url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
1.83B
node_id
stringlengths
18
32
number
int64
1
6.09k
title
stringlengths
1
290
labels
list
state
stringclasses
2 values
locked
bool
1 class
milestone
dict
comments
int64
0
54
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
closed_at
stringlengths
20
20
active_lock_reason
null
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
null
state_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
is_pull_request
bool
2 classes
comments_text
sequence
https://api.github.com/repos/huggingface/datasets/issues/1689
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1689/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1689/comments
https://api.github.com/repos/huggingface/datasets/issues/1689/events
https://github.com/huggingface/datasets/pull/1689
779,107,313
MDExOlB1bGxSZXF1ZXN0NTQ5MTEwMDgw
1,689
Fix ade_corpus_v2 config names
[]
closed
false
null
0
2021-01-05T14:33:28Z
2021-01-05T14:55:09Z
2021-01-05T14:55:08Z
null
There are currently some typos in the config names of the `ade_corpus_v2` dataset, I fixed them: - Ade_corpos_v2_classificaion -> Ade_corpus_v2_classification - Ade_corpos_v2_drug_ade_relation -> Ade_corpus_v2_drug_ade_relation - Ade_corpos_v2_drug_dosage_relation -> Ade_corpus_v2_drug_dosage_relation
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1689/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1689/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1689.diff", "html_url": "https://github.com/huggingface/datasets/pull/1689", "merged_at": "2021-01-05T14:55:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/1689.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1689" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/5862
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5862/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5862/comments
https://api.github.com/repos/huggingface/datasets/issues/5862/events
https://github.com/huggingface/datasets/issues/5862
1,710,140,646
I_kwDODunzps5l7qzm
5,862
IndexError: list index out of range with data hosted on Zenodo
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
1
2023-05-15T13:47:19Z
2023-06-16T14:54:02Z
null
null
The dataset viewer sometimes raises an `IndexError`: ``` IndexError: list index out of range ``` See: - huggingface/datasets-server#1151 - https://huggingface.co/datasets/reddit/discussions/5 - huggingface/datasets-server#1118 - https://huggingface.co/datasets/krr-oxford/OntoLAMA/discussions/1 - https://huggingface.co/datasets/hyperpartisan_news_detection/discussions/3 - https://huggingface.co/datasets/um005/discussions/2 - https://huggingface.co/datasets/tapaco/discussions/2 - https://huggingface.co/datasets/common_language/discussions/3 - https://huggingface.co/datasets/pass/discussions/1 After investigation: - This happens with data files hosted on Zenodo - Indeed, there is an underlying 429 HTTP error: Too Many Requests Note that some time ago, it also happened with data files hosted on Google Drive. See: - #4581 - #4580 The reason then was that there was a 403 HTTP error: Forbidden
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5862/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5862/timeline
null
null
null
null
false
[ "This error is also raised when data is hosted on Google Drive:\r\n- https://huggingface.co/datasets/docred/discussions/5\r\n- https://huggingface.co/datasets/linnaeus/discussions/3\r\n- https://huggingface.co/datasets/poleval2019_mt/discussions/3\r\n- https://huggingface.co/datasets/reddit_tifu/discussions/2\r\n- https://huggingface.co/datasets/species_800/discussions/3\r\n- https://huggingface.co/datasets/wiki_lingua/discussions/1\r\n- https://huggingface.co/datasets/yoruba_text_c3/discussions/1" ]
https://api.github.com/repos/huggingface/datasets/issues/2639
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2639/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2639/comments
https://api.github.com/repos/huggingface/datasets/issues/2639/events
https://github.com/huggingface/datasets/pull/2639
943,527,463
MDExOlB1bGxSZXF1ZXN0Njg5MTQ3NDE5
2,639
Refactor patching to specific submodule
[]
closed
false
null
0
2021-07-13T15:08:45Z
2021-07-13T16:52:49Z
2021-07-13T16:52:49Z
null
Minor reorganization of the code, so that additional patching functions (not related to streaming) might be created. In relation with the initial approach followed in #2631.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2639/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2639/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2639.diff", "html_url": "https://github.com/huggingface/datasets/pull/2639", "merged_at": "2021-07-13T16:52:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/2639.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2639" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4347
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4347/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4347/comments
https://api.github.com/repos/huggingface/datasets/issues/4347/events
https://github.com/huggingface/datasets/pull/4347
1,235,318,064
PR_kwDODunzps43yihq
4,347
Support remote cache_dir
[]
closed
false
null
6
2022-05-13T14:26:35Z
2022-05-25T16:35:23Z
2022-05-25T16:27:03Z
null
This PR implements complete support for remote `cache_dir`. Before, the support was just partial. This is useful to create datasets using Apache Beam (parallel data processing) builder with `cache_dir` in a remote bucket, e.g., for Wikipedia dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4347/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4347/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4347.diff", "html_url": "https://github.com/huggingface/datasets/pull/4347", "merged_at": "2022-05-25T16:27:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/4347.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4347" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "@lhoestq thanks for your review.\r\n\r\nPlease note that `xjoin` cannot be used in this context, as it always returns a POSIX path string and this is not suitable on Windows machines.", "<s>`xjoin` returns windows paths (not posix) on windows, since it just extends`os.path.join` </s>\r\n\r\nActually you are right.\r\n\r\nhttps://github.com/huggingface/datasets/blob/08ec04ccb59630a3029b2ecd8a14d327bddd0c4a/src/datasets/utils/streaming_download_manager.py#L104-L105\r\n\r\nThough this is not an issue because posix paths (as returned by Path().as_posix()) work on windows. That's why we can replace `os.path.join` with `xjoin` in streaming mode. They look like `c:/Program Files/` or something (can't confirm right now, I don't have a windows with me)", "Until now, we have always replaced \"/\" in paths with `os.path.join` (`os.sep`,...) in order to support Windows paths (that contain r\"\\\\\").\r\n\r\nNow, you suggest ignoring this and work with POSIX strings (with \"/\").\r\n\r\nAs an example, when passing `cache_dir=r\"C:\\Users\\Username\\.mycache\"`:\r\n- Until now, it results in `self._cache_downloaded_dir = r\"C:\\Users\\Username\\.mycache\\downloads\"`\r\n- If we use `xjoin`, it will give `self._cache_downloaded_dir = \"C:/Users/Username/.mycache/downloads\"`\r\n\r\nYou say this is OK and we don't care if we work with POSIX strings on Windows machines.\r\n\r\nI'm incorporating your suggested changes then...", "Also note that using `xjoin`, if we pass `cache_dir=\"C:\\\\Users\\\\Username\\\\.mycache\"`, we get:\r\n- `self._cache_dir_root = \"C:\\\\Users\\\\Username\\\\.mycache\"`\r\n- `self._cache_downloaded_dir = \"C:/Users/Username/.mycache/downloads\"`", "It looks like it broke the CI on windows :/ maybe this was not a good idea, sorry" ]
https://api.github.com/repos/huggingface/datasets/issues/843
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/843/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/843/comments
https://api.github.com/repos/huggingface/datasets/issues/843/events
https://github.com/huggingface/datasets/issues/843
741,531,121
MDU6SXNzdWU3NDE1MzExMjE=
843
use_custom_baseline still produces errors for bertscore
[ { "color": "25b21e", "default": false, "description": "A bug in a metric script", "id": 2067393914, "name": "metric bug", "node_id": "MDU6TGFiZWwyMDY3MzkzOTE0", "url": "https://api.github.com/repos/huggingface/datasets/labels/metric%20bug" } ]
closed
false
null
5
2020-11-12T11:44:32Z
2021-08-31T10:06:44Z
2021-02-09T14:21:48Z
null
`metric = load_metric('bertscore')` `a1 = "random sentences"` `b1 = "random sentences"` `metric.compute(predictions = [a1], references = [b1], lang = 'en')` `Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/stephen_chan/.local/lib/python3.6/site-packages/datasets/metric.py", line 393, in compute output = self._compute(predictions=predictions, references=references, **kwargs) File "/home/stephen_chan/.cache/huggingface/modules/datasets_modules/metrics/bertscore/361e597a01a41d6cf95d94bbfb01dea16261687abc0c6c74cc9930f80488f363/bertscore.py", line 108, in _compute hashcode = bert_score.utils.get_hash(model_type, num_layers, idf, rescale_with_baseline) TypeError: get_hash() missing 1 required positional argument: 'use_custom_baseline'` Adding 'use_custom_baseline = False' as an argument produces this error `Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/stephen_chan/.local/lib/python3.6/site-packages/datasets/metric.py", line 393, in compute output = self._compute(predictions=predictions, references=references, **kwargs) TypeError: _compute() got an unexpected keyword argument 'use_custom_baseline'` This is on Ubuntu 18.04, Python 3.6.9, datasets version 1.1.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/843/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/843/timeline
null
completed
null
null
false
[ "Thanks for reporting ! That's a bug indeed\r\nIf you want to contribute, feel free to fix this issue and open a PR :)", "This error is because of a mismatch between `datasets` and `bert_score`. With `datasets=1.1.2` and `bert_score>=0.3.6` it works ok. So `pip install -U bert_score` should fix the problem. ", "Thanks for the heads up @pvl and for the PR as well :)", "Hello everyone,\r\n\r\nI think the problem is not solved: \r\n\r\n```\r\nfrom datasets import load_metric\r\nmetric=load_metric('bertscore')\r\nmetric.compute(\r\n predictions=predictions,\r\n references=references,\r\n lang='fr',\r\n rescale_with_baseline=True\r\n)\r\nTypeError: get_hash() missing 2 required positional arguments: 'use_custom_baseline' and 'use_fast_tokenizer'\r\n```\r\nThis code is produced using `Python 3.6.9 datasets==1.1.2 and bert_score==0.3.10`", "Hi ! This has been fixed by https://github.com/huggingface/datasets/pull/2770, we'll do a new release soon to make the fix available :)\r\n\r\nIn the meantime please use an older version of `bert_score`" ]
https://api.github.com/repos/huggingface/datasets/issues/2330
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2330/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2330/comments
https://api.github.com/repos/huggingface/datasets/issues/2330/events
https://github.com/huggingface/datasets/issues/2330
878,490,927
MDU6SXNzdWU4Nzg0OTA5Mjc=
2,330
Allow passing `desc` to `tqdm` in `Dataset.map()`
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
2
2021-05-07T05:52:54Z
2021-05-26T14:59:21Z
2021-05-26T14:59:21Z
null
It's normal to have many `map()` calls, and some of them can take a few minutes, it would be nice to have a description on the progress bar. Alternative solution: Print the description before/after the `map()` call.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2330/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2330/timeline
null
completed
null
null
false
[ "Hi @lhoestq,\r\nShould we change `desc` in [pbar](https://github.com/huggingface/datasets/blob/81fcf88172ed5e3026ef68aed4c0ec6980372333/src/datasets/arrow_dataset.py#L1860) to something meaningful?", "I think the user could pass the `desc` parameter to `map` so that it can be displayed in the tqdm progress bar, as suggested by @cccntu.\r\n\r\nWhen there's no multiprocessing, the `desc` of the progress bar could be the `desc` passed by the user.\r\nIn multiprocessing, we were already using a `desc` equal to `\"#\" + str(rank)`.\r\nWe can change it to be `(desc or \"\") + \"#\" + str(rank)` instead.\r\n\r\nIn the end, since both `desc` and `rank` could be None, we can have:\r\n```python\r\npbar_desc = (desc or \"\") + \"#\" + str(rank) if rank is not None else desc\r\n```\r\n\r\nFinally let's remember that if we add `desc` as a new parameter to `map`, we should add it to the `ignore_kwargs` list of the `@fingerprint_transform` decorator of `Dataset._map_single` since we don't want this parameter to affect the fingerprint of the resulting dataset." ]
https://api.github.com/repos/huggingface/datasets/issues/112
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/112/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/112/comments
https://api.github.com/repos/huggingface/datasets/issues/112/events
https://github.com/huggingface/datasets/pull/112
618,569,195
MDExOlB1bGxSZXF1ZXN0NDE4Mjc0MTU4
112
Qa4mre - add dataset
[]
closed
false
null
0
2020-05-14T22:17:51Z
2020-05-15T09:16:43Z
2020-05-15T09:16:42Z
null
Added dummy data test only for the first config. Will do the rest later. I had to do add some minor hacks to an important function to make it work. There might be a cleaner way to handle it - can you take a look @thomwolf ?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/112/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/112/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/112.diff", "html_url": "https://github.com/huggingface/datasets/pull/112", "merged_at": "2020-05-15T09:16:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/112.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/112" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4517
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4517/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4517/comments
https://api.github.com/repos/huggingface/datasets/issues/4517/events
https://github.com/huggingface/datasets/pull/4517
1,273,960,476
PR_kwDODunzps45zBl0
4,517
Add tags for task_ids:summarization-* and task_categories:summarization*
[]
closed
false
null
2
2022-06-16T18:52:25Z
2022-07-08T15:14:23Z
2022-07-08T15:02:31Z
null
yaml header at top of README.md file was edited to add task tags because I couldn't find the existing tags in the json separate Pull Request will modify dataset_infos.json to add these tags The Enron dataset (dataset id aeslc) is only tagged with: arxiv:1906.03497' languages:en pretty_name:AESLC Using the email subject_line field as a label or target variable it possible to create models for the following task_ids (in order of relevance): 'task_ids:summarization' 'task_ids:summarization-other-conversations-summarization' "task_ids:other-other-query-based-multi-document-summarization" 'task_ids:summarization-other-aspect-based-summarization' 'task_ids:summarization--other-headline-generation' The subject might also be used for the task_category "task_categories:summarization" E-mail chains might be used for the task category "task_categories:dialogue-system"
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4517/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4517/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4517.diff", "html_url": "https://github.com/huggingface/datasets/pull/4517", "merged_at": "2022-07-08T15:02:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/4517.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4517" }
true
[ "Associated community discussion is [here](https://huggingface.co/datasets/aeslc/discussions/1).\r\nPaper referenced in the `dataset_infos.json` is [here](https://arxiv.org/pdf/1906.03497.pdf). It mentions the _email-subject-generation_ task, which is not a tag mentioned in any other dataset so it was not added in this pull request. The _summarization_ task is mentioned as a related task.", "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/2974
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2974/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2974/comments
https://api.github.com/repos/huggingface/datasets/issues/2974/events
https://github.com/huggingface/datasets/pull/2974
1,008,247,787
PR_kwDODunzps4sUZCX
2,974
Actually disable dummy labels by default
[]
closed
false
null
0
2021-09-27T14:50:20Z
2021-09-29T09:04:42Z
2021-09-29T09:04:41Z
null
So I might have just changed the docstring instead of the actual default argument value and not realized. @lhoestq I'm sorry >.>
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2974/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2974/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2974.diff", "html_url": "https://github.com/huggingface/datasets/pull/2974", "merged_at": "2021-09-29T09:04:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/2974.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2974" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/564
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/564/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/564/comments
https://api.github.com/repos/huggingface/datasets/issues/564/events
https://github.com/huggingface/datasets/pull/564
691,000,020
MDExOlB1bGxSZXF1ZXN0NDc3ODAyMTk2
564
Wait for writing in distributed metrics
[]
closed
false
null
7
2020-09-02T12:58:50Z
2020-09-09T09:13:23Z
2020-09-09T09:13:22Z
null
There were CI bugs where a distributed metric would try to read all the files in process 0 while the other processes haven't started writing. To fix that I added a custom locking mechanism that waits for the file to exist before trying to read it
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/564/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/564/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/564.diff", "html_url": "https://github.com/huggingface/datasets/pull/564", "merged_at": "2020-09-09T09:13:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/564.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/564" }
true
[ "I agree this fix the problem for the CI where the files are always created in a new and clean temporary directory.\r\n\r\nHowever, in a general setting of a succession of fast distributed operation, the files could already exist from previous metrics runs but one process may still finish before another has even started in which case it would mix results from separate operations.\r\n\r\nI feel like the most robust way to solve this is to setup a rendez-vous on the first time we write on files and where each process will test and only finish its operation when it cannot acquire a lock on all the other processes (meaning they all have started).\r\n\r\nWhat do you think?", "What do you think of this @thomwolf ? I check all the locks before finalizing", "Ok on my side @lhoestq (cannot add you as a reviewer)", "The test doesn't pass if I add:\r\n```python\r\n import time\r\n if self.process_id == 1:\r\n time.sleep(0.5)\r\n```\r\nright before `self.add_batch` in `Metric.compute`.\r\n\r\nI'm investigating why it doesn't work in that case", "It looks like the process 1 runs `_check_all_processes_locks` correctly and then finishes and releases its lock before process 0 even managed to to run `_check_all_processes_locks` correctly.", "Strange!", "I changed the way the rendez-vous is done @thomwolf , let me know what you think.\r\nThe idea is that the master process has an additional lock `rendez_vous_lock` to tell every other process to wait for everyone to be ready before starting to write" ]
https://api.github.com/repos/huggingface/datasets/issues/6078
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6078/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6078/comments
https://api.github.com/repos/huggingface/datasets/issues/6078/events
https://github.com/huggingface/datasets/issues/6078
1,822,501,472
I_kwDODunzps5soSpg
6,078
resume_download with streaming=True
[]
open
false
null
2
2023-07-26T14:08:22Z
2023-07-26T21:10:40Z
null
null
### Describe the bug I used: ``` dataset = load_dataset( "oscar-corpus/OSCAR-2201", token=True, language="fr", streaming=True, split="train" ) ``` Unfortunately, the server had a problem during the training process. I saved the step my training stopped at. But how can I resume download from step 1_000_´000 without re-streaming all the first 1 million docs of the dataset? `download_config=DownloadConfig(resume_download=True)` seems to not work with streaming=True. ### Steps to reproduce the bug ``` from datasets import load_dataset, DownloadConfig dataset = load_dataset( "oscar-corpus/OSCAR-2201", token=True, language="fr", streaming=True, # optional split="train", download_config=DownloadConfig(resume_download=True) ) # interupt the run and try to relaunch it => this restart from scratch ``` ### Expected behavior I would expect a parameter to start streaming from a given index in the dataset. ### Environment info - `datasets` version: 2.14.0 - Platform: Linux-5.19.0-45-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.1 - Pandas version: 2.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6078/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6078/timeline
null
null
null
null
false
[ "Currently, it's not possible to efficiently resume streaming after an error. Eventually, we plan to support this for Parquet (see https://github.com/huggingface/datasets/issues/5380). ", "Ok thank you for your answer", "I'm closing this as a duplicate of #5380" ]
https://api.github.com/repos/huggingface/datasets/issues/4495
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4495/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4495/comments
https://api.github.com/repos/huggingface/datasets/issues/4495/events
https://github.com/huggingface/datasets/pull/4495
1,271,851,025
PR_kwDODunzps45sAgO
4,495
Fix patching module that doesn't exist
[]
closed
false
null
1
2022-06-15T08:17:50Z
2022-06-15T16:40:49Z
2022-06-15T08:54:09Z
null
Reported in https://github.com/huggingface/huggingface_hub/runs/6894703718?check_suite_focus=true When trying to patch `scipy.io.loadmat`: ```python ModuleNotFoundError: No module named 'scipy' ``` Instead it shouldn't raise an error and do nothing Bug introduced by #4375 Fix https://github.com/huggingface/datasets/issues/4494
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4495/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4495/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4495.diff", "html_url": "https://github.com/huggingface/datasets/pull/4495", "merged_at": "2022-06-15T08:54:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/4495.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4495" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/1110
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1110/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1110/comments
https://api.github.com/repos/huggingface/datasets/issues/1110/events
https://github.com/huggingface/datasets/issues/1110
757,082,677
MDU6SXNzdWU3NTcwODI2Nzc=
1,110
Using a feature named "_type" fails with certain operations
[]
closed
false
null
1
2020-12-04T12:56:33Z
2022-01-14T18:07:00Z
2022-01-14T18:07:00Z
null
A column named `_type` leads to a `TypeError: unhashable type: 'dict'` for certain operations: ```python from datasets import Dataset, concatenate_datasets ds = Dataset.from_dict({"_type": ["whatever"]}).map() concatenate_datasets([ds]) # or simply Dataset(ds._data) ``` Context: We are using datasets to persist data coming from elasticsearch to feed to our pipeline, and elasticsearch has a `_type` field, hence the strange name of the column. Not sure if you wish to support this specific column name, but if you do i would be happy to try a fix and provide a PR. I already had a look into it and i think the culprit is the `datasets.features.generate_from_dict` function. It uses the hard coded `_type` string to figure out if it reached the end of the nested feature object from a serialized dict. Best wishes and keep up the awesome work!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1110/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1110/timeline
null
completed
null
null
false
[ "Thanks for reporting !\r\n\r\nIndeed this is a keyword in the library that is used to encode/decode features to a python dictionary that we can save/load to json.\r\nWe can probably change `_type` to something that is less likely to collide with user feature names.\r\nIn this case we would want something backward compatible though.\r\n\r\nFeel free to try a fix and open a PR, and to ping me if I can help :) " ]
https://api.github.com/repos/huggingface/datasets/issues/1903
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1903/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1903/comments
https://api.github.com/repos/huggingface/datasets/issues/1903/events
https://github.com/huggingface/datasets/pull/1903
811,145,531
MDExOlB1bGxSZXF1ZXN0NTc1NzIwOTk2
1,903
Initial commit for the addition of TIMIT dataset
[]
closed
false
null
2
2021-02-18T14:23:12Z
2021-03-01T09:39:12Z
2021-03-01T09:39:12Z
null
Below points needs to be addressed: - Creation of dummy dataset is failing - Need to check on the data representation - License is not creative commons. Copyright: Portions © 1993 Trustees of the University of Pennsylvania Also the links (_except the download_) point to the ami corpus! ;-) @patrickvonplaten Requesting your comments, will be happy to address them!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/1903/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1903/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1903.diff", "html_url": "https://github.com/huggingface/datasets/pull/1903", "merged_at": "2021-03-01T09:39:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/1903.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1903" }
true
[ "@patrickvonplaten could you please review and help me close this PR?", "@lhoestq Thank you so much for your comments and for patiently reviewing the code. Have _hopefully_ included all the suggested changes. Let me know if any more changes are required.\r\n\r\nSorry the code had lots of silly errors from my side!:' Will be more careful from next time! :)\r\n\r\n\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/3518
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3518/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3518/comments
https://api.github.com/repos/huggingface/datasets/issues/3518/events
https://github.com/huggingface/datasets/issues/3518
1,093,063,455
I_kwDODunzps5BJtMf
3,518
Add PubMed Central Open Access dataset
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
3
2022-01-04T06:54:35Z
2022-01-17T15:25:57Z
2022-01-17T15:25:57Z
null
## Adding a Dataset - **Name:** PubMed Central Open Access - **Description:** The PMC Open Access Subset includes more than 3.4 million journal articles and preprints that are made available under license terms that allow reuse. - **Paper:** *link to the dataset paper if available* - **Data:** https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/ - **Motivation:** *what are some good reasons to have this dataset* Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3518/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3518/timeline
null
completed
null
null
false
[ "In the framework of BigScience:\r\n- bigscience-workshop/data_tooling#121\r\n\r\nI have created this dataset as a community dataset: https://huggingface.co/datasets/albertvillanova/pmc_open_access\r\n\r\nHowever, I was wondering that it may be more appropriate to move it under an org namespace: `pubmed_central` or `pmc`\r\nThis way, we could add other datasets I'm also working on: Author Manuscript Dataset, Historical OCR Dataset, LitArch Open Access Subset.\r\n\r\nWhat do you think? @lhoestq @mariosasko ", "Why not ! Having them under such namespaces would also help people searching for this kind of datasets.\r\nWe can also invite people from pubmed at one point", "DONE: https://huggingface.co/datasets/pmc/open_access" ]
https://api.github.com/repos/huggingface/datasets/issues/4723
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4723/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4723/comments
https://api.github.com/repos/huggingface/datasets/issues/4723/events
https://github.com/huggingface/datasets/pull/4723
1,310,970,604
PR_kwDODunzps47uoSj
4,723
Refactor conftest fixtures
[]
closed
false
null
1
2022-07-20T12:15:22Z
2022-07-21T14:37:11Z
2022-07-21T14:24:18Z
null
Previously, fixture modules `hub_fixtures` and `s3_fixtures`: - were both at the root test directory - were imported using `import *` - as a side effect, the modules `os` and `pytest` were imported from `s3_fixtures` into `conftest` This PR: - puts both fixture modules in a dedicated directory `fixtures` - renames both to: `fixtures.hub` and `fixtures.s3` - imports them into `conftest` as plugins, using the `pytest_plugins`: this avoids the `import *` - additionally creates a new fixture module `fixtures.files` with all file-related fixtures
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4723/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4723/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4723.diff", "html_url": "https://github.com/huggingface/datasets/pull/4723", "merged_at": "2022-07-21T14:24:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/4723.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4723" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/336
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/336/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/336/comments
https://api.github.com/repos/huggingface/datasets/issues/336/events
https://github.com/huggingface/datasets/issues/336
649,914,203
MDU6SXNzdWU2NDk5MTQyMDM=
336
[Dataset requests] New datasets for Open Question Answering
[ { "color": "008672", "default": true, "description": "Extra attention is needed", "id": 1935892884, "name": "help wanted", "node_id": "MDU6TGFiZWwxOTM1ODkyODg0", "url": "https://api.github.com/repos/huggingface/datasets/labels/help%20wanted" }, { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
0
2020-07-02T13:03:03Z
2020-07-16T09:04:22Z
2020-07-16T09:04:22Z
null
We are still a few datasets missing for Open-Question Answering which is currently a field in strong development. Namely, it would be really nice to add: - WebQuestions (Berant et al., 2013) [done] - CuratedTrec (Baudis et al. 2015) [not open-source] - MS-MARCO (NGuyen et al. 2016) [done] - SearchQA (Dunn et al. 2017) [done] - FEVER (Thorne et al. 2018) - [ done] All these datasets are cited in http://arxiv.org/abs/2005.11401
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/336/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/336/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/5355
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5355/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5355/comments
https://api.github.com/repos/huggingface/datasets/issues/5355/events
https://github.com/huggingface/datasets/pull/5355
1,493,076,860
PR_kwDODunzps5FQcYG
5,355
Clean up Table class docstrings
[]
closed
false
null
1
2022-12-13T00:29:47Z
2022-12-13T18:17:56Z
2022-12-13T18:14:42Z
null
This PR cleans up the `Table` class docstrings :)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5355/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5355/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5355.diff", "html_url": "https://github.com/huggingface/datasets/pull/5355", "merged_at": "2022-12-13T18:14:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/5355.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5355" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/4638
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4638/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4638/comments
https://api.github.com/repos/huggingface/datasets/issues/4638/events
https://github.com/huggingface/datasets/pull/4638
1,295,233,315
PR_kwDODunzps4656H9
4,638
The speechocean762 dataset
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
4
2022-07-06T06:17:30Z
2022-10-03T09:34:36Z
2022-10-03T09:34:36Z
null
[speechocean762](https://www.openslr.org/101/) is a non-native English corpus for pronunciation scoring tasks. It is free for both commercial and non-commercial use. I believe it will be easier to use if it could be available on Hugging Face.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4638/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4638/timeline
null
null
true
{ "diff_url": "https://github.com/huggingface/datasets/pull/4638.diff", "html_url": "https://github.com/huggingface/datasets/pull/4638", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4638.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4638" }
true
[ "CircleCL reported two errors, but I didn't find the reason. The error message:\r\n```\r\n_________________ ERROR collecting tests/test_dataset_cards.py _________________\r\ntests/test_dataset_cards.py:53: in <module>\r\n @pytest.mark.parametrize(\"dataset_name\", get_changed_datasets(repo_path))\r\ntests/test_dataset_cards.py:35: in get_changed_datasets\r\n diff_output = check_output([\"git\", \"diff\", \"--name-only\", \"origin/master...HEAD\"], cwd=repo_path)\r\n../.pyenv/versions/3.6.15/lib/python3.6/subprocess.py:356: in check_output\r\n **kwargs).stdout\r\n../.pyenv/versions/3.6.15/lib/python3.6/subprocess.py:438: in run\r\n output=stdout, stderr=stderr)\r\nE subprocess.CalledProcessError: Command '['git', 'diff', '--name-only', 'origin/master...HEAD']' returned non-zero exit status 128.\r\n\r\n=========================== short test summary info ============================\r\nERROR tests/test_dataset_cards.py - subprocess.CalledProcessError: Command '[...\r\nERROR tests/test_dataset_cards.py - subprocess.CalledProcessError: Command '[...\r\n= 4011 passed, 2357 skipped, 2 xfailed, 1 xpassed, 116 warnings, 2 errors in 284.32s (0:04:44) =\r\n\r\nExited with code exit status 1\r\n```\r\nI'm not sure if it was caused by this PR ...\r\n\r\nI ran `tests/test_dataset_cards.py` in my local environment, and it passed:\r\n```\r\n(venv)$ pytest tests/test_dataset_cards.py\r\n============================== test session starts ==============================\r\nplatform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0\r\nrootdir: /home/zhangjunbo/src/datasets\r\nplugins: forked-1.4.0, datadir-1.3.1, xdist-2.5.0\r\ncollected 1531 items\r\n\r\ntests/test_dataset_cards.py ..... [100%]\r\n======================= 766 passed, 765 skipped in 2.55s ========================\r\n```\r\n", "@sanchit-gandhi could you also maybe take a quick look? :-)", "Thanks for your contribution, @jimbozhang. Are you still interested in adding this dataset?\r\n\r\nWe are removing the dataset scripts from this GitHub repo and moving them to the Hugging Face Hub: https://huggingface.co/datasets\r\n\r\nWe would suggest you create this dataset there. Please, feel free to tell us if you need some help.", "> Thanks for your contribution, @jimbozhang. Are you still interested in adding this dataset?\r\n> \r\n> We are removing the dataset scripts from this GitHub repo and moving them to the Hugging Face Hub: https://huggingface.co/datasets\r\n> \r\n> We would suggest you create this dataset there. Please, feel free to tell us if you need some help.\r\n\r\nYes, I just planned to finish this dataset these days, and this suggestion is just in time! Thanks a lot!\r\nI will create this dataset to Hugging Face Hub soon, maybe this week." ]
https://api.github.com/repos/huggingface/datasets/issues/2123
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2123/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2123/comments
https://api.github.com/repos/huggingface/datasets/issues/2123/events
https://github.com/huggingface/datasets/issues/2123
842,577,285
MDU6SXNzdWU4NDI1NzcyODU=
2,123
Problem downloading GEM wiki_auto_asset_turk dataset
[]
closed
false
null
5
2021-03-27T18:41:28Z
2021-05-12T16:15:18Z
2021-05-12T16:15:17Z
null
@yjernite ### Summary I am currently working on the GEM datasets and do not manage to download the wiki_auto_asset_turk data, whereas all other datasets download well with the same code. ### Steps to reproduce Code snippet: from datasets import load_dataset #dataset = load_dataset('gem', 'web_nlg_en') dataset = load_dataset('gem', 'wiki_auto_asset_turk') ``` **Expected behavior:** I expect the dataset to start downloading (download bar appears and progresses toward 100%) **Actual behavior:** Instead of seeing the download bar appearing, nothing happens; the following appears in the console as expected, but nothing more: Downloading: 36.6kB [00:00, 37.2MB/s] Downloading: 41.7kB [00:00, ?B/s] Downloading and preparing dataset gem/wiki_auto_asset_turk (download: 121.37 MiB, generated: 145.69 MiB, post-processed: Unknown size, total: 267.07 MiB) to C:\Users\sfmil\.cache\huggingface\datasets\gem\wiki_auto_asset_turk\1.0.0\f252756d7f1b8f019aac71a1623b2950acfe10d25d956668ac4eae4e93c58b8d... ### Is this a regression? No, it was the first time I was trying to download this dataset (same for the other ones). ### Debug info - Python version: Python 3.8.2 - OS version: Windows 10 Family
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2123/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2123/timeline
null
completed
null
null
false
[ "Hi,\r\n\r\nsadly I can't replicate the problem on my Windows machine. Try to update the library to the newest version with:\r\n```bash\r\npip install git+https://github.com/huggingface/datasets\r\n``` ", "Thanks for the answer! I updated the library but unfortunately it didn't solve the problem.", "Is there an error message ?\r\nWhat stacktrace do you get if you interrupt the execution of the program while downloading ?", "Sorry for the long time since my last comment, I tried again and don't seem to have the problem anymore, thanks for your support!", "Great ! I'm closing the issue then. Feel free to re-open if you experience this issue again" ]
https://api.github.com/repos/huggingface/datasets/issues/4035
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4035/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4035/comments
https://api.github.com/repos/huggingface/datasets/issues/4035/events
https://github.com/huggingface/datasets/pull/4035
1,183,067,456
PR_kwDODunzps41Iwb2
4,035
Add zero_division argument to precision and recall metrics
[]
closed
false
null
0
2022-03-28T08:19:14Z
2022-03-28T09:53:07Z
2022-03-28T09:53:06Z
null
Fix #4025.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4035/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4035/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4035.diff", "html_url": "https://github.com/huggingface/datasets/pull/4035", "merged_at": "2022-03-28T09:53:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/4035.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4035" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1679
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1679/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1679/comments
https://api.github.com/repos/huggingface/datasets/issues/1679/events
https://github.com/huggingface/datasets/issues/1679
777,587,792
MDU6SXNzdWU3Nzc1ODc3OTI=
1,679
Can't import cc100 dataset
[]
closed
false
null
1
2021-01-03T07:12:56Z
2022-10-05T12:42:25Z
2022-10-05T12:42:25Z
null
There is some issue to import cc100 dataset. ``` from datasets import load_dataset dataset = load_dataset("cc100") ``` FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/1.1.3/datasets/cc100/cc100.py During handling of the above exception, another exception occurred: FileNotFoundError Traceback (most recent call last) FileNotFoundError: Couldn't find file at https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets/cc100/cc100.py During handling of the above exception, another exception occurred: FileNotFoundError Traceback (most recent call last) /usr/local/lib/python3.6/dist-packages/datasets/load.py in prepare_module(path, script_version, download_config, download_mode, dataset, force_local_path, **download_kwargs) 280 raise FileNotFoundError( 281 "Couldn't find file locally at {}, or remotely at {} or {}".format( --> 282 combined_path, github_file_path, file_path 283 ) 284 ) FileNotFoundError: Couldn't find file locally at cc100/cc100.py, or remotely at https://raw.githubusercontent.com/huggingface/datasets/1.1.3/datasets/cc100/cc100.py or https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets/cc100/cc100.py
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1679/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1679/timeline
null
completed
null
null
false
[ "cc100 was added recently, that's why it wasn't available yet.\r\n\r\nTo load it you can just update `datasets`\r\n```\r\npip install --upgrade datasets\r\n```\r\n\r\nand then you can load `cc100` with\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nlang = \"en\"\r\ndataset = load_dataset(\"cc100\", lang=lang, split=\"train\")\r\n```" ]
https://api.github.com/repos/huggingface/datasets/issues/4189
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4189/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4189/comments
https://api.github.com/repos/huggingface/datasets/issues/4189/events
https://github.com/huggingface/datasets/pull/4189
1,209,881,351
PR_kwDODunzps42gGv5
4,189
Document how to use FAISS index for special operations
[]
closed
false
null
1
2022-04-20T15:51:56Z
2022-05-06T08:43:10Z
2022-05-06T08:35:52Z
null
Document how to use FAISS index for special operations, by accessing the index itself. Close #4029.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4189/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4189/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4189.diff", "html_url": "https://github.com/huggingface/datasets/pull/4189", "merged_at": "2022-05-06T08:35:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/4189.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4189" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/1336
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1336/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1336/comments
https://api.github.com/repos/huggingface/datasets/issues/1336/events
https://github.com/huggingface/datasets/pull/1336
759,706,932
MDExOlB1bGxSZXF1ZXN0NTM0NjY0NjIw
1,336
Add dataset Yoruba BBC Topic Classification
[]
closed
false
null
0
2020-12-08T19:12:18Z
2020-12-10T11:27:41Z
2020-12-10T11:27:41Z
null
Added new dataset Yoruba BBC Topic Classification Contains loading script as well as dataset card including YAML tags.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1336/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1336/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1336.diff", "html_url": "https://github.com/huggingface/datasets/pull/1336", "merged_at": "2020-12-10T11:27:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/1336.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1336" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/5776
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5776/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5776/comments
https://api.github.com/repos/huggingface/datasets/issues/5776/events
https://github.com/huggingface/datasets/issues/5776
1,677,116,100
I_kwDODunzps5j9sLE
5,776
Use Pandas' `read_json` in the JSON builder
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
0
2023-04-20T17:15:49Z
2023-04-20T17:15:49Z
null
null
Instead of PyArrow's `read_json`, we should use `pd.read_json` in the JSON builder for consistency with the CSV and SQL builders (e.g., to address https://github.com/huggingface/datasets/issues/5725). In Pandas2.0, to get the same performance, we can set the `engine` to "pyarrow". The issue is that Colab still doesn't install Pandas 2.0 by default, so I think it's best to wait for this to be resolved on their side to avoid downgrading decoding performance in scenarios when Pandas 2.0 is not installed.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5776/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5776/timeline
null
null
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/5202
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5202/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5202/comments
https://api.github.com/repos/huggingface/datasets/issues/5202/events
https://github.com/huggingface/datasets/issues/5202
1,435,886,090
I_kwDODunzps5VleIK
5,202
CI fails after bulk edit of canonical datasets
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
1
2022-11-04T10:51:20Z
2023-02-16T09:11:10Z
2023-02-16T09:11:10Z
null
``` ______ test_get_dataset_config_info[paws-labeled_final-expected_splits2] _______ [gw0] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python path = 'paws', config_name = 'labeled_final' expected_splits = ['train', 'test', 'validation'] @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name > assert list(info.splits.keys()) == expected_splits E AssertionError: assert ['test', 'tra... 'validation'] == ['train', 'te... 'validation'] E At index 0 diff: 'test' != 'train' E Full diff: E - ['train', 'test', 'validation'] E + ['test', 'train', 'validation'] tests/test_inspect.py:45: AssertionError _ test_get_dataset_info[paws-expected_configs2-expected_splits_in_first_config2] _ [gw0] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python path = 'paws' expected_configs = ['labeled_final', 'labeled_swap', 'unlabeled_final'] expected_splits_in_first_config = ['train', 'test', 'validation'] @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config > assert list(info.splits.keys()) == expected_splits_in_first_config E AssertionError: assert ['test', 'tra... 'validation'] == ['train', 'te... 'validation'] E At index 0 diff: 'test' != 'train' E Full diff: E - ['train', 'test', 'validation'] E + ['test', 'train', 'validation'] tests/test_inspect.py:90: AssertionError ______ test_get_dataset_split_names[paws-labeled_final-expected_splits2] _______ [gw0] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python path = 'paws', expected_config = 'labeled_final' expected_splits = ['train', 'test', 'validation'] @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config > assert list(info.splits.keys()) == expected_splits E AssertionError: assert ['test', 'tra... 'validation'] == ['train', 'te... 'validation'] E At index 0 diff: 'test' != 'train' E Full diff: E - ['train', 'test', 'validation'] E + ['test', 'train', 'validation'] ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5202/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5202/timeline
null
completed
null
null
false
[ "Fixed by: https://huggingface.co/datasets/paws/discussions/1" ]
https://api.github.com/repos/huggingface/datasets/issues/606
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/606/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/606/comments
https://api.github.com/repos/huggingface/datasets/issues/606/events
https://github.com/huggingface/datasets/pull/606
698,050,442
MDExOlB1bGxSZXF1ZXN0NDgzOTMzMDA1
606
Quick fix :)
[]
closed
false
null
1
2020-09-10T14:32:06Z
2020-09-10T16:18:32Z
2020-09-10T16:18:30Z
null
`nlp` => `datasets`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 1, "laugh": 1, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/606/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/606/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/606.diff", "html_url": "https://github.com/huggingface/datasets/pull/606", "merged_at": "2020-09-10T16:18:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/606.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/606" }
true
[ ":heart:" ]
https://api.github.com/repos/huggingface/datasets/issues/3535
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3535/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3535/comments
https://api.github.com/repos/huggingface/datasets/issues/3535/events
https://github.com/huggingface/datasets/pull/3535
1,094,633,214
PR_kwDODunzps4wkxv0
3,535
Add SVHN dataset
[]
closed
false
null
0
2022-01-05T18:29:09Z
2022-01-12T14:14:35Z
2022-01-12T14:14:35Z
null
Add the SVHN dataset. Additional notes: * compared to the TFDS implementation, exposes additional the "full numbers" config * adds the streaming support for `os.path.splitext` and `scipy.io.loadmat` * adds `h5py` to the requirements list for the dummy data test
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3535/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3535/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3535.diff", "html_url": "https://github.com/huggingface/datasets/pull/3535", "merged_at": "2022-01-12T14:14:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/3535.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3535" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2905
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2905/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2905/comments
https://api.github.com/repos/huggingface/datasets/issues/2905/events
https://github.com/huggingface/datasets/pull/2905
995,843,964
PR_kwDODunzps4ruL5X
2,905
Update BibTeX entry
[]
closed
false
null
0
2021-09-14T10:16:17Z
2021-09-14T12:25:37Z
2021-09-14T12:25:37Z
null
Update BibTeX entry.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2905/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2905/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2905.diff", "html_url": "https://github.com/huggingface/datasets/pull/2905", "merged_at": "2021-09-14T12:25:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/2905.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2905" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1444/comments
https://api.github.com/repos/huggingface/datasets/issues/1444/events
https://github.com/huggingface/datasets/issues/1444
761,055,651
MDU6SXNzdWU3NjEwNTU2NTE=
1,444
FileNotFound remotly, can't load a dataset
[]
closed
false
null
2
2020-12-10T09:14:47Z
2020-12-15T17:41:14Z
2020-12-15T17:41:14Z
null
```py !pip install datasets import datasets as ds corpus = ds.load_dataset('large_spanish_corpus') ``` gives the error > FileNotFoundError: Couldn't find file locally at large_spanish_corpus/large_spanish_corpus.py, or remotely at https://raw.githubusercontent.com/huggingface/datasets/1.1.3/datasets/large_spanish_corpus/large_spanish_corpus.py or https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets/large_spanish_corpus/large_spanish_corpus.py not just `large_spanish_corpus`, `zest` too, but `squad` is available. this was using colab and localy
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1444/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1444/timeline
null
completed
null
null
false
[ "This dataset will be available in version-2 of the library. If you want to use this dataset now, install datasets from `master` branch rather.\r\n\r\nCommand to install datasets from `master` branch:\r\n`!pip install git+https://github.com/huggingface/datasets.git@master`", "Closing this, thanks @VasudevGupta7 " ]
https://api.github.com/repos/huggingface/datasets/issues/2296
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2296/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2296/comments
https://api.github.com/repos/huggingface/datasets/issues/2296/events
https://github.com/huggingface/datasets/issues/2296
872,974,907
MDU6SXNzdWU4NzI5NzQ5MDc=
2,296
1
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
0
2021-04-30T17:53:49Z
2021-05-03T08:17:31Z
2021-05-03T08:17:31Z
null
## Adding a Dataset - **Name:** *name of the dataset* - **Description:** *short description of the dataset (or link to social media or blog post)* - **Paper:** *link to the dataset paper if available* - **Data:** *link to the Github repository or current dataset location* - **Motivation:** *what are some good reasons to have this dataset* Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2296/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2296/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/1156
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1156/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1156/comments
https://api.github.com/repos/huggingface/datasets/issues/1156/events
https://github.com/huggingface/datasets/pull/1156
757,656,094
MDExOlB1bGxSZXF1ZXN0NTMyOTk5MTQ1
1,156
add telugu-news corpus
[]
closed
false
null
0
2020-12-05T11:07:56Z
2020-12-07T09:08:48Z
2020-12-07T09:08:48Z
null
Adding Telugu News Corpus to datasets.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1156/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1156/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1156.diff", "html_url": "https://github.com/huggingface/datasets/pull/1156", "merged_at": "2020-12-07T09:08:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/1156.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1156" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/741
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/741/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/741/comments
https://api.github.com/repos/huggingface/datasets/issues/741/events
https://github.com/huggingface/datasets/issues/741
723,924,275
MDU6SXNzdWU3MjM5MjQyNzU=
741
Creating dataset consumes too much memory
[]
closed
false
null
20
2020-10-18T06:07:06Z
2022-02-15T17:03:10Z
2022-02-15T17:03:10Z
null
Moving this issue from https://github.com/huggingface/datasets/pull/722 here, because it seems like a general issue. Given the following dataset example, where each example saves a sequence of 260x210x3 images (max length 400): ```python def _generate_examples(self, base_path, split): """ Yields examples. """ filepath = os.path.join(base_path, "annotations", "manual", "PHOENIX-2014-T." + split + ".corpus.csv") images_path = os.path.join(base_path, "features", "fullFrame-210x260px", split) with open(filepath, "r", encoding="utf-8") as f: data = csv.DictReader(f, delimiter="|", quoting=csv.QUOTE_NONE) for row in data: frames_path = os.path.join(images_path, row["video"])[:-7] np_frames = [] for frame_name in os.listdir(frames_path): frame_path = os.path.join(frames_path, frame_name) im = Image.open(frame_path) np_frames.append(np.asarray(im)) im.close() yield row["name"], {"video": np_frames} ``` The dataset creation process goes out of memory on a machine with 500GB RAM. I was under the impression that the "generator" here is exactly for that, to avoid memory constraints. However, even if you want the entire dataset in memory, it would be in the worst case `260x210x3 x 400 max length x 7000 samples` in bytes (uint8) = 458.64 gigabytes So I'm not sure why it's taking more than 500GB. And the dataset creation fails after 170 examples on a machine with 120gb RAM, and after 672 examples on a machine with 500GB RAM. --- ## Info that might help: Iterating over examples is extremely slow. ![image](https://user-images.githubusercontent.com/5757359/96359590-3c666780-111d-11eb-9347-1f833ad982a9.png) If I perform this iteration in my own, custom loop (Without saving to file), it runs at 8-9 examples/sec And you can see at this state it is using 94% of the memory: ![image](https://user-images.githubusercontent.com/5757359/96359606-7afc2200-111d-11eb-8c11-0afbdba1a6a3.png) And it is only using one CPU core, which is probably why it's so slow: ![image](https://user-images.githubusercontent.com/5757359/96359630-a3841c00-111d-11eb-9ba0-7fd3cdf51d26.png)
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/741/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/741/timeline
null
completed
null
null
false
[ "Thanks for reporting.\r\nIn theory since the dataset script is just made to yield examples to write them into an arrow file, it's not supposed to create memory issues.\r\n\r\nCould you please try to run this exact same loop in a separate script to see if it's not an issue with `PIL` ?\r\nYou can just copy paste what's inside `_generate_examples` and remove all the code for `datasets` (remove yield).\r\n\r\nIf the RAM usage stays low after 600 examples it means that it comes from some sort of memory leak in the library, or with pyarrow.", "Here's an equivalent loading code:\r\n```python\r\nimages_path = \"PHOENIX-2014-T-release-v3/PHOENIX-2014-T/features/fullFrame-210x260px/train\"\r\n\r\nfor dir_path in tqdm(os.listdir(images_path)):\r\n frames_path = os.path.join(images_path, dir_path)\r\n np_frames = []\r\n for frame_name in os.listdir(frames_path):\r\n frame_path = os.path.join(frames_path, frame_name)\r\n im = Image.open(frame_path)\r\n np_frames.append(np.asarray(im))\r\n im.close()\r\n```\r\n\r\nThe process takes 0.3% of memory, even after 1000 examples on the small machine with 120GB RAM.\r\n\r\nI guess something in the datasets library doesn't release the reference to the objects I'm yielding, but no idea how to test for this", "I've had similar issues with Arrow once. I'll investigate...\r\n\r\nFor now maybe we can simply use the images paths in the dataset you want to add. I don't expect to fix this memory issue until 1-2 weeks unfortunately. Then we can just update the dataset with the images. What do you think ?", "If it's just 1-2 weeks, I think it's best if we wait. I don't think it is very urgent to add it, and it will be much more useful with the images loaded rather than not (the images are low resolution, and thus papers using this dataset actually fit the entire video into memory anyway)\r\n\r\nI'll keep working on other datasets in the meanwhile :) ", "Ok found the issue. This is because the batch size used by the writer is set to 10 000 elements by default so it would load your full dataset in memory (the writer has a buffer that flushes only after each batch). Moreover to write in Apache Arrow we have to use python objects so what's stored inside the ArrowWriter's buffer is actually python integers (32 bits).\r\n\r\nLowering the batch size to 10 should do the job.\r\n\r\nI will add a flag to the DatasetBuilder class of dataset scripts, so that we can customize the batch size.", "Thanks, that's awesome you managed to find the problem.\r\n\r\nAbout the 32 bits - really? there isn't a way to serialize the numpy array somehow? 32 bits would take 4 times the memory / disk space needed to store these videos.\r\n\r\nPlease let me know when the batch size is customizable and I'll try again!", "The 32 bit integrers are only used in the writer's buffer because Arrow doesn't take numpy arrays correctly as input. On disk it's stored as uint8 in arrow format ;)", "> I don't expect to fix this memory issue until 1-2 weeks unfortunately.\r\n\r\nHi @lhoestq \r\nnot to rush of course, but I was wondering if you have a new timeline so I know how to plan my work around this :) ", "Hi ! Next week for sure :) ", "Alright it should be good now.\r\nYou just have to specify `_writer_batch_size = 10` for example as a class attribute of the dataset builder class.", "I added it, but still it consumes as much memory\r\n\r\nhttps://github.com/huggingface/datasets/pull/722/files#diff-2e0d865dd4a60dedd1861d6f8c5ed281ded71508467908e1e0b1dbe7d2d420b1R66\r\n\r\nDid I not do it correctly?", "Yes you did it right.\r\nDid you rebase to include the changes of #828 ?\r\n\r\nEDIT: looks like you merged from master in the PR. Not sure why you still have an issue then, I will investigate", "Hi @lhoestq, any update on this?\r\nPerhaps even a direction I could try myself?", "Sorry for the delay, I was busy with the dataset sprint and the incredible amount of contributions to the library ^^'\r\n\r\nWhat you can try to do to find what's wrong is check at which frequency the arrow writer writes all the examples from its in-memory buffer on disk. This happens [here](https://github.com/huggingface/datasets/blob/master/src/datasets/arrow_writer.py#L257-L258) in the code.\r\n\r\nThe idea is that `write_on_file` writes the examples every `writer_batch_size` examples and clear the buffer `self. current_rows`. As soon as `writer_batch_size` is small enough you shouldn't have memory issues in theory.\r\n\r\nLet me know if you have questions or if I can help.\r\n\r\nSince the dataset sprint is over and I will also be done with all the PRs soon I will be able to go back at it and take a look.", "Thanks. I gave it a try and no success. I'm not sure what's happening there", "I had the same issue. It works for me by setting `DEFAULT_WRITER_BATCH_SIZE = 10` of my dataset builder class. (And not `_writer_batch_size` as previously mentioned). I guess this is because `_writer_batch_size` is overwritten in `__init__` (see [here](https://github.com/huggingface/datasets/blob/0e2563e5d5c2fc193ea27d7c24607bb35607f2d5/src/datasets/builder.py#L934))", "Yes the class attribute you can change is `DEFAULT_WRITER_BATCH_SIZE`.\r\nOtherwise in `load_dataset` you can specify `writer_batch_size=`", "Ok thanks for the tips. Maybe the documentation should be updated accordingly https://huggingface.co/docs/datasets/add_dataset.html.", "Thanks for reporting this mistake in the docs.\r\nI just fixed it at https://github.com/huggingface/datasets/commit/85cf7ff920c90ca2e12bedca12b36d2a043c3da2", "May I close this issue, @AmitMY?" ]
https://api.github.com/repos/huggingface/datasets/issues/5972
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5972/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5972/comments
https://api.github.com/repos/huggingface/datasets/issues/5972/events
https://github.com/huggingface/datasets/pull/5972
1,767,897,485
PR_kwDODunzps5TkE7K
5,972
Filter unsupported extensions
[]
closed
false
null
5
2023-06-21T15:43:01Z
2023-06-22T14:23:29Z
2023-06-22T14:16:26Z
null
I used a regex to filter the data files based on their extension for packaged builders. I tried and a regex is 10x faster that using `in` to check if the extension is in the list of supported extensions. Supersedes https://github.com/huggingface/datasets/pull/5850 Close https://github.com/huggingface/datasets/issues/5849 I also did a small change to favor the parquet module in case of a draw in the extension counter.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5972/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5972/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5972.diff", "html_url": "https://github.com/huggingface/datasets/pull/5972", "merged_at": "2023-06-22T14:16:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/5972.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5972" }
true
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006983 / 0.011353 (-0.004369) | 0.004473 / 0.011008 (-0.006535) | 0.105158 / 0.038508 (0.066650) | 0.048973 / 0.023109 (0.025864) | 0.358771 / 0.275898 (0.082873) | 0.432389 / 0.323480 (0.108909) | 0.005689 / 0.007986 (-0.002297) | 0.003584 / 0.004328 (-0.000744) | 0.080852 / 0.004250 (0.076601) | 0.066133 / 0.037052 (0.029081) | 0.370981 / 0.258489 (0.112492) | 0.406942 / 0.293841 (0.113101) | 0.032123 / 0.128546 (-0.096424) | 0.009313 / 0.075646 (-0.066333) | 0.355220 / 0.419271 (-0.064051) | 0.055768 / 0.043533 (0.012235) | 0.370545 / 0.255139 (0.115406) | 0.375619 / 0.283200 (0.092419) | 0.024258 / 0.141683 (-0.117425) | 1.559073 / 1.452155 (0.106918) | 1.616520 / 1.492716 (0.123804) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277893 / 0.018006 (0.259887) | 0.535447 / 0.000490 (0.534957) | 0.004877 / 0.000200 (0.004677) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029444 / 0.037411 (-0.007968) | 0.114366 / 0.014526 (0.099841) | 0.130957 / 0.176557 (-0.045599) | 0.189604 / 0.737135 (-0.547531) | 0.131682 / 0.296338 (-0.164656) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412315 / 0.215209 (0.197106) | 4.093879 / 2.077655 (2.016225) | 1.856169 / 1.504120 (0.352050) | 1.655358 / 1.541195 (0.114164) | 1.758190 / 1.468490 (0.289699) | 0.545829 / 4.584777 (-4.038948) | 3.871436 / 3.745712 (0.125724) | 1.938244 / 5.269862 (-3.331618) | 1.122727 / 4.565676 (-3.442950) | 0.067107 / 0.424275 (-0.357168) | 0.012012 / 0.007607 (0.004405) | 0.518868 / 0.226044 (0.292824) | 5.235081 / 2.268929 (2.966153) | 2.335115 / 55.444624 (-53.109509) | 2.013074 / 6.876477 (-4.863402) | 2.219808 / 2.142072 (0.077735) | 0.674602 / 4.805227 (-4.130626) | 0.147051 / 6.500664 (-6.353613) | 0.068444 / 0.075469 (-0.007025) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245600 / 1.841788 (-0.596188) | 15.537727 / 8.074308 (7.463419) | 15.074300 / 10.191392 (4.882908) | 0.194217 / 0.680424 (-0.486207) | 0.018536 / 0.534201 (-0.515665) | 0.437085 / 0.579283 (-0.142198) | 0.441123 / 0.434364 (0.006759) | 0.530681 / 0.540337 (-0.009657) | 0.649154 / 1.386936 (-0.737782) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007243 / 0.011353 (-0.004110) | 0.004688 / 0.011008 (-0.006320) | 0.079809 / 0.038508 (0.041301) | 0.046915 / 0.023109 (0.023805) | 0.415144 / 0.275898 (0.139246) | 0.474867 / 0.323480 (0.151388) | 0.004550 / 0.007986 (-0.003435) | 0.004585 / 0.004328 (0.000257) | 0.080837 / 0.004250 (0.076587) | 0.061667 / 0.037052 (0.024614) | 0.411321 / 0.258489 (0.152832) | 0.464195 / 0.293841 (0.170354) | 0.032510 / 0.128546 (-0.096037) | 0.009306 / 0.075646 (-0.066340) | 0.086637 / 0.419271 (-0.332635) | 0.053335 / 0.043533 (0.009802) | 0.402302 / 0.255139 (0.147163) | 0.424864 / 0.283200 (0.141664) | 0.026573 / 0.141683 (-0.115110) | 1.566793 / 1.452155 (0.114639) | 1.628118 / 1.492716 (0.135401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317802 / 0.018006 (0.299796) | 0.544593 / 0.000490 (0.544103) | 0.005690 / 0.000200 (0.005490) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033015 / 0.037411 (-0.004397) | 0.121940 / 0.014526 (0.107414) | 0.132920 / 0.176557 (-0.043637) | 0.191481 / 0.737135 (-0.545655) | 0.139139 / 0.296338 (-0.157199) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.460382 / 0.215209 (0.245173) | 4.610046 / 2.077655 (2.532392) | 2.296573 / 1.504120 (0.792453) | 2.099735 / 1.541195 (0.558540) | 2.213913 / 1.468490 (0.745423) | 0.544871 / 4.584777 (-4.039906) | 3.814174 / 3.745712 (0.068462) | 3.246397 / 5.269862 (-2.023464) | 1.480236 / 4.565676 (-3.085440) | 0.068464 / 0.424275 (-0.355811) | 0.012651 / 0.007607 (0.005043) | 0.564989 / 0.226044 (0.338944) | 5.639188 / 2.268929 (3.370259) | 2.827601 / 55.444624 (-52.617023) | 2.473743 / 6.876477 (-4.402734) | 2.567413 / 2.142072 (0.425340) | 0.674351 / 4.805227 (-4.130876) | 0.146248 / 6.500664 (-6.354416) | 0.067553 / 0.075469 (-0.007916) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346703 / 1.841788 (-0.495085) | 16.494787 / 8.074308 (8.420479) | 15.179487 / 10.191392 (4.988095) | 0.181864 / 0.680424 (-0.498560) | 0.018857 / 0.534201 (-0.515344) | 0.437787 / 0.579283 (-0.141496) | 0.431770 / 0.434364 (-0.002594) | 0.507116 / 0.540337 (-0.033221) | 0.608899 / 1.386936 (-0.778037) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0fd5b7412f907675e76b183a6e39ef6d176fdcc0 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005963 / 0.011353 (-0.005390) | 0.003743 / 0.011008 (-0.007265) | 0.098519 / 0.038508 (0.060011) | 0.037392 / 0.023109 (0.014283) | 0.322706 / 0.275898 (0.046808) | 0.380032 / 0.323480 (0.056552) | 0.004694 / 0.007986 (-0.003292) | 0.002897 / 0.004328 (-0.001432) | 0.078664 / 0.004250 (0.074414) | 0.052646 / 0.037052 (0.015594) | 0.335523 / 0.258489 (0.077034) | 0.375464 / 0.293841 (0.081623) | 0.027537 / 0.128546 (-0.101010) | 0.008452 / 0.075646 (-0.067194) | 0.313844 / 0.419271 (-0.105427) | 0.047368 / 0.043533 (0.003835) | 0.313833 / 0.255139 (0.058694) | 0.342284 / 0.283200 (0.059085) | 0.021136 / 0.141683 (-0.120547) | 1.544764 / 1.452155 (0.092610) | 1.563850 / 1.492716 (0.071134) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188609 / 0.018006 (0.170603) | 0.421686 / 0.000490 (0.421196) | 0.003336 / 0.000200 (0.003136) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023678 / 0.037411 (-0.013733) | 0.099191 / 0.014526 (0.084665) | 0.105819 / 0.176557 (-0.070738) | 0.169654 / 0.737135 (-0.567481) | 0.110240 / 0.296338 (-0.186099) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425497 / 0.215209 (0.210288) | 4.237165 / 2.077655 (2.159510) | 1.902953 / 1.504120 (0.398833) | 1.699012 / 1.541195 (0.157818) | 1.751107 / 1.468490 (0.282617) | 0.563326 / 4.584777 (-4.021451) | 3.394189 / 3.745712 (-0.351523) | 2.706129 / 5.269862 (-2.563732) | 1.361522 / 4.565676 (-3.204155) | 0.067776 / 0.424275 (-0.356499) | 0.010959 / 0.007607 (0.003352) | 0.530905 / 0.226044 (0.304860) | 5.322467 / 2.268929 (3.053538) | 2.384356 / 55.444624 (-53.060269) | 2.044196 / 6.876477 (-4.832281) | 2.119837 / 2.142072 (-0.022235) | 0.682236 / 4.805227 (-4.122991) | 0.136921 / 6.500664 (-6.363743) | 0.066784 / 0.075469 (-0.008685) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210642 / 1.841788 (-0.631146) | 13.804572 / 8.074308 (5.730264) | 13.309229 / 10.191392 (3.117837) | 0.154356 / 0.680424 (-0.526068) | 0.016833 / 0.534201 (-0.517368) | 0.366503 / 0.579283 (-0.212780) | 0.385201 / 0.434364 (-0.049163) | 0.426713 / 0.540337 (-0.113624) | 0.516795 / 1.386936 (-0.870141) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006144 / 0.011353 (-0.005209) | 0.003723 / 0.011008 (-0.007285) | 0.077427 / 0.038508 (0.038919) | 0.037636 / 0.023109 (0.014527) | 0.375048 / 0.275898 (0.099150) | 0.442254 / 0.323480 (0.118774) | 0.003506 / 0.007986 (-0.004480) | 0.003751 / 0.004328 (-0.000577) | 0.076771 / 0.004250 (0.072521) | 0.047915 / 0.037052 (0.010862) | 0.378918 / 0.258489 (0.120429) | 0.435300 / 0.293841 (0.141459) | 0.028317 / 0.128546 (-0.100230) | 0.008413 / 0.075646 (-0.067233) | 0.082774 / 0.419271 (-0.336497) | 0.043211 / 0.043533 (-0.000321) | 0.362022 / 0.255139 (0.106883) | 0.404928 / 0.283200 (0.121728) | 0.020692 / 0.141683 (-0.120991) | 1.527303 / 1.452155 (0.075148) | 1.596091 / 1.492716 (0.103375) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225537 / 0.018006 (0.207530) | 0.399901 / 0.000490 (0.399412) | 0.000424 / 0.000200 (0.000224) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026483 / 0.037411 (-0.010928) | 0.104373 / 0.014526 (0.089847) | 0.111271 / 0.176557 (-0.065286) | 0.163872 / 0.737135 (-0.573264) | 0.113991 / 0.296338 (-0.182347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456484 / 0.215209 (0.241275) | 4.572652 / 2.077655 (2.494998) | 2.374908 / 1.504120 (0.870788) | 2.207855 / 1.541195 (0.666661) | 2.260009 / 1.468490 (0.791519) | 0.562678 / 4.584777 (-4.022099) | 3.441778 / 3.745712 (-0.303934) | 1.729006 / 5.269862 (-3.540855) | 1.024937 / 4.565676 (-3.540739) | 0.068707 / 0.424275 (-0.355568) | 0.011334 / 0.007607 (0.003727) | 0.564293 / 0.226044 (0.338248) | 5.638367 / 2.268929 (3.369438) | 2.665654 / 55.444624 (-52.778970) | 2.320033 / 6.876477 (-4.556444) | 2.328706 / 2.142072 (0.186634) | 0.677433 / 4.805227 (-4.127794) | 0.137190 / 6.500664 (-6.363474) | 0.068585 / 0.075469 (-0.006885) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312476 / 1.841788 (-0.529312) | 14.206685 / 8.074308 (6.132377) | 14.217928 / 10.191392 (4.026536) | 0.143416 / 0.680424 (-0.537007) | 0.016647 / 0.534201 (-0.517554) | 0.361228 / 0.579283 (-0.218055) | 0.396185 / 0.434364 (-0.038178) | 0.423275 / 0.540337 (-0.117063) | 0.512966 / 1.386936 (-0.873970) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b424648fd68bd0b5279eb916cec4836d1220e268 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008913 / 0.011353 (-0.002440) | 0.005142 / 0.011008 (-0.005866) | 0.133958 / 0.038508 (0.095449) | 0.049180 / 0.023109 (0.026071) | 0.389169 / 0.275898 (0.113270) | 0.481513 / 0.323480 (0.158033) | 0.006555 / 0.007986 (-0.001430) | 0.003806 / 0.004328 (-0.000522) | 0.102056 / 0.004250 (0.097806) | 0.083259 / 0.037052 (0.046207) | 0.392536 / 0.258489 (0.134047) | 0.447503 / 0.293841 (0.153662) | 0.047472 / 0.128546 (-0.081074) | 0.014748 / 0.075646 (-0.060899) | 0.475619 / 0.419271 (0.056348) | 0.107306 / 0.043533 (0.063773) | 0.421942 / 0.255139 (0.166803) | 0.419736 / 0.283200 (0.136536) | 0.044195 / 0.141683 (-0.097488) | 1.793840 / 1.452155 (0.341686) | 1.960204 / 1.492716 (0.467488) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252046 / 0.018006 (0.234040) | 0.627725 / 0.000490 (0.627236) | 0.007435 / 0.000200 (0.007235) | 0.000526 / 0.000054 (0.000472) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034656 / 0.037411 (-0.002755) | 0.114534 / 0.014526 (0.100008) | 0.135804 / 0.176557 (-0.040753) | 0.209309 / 0.737135 (-0.527826) | 0.140369 / 0.296338 (-0.155969) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.636736 / 0.215209 (0.421527) | 6.039985 / 2.077655 (3.962330) | 2.640141 / 1.504120 (1.136021) | 2.284492 / 1.541195 (0.743297) | 2.324956 / 1.468490 (0.856466) | 0.934499 / 4.584777 (-3.650278) | 5.673415 / 3.745712 (1.927703) | 5.184584 / 5.269862 (-0.085278) | 2.661911 / 4.565676 (-1.903766) | 0.150420 / 0.424275 (-0.273855) | 0.015655 / 0.007607 (0.008048) | 0.748290 / 0.226044 (0.522246) | 7.579755 / 2.268929 (5.310827) | 3.346732 / 55.444624 (-52.097892) | 2.708212 / 6.876477 (-4.168264) | 2.682423 / 2.142072 (0.540351) | 1.170389 / 4.805227 (-3.634838) | 0.215775 / 6.500664 (-6.284889) | 0.076360 / 0.075469 (0.000891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.516794 / 1.841788 (-0.324993) | 18.709117 / 8.074308 (10.634809) | 22.492542 / 10.191392 (12.301150) | 0.237978 / 0.680424 (-0.442446) | 0.027828 / 0.534201 (-0.506373) | 0.499968 / 0.579283 (-0.079315) | 0.645899 / 0.434364 (0.211535) | 0.548599 / 0.540337 (0.008262) | 0.675428 / 1.386936 (-0.711508) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008469 / 0.011353 (-0.002884) | 0.005420 / 0.011008 (-0.005589) | 0.093340 / 0.038508 (0.054832) | 0.045896 / 0.023109 (0.022786) | 0.533267 / 0.275898 (0.257369) | 0.596034 / 0.323480 (0.272555) | 0.004816 / 0.007986 (-0.003170) | 0.004379 / 0.004328 (0.000051) | 0.096356 / 0.004250 (0.092106) | 0.058339 / 0.037052 (0.021287) | 0.574464 / 0.258489 (0.315975) | 0.649301 / 0.293841 (0.355461) | 0.047599 / 0.128546 (-0.080947) | 0.013759 / 0.075646 (-0.061887) | 0.104672 / 0.419271 (-0.314599) | 0.061658 / 0.043533 (0.018125) | 0.560956 / 0.255139 (0.305817) | 0.585328 / 0.283200 (0.302128) | 0.034137 / 0.141683 (-0.107546) | 1.844528 / 1.452155 (0.392373) | 1.971398 / 1.492716 (0.478682) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278666 / 0.018006 (0.260660) | 0.577342 / 0.000490 (0.576853) | 0.005496 / 0.000200 (0.005296) | 0.000131 / 0.000054 (0.000076) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029863 / 0.037411 (-0.007549) | 0.161703 / 0.014526 (0.147177) | 0.132279 / 0.176557 (-0.044277) | 0.227345 / 0.737135 (-0.509791) | 0.138047 / 0.296338 (-0.158291) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.651535 / 0.215209 (0.436326) | 7.077949 / 2.077655 (5.000295) | 2.926990 / 1.504120 (1.422871) | 2.598872 / 1.541195 (1.057678) | 2.614192 / 1.468490 (1.145702) | 0.913845 / 4.584777 (-3.670932) | 5.704301 / 3.745712 (1.958589) | 2.796914 / 5.269862 (-2.472948) | 1.836096 / 4.565676 (-2.729580) | 0.106294 / 0.424275 (-0.317981) | 0.012705 / 0.007607 (0.005098) | 0.836336 / 0.226044 (0.610291) | 8.234079 / 2.268929 (5.965150) | 3.836410 / 55.444624 (-51.608215) | 3.116752 / 6.876477 (-3.759724) | 3.154258 / 2.142072 (1.012186) | 1.195794 / 4.805227 (-3.609434) | 0.240491 / 6.500664 (-6.260173) | 0.087913 / 0.075469 (0.012444) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.724723 / 1.841788 (-0.117064) | 19.492194 / 8.074308 (11.417885) | 21.443341 / 10.191392 (11.251949) | 0.245819 / 0.680424 (-0.434605) | 0.027024 / 0.534201 (-0.507177) | 0.481071 / 0.579283 (-0.098212) | 0.596359 / 0.434364 (0.161995) | 0.646462 / 0.540337 (0.106124) | 0.706380 / 1.386936 (-0.680556) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#67ca664e6d5ef137127b238aae1d0aff54e22db2 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006634 / 0.011353 (-0.004719) | 0.004003 / 0.011008 (-0.007005) | 0.097874 / 0.038508 (0.059365) | 0.043528 / 0.023109 (0.020419) | 0.302293 / 0.275898 (0.026395) | 0.357041 / 0.323480 (0.033561) | 0.003761 / 0.007986 (-0.004225) | 0.004312 / 0.004328 (-0.000016) | 0.076253 / 0.004250 (0.072003) | 0.062807 / 0.037052 (0.025755) | 0.316737 / 0.258489 (0.058248) | 0.356722 / 0.293841 (0.062881) | 0.030816 / 0.128546 (-0.097730) | 0.008691 / 0.075646 (-0.066955) | 0.328366 / 0.419271 (-0.090906) | 0.062299 / 0.043533 (0.018766) | 0.293877 / 0.255139 (0.038738) | 0.319832 / 0.283200 (0.036632) | 0.024996 / 0.141683 (-0.116687) | 1.473912 / 1.452155 (0.021758) | 1.565439 / 1.492716 (0.072723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208428 / 0.018006 (0.190422) | 0.435618 / 0.000490 (0.435128) | 0.000695 / 0.000200 (0.000495) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026253 / 0.037411 (-0.011158) | 0.106908 / 0.014526 (0.092382) | 0.117075 / 0.176557 (-0.059482) | 0.177969 / 0.737135 (-0.559166) | 0.123400 / 0.296338 (-0.172938) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424970 / 0.215209 (0.209761) | 4.203233 / 2.077655 (2.125578) | 2.009679 / 1.504120 (0.505559) | 1.825691 / 1.541195 (0.284496) | 1.870639 / 1.468490 (0.402149) | 0.530758 / 4.584777 (-4.054019) | 3.718791 / 3.745712 (-0.026921) | 1.800206 / 5.269862 (-3.469656) | 1.071651 / 4.565676 (-3.494025) | 0.065126 / 0.424275 (-0.359149) | 0.011312 / 0.007607 (0.003704) | 0.532503 / 0.226044 (0.306458) | 5.353950 / 2.268929 (3.085021) | 2.463548 / 55.444624 (-52.981076) | 2.139832 / 6.876477 (-4.736645) | 2.238722 / 2.142072 (0.096650) | 0.655736 / 4.805227 (-4.149492) | 0.141689 / 6.500664 (-6.358975) | 0.063282 / 0.075469 (-0.012187) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.183523 / 1.841788 (-0.658265) | 14.146428 / 8.074308 (6.072120) | 14.312883 / 10.191392 (4.121491) | 0.169286 / 0.680424 (-0.511138) | 0.017343 / 0.534201 (-0.516858) | 0.397934 / 0.579283 (-0.181349) | 0.417791 / 0.434364 (-0.016573) | 0.463639 / 0.540337 (-0.076698) | 0.562787 / 1.386936 (-0.824149) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006594 / 0.011353 (-0.004759) | 0.004086 / 0.011008 (-0.006922) | 0.075122 / 0.038508 (0.036614) | 0.041849 / 0.023109 (0.018740) | 0.362645 / 0.275898 (0.086747) | 0.464350 / 0.323480 (0.140870) | 0.003760 / 0.007986 (-0.004226) | 0.003327 / 0.004328 (-0.001001) | 0.076154 / 0.004250 (0.071904) | 0.053232 / 0.037052 (0.016180) | 0.407863 / 0.258489 (0.149374) | 0.460787 / 0.293841 (0.166946) | 0.031917 / 0.128546 (-0.096630) | 0.008770 / 0.075646 (-0.066876) | 0.082612 / 0.419271 (-0.336660) | 0.051311 / 0.043533 (0.007779) | 0.354508 / 0.255139 (0.099369) | 0.419533 / 0.283200 (0.136334) | 0.023980 / 0.141683 (-0.117703) | 1.491255 / 1.452155 (0.039100) | 1.536101 / 1.492716 (0.043384) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178261 / 0.018006 (0.160255) | 0.444680 / 0.000490 (0.444190) | 0.013761 / 0.000200 (0.013561) | 0.000117 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027875 / 0.037411 (-0.009536) | 0.111269 / 0.014526 (0.096744) | 0.121096 / 0.176557 (-0.055461) | 0.174387 / 0.737135 (-0.562749) | 0.124714 / 0.296338 (-0.171624) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445422 / 0.215209 (0.230213) | 4.435877 / 2.077655 (2.358222) | 2.221895 / 1.504120 (0.717775) | 2.030571 / 1.541195 (0.489376) | 2.074863 / 1.468490 (0.606373) | 0.543331 / 4.584777 (-4.041446) | 3.753615 / 3.745712 (0.007903) | 3.317074 / 5.269862 (-1.952787) | 1.630390 / 4.565676 (-2.935286) | 0.066726 / 0.424275 (-0.357549) | 0.011556 / 0.007607 (0.003949) | 0.546985 / 0.226044 (0.320941) | 5.460634 / 2.268929 (3.191705) | 2.705945 / 55.444624 (-52.738679) | 2.373425 / 6.876477 (-4.503052) | 2.401472 / 2.142072 (0.259399) | 0.663225 / 4.805227 (-4.142002) | 0.143694 / 6.500664 (-6.356970) | 0.065283 / 0.075469 (-0.010186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264804 / 1.841788 (-0.576983) | 14.803228 / 8.074308 (6.728919) | 14.178514 / 10.191392 (3.987122) | 0.162651 / 0.680424 (-0.517772) | 0.017586 / 0.534201 (-0.516615) | 0.398740 / 0.579283 (-0.180543) | 0.414478 / 0.434364 (-0.019886) | 0.465442 / 0.540337 (-0.074895) | 0.563450 / 1.386936 (-0.823486) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#76f75a9a3b2aaad05ea0ea5ab77e01fd2ca66760 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/276
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/276/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/276/comments
https://api.github.com/repos/huggingface/datasets/issues/276/events
https://github.com/huggingface/datasets/pull/276
639,490,858
MDExOlB1bGxSZXF1ZXN0NDM1MDY5Nzg5
276
Fix metric compute (original_instructions missing)
[]
closed
false
null
2
2020-06-16T08:52:01Z
2020-06-18T07:41:45Z
2020-06-18T07:41:44Z
null
When loading arrow data we added in cc8d250 a way to specify the instructions that were used to store them with the loaded dataset. However metrics load data the same way but don't need instructions (we use one single file). In this PR I just make `original_instructions` optional when reading files to load a `Dataset` object. This should fix #269
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/276/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/276/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/276.diff", "html_url": "https://github.com/huggingface/datasets/pull/276", "merged_at": "2020-06-18T07:41:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/276.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/276" }
true
[ "Awesome! This is working now:\r\n\r\n```python\r\nimport nlp \r\nseqeval = nlp.load_metric(\"seqeval\") \r\ny_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] \r\ny_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] \r\n\r\nresults = seqeval.compute(y_true, y_pred)\r\n```\r\n\r\nI heavily need this fix for an upcoming `nlp` integration PR for Transformers (token classification example) 😅", "Haha nice ! We'll ship this fix with the next release that will probably come out on thursday :)" ]
https://api.github.com/repos/huggingface/datasets/issues/4410
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4410/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4410/comments
https://api.github.com/repos/huggingface/datasets/issues/4410/events
https://github.com/huggingface/datasets/pull/4410
1,249,148,457
PR_kwDODunzps44f_Td
4,410
Remove Google Drive URL in spider dataset
[]
closed
false
null
1
2022-05-26T06:17:35Z
2022-05-26T06:48:42Z
2022-05-26T06:40:12Z
null
The `spider` dataset is distributed under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode) license. Fix #4401.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4410/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4410/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4410.diff", "html_url": "https://github.com/huggingface/datasets/pull/4410", "merged_at": "2022-05-26T06:40:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/4410.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4410" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/4742
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4742/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4742/comments
https://api.github.com/repos/huggingface/datasets/issues/4742/events
https://github.com/huggingface/datasets/issues/4742
1,317,260,663
I_kwDODunzps5Og813
4,742
Dummy data nowhere to be found
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
3
2022-07-25T19:18:42Z
2022-11-04T14:04:24Z
2022-11-04T14:04:10Z
null
## Describe the bug To finalize my dataset, I wanted to create dummy data as per the guide and I ran ```shell datasets-cli dummy_data datasets/hebban-reviews --auto_generate ``` where hebban-reviews is [this repo](https://huggingface.co/datasets/BramVanroy/hebban-reviews). And even though the scripts runs and shows a message at the end that it succeeded, I cannot find the dummy data anywhere. Where is it? ## Expected results To see the dummy data in the datasets' folder or in the folder where I ran the command. ## Actual results I see the following message but I cannot find the dummy data anywhere. ``` Dummy data generation done and dummy data test succeeded for config 'filtered''. Automatic dummy data generation succeeded for all configs of '.\datasets\hebban-reviews\' ``` ## Environment info - `datasets` version: 2.4.1.dev0 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.8.8 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4742/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4742/timeline
null
completed
null
null
false
[ "Hi @BramVanroy, thanks for reporting.\r\n\r\nFirst of all, please note that you do not need the dummy data: this was the case when we were adding datasets to the `datasets` library (on this GitHub repo), so that we could test the correct loading of all datasets with our CI. However, this is no longer the case for datasets on the Hub.\r\n- We should definitely update our docs.\r\n\r\nSecond, the dummy data is generated locally:\r\n- in your case, the dummy data will be generated inside the directory: `./datasets/hebban-reviews/dummy`\r\n- please note the preceding `./datasets` directory: the reason for this is that the command to generate the dummy data was specifically created for our `datasets` library, and therefore assumes our directory structure: commands are run from the root directory of our GitHub repo, and datasets scripts are under `./datasets` \r\n\r\n\r\n ", "I have opened an Issue to update the instructions on dummy data generation:\r\n- #4744", "Dummy data generation is deprecated now, so I think we can close this issue." ]
https://api.github.com/repos/huggingface/datasets/issues/3022
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3022/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3022/comments
https://api.github.com/repos/huggingface/datasets/issues/3022/events
https://github.com/huggingface/datasets/pull/3022
1,015,750,221
PR_kwDODunzps4sqve6
3,022
MeDAL dataset: Add further description and update download URL
[]
closed
false
null
4
2021-10-05T00:13:28Z
2021-10-13T09:03:09Z
2021-10-13T09:03:09Z
null
Added more details in the following sections: * Dataset Structure * Data Instances * Data Splits * Source Data * Annotations * Discussions of Biases * LIcensing Information
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3022/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3022/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3022.diff", "html_url": "https://github.com/huggingface/datasets/pull/3022", "merged_at": "2021-10-13T09:03:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/3022.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3022" }
true
[ "@lhoestq I'm a bit confused by the error message. I haven't touched the YAML code at all - do you have any insight on that?", "I just added the missing `pretty_name` tag in the YAML - sorry about that ;)", "Thanks! Seems like it did the trick since the tests are passing. Let me know if there's anything else I can do in this PR!", "It's all good thank you :)\r\n\r\nmerging !" ]
https://api.github.com/repos/huggingface/datasets/issues/4901
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4901/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4901/comments
https://api.github.com/repos/huggingface/datasets/issues/4901/events
https://github.com/huggingface/datasets/pull/4901
1,352,438,915
PR_kwDODunzps494FNX
4,901
Raise ManualDownloadError from get_dataset_config_info
[]
closed
false
null
1
2022-08-26T15:45:56Z
2022-08-30T10:42:21Z
2022-08-30T10:40:04Z
null
This PRs raises a specific `ManualDownloadError` when `get_dataset_config_info` is called for a dataset that requires manual download. Related to: - #4898 CC: @severo
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4901/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4901/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4901.diff", "html_url": "https://github.com/huggingface/datasets/pull/4901", "merged_at": "2022-08-30T10:40:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/4901.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4901" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/4288
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4288/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4288/comments
https://api.github.com/repos/huggingface/datasets/issues/4288/events
https://github.com/huggingface/datasets/pull/4288
1,226,821,732
PR_kwDODunzps43XLKi
4,288
Add missing `faiss` import to fix https://github.com/huggingface/datasets/issues/4287
[]
closed
false
null
0
2022-05-05T15:21:49Z
2022-05-10T12:55:06Z
2022-05-10T12:09:48Z
null
This PR fixes the issue recently mentioned in https://github.com/huggingface/datasets/issues/4287 🤗
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4288/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4288/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4288.diff", "html_url": "https://github.com/huggingface/datasets/pull/4288", "merged_at": "2022-05-10T12:09:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/4288.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4288" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3634
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3634/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3634/comments
https://api.github.com/repos/huggingface/datasets/issues/3634/events
https://github.com/huggingface/datasets/issues/3634
1,115,133,279
I_kwDODunzps5Cd5Vf
3,634
Dataset.shuffle(seed=None) gives fixed row permutation
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2022-01-26T15:13:08Z
2022-01-27T18:16:07Z
2022-01-27T18:16:07Z
null
## Describe the bug Repeated attempts to `shuffle` a dataset without specifying a seed give the same results. ## Steps to reproduce the bug ```python import datasets # Some toy example data = datasets.Dataset.from_dict( {"feature": [1, 2, 3, 4, 5], "label": ["a", "b", "c", "d", "e"]} ) # Doesn't work as expected print("Shuffle dataset") for _ in range(3): print(data.shuffle(seed=None)[:]) # This seems to work with pandas print("\nShuffle via pandas") for _ in range(3): df = data.to_pandas().sample(frac=1.0) print(datasets.Dataset.from_pandas(df, preserve_index=False)[:]) ``` ## Expected results I assumed that the default setting would initialize a new/random state of a `np.random.BitGenerator` (see [docs](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=shuffle#datasets.Dataset.shuffle)). Wouldn't that reshuffle the rows each time I call `data.shuffle()`? ## Actual results ```bash Shuffle dataset {'feature': [5, 1, 3, 2, 4], 'label': ['e', 'a', 'c', 'b', 'd']} {'feature': [5, 1, 3, 2, 4], 'label': ['e', 'a', 'c', 'b', 'd']} {'feature': [5, 1, 3, 2, 4], 'label': ['e', 'a', 'c', 'b', 'd']} Shuffle via pandas {'feature': [4, 2, 3, 1, 5], 'label': ['d', 'b', 'c', 'a', 'e']} {'feature': [2, 5, 3, 4, 1], 'label': ['b', 'e', 'c', 'd', 'a']} {'feature': [5, 2, 3, 1, 4], 'label': ['e', 'b', 'c', 'a', 'd']} ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.0 - Platform: Linux-5.13.0-27-generic-x86_64-with-glibc2.17 - Python version: 3.8.12 - PyArrow version: 6.0.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3634/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3634/timeline
null
completed
null
null
false
[ "I'm not sure if this is expected behavior.\r\n\r\nAm I supposed to work with a copy of the dataset, i.e. `shuffled_dataset = data.shuffle(seed=None)`?\r\n\r\n```diff\r\nimport datasets\r\n\r\n# Some toy example\r\ndata = datasets.Dataset.from_dict(\r\n {\"feature\": [1, 2, 3, 4, 5], \"label\": [\"a\", \"b\", \"c\", \"d\", \"e\"]}\r\n)\r\n\r\n+shuffled_data = data.shuffle(seed=None)\r\n\r\n# Doesn't work as expected\r\nprint(\"Shuffle dataset\")\r\nfor _ in range(3):\r\n+ shuffled_data = shuffled_data.shuffle(seed=None)\r\n+ print(shuffled_data[:])\r\n- print(data.shuffle(seed=None)[:])\r\n\r\n# This seems to work with pandas\r\nprint(\"\\nShuffle via pandas\")\r\nfor _ in range(3):\r\n df = data.to_pandas().sample(frac=1.0)\r\n print(datasets.Dataset.from_pandas(df, preserve_index=False)[:])\r\n\r\n```\r\n\r\nor provide a `generator` instead?\r\n\r\n```diff\r\nimport datasets\r\n+from numpy.random import default_rng\r\n\r\n# Some toy example\r\ndata = datasets.Dataset.from_dict(\r\n {\"feature\": [1, 2, 3, 4, 5], \"label\": [\"a\", \"b\", \"c\", \"d\", \"e\"]}\r\n)\r\n\r\n+rng = default_rng()\r\n\r\n# Doesn't work as expected\r\nprint(\"Shuffle dataset\")\r\nfor _ in range(3):\r\n+ print(data.shuffle(generator=rng)[:])\r\n- print(data.shuffle(seed=None)[:])\r\n\r\n# This seems to work with pandas\r\nprint(\"\\nShuffle via pandas\")\r\nfor _ in range(3):\r\n df = data.to_pandas().sample(frac=1.0)\r\n print(datasets.Dataset.from_pandas(df, preserve_index=False)[:])\r\n\r\n```", "Hi! Thanks for reporting! Yes, this is not expected behavior. I've opened a PR with the fix." ]
https://api.github.com/repos/huggingface/datasets/issues/3424
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3424/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3424/comments
https://api.github.com/repos/huggingface/datasets/issues/3424/events
https://github.com/huggingface/datasets/pull/3424
1,078,543,625
PR_kwDODunzps4vwpNt
3,424
Add RedCaps dataset
[]
closed
false
null
2
2021-12-13T13:38:13Z
2022-01-12T14:13:16Z
2022-01-12T14:13:15Z
null
Add the RedCaps dataset. I'm not adding the generated `dataset_infos.json` file for now due to its size (11 MB). TODOs: - [x] dummy data - [x] dataset card Close #3316
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3424/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3424/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3424.diff", "html_url": "https://github.com/huggingface/datasets/pull/3424", "merged_at": "2022-01-12T14:13:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/3424.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3424" }
true
[ "Cool ! If you want you can include `dataset_infos.json` but only for the main configurations. That's what we do for example for translation datasets when there are too many configs", "@lhoestq I've added an example that uses `map` to download the images." ]
https://api.github.com/repos/huggingface/datasets/issues/4725
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4725/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4725/comments
https://api.github.com/repos/huggingface/datasets/issues/4725/events
https://github.com/huggingface/datasets/issues/4725
1,311,907,096
I_kwDODunzps5OMh0Y
4,725
the_pile datasets URL broken.
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
5
2022-07-20T20:57:30Z
2022-07-22T06:09:46Z
2022-07-21T07:38:19Z
null
https://github.com/huggingface/datasets/pull/3627 changed the Eleuther AI Pile dataset URL from https://the-eye.eu/ to https://mystic.the-eye.eu/ but the latter is now broken and the former works again. Note that when I git clone the repo and use `pip install -e .` and then edit the URL back the codebase doesn't seem to use this edit so the mystic URL is also cached somewhere else that I can't find?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4725/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4725/timeline
null
completed
null
null
false
[ "Thanks for reporting, @TrentBrick. We are addressing the change with their data host server.\r\n\r\nOn the meantime, if you would like to work with your fixed local copy of the_pile script, you should use:\r\n```python\r\nload_dataset(\"path/to/your/local/the_pile/the_pile.py\",...\r\n```\r\ninstead of just `load_dataset(\"the_pile\",...`.\r\n\r\nThe latter downloads a copy of `the_pile.py` from our GitHub, caches it locally (inside `~/.cache/huggingface/modules`) and uses that.", "@TrentBrick, I have checked the URLs and both hosts work, the original (https://the-eye.eu/) and the mirror (https://mystic.the-eye.eu/). See e.g.:\r\n- https://mystic.the-eye.eu/public/AI/pile/\r\n- https://mystic.the-eye.eu/public/AI/pile_preliminary_components/\r\n\r\nPlease, let me know if you still find any issue loading this dataset by using current server URLs.", "Great this is working now. Re the download from GitHub... I'm sure thought went into doing this but could it be made more clear maybe here? https://huggingface.co/docs/datasets/installation for example under installing from source? I spent over an hour questioning my sanity as I kept trying to edit this file, uninstall and reinstall the repo, git reset to previous versions of the file etc.", "Thanks for the quick reply and help too\r\n", "Thanks @TrentBrick for the suggestion about improving our docs: we should definitely do this if you find they are not clear enough.\r\n\r\nCurrently, our docs explain how to load a dataset from a local loading script here: [Load > Local loading script](https://huggingface.co/docs/datasets/loading#local-loading-script)\r\n\r\nI've opened an issue here:\r\n- #4732\r\n\r\nFeel free to comment on it any additional explanation/suggestion/requirement related to this problem." ]
https://api.github.com/repos/huggingface/datasets/issues/4867
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4867/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4867/comments
https://api.github.com/repos/huggingface/datasets/issues/4867/events
https://github.com/huggingface/datasets/pull/4867
1,344,982,646
PR_kwDODunzps49fZle
4,867
Complete tags of superglue dataset card
[]
closed
false
null
1
2022-08-19T23:44:39Z
2022-08-22T09:14:03Z
2022-08-22T08:58:31Z
null
Related to #4479 .
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4867/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4867/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4867.diff", "html_url": "https://github.com/huggingface/datasets/pull/4867", "merged_at": "2022-08-22T08:58:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/4867.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4867" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/1405
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1405/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1405/comments
https://api.github.com/repos/huggingface/datasets/issues/1405/events
https://github.com/huggingface/datasets/pull/1405
760,578,035
MDExOlB1bGxSZXF1ZXN0NTM1Mzg2ODA1
1,405
Adding TaPaCo Dataset with README.md
[]
closed
false
null
2
2020-12-09T18:42:58Z
2020-12-13T19:11:18Z
2020-12-13T19:11:18Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1405/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1405/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1405.diff", "html_url": "https://github.com/huggingface/datasets/pull/1405", "merged_at": "2020-12-13T19:11:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/1405.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1405" }
true
[ "We want to keep the repo as light as possible so that it doesn't take ages to clone, that's why we ask for small dummy data files (especially when there are many of them). Let me know if you have questions or if we can help you on this", "Hello @lhoestq , made the changes as you suggested and pushed, please review. By default, the dummy data was generated the way it was by the dummy data auto generate command. Thank you." ]
https://api.github.com/repos/huggingface/datasets/issues/5526
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5526/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5526/comments
https://api.github.com/repos/huggingface/datasets/issues/5526/events
https://github.com/huggingface/datasets/pull/5526
1,580,488,133
PR_kwDODunzps5JwVol
5,526
Allow loading/saving of FAISS index using fsspec
[]
closed
false
null
4
2023-02-10T23:37:14Z
2023-03-27T15:26:46Z
2023-03-27T15:18:20Z
null
Fixes #5428 Allow loading/saving of FAISS index using fsspec: 1. Simply use BufferedIOWriter/Reader to Read/Write indices on fsspec stream. 2. Needed `mockfs` in the test, so I took it out of the `TestCase`. Let me know if that makes sense. I can work on the documentation once the code changes are approved.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5526/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5526/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5526.diff", "html_url": "https://github.com/huggingface/datasets/pull/5526", "merged_at": "2023-03-27T15:18:20Z", "patch_url": "https://github.com/huggingface/datasets/pull/5526.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5526" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "Thanks for the quick review! I updated the code with your suggestion", "Thanks for the quick review @albertvillanova! I updated the code with your suggestions", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008577 / 0.011353 (-0.002776) | 0.005714 / 0.011008 (-0.005294) | 0.114718 / 0.038508 (0.076210) | 0.039799 / 0.023109 (0.016690) | 0.387530 / 0.275898 (0.111632) | 0.395739 / 0.323480 (0.072259) | 0.006775 / 0.007986 (-0.001211) | 0.006280 / 0.004328 (0.001952) | 0.086470 / 0.004250 (0.082220) | 0.054424 / 0.037052 (0.017371) | 0.361989 / 0.258489 (0.103500) | 0.424678 / 0.293841 (0.130837) | 0.043081 / 0.128546 (-0.085465) | 0.013903 / 0.075646 (-0.061743) | 0.397625 / 0.419271 (-0.021647) | 0.059789 / 0.043533 (0.016256) | 0.375195 / 0.255139 (0.120056) | 0.403724 / 0.283200 (0.120524) | 0.121470 / 0.141683 (-0.020213) | 1.734496 / 1.452155 (0.282341) | 1.820479 / 1.492716 (0.327763) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239672 / 0.018006 (0.221665) | 0.499373 / 0.000490 (0.498883) | 0.005034 / 0.000200 (0.004834) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033000 / 0.037411 (-0.004411) | 0.130930 / 0.014526 (0.116404) | 0.151690 / 0.176557 (-0.024866) | 0.211839 / 0.737135 (-0.525296) | 0.148727 / 0.296338 (-0.147612) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480592 / 0.215209 (0.265382) | 4.809700 / 2.077655 (2.732046) | 2.232414 / 1.504120 (0.728294) | 2.035432 / 1.541195 (0.494237) | 2.115991 / 1.468490 (0.647501) | 0.817841 / 4.584777 (-3.766936) | 4.718035 / 3.745712 (0.972323) | 4.107102 / 5.269862 (-1.162759) | 2.166838 / 4.565676 (-2.398839) | 0.102207 / 0.424275 (-0.322068) | 0.014686 / 0.007607 (0.007079) | 0.599922 / 0.226044 (0.373877) | 5.985840 / 2.268929 (3.716912) | 2.769199 / 55.444624 (-52.675425) | 2.427095 / 6.876477 (-4.449382) | 2.586666 / 2.142072 (0.444593) | 0.987650 / 4.805227 (-3.817578) | 0.199419 / 6.500664 (-6.301245) | 0.076710 / 0.075469 (0.001240) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.454509 / 1.841788 (-0.387278) | 18.267849 / 8.074308 (10.193541) | 16.701880 / 10.191392 (6.510488) | 0.204225 / 0.680424 (-0.476199) | 0.020295 / 0.534201 (-0.513906) | 0.504254 / 0.579283 (-0.075029) | 0.535071 / 0.434364 (0.100707) | 0.611825 / 0.540337 (0.071488) | 0.697289 / 1.386936 (-0.689647) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009141 / 0.011353 (-0.002211) | 0.005987 / 0.011008 (-0.005021) | 0.092003 / 0.038508 (0.053495) | 0.043239 / 0.023109 (0.020130) | 0.400425 / 0.275898 (0.124527) | 0.464849 / 0.323480 (0.141369) | 0.008256 / 0.007986 (0.000270) | 0.006251 / 0.004328 (0.001923) | 0.095263 / 0.004250 (0.091013) | 0.057899 / 0.037052 (0.020847) | 0.402899 / 0.258489 (0.144410) | 0.477411 / 0.293841 (0.183570) | 0.044122 / 0.128546 (-0.084424) | 0.014158 / 0.075646 (-0.061489) | 0.116354 / 0.419271 (-0.302917) | 0.061045 / 0.043533 (0.017512) | 0.411635 / 0.255139 (0.156497) | 0.466281 / 0.283200 (0.183082) | 0.129423 / 0.141683 (-0.012260) | 1.799790 / 1.452155 (0.347635) | 2.004578 / 1.492716 (0.511862) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224012 / 0.018006 (0.206006) | 0.502972 / 0.000490 (0.502482) | 0.003560 / 0.000200 (0.003360) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034794 / 0.037411 (-0.002618) | 0.139646 / 0.014526 (0.125120) | 0.144330 / 0.176557 (-0.032226) | 0.202528 / 0.737135 (-0.534607) | 0.151561 / 0.296338 (-0.144777) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.504343 / 0.215209 (0.289133) | 5.050690 / 2.077655 (2.973035) | 2.433107 / 1.504120 (0.928987) | 2.197443 / 1.541195 (0.656248) | 2.331225 / 1.468490 (0.862734) | 0.834066 / 4.584777 (-3.750711) | 4.837648 / 3.745712 (1.091936) | 4.105672 / 5.269862 (-1.164189) | 2.281557 / 4.565676 (-2.284120) | 0.102257 / 0.424275 (-0.322018) | 0.014425 / 0.007607 (0.006818) | 0.629290 / 0.226044 (0.403245) | 6.251513 / 2.268929 (3.982585) | 2.959012 / 55.444624 (-52.485613) | 2.570031 / 6.876477 (-4.306446) | 2.657525 / 2.142072 (0.515453) | 1.002861 / 4.805227 (-3.802367) | 0.199326 / 6.500664 (-6.301338) | 0.078428 / 0.075469 (0.002958) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.579587 / 1.841788 (-0.262201) | 18.567509 / 8.074308 (10.493201) | 17.162144 / 10.191392 (6.970752) | 0.193460 / 0.680424 (-0.486964) | 0.020819 / 0.534201 (-0.513382) | 0.501929 / 0.579283 (-0.077354) | 0.508039 / 0.434364 (0.073675) | 0.582656 / 0.540337 (0.042319) | 0.693624 / 1.386936 (-0.693312) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c410d321cd1289c6a630192b078f4892c2e13ff9 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/5847
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5847/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5847/comments
https://api.github.com/repos/huggingface/datasets/issues/5847/events
https://github.com/huggingface/datasets/issues/5847
1,706,616,634
I_kwDODunzps5luOc6
5,847
Streaming IterableDataset not working with translation pipeline
[]
open
false
null
8
2023-05-11T21:52:38Z
2023-05-16T15:59:55Z
null
null
### Describe the bug I'm trying to use a streaming dataset for translation inference to avoid downloading the training data. I'm using a pipeline and a dataset, and following the guidance in the tutorial. Instead I get an exception that IterableDataset has no len(). ### Steps to reproduce the bug CODE: ``` from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from datasets import load_dataset ds = load_dataset(path="wmt14", name="fr-en", split="test", streaming=True) bs=1 mt = pipeline("translation_en_to_fr", model="t5-base", batch_size=bs) #print(mt("hello")) THIS WORKS ks = KeyDataset(ds, "translation") print(f"{ks}") xx= mt(ks) for x in xx: print(x) ``` RUN: ``` (watnlp) [jlquinn@bertdev01 hf]$ python ende.t5.pipe.py 2023-05-11 16:48:08.817572: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2023-05-11 16:48:08.821388: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2023-05-11 16:48:08.821407: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. <transformers.pipelines.pt_utils.KeyDataset object at 0x7f61ed5da9d0> Traceback (most recent call last): File "/home/jlquinn/models/hf/ende.t5.pipe.py", line 11, in <module> for x in xx: File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/pt_utils.py", line 111, in __next__ item = next(self.iterator) File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/pt_utils.py", line 111, in __next__ item = next(self.iterator) File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 681, in __next__ data = self._next_data() File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 720, in _next_data index = self._next_index() # may raise StopIteration File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 671, in _next_index return next(self._sampler_iter) # may raise StopIteration File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/torch/utils/data/sampler.py", line 247, in __iter__ for idx in self.sampler: File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/torch/utils/data/sampler.py", line 76, in __iter__ return iter(range(len(self.data_source))) File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/pt_utils.py", line 13, in __len__ return len(self.dataset) File "/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/pt_utils.py", line 289, in __len__ return len(self.dataset) TypeError: object of type 'IterableDataset' has no len() ``` ### Expected behavior I'm expecting french translations of the english test set to be printed. ### Environment info Run on CPU with no GPU. RHEL 8.7 x86_64 python 3.9.0 transformers 4.17.0 datasets 2.0.0 tokenizers 0.12.1 ``` (watnlp) [jlquinn@bertdev01 hf]$ datasets-cli env Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.0.0 - Platform: Linux-4.18.0-372.19.1.el8_6.x86_64-x86_64-with-glibc2.28 - Python version: 3.9.0 - PyArrow version: 8.0.0 - Pandas version: 1.4.4 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5847/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5847/timeline
null
null
null
null
false
[ "I wasn't sure to file this against transformers or datasets.", "[`KeyDataset`](https://github.com/huggingface/transformers/blob/7f8b909189547944617741d8d3c6c84504701693/src/transformers/pipelines/pt_utils.py#L296) doesn't support iterable datasets, so you either need to implement a version that does (and also indexing nested (translation) fields):\r\n\r\n```python\r\nfrom torch.utils.data import Dataset, IterableDataset\r\n\r\ndef build_key_fetcher(key: str):\r\n def _key_fetcher(item):\r\n for sub_key in key.split(\".\"):\r\n item = item[sub_key]\r\n return item\r\n return _key_fetcher\r\n\r\nclass KeyDataset(Dataset):\r\n def __new__(cls, dataset: Dataset, key: str):\r\n cls = _KeyIterableDataset if isinstance(dataset, IterableDataset) else _KeyMapDataset\r\n self = object.__new__(cls)\r\n self.dataset = dataset\r\n self.key = key\r\n self._key_fetcher = build_key_fetcher(key)\r\n return self\r\n\r\nclass _KeyMapDataset(KeyDataset):\r\n def __getitem__(self, i):\r\n return self._key_fetcher(self.dataset[i])\r\n \r\n def __len__(self):\r\n return len(self.dataset)\r\n\r\n\r\nclass _KeyIterableDataset(KeyDataset):\r\n def __iter__(self):\r\n for ex in self.dataset:\r\n yield self._key_fetcher(ex)\r\n\r\nks = KeyDataset(ds, \"translation.en\")\r\n```\r\n\r\nor use `IterableDataset`'s `map`:\r\n```python\r\ndef fetch_en_translation(ex):\r\n return {\"en\": ex[\"translation\"][\"en\"]}\r\nks = ds.map(fetch_en_translation, remove_columns=ds.column_names) \r\n```\r\n\r\ncc @sgugger: Perhaps the `KeyDataset` + PyTorch `IterableDataset` case should be supported by Transformers", "@mariosasko The map snippet didn't quite work, but gave me enough of a clue to get it working. The following snippet does work:\r\n```\r\ndef en_translation(x):\r\n return {\"en\":x['translation']['en']}\r\nks = ds.map(en_translation, remove_columns=['translation'])\r\ntest=[]\r\nfor x in iter(ks):\r\n test.append(x['en'])\r\nxx= mt(test)\r\nfor x in xx:\r\n print(x)\r\n```\r\n\r\nI tried just returning `x['translation']['en`]` in the helper function instead of the dict, but that didn't give me an iterator over strings that pipeline would work with either.\r\n\r\n\r\nThe snippet as is gives the following error:\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/pdb.py\", line 1704, in main\r\n pdb._runscript(mainpyfile)\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/pdb.py\", line 1573, in _runscript\r\n self.run(statement)\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/bdb.py\", line 580, in run\r\n exec(cmd, globals, locals)\r\n File \"<string>\", line 1, in <module>\r\n File \"/home/jlquinn/models/hf/ende.t5.pipe.py\", line 1, in <module>\r\n from transformers import pipeline\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/text2text_generation.py\", line 335, in __call__\r\n return super().__call__(*args, **kwargs)\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/text2text_generation.py\", line 138, in __call__\r\n result = super().__call__(*args, **kwargs)\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/base.py\", line 1027, in __call__\r\n return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/base.py\", line 1033, in run_single\r\n model_inputs = self.preprocess(inputs, **preprocess_params)\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/text2text_generation.py\", line 287, in preprocess\r\n return super()._parse_and_tokenize(*args, truncation=truncation)\r\n File \"/home/jlquinn/miniconda3/envs/watnlp/lib/python3.9/site-packages/transformers/pipelines/text2text_generation.py\", line 100, in _parse_and_tokenize\r\n raise ValueError(\r\nValueError: `args[0]`: <datasets.iterable_dataset.IterableDataset object at 0x7f5fd38ef1c0> have the wrong format. The should be either of type `str` or type `list`\r\nUncaught exception. Entering post mortem debugging\r\nRunning 'cont' or 'step' will restart the program\r\n```\r\n", "So perhaps there's no bug exactly, but I would love to see two things: 1) improve the documentation to better understand what's really getting returned. 2) update the example provided of using transformer pipeline with a dataset to include the oddball case that translation appears to be.", "cc @Narsil ", "Hi,\r\n\r\nfor the original snippet, the issue is that `streaming` datasets are not countable (they have no len) and therefore `KeyDataset` cannot work with them ( KeyDataset is a dataset and therefore requires a length).\r\n\r\nI modified slightly the original snippet to make it work:\r\n\r\n```python\r\nfrom transformers import pipeline\r\nfrom transformers.pipelines.pt_utils import KeyDataset\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(path=\"wmt14\", name=\"fr-en\", split=\"test\", streaming=True)\r\nbs = 1\r\nmt = pipeline(\r\n \"translation_en_to_fr\", model=\"hf-internal-testing/tiny-random-T5ForConditionalGeneration\", batch_size=bs\r\n)\r\n\r\n\r\ndef ks(ds):\r\n for item in ds:\r\n yield item[\"translation\"][\"en\"]\r\n\r\n\r\n# print(f\"{ks}\")\r\nxx = mt(ks(ds))\r\nfor x in xx:\r\n print(x)\r\n```\r\n\r\nThis is what the first example in the docs suggests to use (as it's the most flexible): https://huggingface.co/docs/transformers/v4.29.1/en/pipeline_tutorial#using-pipelines-on-a-dataset\r\n\r\n`KeyDataset` really exists only to get a `sized` dataset to work nicer with `tqdm` for instance.\r\n\r\n@sgugger should we update the docs to remove `KeyDataset` entirely ? (We can add a note to pass manually the length of the data to tqdm so that the progress bar option can still be easy to use ?)\r\n", "Maybe moving `KeyDataset` later on in the guide and specify it's mostly for streaming then? Or is it also necessary for batch_size>1 (which is what the current doc implies)?", "Hmm\r\n\r\nIterator (`yield`) :\r\n- Not countable\r\n- Super flexible\r\n- Cannot use `num_workers>1` (threading requires indexing at the correct location, iterators require to iterate in order,so each thread would iterate over the full thing being genuinely a bad idea)\r\n- Can batch\r\n- tqdm doesn't show a nice progress bar (it has no total)\r\n\r\nKeyDataset (Or any PyTorch like Dataset returning the correct object for the pipeline):\r\n- Countable\r\n- Less flexible (not applicable to datasets with streaming), can only work on single keys. But should be easy to read and write your own (like @mariosasko did)\r\n- Works with `num_workers > 1` (Every worker can fetch exactly what's needed)\r\n- Can batch \r\n- tqdm shows a nice progress bar\r\n\r\nIn the docs, if we update all the examples to use iterators, and include an example with\r\n\r\n```\r\nfor item in tqdm.tqdm(pipe(iterator(), total=len(dataset))))\r\n```\r\n\r\nWe can save the biggest feature that doesn't work out of the box with iterators which is the tqdm progress bar.\r\n\r\n`num_workers>1` we can mention it, but it tends to be an issues only on CPU intensive loads, like image (and maybe audio)\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/4534
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4534/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4534/comments
https://api.github.com/repos/huggingface/datasets/issues/4534/events
https://github.com/huggingface/datasets/pull/4534
1,277,897,197
PR_kwDODunzps46AFK_
4,534
Add `tldr_news` dataset
[]
closed
false
null
2
2022-06-21T05:02:43Z
2022-06-23T14:33:54Z
2022-06-21T14:21:11Z
null
This PR aims at adding support for a news dataset: `tldr news`. This dataset is based on the daily [tldr tech newsletter](https://tldr.tech/newsletter) and contains a `headline` as well as a `content` for every piece of news contained in a newsletter.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4534/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4534/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4534.diff", "html_url": "https://github.com/huggingface/datasets/pull/4534", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4534.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4534" }
true
[ "Hey @lhoestq, \r\nSorry for opening a PR, I was following the guide [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md)! Thanks for the review anyway, I will follow the instructions you sent 😃 ", "Thanks, we will update the guide ;)" ]
https://api.github.com/repos/huggingface/datasets/issues/2286
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2286/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2286/comments
https://api.github.com/repos/huggingface/datasets/issues/2286/events
https://github.com/huggingface/datasets/pull/2286
871,032,393
MDExOlB1bGxSZXF1ZXN0NjI2MTE5MTE2
2,286
Fix metadata validation with config names
[]
closed
false
null
0
2021-04-29T13:44:32Z
2021-04-29T14:07:29Z
2021-04-29T14:07:28Z
null
I noticed in https://github.com/huggingface/datasets/pull/2280 that the metadata validator doesn't parse the tags in the readme properly when then contain the tags per config.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2286/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2286/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2286.diff", "html_url": "https://github.com/huggingface/datasets/pull/2286", "merged_at": "2021-04-29T14:07:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/2286.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2286" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/5026
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5026/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5026/comments
https://api.github.com/repos/huggingface/datasets/issues/5026/events
https://github.com/huggingface/datasets/pull/5026
1,386,071,154
PR_kwDODunzps4_mz1w
5,026
patch CI_HUB_TOKEN_PATH with Path instead of str
[]
closed
false
null
1
2022-09-26T13:19:01Z
2022-09-26T14:30:55Z
2022-09-26T14:28:45Z
null
Should fix the tests for `huggingface_hub==0.10.0rc0` prerelease (see [failed CI](https://github.com/huggingface/datasets/actions/runs/3127805250/jobs/5074879144)). Related to [this thread](https://huggingface.slack.com/archives/C02V5EA0A95/p1664195165294559) (internal link). Note: this should be a backward compatible fix (e.g. works also with previous versions of `huggingface_hub`) I am not sure where to put the changes so feel free to cherry-pick the commit and close this one without merging. cc @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5026/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5026/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5026.diff", "html_url": "https://github.com/huggingface/datasets/pull/5026", "merged_at": "2022-09-26T14:28:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/5026.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5026" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/4238
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4238/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4238/comments
https://api.github.com/repos/huggingface/datasets/issues/4238/events
https://github.com/huggingface/datasets/issues/4238
1,217,168,123
I_kwDODunzps5IjIL7
4,238
Dataset caching policy
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
3
2022-04-27T10:42:11Z
2022-04-27T16:29:25Z
2022-04-27T16:28:50Z
null
## Describe the bug I cannot clean cache of my datasets files, despite I have updated the `csv` files on the repository [here](https://huggingface.co/datasets/loretoparisi/tatoeba-sentences). The original file had a line with bad characters, causing the following error ``` [/usr/local/lib/python3.7/dist-packages/datasets/features/features.py](https://localhost:8080/#) in str2int(self, values) 852 if value not in self._str2int: 853 value = str(value).strip() --> 854 output.append(self._str2int[str(value)]) 855 else: 856 # No names provided, try to integerize KeyError: '\\N' ``` The file now is cleanup up, but I still get the error. This happens even if I inspect the local cached contents, and cleanup the files locally: ```python from datasets import load_dataset_builder dataset_builder = load_dataset_builder("loretoparisi/tatoeba-sentences") print(dataset_builder.cache_dir) print(dataset_builder.info.features) print(dataset_builder.info.splits) ``` ``` Using custom data configuration loretoparisi--tatoeba-sentences-e59b8ad92f1bb8dd /root/.cache/huggingface/datasets/csv/loretoparisi--tatoeba-sentences-e59b8ad92f1bb8dd/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519 None None ``` and removing files located at `/root/.cache/huggingface/datasets/csv/loretoparisi--tatoeba-sentences-*`. Is there any remote file caching policy in place? If so, is it possibile to programmatically disable it? Currently it seems that the file `test.csv` on the repo [here](https://huggingface.co/datasets/loretoparisi/tatoeba-sentences/blob/main/test.csv) is cached remotely. In fact I download locally the file from raw link, the file is up-to-date; but If I use it within `datasets` as shown above, it gives to me always the first revision of the file, not the last. Thank you. ## Steps to reproduce the bug ```python from datasets import load_dataset,Features,Value,ClassLabel class_names = ["cmn","deu","rus","fra","eng","jpn","spa","ita","kor","vie","nld","epo","por","tur","heb","hun","ell","ind","ara","arz","fin","bul","yue","swe","ukr","bel","que","ces","swh","nno","wuu","nob","zsm","est","kat","pol","lat","urd","sqi","isl","fry","afr","ron","fao","san","bre","tat","yid","uig","uzb","srp","qya","dan","pes","slk","eus","cycl","acm","tgl","lvs","kaz","hye","hin","lit","ben","cat","bos","hrv","tha","orv","cha","mon","lzh","scn","gle","mkd","slv","frm","glg","vol","ain","jbo","tok","ina","nds","mal","tlh","roh","ltz","oss","ido","gla","mlt","sco","ast","jav","oci","ile","ota","xal","tel","sjn","nov","khm","tpi","ang","aze","tgk","tuk","chv","hsb","dsb","bod","sme","cym","mri","ksh","kmr","ewe","kab","ber","tpw","udm","lld","pms","lad","grn","mlg","xho","pnb","grc","hat","lao","npi","cor","nah","avk","mar","guj","pan","kir","myv","prg","sux","crs","ckt","bak","zlm","hil","cbk","chr","nav","lkt","enm","arq","lin","abk","pcd","rom","gsw","tam","zul","awa","wln","amh","bar","hbo","mhr","bho","mrj","ckb","osx","pfl","mgm","sna","mah","hau","kan","nog","sin","glv","dng","kal","liv","vro","apc","jdt","fur","che","haw","yor","crh","pdc","ppl","kin","shs","mnw","tet","sah","kum","ngt","nya","pus","hif","mya","moh","wol","tir","ton","lzz","oar","lug","brx","non","mww","hak","nlv","ngu","bua","aym","vec","ibo","tkl","bam","kha","ceb","lou","fuc","smo","gag","lfn","arg","umb","tyv","kjh","oji","cyo","urh","kzj","pam","srd","lmo","swg","mdf","gil","snd","tso","sot","zza","tsn","pau","som","egl","ady","asm","ori","dtp","cho","max","kam","niu","sag","ilo","kaa","fuv","nch","hoc","iba","gbm","sun","war","mvv","pap","ary","kxi","csb","pag","cos","rif","kek","krc","aii","ban","ssw","tvl","mfe","tah","bvy","bcl","hnj","nau","nst","afb","quc","min","tmw","mad","bjn","mai","cjy","got","hsn","gan","tzl","dws","ldn","afh","sgs","krl","vep","rue","tly","mic","ext","izh","sma","jam","cmo","mwl","kpv","koi","bis","ike","run","evn","ryu","mnc","aoz","otk","kas","aln","akl","yua","shy","fkv","gos","fij","thv","zgh","gcf","cay","xmf","tig","div","lij","rap","hrx","cpi","tts","gaa","tmr","iii","ltg","bzt","syc","emx","gom","chg","osp","stq","frr","fro","nys","toi","new","phn","jpa","rel","drt","chn","pli","laa","bal","hdn","hax","mik","ajp","xqa","pal","crk","mni","lut","ayl","ood","sdh","ofs","nus","kiu","diq","qxq","alt","bfz","klj","mus","srn","guc","lim","zea","shi","mnr","bom","sat","szl"] features = Features({ 'label': ClassLabel(names=class_names), 'text': Value('string')}) num_labels = features['label'].num_classes data_files = { "train": "train.csv", "test": "test.csv" } sentences = load_dataset( "loretoparisi/tatoeba-sentences", data_files=data_files, delimiter='\t', column_names=['label', 'text'], ) # You can make this part faster with num_proc=<some int> sentences = sentences.map(lambda ex: {"label" : features["label"].str2int(ex["label"]) if ex["label"] is not None else None}, features=features) sentences = sentences.shuffle() ``` ## Expected results Properly tokenize dataset file `test.csv` without issues. ## Actual results Specify the actual results or traceback. ``` Downloading data files: 100% 2/2 [00:16<00:00, 7.34s/it] Downloading data: 100% 391M/391M [00:12<00:00, 36.6MB/s] Downloading data: 100% 92.4M/92.4M [00:02<00:00, 40.0MB/s] Extracting data files: 100% 2/2 [00:00<00:00, 47.66it/s] Dataset csv downloaded and prepared to /root/.cache/huggingface/datasets/csv/loretoparisi--tatoeba-sentences-efeff8965c730a2c/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519. Subsequent calls will reuse this data. 100% 2/2 [00:00<00:00, 25.94it/s] 11% 942339/8256449 [01:55<13:11, 9245.85ex/s] --------------------------------------------------------------------------- KeyError Traceback (most recent call last) [<ipython-input-3-6a9867fad8d6>](https://localhost:8080/#) in <module>() 12 ) 13 # You can make this part faster with num_proc=<some int> ---> 14 sentences = sentences.map(lambda ex: {"label" : features["label"].str2int(ex["label"]) if ex["label"] is not None else None}, features=features) 15 sentences = sentences.shuffle() 10 frames [/usr/local/lib/python3.7/dist-packages/datasets/features/features.py](https://localhost:8080/#) in str2int(self, values) 852 if value not in self._str2int: 853 value = str(value).strip() --> 854 output.append(self._str2int[str(value)]) 855 else: 856 # No names provided, try to integerize KeyError: '\\N' ``` ## Environment info ``` - `datasets` version: 2.1.0 - Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.13 - PyArrow version: 6.0.1 - Pandas version: 1.3.5 - ``` ``` - `transformers` version: 4.18.0 - Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.13 - Huggingface_hub version: 0.5.1 - PyTorch version (GPU?): 1.11.0+cu113 (True) - Tensorflow version (GPU?): 2.8.0 (True) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in> - ```
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4238/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4238/timeline
null
completed
null
null
false
[ "Hi @loretoparisi, thanks for reporting.\r\n\r\nThere is an option to force the redownload of the data files (and thus not using previously download and cached data files): `load_dataset(..., download_mode=\"force_redownload\")`.\r\n\r\nPlease, let me know if this fixes your problem.\r\n\r\nI can confirm you that your dataset loads without any problem for me:\r\n```python\r\nIn [2]: ds = load_dataset(\"loretoparisi/tatoeba-sentences\", data_files={\"train\": \"train.csv\", \"test\": \"test.csv\"}, delimiter=\"\\t\", column_names=['label', 'text'])\r\n\r\nIn [3]: ds\r\nOut[3]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['label', 'text'],\r\n num_rows: 8256449\r\n })\r\n test: Dataset({\r\n features: ['label', 'text'],\r\n num_rows: 2061204\r\n })\r\n})\r\n``` ", "@albertvillanova thank you, it seems it still does not work using:\r\n\r\n```python\r\nsentences = load_dataset(\r\n \"loretoparisi/tatoeba-sentences\",\r\n data_files=data_files,\r\n delimiter='\\t', \r\n column_names=['label', 'text'],\r\n download_mode=\"force_redownload\"\r\n)\r\n```\r\n[This](https://colab.research.google.com/drive/1EA6FWo5pHxU8rPHHRn24NlHqRPiOlPTr?usp=sharing) is my notebook!\r\n\r\nThe problem is that the download file's revision for `test.csv` is not correctly parsed\r\n\r\n![Schermata 2022-04-27 alle 18 09 41](https://user-images.githubusercontent.com/163333/165563507-0be53eb6-8f61-49b0-b959-306e59281de3.png)\r\n\r\nIf you download that file `test.csv` from the repo, the line `\\\\N` is not there anymore (it was there at the first file upload).\r\n\r\nMy impression is that the Apache Arrow file is still cached - so server side, despite of enabling a forced download. For what I can see I get those two arrow files, but I cannot grep the bad line (`\\\\N`) since are binary files:\r\n\r\n```\r\n!ls -l /root/.cache/huggingface/datasets/csv/loretoparisi--tatoeba-sentences-efeff8965c730a2c/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519\r\n!ls -l /root/.cache/huggingface/datasets/csv/loretoparisi--tatoeba-sentences-efeff8965c730a2c/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519/csv-test.arrow\r\n!head /root/.cache/huggingface/datasets/csv/loretoparisi--tatoeba-sentences-efeff8965c730a2c/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519/dataset_info.json\r\n```\r\n", "SOLVED! The problem was the with the file itself, using caching parameter helped indeed.\r\nThanks for helping!" ]
https://api.github.com/repos/huggingface/datasets/issues/4699
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4699/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4699/comments
https://api.github.com/repos/huggingface/datasets/issues/4699/events
https://github.com/huggingface/datasets/pull/4699
1,307,555,592
PR_kwDODunzps47jA6Z
4,699
Fix Authentification Error while streaming
[]
closed
false
null
1
2022-07-18T08:03:41Z
2022-07-20T13:10:44Z
2022-07-20T13:10:43Z
null
I fixed a few errors when it occurs while streaming the private dataset on the Huggingface Hub. ``` from datasets import load_dataset dataset = load_dataset(<repo_id>, use_auth_token=<private_token>, streaming=True) for d in dataset['train']: print(d) break # this is for checking ``` This code is an example for streaming private datasets. when the version of the datasets is 2.2.2, it works well but datasets>2.2.2 occurs error like this, ``` /usr/local/lib/python3.7/dist-packages/aiohttp/client_reqrep.py in raise_for_status(self) 1007 status=self.status, 1008 message=self.reason, → 1009 headers=self.headers, 1010 ) 1011 ClientResponseError: 401, message='Unauthorized', url=URL('https://huggingface.co/datasets/.../train-00000-of-00001-168b451062c67c34.parquet') ``` (this is an example on the dataset has `parquet` extenstion) It seems that the `xisfile `module in `download/streaming_download_manager.py` couldn't recognize the file on "https://huggingface.co/~". so I add three lines. With this change, there is no error anymore(but this code is ad-hoc).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4699/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4699/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4699.diff", "html_url": "https://github.com/huggingface/datasets/pull/4699", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4699.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4699" }
true
[ "Hi, thanks for working on this, but the fix for this has already been merged in https://github.com/huggingface/datasets/pull/4608." ]
https://api.github.com/repos/huggingface/datasets/issues/2561
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2561/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2561/comments
https://api.github.com/repos/huggingface/datasets/issues/2561/events
https://github.com/huggingface/datasets/issues/2561
932,321,725
MDU6SXNzdWU5MzIzMjE3MjU=
2,561
Existing cache for local dataset builder file updates is ignored with `ignore_verifications=True`
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
4
2021-06-29T07:43:03Z
2022-08-04T11:58:36Z
2022-08-04T11:58:36Z
null
## Describe the bug If i have local file defining a dataset builder class and I load it using `load_dataset` functionality, the existing cache is ignored whenever the file is update even with `ignore_verifications=True`. This slows down debugging and cache generator for very large datasets. ## Steps to reproduce the bug - Create a local dataset builder class - load the local builder class file using `load_dataset` and let the cache build - update the file's content - The cache should rebuilt. ## Expected results With `ignore_verifications=True`, `load_dataset` should pick up existing cache. ## Actual results Creates new cache. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.8.0 - Platform: Linux-5.4.0-52-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.7 - PyArrow version: 3.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2561/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2561/timeline
null
completed
null
null
false
[ "Hi ! I just tried to reproduce what you said:\r\n- create a local builder class\r\n- use `load_dataset`\r\n- update the builder class code\r\n- use `load_dataset` again (with or without `ignore_verifications=True`)\r\nAnd it creates a new cache, as expected.\r\n\r\nWhat modifications did you do to your builder's code ?", "Hi @lhoestq. Thanks for your reply. I just did minor modifications for which it should not regenerate cache (for e.g. Adding a print statement). Overall, regardless of cache miss, there should be an explicit option to allow reuse of existing cache if author knows cache shouldn't be affected.", "The cache is based on the hash of the dataset builder's code, so changing the code makes it recompute the cache.\r\n\r\nYou could still rename the cache directory of your previous computation to the new expected cache directory if you want to avoid having to recompute it and if you're sure that it would generate the exact same result.\r\n\r\nThe verifications are data integrity verifications: it checks the checksums of the downloaded files, as well as the size of the generated splits.", "Hi @apsdehal,\r\n\r\nIf you decide to follow @lhoestq's suggestion to rename the cache directory of your previous computation to the new expected cache directory, you can do the following to get the name of the new expected cache directory once #2500 is merged:\r\n```python\r\nfrom datasets import load_dataset_builder\r\ndataset_builder = load_dataset_builder(\"path/to/your/dataset\")\r\nprint(dataset_builder.cache_dir)\r\n```\r\n\r\nThis way, you don't have to recompute the hash of the dataset script yourself each time you modify the script." ]
https://api.github.com/repos/huggingface/datasets/issues/2317
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2317/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2317/comments
https://api.github.com/repos/huggingface/datasets/issues/2317/events
https://github.com/huggingface/datasets/pull/2317
875,767,318
MDExOlB1bGxSZXF1ZXN0NjMwMDQxNzc4
2,317
Fix incorrect version specification for the pyarrow package
[]
closed
false
null
0
2021-05-04T19:30:20Z
2021-05-05T10:09:16Z
2021-05-05T09:21:58Z
null
This PR addresses the bug in the pyarrow version specification, which is detailed in #2316 . Simply, I put a comma between the version bounds. Fix #2316.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2317/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2317/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2317.diff", "html_url": "https://github.com/huggingface/datasets/pull/2317", "merged_at": "2021-05-05T09:21:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/2317.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2317" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2391
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2391/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2391/comments
https://api.github.com/repos/huggingface/datasets/issues/2391/events
https://github.com/huggingface/datasets/issues/2391
898,128,099
MDU6SXNzdWU4OTgxMjgwOTk=
2,391
Missing original answers in kilt-TriviaQA
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2021-05-21T14:57:07Z
2021-06-14T17:29:11Z
2021-06-14T17:29:11Z
null
I previously opened an issue at https://github.com/facebookresearch/KILT/issues/42 but from the answer of @fabiopetroni it seems that the problem comes from HF-datasets ## Describe the bug The `answer` field in kilt-TriviaQA, e.g. `kilt_tasks['train_triviaqa'][0]['output']['answer']` contains a list of alternative answer which are accepted for the question. However it'd be nice to know the original answer to the question (the only fields in `output` are `'answer', 'meta', 'provenance'`) ## How to fix It can be fixed by retrieving the original answer from the original TriviaQA (e.g. `trivia_qa['train'][0]['answer']['value']`), perhaps at the same place as here where one retrieves the questions https://github.com/huggingface/datasets/blob/master/datasets/kilt_tasks/README.md#loading-the-kilt-knowledge-source-and-task-data cc @yjernite who previously answered to an issue about KILT and TriviaQA :)
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2391/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2391/timeline
null
completed
null
null
false
[ "That could be useful indeed! Feel free to open a PR on the dataset card if you already have some code that runs, otherwise we'll take care of it soon :) ", "I can open a PR but there is 2 details to fix:\r\n- the name for the corresponding key (e.g. `original_answer`)\r\n- how to implement it: I’m not sure what happens when you map `lambda x: {'input': ...}` as it keeps the other keys (e.g. `output`) intact but here since we want to set a nested value (e.g. `x['output']['original_answer']`) I implemented it with a regular function (not lambda), see below\r\n\r\n```py\r\ndef add_original_answer(x, trivia_qa, triviaqa_map):\r\n i = triviaqa_map[x['id']]\r\n x['output']['original_answer'] = trivia_qa['validation'][i]['answer']['value']\r\n return x\r\n```" ]
https://api.github.com/repos/huggingface/datasets/issues/5680
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5680/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5680/comments
https://api.github.com/repos/huggingface/datasets/issues/5680/events
https://github.com/huggingface/datasets/pull/5680
1,645,430,103
PR_kwDODunzps5NJYNz
5,680
Fix a description error for interleave_datasets.
[]
closed
false
null
3
2023-03-29T09:50:23Z
2023-03-30T13:14:19Z
2023-03-30T13:07:18Z
null
There is a description mistake in the annotation of interleave_dataset with "all_exhausted" stopping_strategy. ``` python d1 = Dataset.from_dict({"a": [0, 1, 2]}) d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]}) dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") ``` According to the interleave way, the correct output of `dataset["a"]` is `[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 10, 24]`, not `[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 0, 24]`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5680/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5680/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5680.diff", "html_url": "https://github.com/huggingface/datasets/pull/5680", "merged_at": "2023-03-30T13:07:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/5680.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5680" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006772 / 0.011353 (-0.004581) | 0.004674 / 0.011008 (-0.006335) | 0.098702 / 0.038508 (0.060194) | 0.028257 / 0.023109 (0.005148) | 0.368008 / 0.275898 (0.092110) | 0.402825 / 0.323480 (0.079345) | 0.005158 / 0.007986 (-0.002828) | 0.003470 / 0.004328 (-0.000858) | 0.075541 / 0.004250 (0.071291) | 0.039755 / 0.037052 (0.002702) | 0.373431 / 0.258489 (0.114942) | 0.410159 / 0.293841 (0.116318) | 0.031355 / 0.128546 (-0.097192) | 0.011632 / 0.075646 (-0.064014) | 0.325475 / 0.419271 (-0.093797) | 0.042574 / 0.043533 (-0.000958) | 0.373629 / 0.255139 (0.118490) | 0.393921 / 0.283200 (0.110721) | 0.084669 / 0.141683 (-0.057013) | 1.459947 / 1.452155 (0.007792) | 1.529593 / 1.492716 (0.036877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189994 / 0.018006 (0.171988) | 0.409091 / 0.000490 (0.408602) | 0.003693 / 0.000200 (0.003493) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024649 / 0.037411 (-0.012762) | 0.097702 / 0.014526 (0.083177) | 0.103650 / 0.176557 (-0.072906) | 0.167141 / 0.737135 (-0.569994) | 0.108460 / 0.296338 (-0.187879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429544 / 0.215209 (0.214335) | 4.277106 / 2.077655 (2.199451) | 2.018745 / 1.504120 (0.514625) | 1.814782 / 1.541195 (0.273587) | 1.897030 / 1.468490 (0.428540) | 0.700332 / 4.584777 (-3.884445) | 3.421761 / 3.745712 (-0.323951) | 3.008281 / 5.269862 (-2.261581) | 1.554230 / 4.565676 (-3.011446) | 0.082922 / 0.424275 (-0.341353) | 0.012312 / 0.007607 (0.004705) | 0.527757 / 0.226044 (0.301713) | 5.287450 / 2.268929 (3.018522) | 2.329083 / 55.444624 (-53.115542) | 2.016651 / 6.876477 (-4.859826) | 2.214510 / 2.142072 (0.072437) | 0.807676 / 4.805227 (-3.997551) | 0.151752 / 6.500664 (-6.348912) | 0.066819 / 0.075469 (-0.008651) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239522 / 1.841788 (-0.602266) | 13.923672 / 8.074308 (5.849364) | 14.317394 / 10.191392 (4.126002) | 0.159379 / 0.680424 (-0.521045) | 0.016537 / 0.534201 (-0.517664) | 0.376808 / 0.579283 (-0.202475) | 0.376351 / 0.434364 (-0.058012) | 0.437124 / 0.540337 (-0.103213) | 0.520589 / 1.386936 (-0.866347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006892 / 0.011353 (-0.004461) | 0.004671 / 0.011008 (-0.006337) | 0.075841 / 0.038508 (0.037333) | 0.028713 / 0.023109 (0.005604) | 0.345105 / 0.275898 (0.069207) | 0.380694 / 0.323480 (0.057214) | 0.005155 / 0.007986 (-0.002830) | 0.003379 / 0.004328 (-0.000949) | 0.075134 / 0.004250 (0.070883) | 0.039990 / 0.037052 (0.002938) | 0.345540 / 0.258489 (0.087051) | 0.389913 / 0.293841 (0.096072) | 0.032089 / 0.128546 (-0.096458) | 0.011583 / 0.075646 (-0.064063) | 0.085169 / 0.419271 (-0.334102) | 0.041847 / 0.043533 (-0.001686) | 0.341504 / 0.255139 (0.086365) | 0.367582 / 0.283200 (0.084382) | 0.092684 / 0.141683 (-0.048999) | 1.498647 / 1.452155 (0.046492) | 1.549056 / 1.492716 (0.056339) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228643 / 0.018006 (0.210637) | 0.410680 / 0.000490 (0.410191) | 0.000398 / 0.000200 (0.000198) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025354 / 0.037411 (-0.012057) | 0.101567 / 0.014526 (0.087041) | 0.108340 / 0.176557 (-0.068217) | 0.157804 / 0.737135 (-0.579332) | 0.113985 / 0.296338 (-0.182354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436427 / 0.215209 (0.221218) | 4.359331 / 2.077655 (2.281676) | 2.047877 / 1.504120 (0.543757) | 1.844242 / 1.541195 (0.303047) | 1.924553 / 1.468490 (0.456063) | 0.695986 / 4.584777 (-3.888791) | 3.435571 / 3.745712 (-0.310141) | 1.905189 / 5.269862 (-3.364673) | 1.198542 / 4.565676 (-3.367134) | 0.083386 / 0.424275 (-0.340889) | 0.012442 / 0.007607 (0.004835) | 0.542562 / 0.226044 (0.316517) | 5.416554 / 2.268929 (3.147625) | 2.499496 / 55.444624 (-52.945128) | 2.160658 / 6.876477 (-4.715819) | 2.210535 / 2.142072 (0.068462) | 0.803324 / 4.805227 (-4.001903) | 0.151735 / 6.500664 (-6.348929) | 0.068392 / 0.075469 (-0.007078) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.319915 / 1.841788 (-0.521873) | 14.176755 / 8.074308 (6.102446) | 14.376366 / 10.191392 (4.184974) | 0.141219 / 0.680424 (-0.539204) | 0.017181 / 0.534201 (-0.517020) | 0.383589 / 0.579283 (-0.195694) | 0.389352 / 0.434364 (-0.045012) | 0.474465 / 0.540337 (-0.065873) | 0.563047 / 1.386936 (-0.823889) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c33e8ce68b5000988bf6b2e4bca27ffaa469acea \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/3675
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3675/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3675/comments
https://api.github.com/repos/huggingface/datasets/issues/3675/events
https://github.com/huggingface/datasets/issues/3675
1,123,078,408
I_kwDODunzps5C8NEI
3,675
Add CodeContests dataset
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
2
2022-02-03T13:20:00Z
2022-07-20T11:07:05Z
2022-07-20T11:07:05Z
null
## Adding a Dataset - **Name:** CodeContests - **Description:** CodeContests is a competitive programming dataset for machine-learning. - **Paper:** - **Data:** https://github.com/deepmind/code_contests - **Motivation:** This dataset was used when training [AlphaCode](https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode). Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3675/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3675/timeline
null
completed
null
null
false
[ "@mariosasko Can I take this up?", "This dataset is now available here: https://huggingface.co/datasets/deepmind/code_contests." ]
https://api.github.com/repos/huggingface/datasets/issues/5581
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5581/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5581/comments
https://api.github.com/repos/huggingface/datasets/issues/5581/events
https://github.com/huggingface/datasets/issues/5581
1,600,675,489
I_kwDODunzps5faF6h
5,581
[DOC] Mistaken docs on set_format
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
1
2023-02-27T08:03:09Z
2023-02-28T19:19:17Z
2023-02-28T19:19:17Z
null
### Describe the bug https://huggingface.co/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.set_format <img width="700" alt="image" src="https://user-images.githubusercontent.com/36224762/221506973-ae2e3991-60a7-4d4e-99f8-965c6eb61e59.png"> While actually running it will result in: <img width="1094" alt="image" src="https://user-images.githubusercontent.com/36224762/221507032-007dab82-8781-4319-b21a-e6e4d40d97b3.png"> ### Steps to reproduce the bug _ ### Expected behavior _ ### Environment info - `datasets` version: 2.10.0 - Platform: Linux-5.10.147+-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 9.0.0 - Pandas version: 1.3.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5581/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5581/timeline
null
completed
null
null
false
[ "Thanks for reporting!" ]
https://api.github.com/repos/huggingface/datasets/issues/5350
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5350/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5350/comments
https://api.github.com/repos/huggingface/datasets/issues/5350/events
https://github.com/huggingface/datasets/pull/5350
1,487,559,904
PR_kwDODunzps5E8y2E
5,350
Clean up Loading methods docstrings
[]
closed
false
null
1
2022-12-09T22:25:30Z
2022-12-12T17:27:20Z
2022-12-12T17:24:01Z
null
Clean up for the docstrings in Loading methods!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5350/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5350/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5350.diff", "html_url": "https://github.com/huggingface/datasets/pull/5350", "merged_at": "2022-12-12T17:24:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/5350.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5350" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/3616
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3616/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3616/comments
https://api.github.com/repos/huggingface/datasets/issues/3616/events
https://github.com/huggingface/datasets/pull/3616
1,111,587,861
PR_kwDODunzps4xcZMD
3,616
Make streamable the BnL Historical Newspapers dataset
[]
closed
false
null
0
2022-01-22T14:52:36Z
2022-02-04T14:05:23Z
2022-02-04T14:05:21Z
null
I've refactored the code in order to make the dataset streamable and to avoid it takes too long: - I've used `iter_files` Close #3615
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3616/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3616/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3616.diff", "html_url": "https://github.com/huggingface/datasets/pull/3616", "merged_at": "2022-02-04T14:05:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/3616.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3616" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/369
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/369/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/369/comments
https://api.github.com/repos/huggingface/datasets/issues/369/events
https://github.com/huggingface/datasets/issues/369
654,186,890
MDU6SXNzdWU2NTQxODY4OTA=
369
can't load local dataset: pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries
[ { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
null
2
2020-07-09T16:16:53Z
2020-12-15T23:07:22Z
2020-07-10T14:52:06Z
null
Trying to load a local SQuAD-formatted dataset (from a JSON file, about 60MB): ``` dataset = nlp.load_dataset(path='json', data_files={nlp.Split.TRAIN: ["./path/to/file.json"]}) ``` causes ``` Traceback (most recent call last): File "dataloader.py", line 9, in <module> ["./path/to/file.json"]}) File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/load.py", line 524, in load_dataset save_infos=save_infos, File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 432, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 483, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/builder.py", line 719, in _prepare_split for key, table in utils.tqdm(generator, unit=" tables", leave=False): File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/tqdm/std.py", line 1129, in __iter__ for obj in iterable: File "/home/XXX/.conda/envs/torch/lib/python3.7/site-packages/nlp/datasets/json/88c1bc5c68489f7eda549ed05a5a738527c613b3e7a4ee3524d9d233353a949b/json.py", line 53, in _generate_tables file, read_options=self.config.pa_read_options, parse_options=self.config.pa_parse_options, File "pyarrow/_json.pyx", line 191, in pyarrow._json.read_json File "pyarrow/error.pxi", line 85, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: straddling object straddles two block boundaries (try to increase block size?) ``` I haven't been able to find any reports of this specific pyarrow error here or elsewhere.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/369/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/369/timeline
null
completed
null
null
false
[ "I am able to reproduce this with the official SQuAD `train-v2.0.json` file downloaded directly from https://rajpurkar.github.io/SQuAD-explorer/", "I am facing this issue in transformers library 3.0.2 while reading a csv using datasets.\r\nIs this fixed in latest version? \r\nI updated the latest version 4.0.1 but still getting this error. What could cause this error?" ]
https://api.github.com/repos/huggingface/datasets/issues/4377
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4377/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4377/comments
https://api.github.com/repos/huggingface/datasets/issues/4377/events
https://github.com/huggingface/datasets/pull/4377
1,242,746,186
PR_kwDODunzps44K4OY
4,377
Fix checksum and bug in irc_disentangle dataset
[]
closed
false
null
1
2022-05-20T07:29:28Z
2022-05-20T09:34:36Z
2022-05-20T09:26:32Z
null
There was a bug in filepath segment: - wrong: `jkkummerfeld-irc-disentanglement-fd379e9` - right: `jkkummerfeld-irc-disentanglement-35f0a40` Also there was a bug in the checksum of the downloaded file. This PR fixes these issues. Fix partially #4376.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4377/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4377/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4377.diff", "html_url": "https://github.com/huggingface/datasets/pull/4377", "merged_at": "2022-05-20T09:26:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/4377.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4377" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/2156
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2156/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2156/comments
https://api.github.com/repos/huggingface/datasets/issues/2156/events
https://github.com/huggingface/datasets/pull/2156
847,198,295
MDExOlB1bGxSZXF1ZXN0NjA2MjI5MTky
2,156
User permissions
[]
closed
false
null
0
2021-03-31T19:33:48Z
2021-03-31T19:34:24Z
2021-03-31T19:34:24Z
null
Updated user permissions based on running user's umask. Let me know if `0o666` is looking good or should I change it to `~umask` only (to give execute permissions as well)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2156/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2156/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2156.diff", "html_url": "https://github.com/huggingface/datasets/pull/2156", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2156.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2156" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2102
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2102/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2102/comments
https://api.github.com/repos/huggingface/datasets/issues/2102/events
https://github.com/huggingface/datasets/pull/2102
838,794,090
MDExOlB1bGxSZXF1ZXN0NTk4OTEyNzUw
2,102
Move Dataset.to_csv to csv module
[ { "color": "B67A40", "default": false, "description": "Restructuring existing code without changing its external behavior", "id": 2851292821, "name": "refactoring", "node_id": "MDU6TGFiZWwyODUxMjkyODIx", "url": "https://api.github.com/repos/huggingface/datasets/labels/refactoring" } ]
closed
false
null
0
2021-03-23T14:35:46Z
2021-03-24T14:07:35Z
2021-03-24T14:07:34Z
null
Move the implementation of `Dataset.to_csv` to module `datasets.io.csv`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2102/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2102/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2102.diff", "html_url": "https://github.com/huggingface/datasets/pull/2102", "merged_at": "2021-03-24T14:07:34Z", "patch_url": "https://github.com/huggingface/datasets/pull/2102.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2102" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2801
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2801/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2801/comments
https://api.github.com/repos/huggingface/datasets/issues/2801/events
https://github.com/huggingface/datasets/pull/2801
970,844,617
MDExOlB1bGxSZXF1ZXN0NzEyNzMwODEz
2,801
add books3
[]
closed
false
null
4
2021-08-14T07:04:25Z
2021-08-19T16:43:09Z
2021-08-18T15:36:59Z
null
books3 is part of EleutherAI/The Pile, but AFAIK, The Pile dataset blend all sub datasets together thus we are not able to use just one of its sub dataset from The Pile data. So I create an independent dataset using The Pile preliminary components. When I was creating dataset card. I found there is room for creating / editing dataset card. I've made it an issue. #2797 Also I am wondering whether the import of The Pile dataset is actively undertaken (because I may need it recently)? #1675
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2801/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2801/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2801.diff", "html_url": "https://github.com/huggingface/datasets/pull/2801", "merged_at": "2021-08-18T15:36:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/2801.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2801" }
true
[ "> When I was creating dataset card. I found there is room for creating / editing dataset card. I've made it an issue. #2797\r\n\r\nThanks for the message, we'll definitely improve this\r\n\r\n> Also I am wondering whether the import of The Pile dataset is actively undertaken (because I may need it recently)? #1675\r\n\r\nWell currently no, but I think @lewtun was about to do it (though he's currently on vacations)", "> > Also I am wondering whether the import of The Pile dataset is actively undertaken (because I may need it recently)? #1675\r\n> \r\n> Well currently no, but I think @lewtun was about to do it (though he's currently on vacations)\r\n\r\nyes i plan to start working on this next week #2185 \r\n\r\none question for @richarddwang - do you know if eleutherai happened to also release the \"existing\" datasets like enron emails and opensubtitles? \r\n\r\nin appendix c of their paper, they provide details on how they extracted these datasets, but it would be nice if we could just point to a url so we can be as close as possible to original implementation.", "@lewtun \r\n\r\n> yes i plan to start working on this next week\r\n\r\nNice! Looking forward to it.\r\n\r\n> one question for @richarddwang - do you know if eleutherai happened to also release the \"existing\" datasets like enron emails and opensubtitles?\r\n\r\nSadly, I don't know any existing dataset of enron emails, but I believe opensubtitles dataset is hosted at here. https://the-eye.eu/public/AI/pile_preliminary_components/\r\n![image](https://user-images.githubusercontent.com/17963619/130061667-8c17985a-1c2f-432f-89f0-66a5288611b8.png)\r\n", "thanks for the link @richarddwang! i think that corpus is actually the youtube subtitles one and my impression is that eleutherai have only uploaded the 14 new datasets they created. i've contacted one of the authors so hopefully they can share some additional info for us :)\r\n\r\nbtw it might take a while to put together all the corpora if i also need to preprocess them (e.g. the open subtitles / enron email etc), but i expect no longer than a few weeks." ]
https://api.github.com/repos/huggingface/datasets/issues/562
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/562/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/562/comments
https://api.github.com/repos/huggingface/datasets/issues/562/events
https://github.com/huggingface/datasets/pull/562
690,907,604
MDExOlB1bGxSZXF1ZXN0NDc3NzI1MjMx
562
[Reproductibility] Allow to pin versions of datasets/metrics
[]
closed
false
null
1
2020-09-02T10:30:13Z
2020-09-09T13:04:54Z
2020-09-09T13:04:54Z
null
Repurpose the `version` attribute in datasets and metrics to let the user pin a specific version of datasets and metric scripts: ``` dataset = nlp.load_dataset('squad', version='1.0.0') metric = nlp.load_metric('squad', version='1.0.0') ``` Notes: - version number are the release version of the library - currently only possible for canonical datasets/metrics, ie. integrated in the GitHub repo of the library
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/562/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/562/timeline
null
null
true
{ "diff_url": "https://github.com/huggingface/datasets/pull/562.diff", "html_url": "https://github.com/huggingface/datasets/pull/562", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/562.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/562" }
true
[ "Closing this one in favor of #584 " ]
https://api.github.com/repos/huggingface/datasets/issues/512
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/512/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/512/comments
https://api.github.com/repos/huggingface/datasets/issues/512/events
https://github.com/huggingface/datasets/pull/512
681,137,164
MDExOlB1bGxSZXF1ZXN0NDY5NTc2NzE3
512
Delete CONTRIBUTING.md
[]
closed
false
null
2
2020-08-18T15:33:25Z
2020-08-18T15:48:21Z
2020-08-18T15:39:07Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/512/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/512/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/512.diff", "html_url": "https://github.com/huggingface/datasets/pull/512", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/512.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/512" }
true
[ "😱", "Yeah, this is spammy behavior. I've reported the user handle." ]
https://api.github.com/repos/huggingface/datasets/issues/2402
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2402/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2402/comments
https://api.github.com/repos/huggingface/datasets/issues/2402/events
https://github.com/huggingface/datasets/issues/2402
900,025,329
MDU6SXNzdWU5MDAwMjUzMjk=
2,402
PermissionError on Windows when using temp dir for caching
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
0
2021-05-24T21:22:59Z
2021-05-26T16:39:29Z
2021-05-26T16:39:29Z
null
Currently, the following code raises a PermissionError on master if working on Windows: ```python # run as a script or call exit() in REPL to initiate the temp dir cleanup from datasets import * d = load_dataset("sst", split="train", keep_in_memory=False) set_caching_enabled(False) d.map(lambda ex: ex) ``` Error stack trace: ``` Traceback (most recent call last): File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\weakref.py", line 624, in _exitfunc f() File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\weakref.py", line 548, in __call__ return info.func(*info.args, **(info.kwargs or {})) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\tempfile.py", line 799, in _cleanup _shutil.rmtree(name) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\shutil.py", line 500, in rmtree return _rmtree_unsafe(path, onerror) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\shutil.py", line 395, in _rmtree_unsafe onerror(os.unlink, fullname, sys.exc_info()) File "C:\Users\Mario\Anaconda3\envs\hf-datasets\lib\shutil.py", line 393, in _rmtree_unsafe os.unlink(fullname) PermissionError: [WinError 5] Access is denied: 'C:\\Users\\Mario\\AppData\\Local\\Temp\\tmp20epyhmq\\cache-87a87ffb5a956e68.arrow' ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2402/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2402/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/5483
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5483/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5483/comments
https://api.github.com/repos/huggingface/datasets/issues/5483/events
https://github.com/huggingface/datasets/issues/5483
1,560,894,690
I_kwDODunzps5dCVzi
5,483
Unable to upload dataset
[]
closed
false
null
1
2023-01-28T15:18:26Z
2023-01-29T08:09:49Z
2023-01-29T08:09:49Z
null
### Describe the bug Uploading a simple dataset ends with an exception ### Steps to reproduce the bug I created a new conda env with python 3.10, pip installed datasets and: ```python >>> from datasets import load_dataset, load_from_disk, Dataset >>> d = Dataset.from_dict({"text": ["hello"] * 2}) >>> d.push_to_hub("ttt111") /home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_hf_folder.py:92: UserWarning: A token has been found in `/a/home/cc/students/cs/kirstain/.huggingface/token`. This is the old path where tokens were stored. The new location is `/home/olab/kirstain/.cache/huggingface/token` which is configurable using `HF_HOME` environment variable. Your token has been copied to this new location. You can now safely delete the old token file manually or use `huggingface-cli logout`. warnings.warn( Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 279.94ba/s] Upload 1 LFS files: 0%| | 0/1 [00:02<?, ?it/s] Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:04<?, ?it/s] Traceback (most recent call last): File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 264, in hf_raise_for_status response.raise_for_status() File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/requests/models.py", line 1021, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://s3.us-east-1.amazonaws.com/lfs.huggingface.co/repos/cf/0c/cf0c5ab8a3f729e5f57a8b79a36ecea64a31126f13218591c27ed9a1c7bd9b41/ece885a4bb6bbc8c1bb51b45542b805283d74590f72cd4c45d3ba76628570386?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230128%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230128T151640Z&X-Amz-Expires=900&X-Amz-Signature=89e78e9a9d70add7ed93d453334f4f93c6f29d889d46750a1f2da04af73978db&X-Amz-SignedHeaders=host&x-amz-storage-class=INTELLIGENT_TIERING&x-id=PutObject The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 334, in _inner_upload_lfs_object return _upload_lfs_object( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 391, in _upload_lfs_object lfs_upload( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/lfs.py", line 273, in lfs_upload _upload_single_part( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/lfs.py", line 305, in _upload_single_part hf_raise_for_status(upload_res) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 318, in hf_raise_for_status raise HfHubHTTPError(str(e), response=response) from e huggingface_hub.utils._errors.HfHubHTTPError: 403 Client Error: Forbidden for url: https://s3.us-east-1.amazonaws.com/lfs.huggingface.co/repos/cf/0c/cf0c5ab8a3f729e5f57a8b79a36ecea64a31126f13218591c27ed9a1c7bd9b41/ece885a4bb6bbc8c1bb51b45542b805283d74590f72cd4c45d3ba76628570386?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230128%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230128T151640Z&X-Amz-Expires=900&X-Amz-Signature=89e78e9a9d70add7ed93d453334f4f93c6f29d889d46750a1f2da04af73978db&X-Amz-SignedHeaders=host&x-amz-storage-class=INTELLIGENT_TIERING&x-id=PutObject The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 4909, in push_to_hub repo_id, split, uploaded_size, dataset_nbytes, repo_files, deleted_size = self._push_parquet_shards_to_hub( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 4804, in _push_parquet_shards_to_hub _retry( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 281, in _retry return func(*func_args, **func_kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 124, in _inner_fn return fn(*args, **kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2537, in upload_file commit_info = self.create_commit( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 124, in _inner_fn return fn(*args, **kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2346, in create_commit upload_lfs_files( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 124, in _inner_fn return fn(*args, **kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 346, in upload_lfs_files thread_map( File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 94, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 76, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, **map_args), **kwargs)) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/tqdm/std.py", line 1195, in __iter__ for obj in iterable: File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator yield _result_or_cancel(fs.pop()) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel return fut.result(timeout) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 458, in result return self.__get_result() File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/home/olab/kirstain/anaconda3/envs/datasets/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 338, in _inner_upload_lfs_object raise RuntimeError( RuntimeError: Error while uploading 'data/train-00000-of-00001-6df93048e66df326.parquet' to the Hub. ``` ### Expected behavior The dataset should be uploaded without any exceptions ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-4.15.0-65-generic-x86_64-with-glibc2.27 - Python version: 3.10.9 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5483/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5483/timeline
null
completed
null
null
false
[ "Seems to work now, perhaps it was something internal with our university's network." ]
https://api.github.com/repos/huggingface/datasets/issues/4383
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4383/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4383/comments
https://api.github.com/repos/huggingface/datasets/issues/4383/events
https://github.com/huggingface/datasets/issues/4383
1,243,856,981
I_kwDODunzps5KI8BV
4,383
L
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
0
2022-05-21T03:47:58Z
2022-05-21T19:20:13Z
2022-05-21T19:20:13Z
null
## Describe the L L ## Expected L A clear and concise lmll Specify the actual results or traceback. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: - Platform: - Python version: - PyArrow version:
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4383/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4383/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/1010
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1010/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1010/comments
https://api.github.com/repos/huggingface/datasets/issues/1010/events
https://github.com/huggingface/datasets/pull/1010
755,432,143
MDExOlB1bGxSZXF1ZXN0NTMxMTQzMzAx
1,010
Add NoReC: Norwegian Review Corpus
[]
closed
false
null
0
2020-12-02T16:38:29Z
2021-02-18T14:47:29Z
2021-02-18T14:47:28Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1010/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1010/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1010.diff", "html_url": "https://github.com/huggingface/datasets/pull/1010", "merged_at": "2021-02-18T14:47:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/1010.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1010" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1989
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1989/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1989/comments
https://api.github.com/repos/huggingface/datasets/issues/1989/events
https://github.com/huggingface/datasets/issues/1989
822,328,147
MDU6SXNzdWU4MjIzMjgxNDc=
1,989
Question/problem with dataset labels
[]
closed
false
null
10
2021-03-04T17:06:53Z
2023-07-24T14:39:33Z
2023-07-24T14:39:33Z
null
Hi, I'm using a dataset with two labels "nurse" and "not nurse". For whatever reason (that I don't understand), I get an error that I think comes from the datasets package (using csv). Everything works fine if the labels are "nurse" and "surgeon". This is the trace I get: ``` File "../../../models/tr-4.3.2/run_puppets.py", line 523, in <module> main() File "../../../models/tr-4.3.2/run_puppets.py", line 249, in main datasets = load_dataset("csv", data_files=data_files) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py", line 740, in load_dataset builder_instance.download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 572, in download_and_prepare self._download_and_prepare( File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 650, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py", line 1028, in _prepare_split writer.write_table(table) File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py", line 292, in write_table pa_table = pa_table.cast(self._schema) File "pyarrow/table.pxi", line 1311, in pyarrow.lib.Table.cast File "pyarrow/table.pxi", line 265, in pyarrow.lib.ChunkedArray.cast File "/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py", line 87, in cast return call_function("cast", [arr], options) File "pyarrow/_compute.pyx", line 298, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 192, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Failed to parse string: not nurse ``` Any ideas how to fix this? For now, I'll probably make them numeric.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1989/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1989/timeline
null
completed
null
null
false
[ "It seems that I get parsing errors for various fields in my data. For example now I get this:\r\n```\r\n File \"../../../models/tr-4.3.2/run_puppets.py\", line 523, in <module>\r\n main()\r\n File \"../../../models/tr-4.3.2/run_puppets.py\", line 249, in main\r\n datasets = load_dataset(\"csv\", data_files=data_files)\r\n File \"/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/load.py\", line 740, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py\", line 572, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py\", line 650, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/builder.py\", line 1028, in _prepare_split\r\n writer.write_table(table)\r\n File \"/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/datasets/arrow_writer.py\", line 292, in write_table\r\n pa_table = pa_table.cast(self._schema)\r\n File \"pyarrow/table.pxi\", line 1311, in pyarrow.lib.Table.cast\r\n File \"pyarrow/table.pxi\", line 265, in pyarrow.lib.ChunkedArray.cast\r\n File \"/dccstor/redrug_ier/envs/last-tr/lib/python3.8/site-packages/pyarrow/compute.py\", line 87, in cast\r\n return call_function(\"cast\", [arr], options)\r\n File \"pyarrow/_compute.pyx\", line 298, in pyarrow._compute.call_function\r\n File \"pyarrow/_compute.pyx\", line 192, in pyarrow._compute.Function.call\r\n File \"pyarrow/error.pxi\", line 122, in pyarrow.lib.pyarrow_internal_check_status\r\n File \"pyarrow/error.pxi\", line 84, in pyarrow.lib.check_status\r\npyarrow.lib.ArrowInvalid: Failed to parse string: https://www.netgalley.com/catalog/book/121872\r\n```", "Not sure if this helps, this is how I load my files (as in the sample scripts on transformers):\r\n\r\n```\r\n if data_args.train_file.endswith(\".csv\"):\r\n # Loading a dataset from local csv files\r\n datasets = load_dataset(\"csv\", data_files=data_files)\r\n```", "Since this worked out of the box in a few examples before, I wonder if it's some quoting issue or something else. ", "Hi @ioana-blue,\r\nCan you share a sample from your .csv? A dummy where you get this error will also help.\r\n\r\nI tried this csv:\r\n```csv\r\nfeature,label\r\n1.2,not nurse\r\n1.3,nurse\r\n1.5,surgeon\r\n```\r\nand the following snippet:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nd = load_dataset(\"csv\",data_files=['test.csv'])\r\n\r\nprint(d)\r\nprint(d['train']['label'])\r\n```\r\nand this works perfectly fine for me:\r\n```sh\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['feature', 'label'],\r\n num_rows: 3\r\n })\r\n})\r\n['not nurse', 'nurse', 'surgeon']\r\n```\r\nI'm sure your csv is more complicated than this one. But it is hard to tell where the issue might be without looking at a sample.", "I've had versions where it worked fain. For this dataset, I had all kind of parsing issues that I couldn't understand. What I ended up doing is strip all the columns that I didn't need and also make the label 0/1. \r\n\r\nI think one line that may have caused a problem was the csv version of this:\r\n\r\n```crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job. ^M ('Rose', '', 'Blakey') journalist F 38 journalist https://www.netgalley.com/catalog/book/121872 _ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.```\r\n\r\nThe error I got in this case is this one: https://github.com/huggingface/datasets/issues/1989#issuecomment-790842771\r\n\r\nNote, this line was part of a much larger file and until this line I guess it was working fine. ", "Hi @ioana-blue,\r\n\r\nWhat is the separator you're using for the csv? I see there are only two commas in the given line, but they don't seem like appropriate points. Also, is this a string part of one line, or an entire line? There should also be a label, right?", "Sorry for the confusion, the sample above was from a tsv that was used to derive the csv. Let me construct the csv again (I had remove it). \r\n\r\nThis is the line in the csv - this is the whole line:\r\n```crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz,Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead,\"('Rose', '', 'Blakey')\",journalist,F,38,journalist,https://www.netgalley.com/catalog/book/121872,_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job., She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.```", "Hi,\r\nJust in case you want to use tsv directly, you can use the separator argument while loading the dataset.\r\n```python\r\nd = load_dataset(\"csv\",data_files=['test.csv'],sep=\"\\t\")\r\n```\r\n\r\nAdditionally, I don't face the issues with the following csv (same as the one you provided):\r\n\r\n```sh\r\nlink1,text1,info1,info2,info3,info4,info5,link2,text2,text3\r\ncrawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz,Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead,\"('Rose', '', 'Blakey')\",journalist,F,38,journalist,https://www.netgalley.com/catalog/book/121872,_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job., She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.\r\n```\r\nOutput after loading:\r\n```sh\r\n{'link1': 'crawl-data/CC-MAIN-2017-47/segments/1510934806225.78/wet/CC-MAIN-20171120203833-20171120223833-00571.warc.wet.gz', 'text1': 'Rose Blakey is an aspiring journalist. She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead', 'info1': \"('Rose', '', 'Blakey')\", 'info2': 'journalist', 'info3': 'F', 'info4': 38, 'info5': 'journalist', 'link2': 'https://www.netgalley.com/catalog/book/121872', 'text2': '_ is desperate to escape the from the small Australian town in which _ lives. Rejection after rejection mean _ is stuck in what _ sees as a dead-end waitressing job.', 'text3': ' She is desperate to escape the from the small Australian town in which she lives. Rejection after rejection mean she is stuck in what she sees as a dead-end waitressing job.'}\r\n```\r\nCan you check once if the tsv works for you directly using the separator argument? The conversion from tsv to csv could create issues, I'm only guessing though.", "thanks for the tip. very strange :/ I'll check my datasets version as well. \r\n\r\nI will have more similar experiments soon so I'll let you know if I manage to get rid of this. ", "No problem at all. I thought I'd be able to solve this but I'm unable to replicate the issue :/" ]
https://api.github.com/repos/huggingface/datasets/issues/2309
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2309/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2309/comments
https://api.github.com/repos/huggingface/datasets/issues/2309/events
https://github.com/huggingface/datasets/pull/2309
874,644,990
MDExOlB1bGxSZXF1ZXN0NjI5MTU4NjQx
2,309
Fix conda release
[]
closed
false
null
0
2021-05-03T14:52:59Z
2021-05-03T16:01:17Z
2021-05-03T16:01:17Z
null
There were a few issues with conda releases (they've been failing for a while now). To fix this I had to: - add the --single-version-externally-managed tag to the build stage (suggestion from [here](https://stackoverflow.com/a/64825075)) - set the python version of the conda build stage to 3.8 since 3.9 isn't supported - sync the evrsion requirement of `huggingface_hub` With these changes I'm working on uploading all missing versions until 1.6.2 to conda EDIT: I managed to build and upload all missing versions until 1.6.2 to conda :)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2309/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2309/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2309.diff", "html_url": "https://github.com/huggingface/datasets/pull/2309", "merged_at": "2021-05-03T16:01:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/2309.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2309" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/5852
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5852/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5852/comments
https://api.github.com/repos/huggingface/datasets/issues/5852/events
https://github.com/huggingface/datasets/pull/5852
1,707,927,165
PR_kwDODunzps5QZ1lj
5,852
Iterable torch formatting
[]
closed
false
null
11
2023-05-12T16:48:49Z
2023-06-13T16:04:05Z
2023-06-13T15:57:05Z
null
Used the TorchFormatter to get torch tensors in iterable dataset with format set to "torch". It uses the data from Arrow if possible, otherwise applies recursive_tensorize. When set back to format_type=None, cast_to_python_objects is used. requires https://github.com/huggingface/datasets/pull/5821 close https://github.com/huggingface/datasets/issues/5793
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5852/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5852/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5852.diff", "html_url": "https://github.com/huggingface/datasets/pull/5852", "merged_at": "2023-06-13T15:57:05Z", "patch_url": "https://github.com/huggingface/datasets/pull/5852.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5852" }
true
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006567 / 0.011353 (-0.004786) | 0.004479 / 0.011008 (-0.006530) | 0.028286 / 0.038508 (-0.010222) | 0.033137 / 0.023109 (0.010028) | 0.305249 / 0.275898 (0.029351) | 0.330306 / 0.323480 (0.006826) | 0.003747 / 0.007986 (-0.004238) | 0.004409 / 0.004328 (0.000081) | 0.004742 / 0.004250 (0.000491) | 0.040780 / 0.037052 (0.003728) | 0.302879 / 0.258489 (0.044390) | 0.346880 / 0.293841 (0.053039) | 0.032908 / 0.128546 (-0.095638) | 0.010617 / 0.075646 (-0.065029) | 0.257996 / 0.419271 (-0.161275) | 0.051044 / 0.043533 (0.007511) | 0.306113 / 0.255139 (0.050974) | 0.324444 / 0.283200 (0.041244) | 0.100820 / 0.141683 (-0.040863) | 1.478402 / 1.452155 (0.026248) | 1.599398 / 1.492716 (0.106682) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216540 / 0.018006 (0.198534) | 0.433480 / 0.000490 (0.432991) | 0.004032 / 0.000200 (0.003832) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027807 / 0.037411 (-0.009604) | 0.107225 / 0.014526 (0.092699) | 0.120157 / 0.176557 (-0.056400) | 0.174130 / 0.737135 (-0.563005) | 0.128902 / 0.296338 (-0.167437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395996 / 0.215209 (0.180787) | 3.936254 / 2.077655 (1.858599) | 1.808864 / 1.504120 (0.304744) | 1.608935 / 1.541195 (0.067741) | 1.646427 / 1.468490 (0.177937) | 0.716026 / 4.584777 (-3.868751) | 3.815045 / 3.745712 (0.069333) | 2.271534 / 5.269862 (-2.998327) | 1.548728 / 4.565676 (-3.016948) | 0.076743 / 0.424275 (-0.347532) | 0.011575 / 0.007607 (0.003968) | 0.499202 / 0.226044 (0.273158) | 4.983754 / 2.268929 (2.714825) | 2.239319 / 55.444624 (-53.205306) | 1.919427 / 6.876477 (-4.957050) | 2.019664 / 2.142072 (-0.122408) | 0.866318 / 4.805227 (-3.938910) | 0.157309 / 6.500664 (-6.343355) | 0.063341 / 0.075469 (-0.012128) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180817 / 1.841788 (-0.660971) | 14.579869 / 8.074308 (6.505561) | 14.277848 / 10.191392 (4.086456) | 0.182560 / 0.680424 (-0.497863) | 0.017402 / 0.534201 (-0.516799) | 0.411549 / 0.579283 (-0.167734) | 0.432938 / 0.434364 (-0.001426) | 0.545067 / 0.540337 (0.004730) | 0.642173 / 1.386936 (-0.744763) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006753 / 0.011353 (-0.004600) | 0.004590 / 0.011008 (-0.006418) | 0.006111 / 0.038508 (-0.032397) | 0.032763 / 0.023109 (0.009654) | 0.401001 / 0.275898 (0.125103) | 0.428063 / 0.323480 (0.104583) | 0.003730 / 0.007986 (-0.004255) | 0.004617 / 0.004328 (0.000289) | 0.004770 / 0.004250 (0.000519) | 0.049718 / 0.037052 (0.012666) | 0.399724 / 0.258489 (0.141235) | 0.440292 / 0.293841 (0.146451) | 0.032846 / 0.128546 (-0.095700) | 0.010842 / 0.075646 (-0.064804) | 0.012642 / 0.419271 (-0.406630) | 0.046043 / 0.043533 (0.002510) | 0.390862 / 0.255139 (0.135723) | 0.407027 / 0.283200 (0.123828) | 0.099349 / 0.141683 (-0.042334) | 1.455739 / 1.452155 (0.003584) | 1.572214 / 1.492716 (0.079497) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227186 / 0.018006 (0.209180) | 0.447404 / 0.000490 (0.446914) | 0.000400 / 0.000200 (0.000200) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029830 / 0.037411 (-0.007581) | 0.112365 / 0.014526 (0.097839) | 0.125736 / 0.176557 (-0.050821) | 0.174781 / 0.737135 (-0.562354) | 0.129439 / 0.296338 (-0.166900) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444438 / 0.215209 (0.229229) | 4.459381 / 2.077655 (2.381726) | 2.264541 / 1.504120 (0.760421) | 2.075257 / 1.541195 (0.534062) | 2.181289 / 1.468490 (0.712799) | 0.725279 / 4.584777 (-3.859498) | 3.863253 / 3.745712 (0.117541) | 2.132498 / 5.269862 (-3.137364) | 1.402003 / 4.565676 (-3.163673) | 0.084268 / 0.424275 (-0.340007) | 0.011762 / 0.007607 (0.004155) | 0.556239 / 0.226044 (0.330194) | 5.617998 / 2.268929 (3.349070) | 2.754789 / 55.444624 (-52.689835) | 2.418418 / 6.876477 (-4.458059) | 2.479696 / 2.142072 (0.337624) | 0.870037 / 4.805227 (-3.935190) | 0.160480 / 6.500664 (-6.340184) | 0.064464 / 0.075469 (-0.011005) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290916 / 1.841788 (-0.550872) | 14.783173 / 8.074308 (6.708865) | 13.355883 / 10.191392 (3.164491) | 0.169963 / 0.680424 (-0.510461) | 0.017657 / 0.534201 (-0.516544) | 0.409218 / 0.579283 (-0.170065) | 0.422942 / 0.434364 (-0.011422) | 0.494968 / 0.540337 (-0.045369) | 0.587044 / 1.386936 (-0.799892) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2051e912d9525bc38a1caf295df0620619c488eb \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007183 / 0.011353 (-0.004169) | 0.004586 / 0.011008 (-0.006423) | 0.032668 / 0.038508 (-0.005840) | 0.040896 / 0.023109 (0.017787) | 0.358225 / 0.275898 (0.082327) | 0.395063 / 0.323480 (0.071583) | 0.004540 / 0.007986 (-0.003446) | 0.003849 / 0.004328 (-0.000480) | 0.005521 / 0.004250 (0.001271) | 0.053314 / 0.037052 (0.016262) | 0.362417 / 0.258489 (0.103928) | 0.414337 / 0.293841 (0.120496) | 0.030698 / 0.128546 (-0.097849) | 0.008823 / 0.075646 (-0.066823) | 0.303583 / 0.419271 (-0.115689) | 0.060277 / 0.043533 (0.016744) | 0.365938 / 0.255139 (0.110799) | 0.379554 / 0.283200 (0.096354) | 0.122545 / 0.141683 (-0.019138) | 1.712098 / 1.452155 (0.259943) | 1.802036 / 1.492716 (0.309319) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239508 / 0.018006 (0.221502) | 0.492194 / 0.000490 (0.491704) | 0.003280 / 0.000200 (0.003081) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033301 / 0.037411 (-0.004110) | 0.125851 / 0.014526 (0.111325) | 0.137757 / 0.176557 (-0.038799) | 0.207603 / 0.737135 (-0.529533) | 0.143507 / 0.296338 (-0.152831) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470662 / 0.215209 (0.255453) | 4.736017 / 2.077655 (2.658363) | 2.154152 / 1.504120 (0.650032) | 1.954243 / 1.541195 (0.413048) | 2.080186 / 1.468490 (0.611696) | 0.622884 / 4.584777 (-3.961893) | 4.385885 / 3.745712 (0.640173) | 2.262085 / 5.269862 (-3.007776) | 1.454215 / 4.565676 (-3.111462) | 0.067342 / 0.424275 (-0.356933) | 0.012913 / 0.007607 (0.005306) | 0.600676 / 0.226044 (0.374631) | 5.915093 / 2.268929 (3.646164) | 2.664915 / 55.444624 (-52.779709) | 2.286986 / 6.876477 (-4.589490) | 2.387776 / 2.142072 (0.245704) | 0.757067 / 4.805227 (-4.048160) | 0.154625 / 6.500664 (-6.346039) | 0.074632 / 0.075469 (-0.000838) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.413229 / 1.841788 (-0.428558) | 17.433012 / 8.074308 (9.358704) | 16.980340 / 10.191392 (6.788948) | 0.218943 / 0.680424 (-0.461481) | 0.020525 / 0.534201 (-0.513676) | 0.451847 / 0.579283 (-0.127436) | 0.495587 / 0.434364 (0.061223) | 0.548739 / 0.540337 (0.008402) | 0.662120 / 1.386936 (-0.724816) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006775 / 0.011353 (-0.004577) | 0.004556 / 0.011008 (-0.006452) | 0.006462 / 0.038508 (-0.032046) | 0.039073 / 0.023109 (0.015964) | 0.429249 / 0.275898 (0.153351) | 0.469946 / 0.323480 (0.146467) | 0.004402 / 0.007986 (-0.003584) | 0.003798 / 0.004328 (-0.000530) | 0.005347 / 0.004250 (0.001097) | 0.053743 / 0.037052 (0.016691) | 0.434635 / 0.258489 (0.176146) | 0.475661 / 0.293841 (0.181820) | 0.029891 / 0.128546 (-0.098656) | 0.009058 / 0.075646 (-0.066588) | 0.010987 / 0.419271 (-0.408284) | 0.053877 / 0.043533 (0.010344) | 0.434428 / 0.255139 (0.179289) | 0.449637 / 0.283200 (0.166437) | 0.124331 / 0.141683 (-0.017352) | 1.736083 / 1.452155 (0.283928) | 1.831632 / 1.492716 (0.338916) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248428 / 0.018006 (0.230422) | 0.493113 / 0.000490 (0.492623) | 0.000429 / 0.000200 (0.000229) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031337 / 0.037411 (-0.006074) | 0.132360 / 0.014526 (0.117834) | 0.134734 / 0.176557 (-0.041822) | 0.193811 / 0.737135 (-0.543324) | 0.146883 / 0.296338 (-0.149456) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.510876 / 0.215209 (0.295666) | 5.170198 / 2.077655 (3.092543) | 2.572105 / 1.504120 (1.067985) | 2.316918 / 1.541195 (0.775723) | 2.449316 / 1.468490 (0.980826) | 0.612219 / 4.584777 (-3.972558) | 4.456740 / 3.745712 (0.711028) | 2.099757 / 5.269862 (-3.170105) | 1.293017 / 4.565676 (-3.272660) | 0.067922 / 0.424275 (-0.356353) | 0.013467 / 0.007607 (0.005860) | 0.634240 / 0.226044 (0.408196) | 6.373111 / 2.268929 (4.104182) | 3.171567 / 55.444624 (-52.273057) | 2.763411 / 6.876477 (-4.113066) | 2.845557 / 2.142072 (0.703485) | 0.763431 / 4.805227 (-4.041797) | 0.155949 / 6.500664 (-6.344715) | 0.076264 / 0.075469 (0.000795) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.468075 / 1.841788 (-0.373713) | 17.582354 / 8.074308 (9.508046) | 16.565964 / 10.191392 (6.374572) | 0.163779 / 0.680424 (-0.516644) | 0.020472 / 0.534201 (-0.513728) | 0.444416 / 0.579283 (-0.134867) | 0.488471 / 0.434364 (0.054107) | 0.550661 / 0.540337 (0.010323) | 0.667230 / 1.386936 (-0.719706) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3655cbf1c627c945e393641d35298a166f1e4bf5 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006160 / 0.011353 (-0.005193) | 0.004093 / 0.011008 (-0.006915) | 0.056485 / 0.038508 (0.017977) | 0.033637 / 0.023109 (0.010528) | 0.296448 / 0.275898 (0.020550) | 0.332532 / 0.323480 (0.009052) | 0.003864 / 0.007986 (-0.004122) | 0.003446 / 0.004328 (-0.000883) | 0.034808 / 0.004250 (0.030558) | 0.048567 / 0.037052 (0.011514) | 0.296090 / 0.258489 (0.037601) | 0.336067 / 0.293841 (0.042226) | 0.026081 / 0.128546 (-0.102465) | 0.007875 / 0.075646 (-0.067771) | 0.286049 / 0.419271 (-0.133222) | 0.050411 / 0.043533 (0.006878) | 0.297016 / 0.255139 (0.041877) | 0.320030 / 0.283200 (0.036830) | 0.110374 / 0.141683 (-0.031308) | 1.432470 / 1.452155 (-0.019684) | 1.492479 / 1.492716 (-0.000238) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262352 / 0.018006 (0.244346) | 0.557956 / 0.000490 (0.557467) | 0.010296 / 0.000200 (0.010096) | 0.000315 / 0.000054 (0.000260) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028801 / 0.037411 (-0.008611) | 0.109844 / 0.014526 (0.095318) | 0.122333 / 0.176557 (-0.054224) | 0.180571 / 0.737135 (-0.556564) | 0.125990 / 0.296338 (-0.170348) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401643 / 0.215209 (0.186434) | 4.020993 / 2.077655 (1.943338) | 1.815256 / 1.504120 (0.311136) | 1.619579 / 1.541195 (0.078384) | 1.708889 / 1.468490 (0.240398) | 0.537847 / 4.584777 (-4.046930) | 3.743331 / 3.745712 (-0.002381) | 1.779891 / 5.269862 (-3.489970) | 1.021423 / 4.565676 (-3.544253) | 0.058869 / 0.424275 (-0.365406) | 0.011826 / 0.007607 (0.004218) | 0.499665 / 0.226044 (0.273621) | 4.980928 / 2.268929 (2.712000) | 2.285664 / 55.444624 (-53.158960) | 1.936553 / 6.876477 (-4.939923) | 2.090428 / 2.142072 (-0.051645) | 0.655218 / 4.805227 (-4.150009) | 0.133178 / 6.500664 (-6.367486) | 0.062991 / 0.075469 (-0.012478) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.168895 / 1.841788 (-0.672892) | 14.656773 / 8.074308 (6.582465) | 13.737921 / 10.191392 (3.546529) | 0.145383 / 0.680424 (-0.535041) | 0.017614 / 0.534201 (-0.516587) | 0.386499 / 0.579283 (-0.192784) | 0.425626 / 0.434364 (-0.008738) | 0.389572 / 0.540337 (-0.150766) | 0.386753 / 1.386936 (-1.000183) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005998 / 0.011353 (-0.005355) | 0.004265 / 0.011008 (-0.006743) | 0.034743 / 0.038508 (-0.003766) | 0.033929 / 0.023109 (0.010820) | 0.405535 / 0.275898 (0.129636) | 0.407235 / 0.323480 (0.083755) | 0.003972 / 0.007986 (-0.004013) | 0.003616 / 0.004328 (-0.000712) | 0.035278 / 0.004250 (0.031027) | 0.052990 / 0.037052 (0.015937) | 0.405228 / 0.258489 (0.146739) | 0.415007 / 0.293841 (0.121166) | 0.025951 / 0.128546 (-0.102595) | 0.007990 / 0.075646 (-0.067656) | 0.040492 / 0.419271 (-0.378779) | 0.049123 / 0.043533 (0.005591) | 0.399282 / 0.255139 (0.144143) | 0.384303 / 0.283200 (0.101103) | 0.115234 / 0.141683 (-0.026448) | 1.476904 / 1.452155 (0.024749) | 1.627191 / 1.492716 (0.134475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209211 / 0.018006 (0.191205) | 0.566718 / 0.000490 (0.566228) | 0.002094 / 0.000200 (0.001894) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030885 / 0.037411 (-0.006526) | 0.110777 / 0.014526 (0.096251) | 0.124382 / 0.176557 (-0.052174) | 0.175081 / 0.737135 (-0.562054) | 0.130263 / 0.296338 (-0.166075) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448091 / 0.215209 (0.232882) | 4.484404 / 2.077655 (2.406749) | 2.278438 / 1.504120 (0.774318) | 2.087933 / 1.541195 (0.546738) | 2.186709 / 1.468490 (0.718219) | 0.534822 / 4.584777 (-4.049955) | 3.778229 / 3.745712 (0.032517) | 3.312334 / 5.269862 (-1.957528) | 1.557209 / 4.565676 (-3.008467) | 0.058923 / 0.424275 (-0.365352) | 0.011350 / 0.007607 (0.003743) | 0.550470 / 0.226044 (0.324426) | 5.480347 / 2.268929 (3.211419) | 2.781709 / 55.444624 (-52.662915) | 2.478729 / 6.876477 (-4.397748) | 2.492001 / 2.142072 (0.349929) | 0.652649 / 4.805227 (-4.152578) | 0.131334 / 6.500664 (-6.369330) | 0.065619 / 0.075469 (-0.009850) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253998 / 1.841788 (-0.587790) | 15.207433 / 8.074308 (7.133124) | 14.627842 / 10.191392 (4.436450) | 0.146947 / 0.680424 (-0.533477) | 0.017533 / 0.534201 (-0.516668) | 0.391627 / 0.579283 (-0.187656) | 0.431113 / 0.434364 (-0.003251) | 0.413886 / 0.540337 (-0.126451) | 0.414483 / 1.386936 (-0.972453) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3f4e98701590a4922050051eb0f4d63e6125723d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007741 / 0.011353 (-0.003612) | 0.004584 / 0.011008 (-0.006424) | 0.067869 / 0.038508 (0.029361) | 0.041612 / 0.023109 (0.018503) | 0.377878 / 0.275898 (0.101980) | 0.421633 / 0.323480 (0.098153) | 0.004614 / 0.007986 (-0.003371) | 0.003824 / 0.004328 (-0.000504) | 0.041479 / 0.004250 (0.037229) | 0.053309 / 0.037052 (0.016256) | 0.390147 / 0.258489 (0.131658) | 0.437706 / 0.293841 (0.143865) | 0.035951 / 0.128546 (-0.092595) | 0.009231 / 0.075646 (-0.066415) | 0.357572 / 0.419271 (-0.061699) | 0.081332 / 0.043533 (0.037799) | 0.370076 / 0.255139 (0.114937) | 0.423653 / 0.283200 (0.140453) | 0.141401 / 0.141683 (-0.000282) | 1.722744 / 1.452155 (0.270589) | 1.914668 / 1.492716 (0.421952) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256568 / 0.018006 (0.238562) | 0.512243 / 0.000490 (0.511753) | 0.019913 / 0.000200 (0.019713) | 0.000136 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031742 / 0.037411 (-0.005670) | 0.128537 / 0.014526 (0.114011) | 0.139962 / 0.176557 (-0.036594) | 0.210711 / 0.737135 (-0.526424) | 0.147162 / 0.296338 (-0.149177) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.509518 / 0.215209 (0.294309) | 5.083788 / 2.077655 (3.006134) | 2.455381 / 1.504120 (0.951262) | 2.208078 / 1.541195 (0.666883) | 2.341807 / 1.468490 (0.873317) | 0.580014 / 4.584777 (-4.004763) | 4.599492 / 3.745712 (0.853780) | 2.403249 / 5.269862 (-2.866612) | 1.559177 / 4.565676 (-3.006500) | 0.072846 / 0.424275 (-0.351429) | 0.017327 / 0.007607 (0.009720) | 0.627747 / 0.226044 (0.401703) | 6.242586 / 2.268929 (3.973657) | 2.982875 / 55.444624 (-52.461750) | 2.588645 / 6.876477 (-4.287832) | 2.765915 / 2.142072 (0.623843) | 0.720455 / 4.805227 (-4.084772) | 0.157474 / 6.500664 (-6.343190) | 0.074295 / 0.075469 (-0.001174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.540799 / 1.841788 (-0.300988) | 18.054632 / 8.074308 (9.980324) | 16.544036 / 10.191392 (6.352644) | 0.201423 / 0.680424 (-0.479001) | 0.020497 / 0.534201 (-0.513704) | 0.496275 / 0.579283 (-0.083008) | 0.547380 / 0.434364 (0.113017) | 0.614605 / 0.540337 (0.074267) | 0.749889 / 1.386936 (-0.637047) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006963 / 0.011353 (-0.004389) | 0.004543 / 0.011008 (-0.006465) | 0.039530 / 0.038508 (0.001022) | 0.038420 / 0.023109 (0.015311) | 0.454885 / 0.275898 (0.178987) | 0.491731 / 0.323480 (0.168251) | 0.004211 / 0.007986 (-0.003775) | 0.003673 / 0.004328 (-0.000655) | 0.038735 / 0.004250 (0.034484) | 0.052085 / 0.037052 (0.015032) | 0.448924 / 0.258489 (0.190435) | 0.499254 / 0.293841 (0.205413) | 0.030069 / 0.128546 (-0.098477) | 0.009082 / 0.075646 (-0.066565) | 0.047181 / 0.419271 (-0.372090) | 0.054758 / 0.043533 (0.011225) | 0.445035 / 0.255139 (0.189896) | 0.475090 / 0.283200 (0.191891) | 0.122641 / 0.141683 (-0.019042) | 1.706514 / 1.452155 (0.254360) | 1.855726 / 1.492716 (0.363010) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246028 / 0.018006 (0.228022) | 0.486382 / 0.000490 (0.485892) | 0.003038 / 0.000200 (0.002838) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034298 / 0.037411 (-0.003113) | 0.135364 / 0.014526 (0.120838) | 0.146102 / 0.176557 (-0.030455) | 0.207997 / 0.737135 (-0.529139) | 0.153119 / 0.296338 (-0.143219) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.528758 / 0.215209 (0.313549) | 5.243303 / 2.077655 (3.165648) | 2.617194 / 1.504120 (1.113074) | 2.400740 / 1.541195 (0.859545) | 2.534692 / 1.468490 (1.066202) | 0.585825 / 4.584777 (-3.998952) | 4.879766 / 3.745712 (1.134054) | 2.377419 / 5.269862 (-2.892443) | 1.460711 / 4.565676 (-3.104966) | 0.075572 / 0.424275 (-0.348703) | 0.013650 / 0.007607 (0.006042) | 0.697103 / 0.226044 (0.471058) | 6.444984 / 2.268929 (4.176055) | 3.227662 / 55.444624 (-52.216963) | 2.875163 / 6.876477 (-4.001314) | 2.860953 / 2.142072 (0.718881) | 0.718908 / 4.805227 (-4.086319) | 0.158005 / 6.500664 (-6.342659) | 0.077581 / 0.075469 (0.002112) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.653027 / 1.841788 (-0.188760) | 18.789342 / 8.074308 (10.715034) | 16.762678 / 10.191392 (6.571286) | 0.238920 / 0.680424 (-0.441504) | 0.020698 / 0.534201 (-0.513502) | 0.512634 / 0.579283 (-0.066649) | 0.542235 / 0.434364 (0.107871) | 0.626634 / 0.540337 (0.086297) | 0.753324 / 1.386936 (-0.633612) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f978ad8bec6e5e77868c6ffcc6f514354a03901d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005737 / 0.011353 (-0.005616) | 0.003767 / 0.011008 (-0.007241) | 0.097792 / 0.038508 (0.059284) | 0.028466 / 0.023109 (0.005356) | 0.317703 / 0.275898 (0.041805) | 0.359512 / 0.323480 (0.036032) | 0.003428 / 0.007986 (-0.004558) | 0.002848 / 0.004328 (-0.001481) | 0.075668 / 0.004250 (0.071418) | 0.037165 / 0.037052 (0.000113) | 0.329539 / 0.258489 (0.071050) | 0.361365 / 0.293841 (0.067524) | 0.024777 / 0.128546 (-0.103769) | 0.008324 / 0.075646 (-0.067323) | 0.317346 / 0.419271 (-0.101926) | 0.043296 / 0.043533 (-0.000237) | 0.315318 / 0.255139 (0.060179) | 0.347641 / 0.283200 (0.064441) | 0.089551 / 0.141683 (-0.052132) | 1.506335 / 1.452155 (0.054180) | 1.573931 / 1.492716 (0.081215) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208041 / 0.018006 (0.190034) | 0.428198 / 0.000490 (0.427708) | 0.002568 / 0.000200 (0.002369) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023745 / 0.037411 (-0.013667) | 0.096256 / 0.014526 (0.081730) | 0.104917 / 0.176557 (-0.071639) | 0.164341 / 0.737135 (-0.572794) | 0.107972 / 0.296338 (-0.188367) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453995 / 0.215209 (0.238786) | 4.546892 / 2.077655 (2.469238) | 2.185498 / 1.504120 (0.681378) | 1.989156 / 1.541195 (0.447962) | 2.053443 / 1.468490 (0.584953) | 0.559940 / 4.584777 (-4.024837) | 3.420759 / 3.745712 (-0.324954) | 1.771528 / 5.269862 (-3.498333) | 1.139692 / 4.565676 (-3.425984) | 0.067686 / 0.424275 (-0.356589) | 0.011729 / 0.007607 (0.004122) | 0.558001 / 0.226044 (0.331957) | 5.583886 / 2.268929 (3.314957) | 2.678726 / 55.444624 (-52.765899) | 2.324127 / 6.876477 (-4.552350) | 2.472805 / 2.142072 (0.330733) | 0.663163 / 4.805227 (-4.142065) | 0.134892 / 6.500664 (-6.365772) | 0.066722 / 0.075469 (-0.008747) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.195200 / 1.841788 (-0.646587) | 13.602517 / 8.074308 (5.528209) | 14.036344 / 10.191392 (3.844952) | 0.143759 / 0.680424 (-0.536665) | 0.017215 / 0.534201 (-0.516986) | 0.383749 / 0.579283 (-0.195534) | 0.388229 / 0.434364 (-0.046134) | 0.469366 / 0.540337 (-0.070971) | 0.560408 / 1.386936 (-0.826528) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005953 / 0.011353 (-0.005400) | 0.003840 / 0.011008 (-0.007168) | 0.077481 / 0.038508 (0.038973) | 0.028318 / 0.023109 (0.005209) | 0.403991 / 0.275898 (0.128093) | 0.433374 / 0.323480 (0.109894) | 0.003572 / 0.007986 (-0.004414) | 0.003033 / 0.004328 (-0.001295) | 0.075873 / 0.004250 (0.071623) | 0.039321 / 0.037052 (0.002269) | 0.416790 / 0.258489 (0.158301) | 0.459368 / 0.293841 (0.165527) | 0.025270 / 0.128546 (-0.103276) | 0.008574 / 0.075646 (-0.067072) | 0.083376 / 0.419271 (-0.335896) | 0.043206 / 0.043533 (-0.000327) | 0.404831 / 0.255139 (0.149692) | 0.418559 / 0.283200 (0.135360) | 0.099135 / 0.141683 (-0.042548) | 1.501315 / 1.452155 (0.049160) | 1.583912 / 1.492716 (0.091195) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241510 / 0.018006 (0.223504) | 0.410473 / 0.000490 (0.409983) | 0.001857 / 0.000200 (0.001657) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025366 / 0.037411 (-0.012045) | 0.103353 / 0.014526 (0.088828) | 0.107934 / 0.176557 (-0.068622) | 0.162388 / 0.737135 (-0.574747) | 0.113550 / 0.296338 (-0.182789) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463529 / 0.215209 (0.248320) | 4.657688 / 2.077655 (2.580034) | 2.455088 / 1.504120 (0.950968) | 2.304833 / 1.541195 (0.763638) | 2.317520 / 1.468490 (0.849029) | 0.563395 / 4.584777 (-4.021382) | 3.408489 / 3.745712 (-0.337223) | 2.636379 / 5.269862 (-2.633482) | 1.425355 / 4.565676 (-3.140322) | 0.068335 / 0.424275 (-0.355940) | 0.011713 / 0.007607 (0.004106) | 0.550230 / 0.226044 (0.324186) | 5.519843 / 2.268929 (3.250915) | 2.864986 / 55.444624 (-52.579639) | 2.604821 / 6.876477 (-4.271655) | 2.701501 / 2.142072 (0.559428) | 0.668193 / 4.805227 (-4.137034) | 0.134739 / 6.500664 (-6.365925) | 0.067110 / 0.075469 (-0.008359) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.326358 / 1.841788 (-0.515430) | 14.184172 / 8.074308 (6.109864) | 14.139245 / 10.191392 (3.947853) | 0.151881 / 0.680424 (-0.528542) | 0.016718 / 0.534201 (-0.517483) | 0.367035 / 0.579283 (-0.212248) | 0.393512 / 0.434364 (-0.040852) | 0.441261 / 0.540337 (-0.099076) | 0.533907 / 1.386936 (-0.853029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#54098759d023f0b3e8eccd2dd98d46a1c6d19cce \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006275 / 0.011353 (-0.005078) | 0.003980 / 0.011008 (-0.007028) | 0.097617 / 0.038508 (0.059109) | 0.034089 / 0.023109 (0.010980) | 0.297381 / 0.275898 (0.021483) | 0.330106 / 0.323480 (0.006626) | 0.003838 / 0.007986 (-0.004148) | 0.004042 / 0.004328 (-0.000287) | 0.074305 / 0.004250 (0.070055) | 0.048318 / 0.037052 (0.011265) | 0.295585 / 0.258489 (0.037096) | 0.346924 / 0.293841 (0.053083) | 0.027397 / 0.128546 (-0.101150) | 0.008452 / 0.075646 (-0.067194) | 0.326837 / 0.419271 (-0.092435) | 0.049515 / 0.043533 (0.005982) | 0.303931 / 0.255139 (0.048792) | 0.317647 / 0.283200 (0.034447) | 0.098280 / 0.141683 (-0.043403) | 1.442603 / 1.452155 (-0.009552) | 1.524050 / 1.492716 (0.031334) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.215095 / 0.018006 (0.197089) | 0.437662 / 0.000490 (0.437173) | 0.009771 / 0.000200 (0.009571) | 0.000401 / 0.000054 (0.000346) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027169 / 0.037411 (-0.010243) | 0.111383 / 0.014526 (0.096857) | 0.116163 / 0.176557 (-0.060394) | 0.173134 / 0.737135 (-0.564001) | 0.122376 / 0.296338 (-0.173962) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398332 / 0.215209 (0.183123) | 3.974166 / 2.077655 (1.896511) | 1.793847 / 1.504120 (0.289727) | 1.615117 / 1.541195 (0.073922) | 1.660288 / 1.468490 (0.191798) | 0.523833 / 4.584777 (-4.060944) | 3.704273 / 3.745712 (-0.041439) | 1.873308 / 5.269862 (-3.396554) | 1.203546 / 4.565676 (-3.362131) | 0.064949 / 0.424275 (-0.359326) | 0.011830 / 0.007607 (0.004223) | 0.497294 / 0.226044 (0.271250) | 4.948663 / 2.268929 (2.679735) | 2.233391 / 55.444624 (-53.211234) | 1.903208 / 6.876477 (-4.973269) | 2.067908 / 2.142072 (-0.074164) | 0.644256 / 4.805227 (-4.160971) | 0.142798 / 6.500664 (-6.357866) | 0.064734 / 0.075469 (-0.010735) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.172313 / 1.841788 (-0.669475) | 14.665853 / 8.074308 (6.591545) | 13.147051 / 10.191392 (2.955659) | 0.139338 / 0.680424 (-0.541086) | 0.017452 / 0.534201 (-0.516749) | 0.395660 / 0.579283 (-0.183623) | 0.410138 / 0.434364 (-0.024226) | 0.460357 / 0.540337 (-0.079980) | 0.555670 / 1.386936 (-0.831266) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006247 / 0.011353 (-0.005106) | 0.004098 / 0.011008 (-0.006910) | 0.075050 / 0.038508 (0.036542) | 0.033232 / 0.023109 (0.010122) | 0.384139 / 0.275898 (0.108241) | 0.420865 / 0.323480 (0.097385) | 0.003889 / 0.007986 (-0.004096) | 0.003336 / 0.004328 (-0.000993) | 0.073837 / 0.004250 (0.069587) | 0.048775 / 0.037052 (0.011723) | 0.386373 / 0.258489 (0.127884) | 0.421718 / 0.293841 (0.127878) | 0.027553 / 0.128546 (-0.100993) | 0.008724 / 0.075646 (-0.066922) | 0.080970 / 0.419271 (-0.338302) | 0.045981 / 0.043533 (0.002448) | 0.364381 / 0.255139 (0.109242) | 0.391203 / 0.283200 (0.108004) | 0.101681 / 0.141683 (-0.040002) | 1.469533 / 1.452155 (0.017378) | 1.562016 / 1.492716 (0.069300) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222318 / 0.018006 (0.204312) | 0.441395 / 0.000490 (0.440905) | 0.000408 / 0.000200 (0.000208) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030291 / 0.037411 (-0.007120) | 0.114053 / 0.014526 (0.099527) | 0.123124 / 0.176557 (-0.053433) | 0.173474 / 0.737135 (-0.563661) | 0.129946 / 0.296338 (-0.166393) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430342 / 0.215209 (0.215133) | 4.309782 / 2.077655 (2.232128) | 2.110668 / 1.504120 (0.606548) | 1.922881 / 1.541195 (0.381687) | 1.993562 / 1.468490 (0.525072) | 0.523682 / 4.584777 (-4.061095) | 3.774152 / 3.745712 (0.028440) | 3.354783 / 5.269862 (-1.915079) | 1.489793 / 4.565676 (-3.075884) | 0.065169 / 0.424275 (-0.359107) | 0.011626 / 0.007607 (0.004019) | 0.539126 / 0.226044 (0.313081) | 5.372593 / 2.268929 (3.103664) | 2.570652 / 55.444624 (-52.873973) | 2.253353 / 6.876477 (-4.623123) | 2.312876 / 2.142072 (0.170804) | 0.644241 / 4.805227 (-4.160986) | 0.138326 / 6.500664 (-6.362338) | 0.064491 / 0.075469 (-0.010979) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.344164 / 1.841788 (-0.497624) | 15.124679 / 8.074308 (7.050371) | 14.799310 / 10.191392 (4.607918) | 0.149054 / 0.680424 (-0.531370) | 0.017564 / 0.534201 (-0.516637) | 0.394593 / 0.579283 (-0.184690) | 0.428768 / 0.434364 (-0.005596) | 0.468235 / 0.540337 (-0.072103) | 0.557384 / 1.386936 (-0.829552) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a8bfac259e2b5047bb8a0cdcefc8357477ebf93c \"CML watermark\")\n", "@albertvillanova could you take a look at this one ? It directly follows the arrow formatting PR", "I added tests for the `__array__` case which lets you go from any tensor format to any other tensor format.\r\n\r\nI also properly deprecated format_type and added a warning message.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007838 / 0.011353 (-0.003515) | 0.005177 / 0.011008 (-0.005831) | 0.131058 / 0.038508 (0.092550) | 0.035959 / 0.023109 (0.012850) | 0.414071 / 0.275898 (0.138173) | 0.429628 / 0.323480 (0.106148) | 0.005151 / 0.007986 (-0.002834) | 0.003979 / 0.004328 (-0.000349) | 0.103209 / 0.004250 (0.098958) | 0.046200 / 0.037052 (0.009148) | 0.414020 / 0.258489 (0.155531) | 0.475748 / 0.293841 (0.181907) | 0.041031 / 0.128546 (-0.087515) | 0.014462 / 0.075646 (-0.061185) | 0.423706 / 0.419271 (0.004434) | 0.063488 / 0.043533 (0.019955) | 0.404937 / 0.255139 (0.149798) | 0.404973 / 0.283200 (0.121773) | 0.114982 / 0.141683 (-0.026701) | 1.911867 / 1.452155 (0.459713) | 1.925274 / 1.492716 (0.432557) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284656 / 0.018006 (0.266650) | 0.588329 / 0.000490 (0.587840) | 0.007092 / 0.000200 (0.006892) | 0.000143 / 0.000054 (0.000089) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025136 / 0.037411 (-0.012275) | 0.109514 / 0.014526 (0.094988) | 0.117953 / 0.176557 (-0.058603) | 0.195454 / 0.737135 (-0.541682) | 0.134243 / 0.296338 (-0.162096) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.584045 / 0.215209 (0.368836) | 6.456922 / 2.077655 (4.379267) | 2.759728 / 1.504120 (1.255608) | 2.260913 / 1.541195 (0.719718) | 2.292535 / 1.468490 (0.824045) | 0.906873 / 4.584777 (-3.677904) | 5.554455 / 3.745712 (1.808743) | 4.881557 / 5.269862 (-0.388305) | 2.509121 / 4.565676 (-2.056555) | 0.107191 / 0.424275 (-0.317084) | 0.014684 / 0.007607 (0.007077) | 0.761625 / 0.226044 (0.535580) | 7.582708 / 2.268929 (5.313780) | 3.150160 / 55.444624 (-52.294464) | 2.792284 / 6.876477 (-4.084193) | 2.881321 / 2.142072 (0.739248) | 1.108353 / 4.805227 (-3.696874) | 0.220129 / 6.500664 (-6.280535) | 0.075877 / 0.075469 (0.000408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.465743 / 1.841788 (-0.376045) | 17.679219 / 8.074308 (9.604911) | 18.929399 / 10.191392 (8.738007) | 0.219488 / 0.680424 (-0.460935) | 0.028435 / 0.534201 (-0.505766) | 0.512623 / 0.579283 (-0.066660) | 0.619983 / 0.434364 (0.185619) | 0.603430 / 0.540337 (0.063092) | 0.730416 / 1.386936 (-0.656520) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008285 / 0.011353 (-0.003068) | 0.005771 / 0.011008 (-0.005237) | 0.106444 / 0.038508 (0.067936) | 0.035078 / 0.023109 (0.011969) | 0.441198 / 0.275898 (0.165300) | 0.536279 / 0.323480 (0.212800) | 0.004561 / 0.007986 (-0.003424) | 0.006623 / 0.004328 (0.002294) | 0.102392 / 0.004250 (0.098142) | 0.051736 / 0.037052 (0.014684) | 0.479113 / 0.258489 (0.220624) | 0.535088 / 0.293841 (0.241247) | 0.041805 / 0.128546 (-0.086741) | 0.014031 / 0.075646 (-0.061615) | 0.115795 / 0.419271 (-0.303477) | 0.057913 / 0.043533 (0.014380) | 0.435847 / 0.255139 (0.180708) | 0.524831 / 0.283200 (0.241632) | 0.119419 / 0.141683 (-0.022263) | 1.835577 / 1.452155 (0.383423) | 1.936990 / 1.492716 (0.444273) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288422 / 0.018006 (0.270416) | 0.569776 / 0.000490 (0.569287) | 0.005652 / 0.000200 (0.005452) | 0.000139 / 0.000054 (0.000085) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034632 / 0.037411 (-0.002779) | 0.136217 / 0.014526 (0.121691) | 0.139468 / 0.176557 (-0.037089) | 0.206804 / 0.737135 (-0.530331) | 0.148733 / 0.296338 (-0.147606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.667728 / 0.215209 (0.452518) | 6.548972 / 2.077655 (4.471317) | 3.051537 / 1.504120 (1.547417) | 2.581173 / 1.541195 (1.039978) | 2.653443 / 1.468490 (1.184953) | 0.906606 / 4.584777 (-3.678171) | 5.704384 / 3.745712 (1.958672) | 2.848618 / 5.269862 (-2.421244) | 1.821402 / 4.565676 (-2.744274) | 0.118018 / 0.424275 (-0.306257) | 0.014821 / 0.007607 (0.007214) | 0.821967 / 0.226044 (0.595923) | 8.165818 / 2.268929 (5.896889) | 3.744509 / 55.444624 (-51.700116) | 2.901097 / 6.876477 (-3.975380) | 3.018068 / 2.142072 (0.875996) | 1.106155 / 4.805227 (-3.699072) | 0.263118 / 6.500664 (-6.237546) | 0.088508 / 0.075469 (0.013039) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.725860 / 1.841788 (-0.115928) | 19.411246 / 8.074308 (11.336938) | 20.807499 / 10.191392 (10.616107) | 0.238417 / 0.680424 (-0.442007) | 0.026550 / 0.534201 (-0.507651) | 0.500715 / 0.579283 (-0.078568) | 0.615547 / 0.434364 (0.181183) | 0.614361 / 0.540337 (0.074023) | 0.720365 / 1.386936 (-0.666571) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ae2e77f8344cdcc1c4c876f67936bec33087b19a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006640 / 0.011353 (-0.004713) | 0.004079 / 0.011008 (-0.006930) | 0.100555 / 0.038508 (0.062046) | 0.037318 / 0.023109 (0.014209) | 0.320050 / 0.275898 (0.044152) | 0.358860 / 0.323480 (0.035380) | 0.003828 / 0.007986 (-0.004158) | 0.003215 / 0.004328 (-0.001113) | 0.076577 / 0.004250 (0.072326) | 0.048080 / 0.037052 (0.011028) | 0.324759 / 0.258489 (0.066270) | 0.361862 / 0.293841 (0.068021) | 0.030759 / 0.128546 (-0.097787) | 0.008998 / 0.075646 (-0.066648) | 0.329105 / 0.419271 (-0.090167) | 0.051407 / 0.043533 (0.007875) | 0.311067 / 0.255139 (0.055928) | 0.334401 / 0.283200 (0.051201) | 0.098307 / 0.141683 (-0.043376) | 1.500931 / 1.452155 (0.048776) | 1.574646 / 1.492716 (0.081930) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219080 / 0.018006 (0.201073) | 0.447117 / 0.000490 (0.446627) | 0.009091 / 0.000200 (0.008891) | 0.000396 / 0.000054 (0.000341) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026048 / 0.037411 (-0.011363) | 0.112714 / 0.014526 (0.098188) | 0.116426 / 0.176557 (-0.060131) | 0.172187 / 0.737135 (-0.564948) | 0.121707 / 0.296338 (-0.174632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.358898 / 0.215209 (0.143689) | 3.589212 / 2.077655 (1.511557) | 1.677927 / 1.504120 (0.173807) | 1.515861 / 1.541195 (-0.025334) | 1.598479 / 1.468490 (0.129989) | 0.478265 / 4.584777 (-4.106512) | 3.834982 / 3.745712 (0.089270) | 1.933815 / 5.269862 (-3.336047) | 1.122769 / 4.565676 (-3.442908) | 0.066984 / 0.424275 (-0.357291) | 0.011276 / 0.007607 (0.003669) | 0.512530 / 0.226044 (0.286486) | 5.112667 / 2.268929 (2.843739) | 2.266336 / 55.444624 (-53.178288) | 1.929671 / 6.876477 (-4.946806) | 2.127231 / 2.142072 (-0.014842) | 0.671307 / 4.805227 (-4.133920) | 0.143919 / 6.500664 (-6.356745) | 0.066086 / 0.075469 (-0.009383) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208767 / 1.841788 (-0.633021) | 15.008415 / 8.074308 (6.934106) | 14.085442 / 10.191392 (3.894050) | 0.184164 / 0.680424 (-0.496260) | 0.017619 / 0.534201 (-0.516582) | 0.394443 / 0.579283 (-0.184840) | 0.457653 / 0.434364 (0.023289) | 0.473169 / 0.540337 (-0.067169) | 0.571332 / 1.386936 (-0.815604) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007009 / 0.011353 (-0.004344) | 0.004330 / 0.011008 (-0.006678) | 0.077462 / 0.038508 (0.038954) | 0.034780 / 0.023109 (0.011671) | 0.395573 / 0.275898 (0.119675) | 0.425444 / 0.323480 (0.101964) | 0.004119 / 0.007986 (-0.003866) | 0.003597 / 0.004328 (-0.000731) | 0.075209 / 0.004250 (0.070958) | 0.050871 / 0.037052 (0.013819) | 0.402990 / 0.258489 (0.144500) | 0.445334 / 0.293841 (0.151493) | 0.032492 / 0.128546 (-0.096054) | 0.009066 / 0.075646 (-0.066581) | 0.083073 / 0.419271 (-0.336198) | 0.051661 / 0.043533 (0.008128) | 0.395207 / 0.255139 (0.140068) | 0.409556 / 0.283200 (0.126356) | 0.106035 / 0.141683 (-0.035648) | 1.506255 / 1.452155 (0.054101) | 1.598724 / 1.492716 (0.106008) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194733 / 0.018006 (0.176727) | 0.444920 / 0.000490 (0.444431) | 0.002402 / 0.000200 (0.002202) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030464 / 0.037411 (-0.006947) | 0.119153 / 0.014526 (0.104627) | 0.126081 / 0.176557 (-0.050476) | 0.179692 / 0.737135 (-0.557444) | 0.131834 / 0.296338 (-0.164504) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440153 / 0.215209 (0.224944) | 4.397504 / 2.077655 (2.319850) | 2.138320 / 1.504120 (0.634200) | 1.950596 / 1.541195 (0.409402) | 2.079792 / 1.468490 (0.611302) | 0.537606 / 4.584777 (-4.047171) | 3.689420 / 3.745712 (-0.056292) | 2.960732 / 5.269862 (-2.309129) | 1.585652 / 4.565676 (-2.980024) | 0.066102 / 0.424275 (-0.358173) | 0.011429 / 0.007607 (0.003821) | 0.537011 / 0.226044 (0.310967) | 5.342171 / 2.268929 (3.073242) | 2.624446 / 55.444624 (-52.820179) | 2.313311 / 6.876477 (-4.563166) | 2.389166 / 2.142072 (0.247094) | 0.657547 / 4.805227 (-4.147681) | 0.141640 / 6.500664 (-6.359025) | 0.066102 / 0.075469 (-0.009367) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.130471 / 1.841788 (-0.711317) | 14.824792 / 8.074308 (6.750484) | 13.436463 / 10.191392 (3.245071) | 0.155688 / 0.680424 (-0.524736) | 0.015811 / 0.534201 (-0.518390) | 0.355623 / 0.579283 (-0.223660) | 0.450604 / 0.434364 (0.016241) | 0.472542 / 0.540337 (-0.067796) | 0.563584 / 1.386936 (-0.823352) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#963ff6de6eae80a6de4aabf0092eb3dfbe43096e \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/2648
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2648/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2648/comments
https://api.github.com/repos/huggingface/datasets/issues/2648/events
https://github.com/huggingface/datasets/issues/2648
944,484,522
MDU6SXNzdWU5NDQ0ODQ1MjI=
2,648
Add web_split dataset for Paraphase and Rephrase benchmark
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
1
2021-07-14T14:24:36Z
2021-07-14T14:26:12Z
null
null
## Describe: For getting simple sentences from complex sentence there are dataset and task like wiki_split that is available in hugging face datasets. This web_split is a very similar dataset. There some research paper which states that by combining these two datasets we if we train the model it will yield better results on both tests data. This dataset is made from web NLG data. All the dataset related details are provided in the below repository Github link: https://github.com/shashiongithub/Split-and-Rephrase
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2648/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2648/timeline
null
null
null
null
false
[ "#take" ]
https://api.github.com/repos/huggingface/datasets/issues/1346
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1346/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1346/comments
https://api.github.com/repos/huggingface/datasets/issues/1346/events
https://github.com/huggingface/datasets/pull/1346
759,844,137
MDExOlB1bGxSZXF1ZXN0NTM0Nzc2ODE5
1,346
Add MultiBooked dataset
[]
closed
false
null
1
2020-12-08T22:49:36Z
2020-12-15T17:02:09Z
2020-12-15T17:02:09Z
null
Add dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1346/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1346/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1346.diff", "html_url": "https://github.com/huggingface/datasets/pull/1346", "merged_at": "2020-12-15T17:02:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/1346.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1346" }
true
[ "There' still an issue with the dummy data, let me take a look" ]
https://api.github.com/repos/huggingface/datasets/issues/1743
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1743/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1743/comments
https://api.github.com/repos/huggingface/datasets/issues/1743/events
https://github.com/huggingface/datasets/issues/1743
787,631,412
MDU6SXNzdWU3ODc2MzE0MTI=
1,743
Issue while Creating Custom Metric
[]
closed
false
null
3
2021-01-17T07:01:14Z
2022-06-01T15:49:34Z
2022-06-01T15:49:34Z
null
Hi Team, I am trying to create a custom metric for my training as follows, where f1 is my own metric: ```python def _info(self): # TODO: Specifies the datasets.MetricInfo object return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features = datasets.Features({'predictions':datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")),"offset_mapping":datasets.Sequence(datasets.Value("int32")),'text':datasets.Sequence(datasets.Value('string')),"ground":datasets.Sequence(datasets.Value("int32")),}), # Homepage of the metric for documentation homepage="http://metric.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_metric"], reference_urls=["http://path.to.reference.url/new_metric"] ) def _compute(self,predictions,references,text,offset_mapping,spans): pred_spans = [] for i,preds in enumerate(predictions): current_preds = [] for j,token_preds in enumerate(preds): if (preds>0.5): current_preds+=list(range(offset_mapping[i][j][0],offset_mapping[i][j][1])) pred_spans.append(current_spans) return { "Token Wise F1": f1_score(references,predictions,labels=[0,1]), "Offset Wise F1": np.mean([f1(preds,gold) for preds,fold in zip(pred_spans,ground)]) } ``` I believe this is not correct. But that's not the issue I am facing right now. I get this error : ```python --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-144-ed7349b50821> in <module>() ----> 1 new_metric.compute(predictions=inputs["labels"],references=inputs["labels"], text=inputs["text"], offset_mapping=inputs["offset_mapping"],ground=inputs["ground"] ) 2 frames /usr/local/lib/python3.6/dist-packages/datasets/features.py in encode_batch(self, batch) 802 encoded_batch = {} 803 if set(batch) != set(self): --> 804 print(batch) 805 print(self) 806 raise ValueError("Column mismatch between batch {} and features {}".format(set(batch), set(self))) ValueError: Column mismatch between batch {'references', 'predictions'} and features {'ground', 'predictions', 'offset_mapping', 'text', 'references'} ``` On checking the features.py file, I see the call is made from add_batch() in metrics.py which only takes in predictions and references. How do I make my custom metric work? Will it work with a trainer even if I am able to make this metric work? Thanks, Gunjan
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1743/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1743/timeline
null
completed
null
null
false
[ "Currently it's only possible to define the features for the two columns `references` and `predictions`.\r\nThe data for these columns can then be passed to `metric.add_batch` and `metric.compute`.\r\nInstead of defining more columns `text`, `offset_mapping` and `ground` you must include them in either references and predictions.\r\n\r\nFor example \r\n```python\r\nfeatures = datasets.Features({\r\n 'predictions':datasets.Sequence(datasets.Value(\"int32\")),\r\n \"references\": datasets.Sequence({\r\n \"references_ids\": datasets.Value(\"int32\"),\r\n \"offset_mapping\": datasets.Value(\"int32\"),\r\n 'text': datasets.Value('string'),\r\n \"ground\": datasets.Value(\"int32\")\r\n }),\r\n})\r\n```\r\n\r\nAnother option would be to simply have the two features like \r\n```python\r\nfeatures = datasets.Features({\r\n 'predictions':datasets.Sequence(datasets.Value(\"int32\")),\r\n \"references\": datasets.Sequence(datasets.Value(\"int32\")),\r\n})\r\n```\r\nand keep `offset_mapping`, `text` and `ground` as as parameters for the computation (i.e. kwargs when calling `metric.compute`).\r\n\r\n\r\nWhat is the metric you would like to implement ?\r\n\r\nI'm asking since we consider allowing additional fields as requested in the `Comet` metric (see PR and discussion [here](https://github.com/huggingface/datasets/pull/1577)) and I'd like to know if it's something that can be interesting for users.\r\n\r\nWhat do you think ?", "Hi @lhoestq,\r\n\r\nI am doing text segmentation and the metric is effectively dice score on character offsets. So I need to pass the actual spans and I want to be able to get the spans based on predictions using offset_mapping.\r\n\r\nIncluding them in references seems like a good idea. I'll try it out and get back to you. If there's a better way to write a metric function for the same, please let me know.", "Resolved via https://github.com/huggingface/datasets/pull/3824." ]
https://api.github.com/repos/huggingface/datasets/issues/3036
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3036/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3036/comments
https://api.github.com/repos/huggingface/datasets/issues/3036/events
https://github.com/huggingface/datasets/issues/3036
1,017,687,944
I_kwDODunzps48qK-I
3,036
Protect master branch to force contributions via Pull Requests
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
3
2021-10-06T07:34:17Z
2021-10-07T06:51:47Z
2021-10-07T06:49:52Z
null
In order to have a clearer Git history in the master branch, I propose to protect it so that all contributions must be done through a Pull Request and no direct commits to master are allowed. - The Pull Request allows to give context, discuss any potential issues and improve the quality of the contribution - The Pull Request will eventually be squashed and merged into master with a single commit that links to the Pull Request page (with all the context/discussions) Note that we already implemented a protection in the master branch to avoid *merge* commits and ensure a linear history. This proposal goes one step further by avoiding all kind of direct commits and forcing contributions **only** through Pull Requests. Please note that we can temporarily deactivate this protection if we need to make a direct commit, e.g. at each new version release. The only way GitHub allows this kind or protection is by requiring a minimal number (at least one) of approvals of the Pull Request. The inconvenient is that the PR creator cannot approve their own PR: another person must approve it before it can be merged into master. To circumvent this, we could eventually disable this protection in the master branch when an urgent commit is needed (e.g. for a hotfix) and there is no other person available at that time to approve the PR.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3036/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3036/timeline
null
completed
null
null
false
[ "It would be nice to protect the master from direct commits, but still having a way to merge our own PRs when no review is required (for example when updating a dataset_infos.json file, or minor bug fixes - things that happen quite often actually).\r\nDo you know if there's a way ?", "you can if you're an admin of the repo", "This is done. Now the master branch is protected:\r\n- [x] Require a pull request before merging: all commits must be made to a non-protected branch and submitted via a pull request\r\n - Required number of approvals before merging: 1 \r\n- [x] Require linear history: prevent merge commits from being pushed\r\n- [x] These requirements are not enforced for administrators\r\n- [x] Additionally, the master branch is also protected against deletion and force pushes\r\n\r\nCC: @lhoestq @julien-c @thomwolf " ]
https://api.github.com/repos/huggingface/datasets/issues/5307
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5307/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5307/comments
https://api.github.com/repos/huggingface/datasets/issues/5307/events
https://github.com/huggingface/datasets/pull/5307
1,466,477,427
PR_kwDODunzps5Dzj8r
5,307
Use correct dataset type in `from_generator` docs
[]
closed
false
null
1
2022-11-28T13:59:10Z
2022-11-28T15:30:37Z
2022-11-28T15:27:26Z
null
Use the correct dataset type in the `from_generator` docs (example with sharding).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5307/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5307/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5307.diff", "html_url": "https://github.com/huggingface/datasets/pull/5307", "merged_at": "2022-11-28T15:27:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/5307.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5307" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/852
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/852/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/852/comments
https://api.github.com/repos/huggingface/datasets/issues/852/events
https://github.com/huggingface/datasets/issues/852
743,396,240
MDU6SXNzdWU3NDMzOTYyNDA=
852
wmt cannot be downloaded
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
0
2020-11-16T01:04:41Z
2020-11-16T09:31:58Z
2020-11-16T09:31:58Z
null
Hi, I appreciate your help with the following error, thanks >>> from datasets import load_dataset >>> dataset = load_dataset("wmt16", "ro-en", split="train") Downloading and preparing dataset wmt16/ro-en (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /root/.cache/huggingface/datasets/wmt16/ro-en/1.0.0/7b2c4443a7d34c2e13df267eaa8cab4c62dd82f6b62b0d9ecc2e3a673ce17308... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/load.py", line 611, in load_dataset ignore_verifications=ignore_verifications, File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/builder.py", line 476, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/builder.py", line 531, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/root/.cache/huggingface/modules/datasets_modules/datasets/wmt16/7b2c4443a7d34c2e13df267eaa8cab4c62dd82f6b62b0d9ecc2e3a673ce17308/wmt_utils.py", line 755, in _split_generators downloaded_files = dl_manager.download_and_extract(urls_to_download) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 254, in download_and_extract return self.extract(self.download(url_or_urls)) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 179, in download num_proc=download_config.num_proc, File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 225, in map_nested _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 225, in <listcomp> _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 181, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 181, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 163, in _single_map_nested return function(data_struct) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 308, in cached_path use_etag=download_config.use_etag, File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 475, in get_from_cache raise ConnectionError("Couldn't reach {}".format(url)) ConnectionError: Couldn't reach http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-ro.tmx.gz
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/852/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/852/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/423
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/423/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/423/comments
https://api.github.com/repos/huggingface/datasets/issues/423/events
https://github.com/huggingface/datasets/pull/423
663,079,359
MDExOlB1bGxSZXF1ZXN0NDU0NTU4OTA0
423
Change features vs schema logic
[]
closed
false
null
2
2020-07-21T14:52:47Z
2020-07-25T09:08:34Z
2020-07-23T10:15:17Z
null
## New logic for `nlp.Features` in datasets Previously, it was confusing to have `features` and pyarrow's `schema` in `nlp.Dataset`. However `features` is supposed to be the front-facing object to define the different fields of a dataset, while `schema` is only used to write arrow files. Changes: - Remove `schema` field in `nlp.Dataset` - Make `features` the source of truth to read/write examples - `features` can no longer be `None` in `nlp.Dataset` - Update `features` after each dataset transform such as `nlp.Dataset.map` Todo: change the tests to take these changes into account
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/423/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/423/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/423.diff", "html_url": "https://github.com/huggingface/datasets/pull/423", "merged_at": "2020-07-23T10:15:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/423.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/423" }
true
[ "I had to make `SplitDict` serializable to be able to copy `DatasetInfo` objects properly.\r\nSerialization was also asked in #389 ", "One thing I forgot to say here, is that we also want to use the features arguments of `load_dataset` (which goes in the builder’s config) to override the default features of a dataset script." ]
https://api.github.com/repos/huggingface/datasets/issues/5251
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5251/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5251/comments
https://api.github.com/repos/huggingface/datasets/issues/5251/events
https://github.com/huggingface/datasets/issues/5251
1,451,761,321
I_kwDODunzps5WiB6p
5,251
Docs are not generated after latest release
[ { "color": "d4c5f9", "default": false, "description": "Maintenance tasks", "id": 4296013012, "name": "maintenance", "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance" } ]
closed
false
null
8
2022-11-16T14:59:31Z
2022-11-22T16:27:50Z
2022-11-22T16:27:50Z
null
After the latest `datasets` release version 0.7.0, the docs were not generated. As we have changed the release procedure (so that now we do not push directly to main branch), maybe we should also change the corresponding GitHub action: https://github.com/huggingface/datasets/blob/edf1902f954c5568daadebcd8754bdad44b02a85/.github/workflows/build_documentation.yml#L3-L8 Related to: - #5250 CC: @mishig25
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5251/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5251/timeline
null
completed
null
null
false
[ "After a discussion with @mishig25:\r\n- He said that this action should be triggered if we call our release branch according to the regex `v*-release`, as transformers does\r\n- I said that our procedure is different: our release branch is *temporary* and it is deleted just after the release PR is merged to main\r\n - Indeed the release tag is not yet created when we make the release PR (not event when this is merged to main), but when we make the Release itself.\r\n\r\nI was thinking that maybe we could change the triggering event: use `release` instead of `push`.\r\n\r\nWhat do you think, @huggingface/datasets?", "Why is it an issue if our branch is temporary ?", "He says not; but the branch has no tag yet; does the doc building require the tag? Or just the version number in `__init__.py` or setup.py?", "It uses `module.__version__` (i.e. the one defined in `__init__.py`) - no need to have a tag\r\n\r\nhttps://github.com/huggingface/doc-builder/blob/81575cf081964c30ea5fd39450f4820db963f18e/src/doc_builder/commands/build.py#L69", "Thanks, @lhoestq.\r\n\r\n@mishig25 has manually forced the generation of the docs, that are live for 2.7.0 version: https://huggingface.co/docs/datasets/v2.7.0/en/index ", "Cool ! this can be closed then ?", "I was waiting for #5250 to be merged to close this.", "just to confirm, is there anything I need to do from my side ? Or is everything good here ?" ]
https://api.github.com/repos/huggingface/datasets/issues/4912
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4912/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4912/comments
https://api.github.com/repos/huggingface/datasets/issues/4912/events
https://github.com/huggingface/datasets/issues/4912
1,355,078,864
I_kwDODunzps5QxNzQ
4,912
datasets map() handles all data at a stroke and takes long time
[]
closed
false
null
7
2022-08-30T02:25:56Z
2023-04-06T09:43:58Z
2022-09-06T09:23:35Z
null
**1. Background** Huggingface datasets package advises using `map()` to process data in batches. In the example code on pretraining masked language model, they use `map()` to tokenize all data at a stroke before the train loop. The corresponding code: ``` with accelerator.main_process_first(): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on every text in dataset" ) ``` **2. The problem** Thus, when I try the same pertaining code with a much larger corpus, it takes quite a long time to tokenize. Also, we can choose to tokenize data in `data-collator`. In this way, the program only tokenizes one batch in the next training step and avoids getting stuck in tokenization. **3. My question** As described above, my questions are: * **Which is better? Process in `map()` or in `data-collator`** * **Why huggingface advises `map()` function?** There should be some advantages to using `map()` Thanks for your answers!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4912/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4912/timeline
null
completed
null
null
false
[ "Hi ! Interesting question ;)\r\n\r\n> Which is better? Process in map() or in data-collator\r\n\r\nAs you said, both can be used in practice: map() if you want to preprocess before training, or a data-collator (or the equivalent `dataset.set_transform`) if you want to preprocess on-the-fly during training. Both options are great and really depend on your case.\r\n\r\nTo choose between the two, here are IMO the main caveats of each approach:\r\n- if your preprocessing takes too much CPU for example, using a data-collator may slow down your training and your GPUs may not work at full speed\r\n- on the other hand, map() may take a lot of time and disk space to run if your dataset is too big.\r\n\r\n> Why huggingface advises map() function? There should be some advantages to using map()\r\n\r\nTo get the best throughput when training a model, it is often recommended to preprocess your dataset before training. Note that preprocessing may include other steps before tokenization such as data filtering, cleaning, chunking etc. which are often done before training.", "Thanks for your clear explanation @lhoestq ! \r\n> * if your preprocessing takes too much CPU for example, using a data-collator may slow down your training and your GPUs may not work at full speed\r\n> * on the other hand, map() may take a lot of time and disk space to run if your dataset is too big.\r\n\r\nI really agree with you. There should be some trade-off between processing before and during the train loop.\r\nBesides, I find `map()` function can cache the results once it has been executed. Very useful!", "I'm closing this issue if you don't mind, feel free to reopen if needed ;)", "@lhoestq How to preprocess on-the-fly during training?my data is about 1w hours, when I use map to preprocess, and It's not finished yet, but all disk space(2T) is full.", "Hi ! You can do that using `set_transform`, see https://huggingface.co/docs/datasets/process#format-transform for more info :)", "unfortunately , it not work.", "Could you share more details ?" ]
https://api.github.com/repos/huggingface/datasets/issues/1392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1392/comments
https://api.github.com/repos/huggingface/datasets/issues/1392/events
https://github.com/huggingface/datasets/pull/1392
760,432,261
MDExOlB1bGxSZXF1ZXN0NTM1MjY0ODQ5
1,392
Add KDE4 Dataset
[]
closed
false
null
1
2020-12-09T15:32:58Z
2020-12-14T10:22:33Z
2020-12-14T10:22:32Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1392/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1392/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1392.diff", "html_url": "https://github.com/huggingface/datasets/pull/1392", "merged_at": "2020-12-14T10:22:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/1392.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1392" }
true
[ "@lhoestq fixed :) " ]
https://api.github.com/repos/huggingface/datasets/issues/4438
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4438/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4438/comments
https://api.github.com/repos/huggingface/datasets/issues/4438/events
https://github.com/huggingface/datasets/pull/4438
1,258,255,394
PR_kwDODunzps44-vhC
4,438
Fix docstring of inspect_dataset
[]
closed
false
null
1
2022-06-02T14:21:10Z
2022-06-02T16:40:55Z
2022-06-02T16:32:27Z
null
As pointed out by @sgugger: - huggingface/doc-builder/issues/235
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4438/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4438/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4438.diff", "html_url": "https://github.com/huggingface/datasets/pull/4438", "merged_at": "2022-06-02T16:32:27Z", "patch_url": "https://github.com/huggingface/datasets/pull/4438.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4438" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/3515
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3515/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3515/comments
https://api.github.com/repos/huggingface/datasets/issues/3515/events
https://github.com/huggingface/datasets/issues/3515
1,092,624,695
I_kwDODunzps5BICE3
3,515
`ExpectedMoreDownloadedFiles` for `evidence_infer_treatment`
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
null
1
2022-01-03T15:58:38Z
2022-02-14T13:21:43Z
2022-02-14T13:21:43Z
null
## Describe the bug I am trying to load a dataset called `evidence_infer_treatment`. The first subset (`1.1`) works fine but the second returns an error (`2.0`). It downloads a file but crashes during the checksums. ## Steps to reproduce the bug ```python >>> from datasets import load_dataset >>> load_dataset("evidence_infer_treatment", "2.0") Downloading and preparing dataset evidence_infer_treatment/2.0 (download: 34.84 MiB, generated: 91.46 MiB, post-processed: Unknown size, total: 126.30 MiB) to /home/victor_huggingface_co/.cache/huggingface/datasets/evidence_infer_treatment/2.0/2.0.0/6812655bfd26cbaa58c84eab098bf6403694b06c6ae2ded603c55681868a1e24... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/load.py", line 1669, in load_dataset use_auth_token=use_auth_token, File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/builder.py", line 594, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/builder.py", line 664, in _download_and_prepare self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files" File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/utils/info_utils.py", line 33, in verify_checksums raise ExpectedMoreDownloadedFiles(str(set(expected_checksums) - set(recorded_checksums))) datasets.utils.info_utils.ExpectedMoreDownloadedFiles: {'http://evidence-inference.ebm-nlp.com/v2.0.tar.gz'} ``` I did try to pass the argument `ignore_verifications=True` but run into an error when trying to build the dataset: ```python >>> load_dataset("evidence_infer_treatment", "2.0", ignore_verifications=True, download_mode="force_redownload") Downloading and preparing dataset evidence_infer_treatment/2.0 (download: 34.84 MiB, generated: 91.46 MiB, post-processed: Unknown size, total: 126.30 MiB) to /home/victor_huggingface_co/.cache/huggingface/datasets/evidence_infer_treatment/2.0/2.0.0/6812655bfd26cbaa58c84eab098bf6403694b06c6ae2ded603c55681868a1e24... Downloading: 164MB [00:23, 6.98MB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/load.py", line 1669, in load_dataset use_auth_token=use_auth_token, File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/builder.py", line 594, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/builder.py", line 681, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/builder.py", line 1080, in _prepare_split example = self.info.features.encode_example(record) File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/features/features.py", line 1032, in encode_example return encode_nested_example(self, example) File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/features/features.py", line 807, in encode_nested_example k: encode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in utils.zip_dict(schema, obj) File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/features/features.py", line 807, in <dictcomp> k: encode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in utils.zip_dict(schema, obj) File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/features/features.py", line 829, in encode_nested_example list_dict[k] = [encode_nested_example(dict_tuples[0], o) for o in dict_tuples[1:]] File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/features/features.py", line 829, in <listcomp> list_dict[k] = [encode_nested_example(dict_tuples[0], o) for o in dict_tuples[1:]] File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/features/features.py", line 828, in encode_nested_example for k, dict_tuples in utils.zip_dict(schema.feature, *obj): File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/utils/py_utils.py", line 136, in zip_dict yield key, tuple(d[key] for d in dicts) File "/home/victor_huggingface_co/miniconda3/envs/promptsource/lib/python3.7/site-packages/datasets/utils/py_utils.py", line 136, in <genexpr> yield key, tuple(d[key] for d in dicts) KeyError: '' ``` ## Environment info - `datasets` version: 1.16.1 - Platform: Linux-5.0.0-1020-gcp-x86_64-with-debian-buster-sid - Python version: 3.7.11 - PyArrow version: 6.0.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3515/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3515/timeline
null
completed
null
null
false
[ "Thanks for reporting @VictorSanh.\r\n\r\nI'm looking at it... " ]
https://api.github.com/repos/huggingface/datasets/issues/1286
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1286/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1286/comments
https://api.github.com/repos/huggingface/datasets/issues/1286/events
https://github.com/huggingface/datasets/issues/1286
759,291,509
MDU6SXNzdWU3NTkyOTE1MDk=
1,286
[libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): terminate called after throwing an instance of 'google::protobuf::FatalException' what(): CHECK failed: (index) >= (0): Aborted
[]
closed
false
null
6
2020-12-08T09:44:15Z
2020-12-12T19:36:22Z
2020-12-12T16:22:36Z
null
Hi I am getting this error when evaluating on wmt16-ro-en using finetune_trainer.py of huggingface repo. thank for your help {'epoch': 20.0} 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:16<00:00, 1.22it/s] 12/08/2020 10:41:19 - INFO - seq2seq.trainers.trainer - Saving model checkpoint to outputs/experiment/joint/finetune/lr-2e-5 12/08/2020 10:41:24 - INFO - __main__ - {'wmt16-en-ro': Dataset(features: {'src_texts': Value(dtype='string', id=None), 'task': Value(dtype='string', id=None), 'tgt_texts': Value(dtype='string', id=None)}, num_rows: 1998), 'qnli': Dataset(features: {'src_texts': Value(dtype='string', id=None), 'task': Value(dtype='string', id=None), 'tgt_texts': Value(dtype='string', id=None)}, num_rows: 5462), 'scitail': Dataset(features: {'src_texts': Value(dtype='string', id=None), 'task': Value(dtype='string', id=None), 'tgt_texts': Value(dtype='string', id=None)}, num_rows: 1303)} 12/08/2020 10:41:24 - INFO - __main__ - *** Evaluate *** 12/08/2020 10:41:24 - INFO - seq2seq.utils.utils - using task specific params for wmt16-en-ro: {'max_length': 300, 'num_beams': 4} 12/08/2020 10:41:24 - INFO - seq2seq.trainers.trainer - ***** Running Evaluation ***** 12/08/2020 10:41:24 - INFO - seq2seq.trainers.trainer - Num examples = 1998 12/08/2020 10:41:24 - INFO - seq2seq.trainers.trainer - Batch size = 64 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 32/32 [00:37<00:00, 1.19s/it][libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): terminate called after throwing an instance of 'google::protobuf::FatalException' what(): CHECK failed: (index) >= (0): Aborted
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1286/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1286/timeline
null
completed
null
null
false
[ "I remember also getting the same issue for several other translation datasets like all the iwslt2017 group, this is blokcing me and I really need to fix it and I was wondering if you have an idea on this. @lhoestq thanks,. ", "maybe there is an empty line or something inside these datasets? could you tell me why this is happening? thanks ", "I just checked and the wmt16 en-ro doesn't have empty lines\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nd = load_dataset(\"wmt16\", \"ro-en\", split=\"train\")\r\nlen(d) # 610320\r\nlen(d.filter(lambda x: len(x[\"translation\"][\"en\"].strip()) > 0)) # 610320\r\nlen(d.filter(lambda x: len(x[\"translation\"][\"ro\"].strip()) > 0)) # 610320\r\n# also tested for split=\"validation\" and \"test\"\r\n```\r\n\r\nCan you open an issue on the `transformers` repo ? also cc @sgugger ", "Hi @lhoestq \r\nI am not really sure which part is causing this, to me this is more related to dataset library as this is happening for some of the datassets below please find the information to reprodcue the bug, this is really blocking me and I appreciate your help\r\n\r\n\r\n## Environment info\r\n- `transformers` version: 3.5.1\r\n- Platform: GPU\r\n- Python version: 3.7 \r\n- PyTorch version (GPU?): 1.0.4\r\n- Tensorflow version (GPU?): - \r\n- Using GPU in script?: - \r\n- Using distributed or parallel set-up in script?: - \r\n\r\n### Who can help\r\n tokenizers: @mfuntowicz\r\n Trainer: @sgugger\r\n TextGeneration: @TevenLeScao \r\n nlp datasets: [different repo](https://github.com/huggingface/nlp)\r\n rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)\r\n examples/seq2seq: @patil-suraj\r\n\r\n## Information\r\nHi\r\nI am testing seq2seq model with T5 on different datasets and this is always getting the following bug, this is really blocking me as this fails for many datasets. could you have a look please? thanks \r\n\r\n```\r\n[libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): \r\nterminate called after throwing an instance of 'google::protobuf::FatalException'\r\n what(): CHECK failed: (index) >= (0): \r\nAborted\r\n\r\n```\r\n\r\nTo reproduce the error please run on 1 GPU:\r\n```\r\ngit clone [email protected]:rabeehk/debug-seq2seq.git\r\npython setup.py develop \r\ncd seq2seq \r\npython finetune_t5_trainer.py temp.json\r\n\r\n```\r\n\r\nFull output of the program:\r\n\r\n```\r\n(internship) rkarimi@vgnh008:/idiap/user/rkarimi/dev/debug-seq2seq/seq2seq$ python finetune_t5_trainer.py temp.json \r\n2020-12-12 15:38:16.234542: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\r\n2020-12-12 15:38:16.234598: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\r\n12/12/2020 15:38:32 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False\r\n12/12/2020 15:38:32 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(output_dir='outputs/test', overwrite_output_dir=True, do_train=True, do_eval=True, do_predict=False, evaluate_during_training=False, evaluation_strategy=<EvaluationStrategy.NO: 'no'>, prediction_loss_only=False, per_device_train_batch_size=64, per_device_eval_batch_size=64, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, eval_accumulation_steps=None, learning_rate=0.01, weight_decay=0.0, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=2, max_steps=-1, warmup_steps=500, logging_dir='runs/Dec12_15-38-32_vgnh008', logging_first_step=True, logging_steps=200, save_steps=200, save_total_limit=1, no_cuda=False, seed=42, fp16=False, fp16_opt_level='O1', local_rank=-1, tpu_num_cores=None, tpu_metrics_debug=False, debug=False, dataloader_drop_last=False, eval_steps=200, dataloader_num_workers=0, past_index=-1, run_name='outputs/test', disable_tqdm=False, remove_unused_columns=True, label_names=None, load_best_model_at_end=False, metric_for_best_model=None, greater_is_better=None, label_smoothing=0.1, sortish_sampler=False, predict_with_generate=True, adafactor=False, encoder_layerdrop=None, decoder_layerdrop=None, dropout=None, attention_dropout=None, lr_scheduler='linear', fixed_length_emb=None, encoder_projection=None, encoder_pooling=None, projection_length=None, only_projection_bottleneck=False, concat_projection_token=False, gcs_bucket='ruse-xcloud-bucket', temperature=10, train_adapters=True, do_finetune=True, parametric_task_embedding=False, eval_output_dir='outputs/finetune-adapter/test-n-1-lr-1e-02-e-20')\r\nSome weights of T5ForConditionalGeneration were not initialized from the model checkpoint at t5-small and are newly initialized: ['encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.0.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.0.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.1.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.1.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.2.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.2.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.3.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.3.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.4.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.4.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.5.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.5.layer.1.adapter_controller.post_layer_norm.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.0.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.0.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.1.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.1.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.2.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.2.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.3.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.3.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.4.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.4.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.5.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.5.layer.2.adapter_controller.post_layer_norm.bias']\r\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140079090376272 acquired on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140079090376272 released on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\nUsing custom data configuration default\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549312272 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549312272 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549365648 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nReusing dataset boolq (/idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534)\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549365648 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nLoading cached processed dataset at /idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534/cache-6810ece2a440c3be.arrow\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 acquired on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 released on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\nUsing custom data configuration default\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549365200 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nReusing dataset boolq (/idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534)\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549365200 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nLoading cached processed dataset at /idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534/cache-9a2822394a3a4e34.arrow\r\n12/12/2020 15:38:45 - INFO - seq2seq.metrics.metrics - selected metric <function build_compute_metrics_fn.<locals>.classification_metrics at 0x7f66b464cc20> for task boolq\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - ***** Running training *****\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Num examples = 10\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Num Epochs = 2\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Instantaneous batch size per device = 64\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Total train batch size (w. parallel, distributed & accumulation) = 64\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Gradient Accumulation steps = 1\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Total optimization steps = 2\r\n{'loss': 529.79443359375, 'learning_rate': 2e-05, 'epoch': 1.0} \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.37it/s]12/12/2020 15:38:46 - INFO - seq2seq.trainers.trainer - \r\n\r\nTraining completed. Do not forget to share your model on huggingface.co/models =)\r\n\r\n\r\n{'epoch': 2.0} \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.43it/s]\r\n12/12/2020 15:38:46 - INFO - seq2seq.trainers.trainer - Saving model checkpoint to outputs/test\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929680 acquired on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929680 released on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\nUsing custom data configuration default\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929360 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929360 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079085355216 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nReusing dataset boolq (/idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534)\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079085355216 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nLoading cached processed dataset at /idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534/cache-164dd1d57e9fa69a.arrow\r\n12/12/2020 15:38:59 - INFO - seq2seq.metrics.metrics - selected metric <function build_compute_metrics_fn.<locals>.classification_metrics at 0x7f66b40c67a0> for task boolq\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - ***** Running training *****\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Num examples = 1\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Num Epochs = 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Instantaneous batch size per device = 64\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Total train batch size (w. parallel, distributed & accumulation) = 64\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Gradient Accumulation steps = 1\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Total optimization steps = 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Continuing training from checkpoint, will skip to saved global_step\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Continuing training from epoch 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Continuing training from global step 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Will skip the first 0 steps in the first epoch\r\n 0%| | 0/2 [00:00<?, ?it/s]12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - \r\n\r\nTraining completed. Do not forget to share your model on huggingface.co/models =)\r\n\r\n\r\n{'epoch': 2.0} \r\n 0%| | 0/2 [00:00<?, ?it/s]\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Saving model checkpoint to outputs/finetune-adapter/test-n-1-lr-1e-02-e-20/boolq\r\n12/12/2020 15:39:07 - INFO - seq2seq.utils.utils - using task specific params for boolq: {'max_length': 3}\r\n12/12/2020 15:39:07 - INFO - seq2seq.trainers.trainer - ***** Running Evaluation *****\r\n12/12/2020 15:39:07 - INFO - seq2seq.trainers.trainer - Num examples = 3269\r\n12/12/2020 15:39:07 - INFO - seq2seq.trainers.trainer - Batch size = 64\r\n100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:12<00:00, 4.86it/s][libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): \r\nterminate called after throwing an instance of 'google::protobuf::FatalException'\r\n what(): CHECK failed: (index) >= (0): \r\nAborted\r\n```\r\n\r\n\r\n\r\n", "solved see https://github.com/huggingface/transformers/issues/9079?_pjax=%23js-repo-pjax-container ", "Hii please follow me" ]
https://api.github.com/repos/huggingface/datasets/issues/4108
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4108/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4108/comments
https://api.github.com/repos/huggingface/datasets/issues/4108/events
https://github.com/huggingface/datasets/pull/4108
1,194,578,584
PR_kwDODunzps41u3j2
4,108
Perplexity Speedup
[]
closed
false
null
7
2022-04-06T12:57:21Z
2022-04-20T13:00:54Z
2022-04-20T12:54:42Z
null
This PR makes necessary changes to perplexity such that: - it runs much faster (via batching) - it throws an error when input is empty, or when input is one word without <BOS> token - it adds the option to add a <BOS> token Issues: - The values returned are extremely high, and I'm worried they aren't correct. Even if they are correct, they are sometimes returned as `inf`, which is not very useful (see [comment below](https://github.com/huggingface/datasets/pull/4108#discussion_r843931094) for some of the output values). - If the values are not correct, can you help me find the error? - If the values are correct, it might be worth it to measure something like perplexity per word, which would allow us to get actual values for the larger perplexities, instead of just `inf` Future: - `stride` is not currently implemented here. I have some thoughts on how to make it happen with batching, but I think it would be better to get another set of eyes to look at any possible errors causing such large values now rather than later.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4108/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4108/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4108.diff", "html_url": "https://github.com/huggingface/datasets/pull/4108", "merged_at": "2022-04-20T12:54:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/4108.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4108" }
true
[ "WRT the high values, can you add some unit tests with some [string, model] pairs and their resulting perplexity code, and @TristanThrush can run the same pairs through his version of the code?", "_The documentation is not available anymore as the PR was closed or merged._", "I thought that the perplexity metric should output the average perplexity value of all the strings that it gets as input (not a perplexity value per string, as the new version does).\r\n@lhoestq , @TristanThrush thoughts?", "> I thought that the perplexity metric should output the average perplexity value of all the strings that it gets as input (not a perplexity value per string, as the new version does). @lhoestq , @TristanThrush thoughts?\r\n\r\nI support this change from Emi. If we have a perplexity function that loads GPT2 and then returns an average over all of the strings, then it is impossible to get multiple perplexities of a batch of strings efficiently. If we have this new perplexity function that is built for batching, then it is possible to get a batch of perplexities efficiently and you can still compute the average efficiently afterwards.", "Thanks a lot for working on this @emibaylor @TristanThrush :)\r\n\r\nFor consistency with the other metrics, I think it's nice if we return the mean perplexity. Though I agree that having the separate perplexities per sample can also be useful. What do you think about returning both ?\r\n```python\r\nreturn {\"perplexities\": ppls, \"mean_perplexity\": np.mean(ppls)}\r\n```\r\nwe're also doing this for the COMET metric.", "> Thanks a lot for working on this @emibaylor @TristanThrush :)\r\n> \r\n> For consistency with the other metrics, I think it's nice if we return the mean perplexity. Though I agree that having the separate perplexities per sample can also be useful. What do you think about returning both ?\r\n> \r\n> ```python\r\n> return {\"perplexities\": ppls, \"mean_perplexity\": np.mean(ppls)}\r\n> ```\r\n> \r\n> we're also doing this for the COMET metric.\r\n\r\nThanks! Sounds great to me.", "The CI fail is unrelated to your PR and has been fixed on master, feel free to merge the master branch into your PR to fix the CI ;)" ]
https://api.github.com/repos/huggingface/datasets/issues/5507
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5507/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5507/comments
https://api.github.com/repos/huggingface/datasets/issues/5507/events
https://github.com/huggingface/datasets/issues/5507
1,572,667,036
I_kwDODunzps5dvP6c
5,507
Optimise behaviour in respect to indices mapping
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
0
2023-02-06T14:25:55Z
2023-02-28T18:19:18Z
null
null
_Originally [posted](https://huggingface.slack.com/archives/C02V51Q3800/p1675443873878489?thread_ts=1675418893.373479&cid=C02V51Q3800) on Slack_ Considering all this, perhaps for Datasets 3.0, we can do the following: * [ ] have `continuous=True` by default in `.shard` (requested in the survey and makes more sense for us since it doesn't create an indices mapping) * [x] allow calling `save_to_disk` on "unflattened" datasets * [ ] remove "hidden" expensive calls in `save_to_disk`, `unique`, `concatenate_datasets`, etc. For instance, instead of silently calling `flatten_indices` where it's needed, it's probably better to be explicit (considering how expensive these ops can be) and raise an error instead
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5507/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5507/timeline
null
null
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/4024
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4024/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4024/comments
https://api.github.com/repos/huggingface/datasets/issues/4024/events
https://github.com/huggingface/datasets/pull/4024
1,180,951,817
PR_kwDODunzps41Bp3V
4,024
Doc: image_process small tip
[]
closed
false
null
2
2022-03-25T15:44:32Z
2022-03-31T15:35:35Z
2022-03-31T15:30:20Z
null
I've added a small tip in the `image_process` doc
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4024/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4024/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4024.diff", "html_url": "https://github.com/huggingface/datasets/pull/4024", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4024.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4024" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "This tip is unnecessary, i.e., Pillow will already be installed since the `Image` feature requires it for encoding and decoding. Thanks anyway.\r\n\r\ncc @stevhliu I've noticed we are missing the installation section in the doc (`pip install datasets[vision]`). I can add it myself." ]
https://api.github.com/repos/huggingface/datasets/issues/4388
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4388/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4388/comments
https://api.github.com/repos/huggingface/datasets/issues/4388/events
https://github.com/huggingface/datasets/pull/4388
1,244,645,158
PR_kwDODunzps44RAG1
4,388
Set builder name from module instead of class
[]
closed
false
null
1
2022-05-23T06:26:35Z
2022-05-25T05:24:43Z
2022-05-25T05:16:15Z
null
Now the builder name attribute is set from from the builder class name. This PR sets the builder name attribute from the module name instead. Some motivating reasons: - The dataset ID is relevant and unique among all datasets and this is directly related to the repository name, i.e., the name of the directory containing the dataset - The name of the module (i.e. the file containing the loading loading script) is already relevant for loading: it must have the same name as its containing directory (related to the dataset ID), as we search for it using its directory name - On the other hand, the name of the builder class is not relevant for loading: in our code, we just search for a class which is subclass of `DatasetBuilder` (independently of its name). We do not put any constraint on the naming of the builder class and indeed it can have a name completely different from its module/direcotry/dataset_id IMO it makes more sense to align the caching directory name with the dataset_id/directory/module name instead of the builder class name. Fix #4381.
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/4388/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4388/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4388.diff", "html_url": "https://github.com/huggingface/datasets/pull/4388", "merged_at": "2022-05-25T05:16:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/4388.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4388" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/1971
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1971/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1971/comments
https://api.github.com/repos/huggingface/datasets/issues/1971/events
https://github.com/huggingface/datasets/pull/1971
819,714,231
MDExOlB1bGxSZXF1ZXN0NTgyNzgyNTU0
1,971
Fix ArrowWriter closes stream at exit
[]
closed
false
null
7
2021-03-02T07:12:34Z
2021-03-10T16:36:57Z
2021-03-10T16:36:57Z
null
Current implementation of ArrowWriter does not properly release the `stream` resource (by closing it) if its `finalize()` method is not called and/or an Exception is raised before/during the call to its `finalize()` method. Therefore, ArrowWriter should be used as a context manager that properly closes its `stream` resource at exit.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1971/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1971/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1971.diff", "html_url": "https://github.com/huggingface/datasets/pull/1971", "merged_at": "2021-03-10T16:36:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/1971.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1971" }
true
[ "Oh nice thanks for adding the context manager ! All the streams and RecordBatchWriter will be properly closed now. Hopefully this gives a better experience on windows on which it's super important to close stuff.\r\n\r\nNot sure about the error, it looks like a process crashed silently.\r\nLet me take a look", "> Hopefully this gives a better experience on windows on which it's super important to close stuff.\r\n\r\nExactly! On Windows, you got:\r\n> PermissionError: [WinError 32] The process cannot access the file because it is being used by another process\r\n\r\nwhen trying to access the unclosed `stream` file, e.g. by `with incomplete_dir(self._cache_dir) as tmp_data_dir`: `shutil.rmtree(tmp_dir)`\r\n\r\nThe reason is: https://docs.python.org/3/library/os.html#os.remove\r\n\r\n> On Windows, attempting to remove a file that is in use causes an exception to be raised; on Unix, the directory entry is removed but the storage allocated to the file is not made available until the original file is no longer in use.\r\n\r\n\r\n", "The test passes on my windows. This was probably a circleCI issue. I re-ran the circleCI tests", "NICE! It passed!", "Maybe you can merge master into this branch and check the CI before merging ?", "@lhoestq done! ;)", "Thanks ! merging" ]
https://api.github.com/repos/huggingface/datasets/issues/5858
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5858/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5858/comments
https://api.github.com/repos/huggingface/datasets/issues/5858/events
https://github.com/huggingface/datasets/issues/5858
1,709,332,632
I_kwDODunzps5l4liY
5,858
Throw an error when dataset improperly indexed
[]
closed
false
null
1
2023-05-15T05:15:53Z
2023-05-25T16:23:19Z
2023-05-25T16:23:19Z
null
### Describe the bug Pandas-style subset indexing on dataset does not throw an error, when maybe it should. Instead returns the first instance of the dataset regardless of index condition. ### Steps to reproduce the bug Steps to reproduce the behavior: 1. `squad = datasets.load_dataset("squad_v2", split="validation")` 2. `item = squad[squad['question'] == "Who was the Norse leader?"]` or `it = squad[squad['id'] == '56ddde6b9a695914005b962b']` 3. returns the first item in the dataset, which does not satisfy the above conditions: `{'id': '56ddde6b9a695914005b9628', 'title': 'Normans', 'context': 'The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries.', 'question': 'In what country is Normandy located?', 'answers': {'text': ['France', 'France', 'France', 'France'], 'answer_start': [159, 159, 159, 159]}}` ### Expected behavior Should either throw an error message, or return the dataset item that satisfies the condition. ### Environment info - `datasets` version: 2.9.0 - Platform: macOS-13.3.1-arm64-arm-64bit - Python version: 3.10.8 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5858/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5858/timeline
null
completed
null
null
false
[ "Thanks for reporting, @sarahwie.\r\n\r\nPlease note that in `datasets` we do not have vectorized operation like `pandas`. Therefore, your equality comparisons above are `False`:\r\n- For example: `squad['question']` returns a `list`, and this list is not equal to `\"Who was the Norse leader?\"`\r\n\r\nThe `False` value is equivalent to `0` when indexing a dataset, thus the reason why you get the first element (with index 0): \r\n- For example: `squad[False]` is equivalent to `squad[0]`\r\n\r\nMaybe we should an exception instead of assuming that `False` is equivalent to `0` (and `True` is equivalent to `1`) in the context of indexing." ]
https://api.github.com/repos/huggingface/datasets/issues/2744
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2744/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2744/comments
https://api.github.com/repos/huggingface/datasets/issues/2744/events
https://github.com/huggingface/datasets/pull/2744
958,146,637
MDExOlB1bGxSZXF1ZXN0NzAxNDY4NDcz
2,744
Fix key by recreating metadata JSON for journalists_questions dataset
[]
closed
false
null
0
2021-08-02T13:27:53Z
2021-08-03T09:25:34Z
2021-08-03T09:25:33Z
null
Close #2743.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2744/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2744/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2744.diff", "html_url": "https://github.com/huggingface/datasets/pull/2744", "merged_at": "2021-08-03T09:25:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/2744.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2744" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1414
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1414/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1414/comments
https://api.github.com/repos/huggingface/datasets/issues/1414/events
https://github.com/huggingface/datasets/pull/1414
760,622,133
MDExOlB1bGxSZXF1ZXN0NTM1NDIzODgy
1,414
Adding BioCreative II Gene Mention corpus
[]
closed
false
null
0
2020-12-09T19:49:28Z
2020-12-11T11:17:40Z
2020-12-11T11:17:40Z
null
Adding BioCreative II Gene Mention corpus
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1414/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1414/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1414.diff", "html_url": "https://github.com/huggingface/datasets/pull/1414", "merged_at": "2020-12-11T11:17:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/1414.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1414" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/6024
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6024/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6024/comments
https://api.github.com/repos/huggingface/datasets/issues/6024/events
https://github.com/huggingface/datasets/pull/6024
1,801,708,808
PR_kwDODunzps5VWbGe
6,024
Don't reference self in Spark._validate_cache_dir
[]
closed
false
null
4
2023-07-12T20:31:16Z
2023-07-13T16:58:32Z
2023-07-13T12:37:09Z
null
Fix for https://github.com/huggingface/datasets/issues/5963
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6024/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6024/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/6024.diff", "html_url": "https://github.com/huggingface/datasets/pull/6024", "merged_at": "2023-07-13T12:37:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/6024.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6024" }
true
[ "Ptal @lhoestq :) I tested this manually on a multi-node Databricks cluster", "Hm looks like the check_code_quality failures are unrelated to me change... https://github.com/huggingface/datasets/actions/runs/5536162850/jobs/10103451883?pr=6024", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005952 / 0.011353 (-0.005400) | 0.003585 / 0.011008 (-0.007424) | 0.079163 / 0.038508 (0.040655) | 0.057926 / 0.023109 (0.034817) | 0.326647 / 0.275898 (0.050749) | 0.383485 / 0.323480 (0.060005) | 0.004530 / 0.007986 (-0.003456) | 0.002821 / 0.004328 (-0.001508) | 0.062071 / 0.004250 (0.057820) | 0.048023 / 0.037052 (0.010971) | 0.329368 / 0.258489 (0.070879) | 0.390877 / 0.293841 (0.097036) | 0.026959 / 0.128546 (-0.101588) | 0.007911 / 0.075646 (-0.067735) | 0.259956 / 0.419271 (-0.159315) | 0.044582 / 0.043533 (0.001049) | 0.320537 / 0.255139 (0.065398) | 0.373814 / 0.283200 (0.090614) | 0.020275 / 0.141683 (-0.121408) | 1.532128 / 1.452155 (0.079973) | 1.595031 / 1.492716 (0.102315) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186127 / 0.018006 (0.168120) | 0.428586 / 0.000490 (0.428097) | 0.005180 / 0.000200 (0.004980) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024876 / 0.037411 (-0.012536) | 0.072169 / 0.014526 (0.057643) | 0.082015 / 0.176557 (-0.094542) | 0.147467 / 0.737135 (-0.589668) | 0.082769 / 0.296338 (-0.213570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.410625 / 0.215209 (0.195416) | 4.116742 / 2.077655 (2.039088) | 2.172291 / 1.504120 (0.668171) | 2.022462 / 1.541195 (0.481268) | 2.048142 / 1.468490 (0.579651) | 0.503152 / 4.584777 (-4.081625) | 3.019135 / 3.745712 (-0.726577) | 3.589451 / 5.269862 (-1.680410) | 2.206876 / 4.565676 (-2.358801) | 0.057687 / 0.424275 (-0.366588) | 0.006560 / 0.007607 (-0.001047) | 0.475585 / 0.226044 (0.249541) | 4.784344 / 2.268929 (2.515416) | 2.506322 / 55.444624 (-52.938302) | 2.168251 / 6.876477 (-4.708225) | 2.324453 / 2.142072 (0.182381) | 0.590609 / 4.805227 (-4.214618) | 0.124178 / 6.500664 (-6.376486) | 0.059197 / 0.075469 (-0.016272) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212359 / 1.841788 (-0.629429) | 17.915843 / 8.074308 (9.841535) | 13.128330 / 10.191392 (2.936938) | 0.144805 / 0.680424 (-0.535618) | 0.016889 / 0.534201 (-0.517312) | 0.344056 / 0.579283 (-0.235227) | 0.359370 / 0.434364 (-0.074994) | 0.404199 / 0.540337 (-0.136138) | 0.549117 / 1.386936 (-0.837819) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005914 / 0.011353 (-0.005439) | 0.003565 / 0.011008 (-0.007443) | 0.061575 / 0.038508 (0.023067) | 0.057677 / 0.023109 (0.034568) | 0.359753 / 0.275898 (0.083855) | 0.394135 / 0.323480 (0.070655) | 0.004648 / 0.007986 (-0.003338) | 0.002795 / 0.004328 (-0.001534) | 0.061877 / 0.004250 (0.057626) | 0.049673 / 0.037052 (0.012621) | 0.363120 / 0.258489 (0.104631) | 0.402685 / 0.293841 (0.108844) | 0.027021 / 0.128546 (-0.101525) | 0.008006 / 0.075646 (-0.067641) | 0.067398 / 0.419271 (-0.351874) | 0.044442 / 0.043533 (0.000909) | 0.364851 / 0.255139 (0.109712) | 0.387219 / 0.283200 (0.104019) | 0.027267 / 0.141683 (-0.114416) | 1.466675 / 1.452155 (0.014520) | 1.512607 / 1.492716 (0.019891) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206156 / 0.018006 (0.188150) | 0.410877 / 0.000490 (0.410387) | 0.003061 / 0.000200 (0.002861) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024869 / 0.037411 (-0.012542) | 0.075736 / 0.014526 (0.061210) | 0.083922 / 0.176557 (-0.092634) | 0.139510 / 0.737135 (-0.597626) | 0.087685 / 0.296338 (-0.208654) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414473 / 0.215209 (0.199264) | 4.150633 / 2.077655 (2.072979) | 2.132892 / 1.504120 (0.628773) | 1.964072 / 1.541195 (0.422878) | 2.003353 / 1.468490 (0.534863) | 0.498012 / 4.584777 (-4.086765) | 3.010135 / 3.745712 (-0.735577) | 2.841130 / 5.269862 (-2.428732) | 1.826013 / 4.565676 (-2.739664) | 0.057443 / 0.424275 (-0.366832) | 0.006374 / 0.007607 (-0.001234) | 0.490337 / 0.226044 (0.264292) | 4.889628 / 2.268929 (2.620700) | 2.575626 / 55.444624 (-52.868998) | 2.246522 / 6.876477 (-4.629955) | 2.276183 / 2.142072 (0.134110) | 0.581465 / 4.805227 (-4.223763) | 0.123877 / 6.500664 (-6.376787) | 0.060339 / 0.075469 (-0.015130) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.333202 / 1.841788 (-0.508585) | 18.363558 / 8.074308 (10.289250) | 14.109356 / 10.191392 (3.917964) | 0.147358 / 0.680424 (-0.533066) | 0.016813 / 0.534201 (-0.517388) | 0.334815 / 0.579283 (-0.244468) | 0.366576 / 0.434364 (-0.067788) | 0.397223 / 0.540337 (-0.143115) | 0.547893 / 1.386936 (-0.839043) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#67ac60bcbebe9ddac70264951b1d584c93003cdf \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/2170
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2170/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2170/comments
https://api.github.com/repos/huggingface/datasets/issues/2170/events
https://github.com/huggingface/datasets/issues/2170
850,913,228
MDU6SXNzdWU4NTA5MTMyMjg=
2,170
Wikipedia historic dumps are deleted but hf/datasets hardcodes dump date
[]
open
false
null
1
2021-04-06T03:13:18Z
2021-06-16T01:10:50Z
null
null
Wikimedia does not keep all historical dumps. For example, as of today https://dumps.wikimedia.org/kowiki/ only provides ``` 20201220/ 02-Feb-2021 01:36 - 20210101/ 21-Feb-2021 01:26 - 20210120/ 02-Mar-2021 01:25 - 20210201/ 21-Mar-2021 01:26 - 20210220/ 02-Apr-2021 01:26 - 20210301/ 03-Mar-2021 08:10 - 20210320/ 21-Mar-2021 18:13 - 20210401/ 03-Apr-2021 10:08 - latest/ 03-Apr-2021 10:08 - ``` However, the wikipedia dataset provided in the library, only supports the following configs, none of which are applicable anymore when disregarding the cached datasets: ``` ValueError: BuilderConfig 20210401.ko not found. Available: ['20200501.aa', '20200501.ab', '20200501.ace', '20200501.ady', '20200501.af', '20200501.ak', '20200501.als', '20200501.am', '20200501.an', '20200501.ang', '20200501.ar', '20200501.arc', '20200501.arz', '20200501.as', '20200501.ast', '20200501.atj', '20200501.av', '20200501.ay', '20200501.az', '20200501.azb', '20200501.ba', '20200501.bar', '20200501.bat-smg', '20200501.bcl', '20200501.be', '20200501.be-x-old', '20200501.bg', '20200501.bh', '20200501.bi', '20200501.bjn', '20200501.bm', '20200501.bn', '20200501.bo', '20200501.bpy', '20200501.br', '20200501.bs', '20200501.bug', '20200501.bxr', '20200501.ca', '20200501.cbk-zam', '20200501.cdo', '20200501.ce', '20200501.ceb', '20200501.ch', '20200501.cho', '20200501.chr', '20200501.chy', '20200501.ckb', '20200501.co', '20200501.cr', '20200501.crh', '20200501.cs', '20200501.csb', '20200501.cu', '20200501.cv', '20200501.cy', '20200501.da', '20200501.de', '20200501.din', '20200501.diq', '20200501.dsb', '20200501.dty', '20200501.dv', '20200501.dz', '20200501.ee', '20200501.el', '20200501.eml', '20200501.en', '20200501.eo', '20200501.es', '20200501.et', '20200501.eu', '20200501.ext', '20200501.fa', '20200501.ff', '20200501.fi', '20200501.fiu-vro', '20200501.fj', '20200501.fo', '20200501.fr', '20200501.frp', '20200501.frr', '20200501.fur', '20200501.fy', '20200501.ga', '20200501.gag', '20200501.gan', '20200501.gd', '20200501.gl', '20200501.glk', '20200501.gn', '20200501.gom', '20200501.gor', '20200501.got', '20200501.gu', '20200501.gv', '20200501.ha', '20200501.hak', '20200501.haw', '20200501.he', '20200501.hi', '20200501.hif', '20200501.ho', '20200501.hr', '20200501.hsb', '20200501.ht', '20200501.hu', '20200501.hy', '20200501.ia', '20200501.id', '20200501.ie', '20200501.ig', '20200501.ii', '20200501.ik', '20200501.ilo', '20200501.inh', '20200501.io', '20200501.is', '20200501.it', '20200501.iu', '20200501.ja', '20200501.jam', '20200501.jbo', '20200501.jv', '20200501.ka', '20200501.kaa', '20200501.kab', '20200501.kbd', '20200501.kbp', '20200501.kg', '20200501.ki', '20200501.kj', '20200501.kk', '20200501.kl', '20200501.km', '20200501.kn', '20200501.ko', '20200501.koi', '20200501.krc', '20200501.ks', '20200501.ksh', '20200501.ku', '20200501.kv', '20200501.kw', '20200501.ky', '20200501.la', '20200501.lad', '20200501.lb', '20200501.lbe', '20200501.lez', '20200501.lfn', '20200501.lg', '20200501.li', '20200501.lij', '20200501.lmo', '20200501.ln', '20200501.lo', '20200501.lrc', '20200501.lt', '20200501.ltg', '20200501.lv', '20200501.mai', '20200501.map-bms', '20200501.mdf', '20200501.mg', '20200501.mh', '20200501.mhr', '20200501.mi', '20200501.min', '20200501.mk', '20200501.ml', '20200501.mn', '20200501.mr', '20200501.mrj', '20200501.ms', '20200501.mt', '20200501.mus', '20200501.mwl', '20200501.my', '20200501.myv', '20200501.mzn', '20200501.na', '20200501.nah', '20200501.nap', '20200501.nds', '20200501.nds-nl', '20200501.ne', '20200501.new', '20200501.ng', '20200501.nl', '20200501.nn', '20200501.no', '20200501.nov', '20200501.nrm', '20200501.nso', '20200501.nv', '20200501.ny', '20200501.oc', '20200501.olo', '20200501.om', '20200501.or', '20200501.os', '20200501.pa', '20200501.pag', '20200501.pam', '20200501.pap', '20200501.pcd', '20200501.pdc', '20200501.pfl', '20200501.pi', '20200501.pih', '20200501.pl', '20200501.pms', '20200501.pnb', '20200501.pnt', '20200501.ps', '20200501.pt', '20200501.qu', '20200501.rm', '20200501.rmy', '20200501.rn', '20200501.ro', '20200501.roa-rup', '20200501.roa-tara', '20200501.ru', '20200501.rue', '20200501.rw', '20200501.sa', '20200501.sah', '20200501.sat', '20200501.sc', '20200501.scn', '20200501.sco', '20200501.sd', '20200501.se', '20200501.sg', '20200501.sh', '20200501.si', '20200501.simple', '20200501.sk', '20200501.sl', '20200501.sm', '20200501.sn', '20200501.so', '20200501.sq', '20200501.sr', '20200501.srn', '20200501.ss', '20200501.st', '20200501.stq', '20200501.su', '20200501.sv', '20200501.sw', '20200501.szl', '20200501.ta', '20200501.tcy', '20200501.te', '20200501.tet', '20200501.tg', '20200501.th', '20200501.ti', '20200501.tk', '20200501.tl', '20200501.tn', '20200501.to', '20200501.tpi', '20200501.tr', '20200501.ts', '20200501.tt', '20200501.tum', '20200501.tw', '20200501.ty', '20200501.tyv', '20200501.udm', '20200501.ug', '20200501.uk', '20200501.ur', '20200501.uz', '20200501.ve', '20200501.vec', '20200501.vep', '20200501.vi', '20200501.vls', '20200501.vo', '20200501.wa', '20200501.war', '20200501.wo', '20200501.wuu', '20200501.xal', '20200501.xh', '20200501.xmf', '20200501.yi', '20200501.yo', '20200501.za', '20200501.zea', '20200501.zh', '20200501.zh-classical', '20200501.zh-min-nan', '20200501.zh-yue', '20200501.zu'] ``` The cached datasets: ``` % aws s3 --no-sign-request --endpoint-url https://storage.googleapis.com ls s3://huggingface-nlp/cache/datasets/wikipedia/ PRE 20200501.de/ PRE 20200501.en/ PRE 20200501.fr/ PRE 20200501.frr/ PRE 20200501.it/ PRE 20200501.simple/ ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2170/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2170/timeline
null
null
null
null
false
[ "It seems that this can be fixed from user's end by including a `date` argument, like this:\r\n\r\n`dataset = datasets.load_dataset('wikipedia', '20200501.en', date='20210420')`\r\n\r\nYou can get available dates from [here](https://dumps.wikimedia.org/enwiki/).\r\n\r\nThis is not a proper fix however as all the files will still have '20200501' in their file names." ]
https://api.github.com/repos/huggingface/datasets/issues/1783
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1783/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1783/comments
https://api.github.com/repos/huggingface/datasets/issues/1783/events
https://github.com/huggingface/datasets/issues/1783
794,544,495
MDU6SXNzdWU3OTQ1NDQ0OTU=
1,783
Dataset Examples Explorer
[]
closed
false
null
2
2021-01-26T20:39:02Z
2021-02-01T13:58:44Z
2021-02-01T13:58:44Z
null
In the Older version of the Dataset, there are a useful Dataset Explorer that allow user to visualize the examples (training, test and validation) of a particular dataset, it is no longer there in current version. Hope HuggingFace can re-enable the feature that at least allow viewing of the first 20 examples of a particular dataset, or alternatively can extract 20 examples for each datasets and make those part of the Dataset Card Documentation.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1783/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1783/timeline
null
completed
null
null
false
[ "Hi @ChewKokWah,\r\n\r\nWe're working on it! In the meantime, you can still find the dataset explorer at the following URL: https://huggingface.co/datasets/viewer/", "Glad to see that it still exist, this existing one is more than good enough for me, it is feature rich, simple to use and concise. \r\nHope similar feature can be retain in the future version." ]
https://api.github.com/repos/huggingface/datasets/issues/1551
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1551/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1551/comments
https://api.github.com/repos/huggingface/datasets/issues/1551/events
https://github.com/huggingface/datasets/pull/1551
765,621,879
MDExOlB1bGxSZXF1ZXN0NTM5MDEwNDAy
1,551
Monero
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
3
2020-12-13T19:56:48Z
2022-10-03T09:38:35Z
2022-10-03T09:38:35Z
null
Biomedical Romanian dataset :)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1551/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1551/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1551.diff", "html_url": "https://github.com/huggingface/datasets/pull/1551", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1551.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1551" }
true
[ "Hi @iliemihai - you need to add the Readme file! Otherwise seems good. \r\nAlso don't forget to run `make style` & `flake8 datasets` locally, from the datasets folder", "@skyprince999 I will add the README.d for it. Thank you :D ", "Thanks for your contribution, @iliemihai. Are you still interested in adding this dataset?\r\n\r\nWe are removing the dataset scripts from this GitHub repo and moving them to the Hugging Face Hub: https://huggingface.co/datasets\r\n\r\nWe would suggest you create this dataset there. Please, feel free to tell us if you need some help." ]
https://api.github.com/repos/huggingface/datasets/issues/4420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4420/comments
https://api.github.com/repos/huggingface/datasets/issues/4420/events
https://github.com/huggingface/datasets/issues/4420
1,252,739,239
I_kwDODunzps5Kq0in
4,420
Metric evaluation problems in multi-node, shared file system
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
6
2022-05-30T13:24:05Z
2023-07-11T09:33:18Z
2023-07-11T09:33:17Z
null
## Describe the bug Metric evaluation fails in multi-node within a shared file system, because the master process cannot find the lock files from other nodes. (This issue was originally mentioned in the transformers repo https://github.com/huggingface/transformers/issues/17412) ## Steps to reproduce the bug 1. clone [this huggingface model](https://huggingface.co/PereLluis13/wav2vec2-xls-r-300m-ca-lm) and replace the `run_speech_recognition_ctc.py` script with the version in the gist [here](https://gist.github.com/gullabi/3f66094caa8db1c1e615dd35bd67ec71#file-run_speech_recognition_ctc-py). 2. Setup the `venv` according to the requirements of the model file plus `datasets==2.0.0`, `transformers==4.18.0` and `torch==1.9.0` 3. Launch the runner in a distributed environment which has a shared file system for two nodes, preferably with SLURM. Example [here](https://gist.github.com/gullabi/3f66094caa8db1c1e615dd35bd67ec71) Specifically for the datasets, for the distributed setup the `load_metric` is called as: ``` process_id=int(os.environ["RANK"]) num_process=int(os.environ["WORLD_SIZE"]) eval_metrics = {metric: load_metric(metric, process_id=process_id, num_process=num_process, experiment_id="slurm") for metric in data_args.eval_metrics} ``` ## Expected results The training should not fail, due to the failure of the `Metric.compute()` step. ## Actual results For the test I am executing the world size is 4, with 2 GPUs in 2 nodes. However the process is not finding the necessary lock files ``` File "/gpfs/projects/bsc88/speech/asr/wav2vec2-xls-r-300m-ca-lm/run_speech_recognition_ctc.py", line 841, in <module> main() File "/gpfs/projects/bsc88/speech/asr/wav2vec2-xls-r-300m-ca-lm/run_speech_recognition_ctc.py", line 792, in main train_result = trainer.train(resume_from_checkpoint=checkpoint) File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/transformers/trainer.py", line 1497, in train self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/transformers/trainer.py", line 1624, in _maybe_log_save_evaluate metrics = self.evaluate(ignore_keys=ignore_keys_for_eval) File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/transformers/trainer.py", line 2291, in evaluate metric_key_prefix=metric_key_prefix, File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/transformers/trainer.py", line 2535, in evaluation_loop metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels)) File "/gpfs/projects/bsc88/speech/asr/wav2vec2-xls-r-300m-ca-lm/run_speech_recognition_ctc.py", line 742, in compute_metrics metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()} File "/gpfs/projects/bsc88/speech/asr/wav2vec2-xls-r-300m-ca-lm/run_speech_recognition_ctc.py", line 742, in <dictcomp> metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()} File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/datasets/metric.py", line 419, in compute self.add_batch(**inputs) File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/datasets/metric.py", line 465, in add_batch self._init_writer() File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/datasets/metric.py", line 552, in _init_writer self._check_rendez_vous() # wait for master to be ready and to let everyone go File "/gpfs/projects/bsc88/projects/speech-tech-resources/venv_amd_speech/lib/python3.7/site-packages/datasets/metric.py", line 342, in _check_rendez_vous ) from None ValueError: Expected to find locked file /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-0.arrow.lock from process 3 but it doesn't exist. ``` When I look at the cache directory, I can see all the lock files in principle: ``` /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-0.arrow /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-0.arrow.lock /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-1.arrow /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-1.arrow.lock /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-2.arrow /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-2.arrow.lock /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-3.arrow /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-3.arrow.lock /home/bsc88/bsc88474/.cache/huggingface/metrics/wer/default/slurm-4-rdv.lock ``` I see that there was another related issue here https://github.com/huggingface/datasets/issues/1942, but it seems to have resolved via https://github.com/huggingface/datasets/pull/1966. Let me know if there is problem with how I am calling the `load_metric` or whether I need to make changes to the `.compute()` steps. ## Environment info - `datasets` version: 2.0.0 - Platform: Linux-4.18.0-147.8.1.el8_1.x86_64-x86_64-with-centos-8.1.1911-Core - Python version: 3.7.4 - PyArrow version: 7.0.0 - Pandas version: 1.3.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4420/timeline
null
completed
null
null
false
[ "If you call `metric.compute` in a distributed setup like yours, then `metric.compute` is called in each process. `metric.compute` first calls `metric.add_batch`, and it looks like your error appears at that stage.\r\n\r\nTo make sure that all the processes have started writing their predictions/references at the same time, each process waits for process 0 to lock `slurm-{world_size}-0.arrow.lock`. Process 0 locks this file when `metric.add_batch` is called, so here when `metric.compute` is called.\r\n\r\nTherefore your error can happen when process 0 takes too much time to call `metric.compute` compared to process 3 (>100 seconds by default). I haven't tried running your code but could it be the case ?\r\n\r\nI guess it could also happen if you run multiple times the same distributed job at the same time with the same `experiment_id` because they would collide.\r\n", "We've finally been able to isolate the problem, it wasn't a timing problem, but rather a file locking one. \r\nThe locks produced by calling `flock` where not visible between nodes (so the master node couldn't check other node's locks nor the other way around). \r\n\r\nWe are now having issues with the pre-processing in our runner script, but are not related with the rendezvous process during the evaluation phase. We will let you know about it once we address it. \r\n\r\nOur solution to the rendezvous is as follows:\r\n- We solved the problem by calling `lockf` instead of `flock`.\r\n- We had to change slightly the `_check_all_processes_locks` method so that the main process (i.e. process 0) didn't check it's own lock (because `lockf` permits recursive locks and thus checking it only replaced the current lock with a new one). \r\n\r\nWe use a shared file system between nodes using GPFS in our cluster setup. Maybe the difference between the behavior we see with respect to your usage in multi-node executions comes from that fact. Which file system scheme do you use for the multi-node executions? \r\n\r\n`lockf` seems to work in more settings than `flock`, so maybe we could write a PR so you could test it in your environment. ", "Cool, I'm glad you managed to make evaluation work :)\r\n\r\nI'm not completely aware of the differences between lockf and flock, but I've read somewhere that flock is preferable over lockf in multithreading and multiprocessing situations. Here we definitely are in such a situation so unless it is super important I don't think we will switch to lockf", "> * We had to change slightly the `_check_all_processes_locks` method so that the main process (i.e. process 0) didn't check it's own lock (because `lockf` permits recursive locks and thus checking it only replaced the current lock with a new one).\r\n\r\nHi @panserbjorn , Can you share your `_check_all_processes_locks` function? thanks!", "```\r\ndef _check_all_processes_locks(self):\r\n expected_lock_file_names = [\r\n os.path.join(self.data_dir, f\"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock\")\r\n for process_id in range(self.num_process)\r\n ]\r\n #for expected_lock_file_name in expected_lock_file_names: # OUR CHANGE process 0 shouldn't check its own lock\r\n for expected_lock_file_name in expected_lock_file_names[1:]:\r\n nofilelock = FileFreeLock(expected_lock_file_name)\r\n try:\r\n nofilelock.acquire(timeout=self.timeout)\r\n except Timeout:\r\n raise ValueError(\r\n f\"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist.\"\r\n )\r\n else:\r\n nofilelock.release()\r\n```\r\n\r\n### Changed files:\r\n- metric.py file in the datasets library \r\n- filelock.py file in the datasets/utils library. \r\n\r\n\r\nChanges we made:\r\n\r\n1. We changed the flock for lockf \r\n flock and lockf both perform a lock over a file (like the lock for writing). \r\n The difference is that flock only works in local file systems, but if you have a shared file system (like what we have in the clusters) the flock fails to “see” the lock of another node. The only disadvantage we had was that a single process couldn’t detect it’s own lock so we did the second change.\r\n2. We prevented the process 0 (which is the one that coordinates the rendezvous) from checking its own lock on its arrow because it didn't work with lockf (as stated in the previous change). \r\n3. We made a second rendezvous so that all the process had the results of the metrics (other than the loss) and not only the process 0.\r\n What happened was that only process 0 computed the metric and that didn’t present any problem if you are using the loss. However, if you are using another metric, the only process which had the information to choose the best checkpoint at evaluation time was the process 0. But since the evaluation was performed over all processes, every process except the process 0 chose a bad check point (bad meaning it wasn’t the best one) because they didn’t have the information of the metric of the best checkpoint. \r\n The consequence was that the evaluation was different from what would result if using only the best checkpoint, because each process chose a different checkpoint to run the evaluation and thus the numbers were often worse than the numbers that would be obtained if all processes choose the best checkpoint (correct one) to perform the evaluation of their samples. \r\n We performed a second rendezvous so that all processes had the same best_metric and best_model as process 0 after the evaluation cycle. \r\n", "Metrics are deprecated in `datasets` and `evaluate` should be used instead: https://github.com/huggingface/evaluate" ]