 1) tl.store(output_ptr + output_offsets, buffer_view_mean, mask=output_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_mean/kernels.py
fbeec137-387e-4b5f-a767-2a50d629e0ce
bwd_inner_dk_dv.py
ROCm/aotriton
tritonsrc/bwd_inner_dk_dv.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def bwd_inner_dk_dv(dk, dv, qk_scale, bias_scale, q_ptrs, q_stride, kt, vt, B_block_ptr, do_ptrs, do_stride, l_ptrs, D_ptrs, seqlen_q, seqlen_k, head_dim, start_k, lo, hi, overflow_size, dropout_p, dropout_scale, philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, FULL_BLOCKS: tl. constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl.constexpr): offs_k = start_k + tl.arange(0, BLOCK_N) offs_q = tl.arange(0, BLOCK_M) ld_offs_d = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL) q_ptrs += lo * q_stride do_ptrs += lo * do_stride if BIAS_TYPE == 1: B_block_ptr = tl.advance(B_block_ptr, (lo, 0)) """ K1 K2 (d)V dO Q1 qk11 qk12 (d)v1 dO1 Q2 qk21 qk22 (d)v2 dO2 QK: (seqlen_q, seqlen_k) dO: (seqlen_q, hdim) dV: (seqlen_k, hdim) dV = (QK)^T dO dV1 = qk11 dO1 + qk21 dO2 = q1 k1 dO1 + q2 k1 dO2 dV2 = qk12 dO1 + qk22 dO2 = q1 k2 dO1 + q2 k2 dO2 ~~~~~ = 0 start_k: select k and dV start_q: select q and dO """ for start_q in range(lo, hi, BLOCK_M): offs_q_curr = offs_q[:, None] + start_q if not FULL_BLOCKS: q = load_fn(q_ptrs, offs_q + start_q, ld_offs_d, seqlen_q, head_dim ) else: q = load_fn(q_ptrs, None, ld_offs_d, seqlen_q, head_dim) if not FULL_BLOCKS: do = load_fn(do_ptrs, offs_q + start_q, ld_offs_d, seqlen_q, head_dim) else: do = load_fn(do_ptrs, None, ld_offs_d, seqlen_q, head_dim) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) if not FULL_BLOCKS: if overflow_size > 0: boundary_n = tl.full((BLOCK_N,), seqlen_q, dtype=tl.int32) mask = offs_q_curr < boundary_n[None, :] qk = tl.where(mask, qk, float('-inf')) if CAUSAL: qk = tl.where(offs_q_curr >= offs_k[None, :], qk, float('-inf')) if BIAS_TYPE == 0: pass elif BIAS_TYPE == 1: bias = tl.load(B_block_ptr, boundary_check=(0, 1), padding_option='zero') qk += bias * bias_scale else: tl.static_assert(False, f'Unsupported BIAS_TYPE {BIAS_TYPE}') qk += dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, q, kt) if FULL_BLOCKS: Di = tl.load(D_ptrs + offs_q_curr) l_i = tl.load(l_ptrs + offs_q_curr) else: boundary = tl.full((BLOCK_M,), BLOCK_M - overflow_size, dtype= tl.int32) d_lse_ptrs_mask = boundary > tl.arange(0, BLOCK_M) d_lse_padding = tl.full((BLOCK_M,), 0, dtype=tl.float32) Di = tl.load(D_ptrs + offs_q_curr, mask=d_lse_ptrs_mask[:, None ], other=d_lse_padding[:, None]) l_i = tl.load(l_ptrs + offs_q_curr, mask=d_lse_ptrs_mask[:, None], other=d_lse_padding[:, None]) p = tl.math.exp2(qk_scale * qk - l_i) if not FULL_BLOCKS or CAUSAL: if qk_scale == 0.0: p = tl.where(libdevice.isnan(p), 0.0, p) if ENABLE_DROPOUT: philox_offset = (batch_philox_offset + start_q * max_seqlen_k + start_k) keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, max_seqlen_k) if BLOCK_M == 1: dv += tl.where(keep, p * dropout_scale, 0.0).to(q_ptrs. dtype.element_ty) * do else: dv += tl.dot(tl.trans(tl.where(keep, p * dropout_scale, 0.0 )).to(q_ptrs.dtype.element_ty), do) elif BLOCK_M == 1: dv += p.to(q_ptrs.dtype.element_ty) * do else: dv += tl.dot(tl.trans(p.to(do.dtype)), do) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) dp += tl.dot(do, vt) if ENABLE_DROPOUT: dp = tl.where(keep, dp * dropout_scale, 0) ds = p * (dp - Di) if BLOCK_M == 1: dk += ds.to(q_ptrs.dtype.element_ty) * q else: dk += tl.dot(tl.trans(ds.to(q_ptrs.dtype.element_ty)), q) q_ptrs += q_stride * BLOCK_M do_ptrs += do_stride * BLOCK_M if BIAS_TYPE == 1: B_block_ptr = tl.advance(B_block_ptr, (BLOCK_M, 0)) return dk, dv
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/bwd_inner_dk_dv.py
b20ebc56-6a89-4549-b7b7-605c742067fe
flash_attention.py
drisspg/transformer_nuggets
transformer_nuggets/flash/flash_attention.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def masked_row(rows): """rows is BLOCK_M slice of the QK score Returns: BLOCK_M vector of boolean values indicating whether this Query x Key position is fully masked """ return rows == float('-inf')
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/flash/flash_attention.py
3536e65e-9891-4926-b200-b5960ac48099
triton_attention.py
pytorch-labs/tritonbench
tritonbench/operators/template_attention/triton_attention.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'BLOCK_DMODEL': 64}, num_stages=3, num_warps=4)], key=['num_queries']) @triton.jit def triton_tem_fused_no_exp2(arg_Q, arg_K, arg_V, out_ptr0, num_queries: tl .constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_DMODEL: tl.constexpr): Q = arg_Q K = arg_K V = arg_V stride_qz = 4194304 stride_qh = 262144 stride_qm = 64 stride_qk = 1 stride_kz = 4194304 stride_kh = 262144 stride_kn = 64 stride_kk = 1 stride_vz = 4194304 stride_vh = 262144 stride_vk = 64 stride_vn = 1 Z = 16 H = 16 N_CTX = 4096 qk_scale = 1.0 MATMUL_PRECISION = tl.float16 start_m = tl.program_id(0) off_hz = tl.program_id(1) qkv_offset = off_hz * stride_qh Q_block_ptr = tl.make_block_ptr(base=Q + qkv_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) K_block_ptr = tl.make_block_ptr(base=K + qkv_offset, shape=( BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0 ), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) V_block_ptr = tl.make_block_ptr(base=V + qkv_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0)) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) q = tl.load(Q_block_ptr) q = (q * qk_scale).to(MATMUL_PRECISION) lo = 0 hi = N_CTX for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k.to(MATMUL_PRECISION)) tmp0 = tl.full([1], 1024, tl.int64) tmp1 = offs_m[:, None] <= tmp0 tmp2 = start_n + offs_n[None, :] <= tmp0 tmp3 = tmp1 & tmp2 tmp4 = offs_m[:, None] >= start_n + offs_n[None, :] tmp5 = tmp3 | tmp4 tmp6 = float('-inf') tmp7 = tmp6.to(tl.float32) tmp8 = tl.where(tmp5, qk, tmp7) qk = tmp8 row_max = tl.max(qk, 1) m_i_new = tl.maximum(m_i, row_max) masked_out_rows = m_i_new == float('-inf') alpha = tl.math.exp(m_i - m_i_new) alpha = tl.where(masked_out_rows, 0, alpha) p = tl.math.exp(qk - m_i_new[:, None]) p = tl.where(masked_out_rows[:, None], 0, p) acc_scale = l_i * 0 + alpha acc *= acc_scale[:, None] acc += tl.dot(p.to(MATMUL_PRECISION), v.to(MATMUL_PRECISION)) l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) acc = acc / l_i[:, None] idx_z = tl.program_id(1) // H idx_h = tl.program_id(1) % H idx_m = offs_m[:, None] idx_d = tl.arange(0, BLOCK_DMODEL)[None, :] mask = (idx_m != -1) & (idx_d != -1) xindex = idx_d + 64 * idx_m + 262144 * idx_h + 4194304 * idx_z tl.store(out_ptr0 + xindex, acc, None)
{ "Data Type": [ "fp16" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/template_attention/triton_attention.py
2b4627a5-61b5-4d4b-aacb-1b0565738910
masks.py
drisspg/transformer_nuggets
transformer_nuggets/flash/masks.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def alibi_attention_triton(score, batch, head, seq_len_q, seq_len_kv, num_heads ): alibi_scale = tl.math.exp2(-((head + 1) * 8.0 / num_heads)) bias = seq_len_kv - seq_len_q score = score + alibi_scale * bias return score
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/flash/masks.py
6b120d1b-0950-4333-ad5e-5a0ff072d2b4
triton_fused_attention.py
pytorch-labs/tritonbench
tritonbench/kernels/triton_fused_attention.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(list(filter(keep, configsTma)), key=['N_CTX']) @triton.jit def _attn_fwd_tma(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl. constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.constexpr, STAGE: tl. constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE: tl.constexpr, ENABLE_WS: tl.constexpr): tl.static_assert(BLOCK_N <= HEAD_DIM) pid = tl.program_id(0) off_hz = tl.program_id(1) _attn_fwd_compute(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid, Z, H, N_CTX, BLOCK_M, BLOCK_N, HEAD_DIM, STAGE, ENABLE_TMA, LOOP_SCHEDULE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py
ffd4e13b-2976-4dd9-bf5e-79d064300709
08-grouped-gemm.py
triton-lang/triton
python/tutorials/08-grouped-gemm.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'NUM_SM': 84}), triton.Config( {'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'NUM_SM': 128}), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'NUM_SM': 84}), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'NUM_SM': 128})], key=[ 'group_size']) @triton.jit def grouped_matmul_kernel(group_a_ptrs, group_b_ptrs, group_c_ptrs, group_gemm_sizes, g_lds, group_size, NUM_SM: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): tile_idx = tl.program_id(0) last_problem_end = 0 for g in range(group_size): gm = tl.load(group_gemm_sizes + g * 3) gn = tl.load(group_gemm_sizes + g * 3 + 1) gk = tl.load(group_gemm_sizes + g * 3 + 2) num_m_tiles = tl.cdiv(gm, BLOCK_SIZE_M) num_n_tiles = tl.cdiv(gn, BLOCK_SIZE_N) num_tiles = num_m_tiles * num_n_tiles while (tile_idx >= last_problem_end and tile_idx < last_problem_end + num_tiles): k = gk lda = tl.load(g_lds + g * 3) ldb = tl.load(g_lds + g * 3 + 1) ldc = tl.load(g_lds + g * 3 + 2) a_ptr = tl.load(group_a_ptrs + g).to(tl.pointer_type(tl.float16)) b_ptr = tl.load(group_b_ptrs + g).to(tl.pointer_type(tl.float16)) c_ptr = tl.load(group_c_ptrs + g).to(tl.pointer_type(tl.float16)) tile_idx_in_gemm = tile_idx - last_problem_end tile_m_idx = tile_idx_in_gemm // num_n_tiles tile_n_idx = tile_idx_in_gemm % num_n_tiles offs_am = tile_m_idx * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = tile_n_idx * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + offs_am[:, None] * lda + offs_k[None, :] b_ptrs = b_ptr + offs_k[:, None] * ldb + offs_bn[None, :] accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl. float32) for kk in range(0, tl.cdiv(k, BLOCK_SIZE_K)): tl.multiple_of(a_ptrs, [16, 16]) tl.multiple_of(b_ptrs, [16, 16]) a = tl.load(a_ptrs) b = tl.load(b_ptrs) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K b_ptrs += BLOCK_SIZE_K * ldb c = accumulator.to(tl.float16) offs_cm = tile_m_idx * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = tile_n_idx * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + ldc * offs_cm[:, None] + offs_cn[None, :] tl.store(c_ptrs, c) tile_idx += NUM_SM last_problem_end = last_problem_end + num_tiles
{ "Data Type": [ "fp16" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/08-grouped-gemm.py
ea89f9e0-302f-4fd2-a737-0aff546ce52f
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_N': b_n, 'BLOCK_SIZE_K': b_k}, num_warps=w) for b_n, b_k, w in itertools.product ([(4 ** n) for n in range(6)], [(4 ** n) for n in range(4)], [2, 4, 8]) ], key=['N']) @triton.jit def triton_sum_kernel_2D_result_dim_1_sum_then_buffer(input_ptr, output_ptr, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, BLOCK_SIZE_N: tl. constexpr, BLOCK_SIZE_K: tl.constexpr): """ Modification to triton_sum_kernel_2D_result_dim_1() which uses a buffer to store intermediate results, enabling reducing over a large middle dimension for 3D input tensors """ pid = tl.program_id(axis=0) pid_m = pid // tl.cdiv(K, BLOCK_SIZE_K) pid_k = pid % tl.cdiv(K, BLOCK_SIZE_K) buffer = tl.zeros((1, BLOCK_SIZE_K), dtype=tl.float32) block_start_k = pid_k * BLOCK_SIZE_K offsets_k = block_start_k + tl.arange(0, BLOCK_SIZE_K) mask_k = offsets_k < K for block_start_n in range(0, N, BLOCK_SIZE_N): offsets_n = block_start_n + tl.arange(0, BLOCK_SIZE_N) mask_n = offsets_n < N idxs_base = offsets_n[:, None] * K + offsets_k idxs = idxs_base + pid_m * N * K mask = mask_n[:, None] & mask_k input = tl.load(input_ptr + idxs, mask=mask, other=0) buffer += tl.sum(input, axis=0) buffer_view = buffer.reshape((BLOCK_SIZE_K,)) output_offsets = pid_m * K + offsets_k tl.store(output_ptr + output_offsets, buffer_view, mask=mask_k)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound", "Batch-Oriented" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/sum/kernels.py
0d8babf1-950f-4d42-b5a5-310a8413e616
fused_moe_fp16.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/fused_moe_fp16.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _fused_moe_kernel(A, B, C, topk_weights_ptr, sorted_token_ids_ptr, expert_ids_ptr, num_tokens_post_padded_ptr, N, K, EM, num_valid_tokens, stride_am, stride_ak, stride_be, stride_bn, stride_bk, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, MUL_ROUTED_WEIGHT: tl.constexpr, top_k: tl.constexpr): pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % num_pid_in_group % group_size_m pid_n = pid % num_pid_in_group // group_size_m num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr) if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded: return offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_token = tl.load(sorted_token_ids_ptr + offs_token_id) token_mask = offs_token < num_valid_tokens offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = A + (offs_token[:, None] // top_k * stride_am + offs_k[None, : ] * stride_ak) off_experts = tl.load(expert_ids_ptr + pid_m) b_ptrs = B + off_experts * stride_be + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) _A0 = tl.zeros([1, 1], dtype=a_ptrs.dtype.element_ty) _B0 = tl.zeros([1, 1], dtype=b_ptrs.dtype.element_ty) for k in range(tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K), other=_A0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=_B0) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk if MUL_ROUTED_WEIGHT: moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0) accumulator = accumulator * moe_weight[:, None] accumulator = accumulator.to(A.dtype.element_ty) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = C + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :] c_mask = token_mask[:, None] & (offs_cn[None, :] < N) tl.store(c_ptrs, accumulator, mask=c_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication", "Top-K Selection" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput", "Batch-Oriented" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/fused_moe_fp16.py
90a00adc-8b7b-4112-b132-f300bfc18a2a
rwkv_vanilla.py
berlino/seq_icl
src/models/sequence/rnn/scan_triton/rwkv_vanilla.py
9b9223d15348b5a415fb453ed988ed5f7ab9fbdc
0
@triton.jit def wkv_triton_vanilla_backward_kernel(w_ptr, w_s_c, u_ptr, u_s_c, k_ptr, k_s_b, k_s_t, k_s_c, v_ptr, v_s_b, v_s_t, v_s_c, state_ptr, state_s_b, state_s_ab, state_s_t, state_s_c, gwkv_ptr, gwkv_s_b, gwkv_s_t, gwkv_s_c, gstate_out_ptr, gstate_out_s_b, gstate_out_s_ab, gstate_out_s_c, gw_ptr, gw_s_c, gu_ptr, gu_s_c, gk_ptr, gk_s_b, gk_s_t, gk_s_c, gv_ptr, gv_s_b, gv_s_t, gv_s_c, gstate_ptr, gstate_s_b, gstate_s_ab, gstate_s_c, tsz, chans, BLOCK_SIZE_C: tl.constexpr): b_idx = tl.program_id(0) c_idx = tl.program_id(1) cs = c_idx * BLOCK_SIZE_C + tl.arange(0, BLOCK_SIZE_C) cmask = cs < chans k_ptr = k_ptr + b_idx * k_s_b v_ptr = v_ptr + b_idx * v_s_b alpha_ptr = state_ptr + b_idx * state_s_b beta_ptr = state_ptr + b_idx * state_s_b + state_s_ab gk_ptr = gk_ptr + b_idx * gk_s_b gv_ptr = gv_ptr + b_idx * gv_s_b gwkv_ptr = gwkv_ptr + b_idx * gwkv_s_b galpha_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b gbeta_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b + gstate_out_s_ab galpha = tl.load(galpha_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl .float32) gbeta = tl.load(gbeta_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl. float32) w = tl.load(w_ptr + w_s_c * cs, mask=cmask).to(tl.float32) u = tl.load(u_ptr + u_s_c * cs, mask=cmask).to(tl.float32) ew = tl.exp(w) gw = tl.zeros_like(w) gu = tl.zeros_like(u) for t in range(tsz): tc = tsz - t - 1 kt = tl.load(k_ptr + tc * k_s_t + k_s_c * cs, mask=cmask).to(tl.float32 ) vt = tl.load(v_ptr + tc * v_s_t + v_s_c * cs, mask=cmask).to(tl.float32 ) alpha_prev = tl.load(alpha_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32) beta_prev = tl.load(beta_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32) euk = tl.exp(u + kt) ek = tl.exp(kt) denom = beta_prev + euk denom_sq = denom * denom gwkvt = tl.load(gwkv_ptr + tc * gwkv_s_t + gwkv_s_c * cs, mask=cmask ).to(tl.float32) guk = gwkvt * euk * (beta_prev * vt - alpha_prev) / denom_sq gu += guk gk = guk gv = gwkvt * euk / denom galpha_wkv = gwkvt / denom gbeta_wkv = -gwkvt * (euk * vt + alpha_prev) / denom_sq gw += galpha * ew * alpha_prev gk += galpha * ek * vt gv += galpha * ek gw += gbeta * ew * beta_prev gk += gbeta * ek tl.store(gk_ptr + tc * gk_s_t + gk_s_c * cs, gk, mask=cmask) tl.store(gv_ptr + tc * gv_s_t + gv_s_c * cs, gv, mask=cmask) galpha = galpha * ew + galpha_wkv gbeta = gbeta * ew + gbeta_wkv galpha_ptr = gstate_ptr + b_idx * gstate_s_b gbeta_ptr = gstate_ptr + b_idx * gstate_s_b + gstate_s_ab tl.store(galpha_ptr + gstate_s_c * cs, galpha, mask=cmask) tl.store(gbeta_ptr + gstate_s_c * cs, gbeta, mask=cmask) tl.atomic_add(gw_ptr + gw_s_c * cs, gw, mask=cmask) tl.atomic_add(gu_ptr + gu_s_c * cs, gu, mask=cmask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Batch-Oriented" ] }
[ "Apache" ]
https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/scan_triton/rwkv_vanilla.py
52b81982-1106-4fa0-9262-3ccc64858017
gemm_postop_gelu_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.jit def tanh(x): return 2 * tl.sigmoid(2 * x) - 1
{ "Data Type": [], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [ "Low Latency", "Single Instance" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_postop_gelu_benchmark.py
a830e503-24c8-412e-a532-a0dc3f91630f
k_softmax_dropout.py
kimiasa/Experiments
src/ops/triton/k_softmax_dropout.py
c4e73bfefd8290695ec52b6386b6b81838ca94a1
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32)], key=['K']) @triton.heuristics({'DEPTH': lambda nargs: get_depth(nargs['K'])}) @triton.heuristics({'IS_FP16': lambda nargs: nargs['GradIn'].dtype == torch .float16}) @triton.jit def _softmax_dropout_backward(GradIn, GradOut, Out, DropoutMask, dropout_prob, stride_bm, stride_bn, stride_gm, stride_gn, stride_om, stride_on, stride_mm, stride_mn, K, CAUSAL: tl.constexpr, DEPTH: tl. constexpr, IS_FP16: tl.constexpr): """ Compute the softmax gradients. ..Note: Not autotuning for now because this would lead to broken accumulated gradients """ m = tl.program_id(0) n = tl.program_id(1) k = tl.arange(0, DEPTH) grad_out_ptrs = GradOut + m * stride_gm + n * stride_gn + k out_ptrs = Out + m * stride_om + n * stride_on + k dropout_mask_ptrs = DropoutMask + m * stride_mm + n * stride_mn + k io_mask = k < K if CAUSAL: io_mask = io_mask & (k <= n) g = tl.load(grad_out_ptrs, mask=io_mask, other=float(0)) o = tl.load(out_ptrs, mask=io_mask, other=float(0)) zero = float(0) zero = zero.to(g.dtype) if CAUSAL: g = tl.where(k > n, zero, g) o = tl.where(k > n, zero, o) dropout_mask = tl.load(dropout_mask_ptrs, mask=io_mask, other=float(0)) g = tl.where(dropout_mask != 0, g / (1 - dropout_prob), zero) s = tl.sum(g * o, 0) grad_in = o * (g - s) grad_in_ptrs = GradIn + m * stride_bm + n * stride_bn + k tl.store(grad_in_ptrs, grad_in, mask=k < K)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/kimiasa/Experiments/blob/c4e73bfefd8290695ec52b6386b6b81838ca94a1/src/ops/triton/k_softmax_dropout.py
bef108ba-facf-4f6f-b328-e31add9c646e
real_rnn_tie_input_gate.py
berlino/seq_icl
src/models/sequence/rnn/scan_triton/real_rnn_tie_input_gate.py
9b9223d15348b5a415fb453ed988ed5f7ab9fbdc
0
@triton.jit def bwd_sequential_scan(grad_output, v, f, h, B, L, C, BLOCK_M: tl.constexpr): offset_b = tl.program_id(0) if offset_b >= B: return offset_n = tl.program_id(1) ptr = tl.arange(0, BLOCK_M) + offset_b * L * C + (L - 1 ) * C + offset_n * BLOCK_M grad_h = tl.zeros([BLOCK_M], dtype=tl.float32) for time_step in range(L - 1, -1, -1): grad = tl.load(grad_output + ptr).to(tl.float32) grad_h += grad decay = tl.load(f + ptr).to(tl.float32) input = tl.load(v + ptr).to(tl.float32) grad_v = (1 - decay) * grad_h tl.store(v + ptr, grad_v.to(v.dtype.element_ty)) hidden_state = tl.load(h + ptr - C, mask=ptr >= offset_b * L * C + C, other=0.0).to(tl.float32) grad_f = grad_h * (hidden_state - input) tl.store(f + ptr, grad_f.to(f.dtype.element_ty)) grad_h *= decay ptr -= C
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Batch-Oriented" ] }
[ "Apache" ]
https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/scan_triton/real_rnn_tie_input_gate.py