file_name
large_stringlengths
4
140
prefix
large_stringlengths
0
12.1k
suffix
large_stringlengths
0
12k
middle
large_stringlengths
0
7.51k
fim_type
large_stringclasses
4 values
amap.go
"` Pname string `json:"pname"` Poiweight []interface{} `json:"poiweight"` Postcode []interface{} `json:"postcode"` Recommend string `json:"recommend"` Shopid []interface{} `json:"shopid"` Shopinfo string `json:"shopinfo"` Tag []interface{} `json:"tag"` Tel string `json:"tel"` Timestamp []interface{} `json:"timestamp"` Type string `json:"type"` Typecode string `json:"typecode"` Website []interface{} `json:"website"` } func (p Poi) String() string { return fmt.Sprintln(spaceD(p.ID), spaceD(p.Name), spaceD(p.Type), spaceD(p.Typecode), spaceD(p.Address), spaceD(p.Cityname), spaceD(p.Adname), spaceD(p.Location), spaceD(p.Alias)) } func spaceD(s string) string { return strings.Join(strings.Fields(s), "") } // Point Point type Point struct { Lng float64 Lat float64 } // Rectangle Rectangle type Rectangle struct { PointLT Point PointRB Point } func (r Rectangle) check() bool { return r.PointLT.Lng < r.PointRB.Lng && r.PointLT.Lat > r.PointRB.Lat } func (r Rectangle) polygon() string { return fmt.Sprintf("%f,%f|%f,%f", r.PointLT.Lng, r.PointLT.Lat, r.PointRB.Lng, r.PointRB.Lat) } func (r Rectangle) quadtree() []Rectangle { halflng, halflat := math.Abs(r.PointRB.Lng-r.PointLT.Lng)/2, math.Abs(r.PointLT.Lat-r.PointRB.Lat)/2 return []Rectangle{ {r.PointLT, Point{round(r.PointLT.Lng + halflng), round(r.PointLT.Lat - halflat)}}, {Point{round(r.PointLT.Lng + halflng), r.PointLT.Lat}, Point{r.PointRB.Lng, round(r.PointLT.Lat - halflat)}}, {Point{r.PointLT.Lng, round(r.PointLT.Lat - halflat)}, Point{round(r.PointLT.Lng + halflng), r.PointRB.Lat}}, {Point{round(r.PointLT.Lng + halflng), round(r.PointLT.Lat - halflat)}, r.PointRB}} } type minRec struct { Rec Rectangle Types string Count int Err error } type minRecPage struct { Rec Rectangle Types string Page string } func round(f float64) float64 { n10 := math.Pow10(6) return math.Trunc(f*n10) / n10 } var gaoDePolygonURL = "https://restapi.amap.com/v3/place/polygon" var gaoDeDetailURL = "https://www.amap.com/detail/get/detail" var key = "aaa8abdaf05433e3702eae99964cc8c6" // var key = "935c7385f239000f98ade53bbbc002e7" func cutRec(rec Rectangle, types string) (recCutresult []minRec) { count, err := recCount(rec, types) if err != nil { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count <= 800 && count > 0 { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count > 800 { // fmt.Println("cuting:", rec, types, count, err) rec4s := rec.quadtree() for _, rec4 := range rec4s { recCutresult = append(recCutresult, cutRec(rec4, types)...) } } return } func recCount(rec Rectangle, types string) (count int, err error) { para := map[string]string{ "types": types, "offset": "1", "polygon": rec.polygon(), } poiResult1, err := recRequest(para) if err != nil { return } count, err = strconv.Atoi(poiResult1.Count) if err != nil { return } return } func minRecPagePois(minRecPage minRecPage) (pois []Poi, err error) { para := map[string]string{ "types": minRecPage.Types, "offset": "20", "polygon": minRecPage.Rec.polygon(), "page": minRecPage.Page, } result, err := recRequest(para) if err != nil { return } pois = result.Pois return } func minRecPagesPois(minRecPages []minRecPage) (pois []Poi) { for _, minRecPage := range minRecPages { pagePois, err := minRecPagePois(minRecPage) if err == nil { pois = append(pois, pagePois...) } else { fmt.Println(minRecPages, err) } } return } func minRecPages(mRec minRec) (minRecPages []minRecPage) { for page := int(math.Ceil(float64(mRec.Count) / 20)); page > 0; page-- { minRecPages = append(minRecPages, minRecPage{mRec.Rec, mRec.Types, strconv.Itoa(page)}) } return } func
(mRecs []minRec) (mrp []minRecPage) { for _, mRec := range mRecs { mrp = append(mrp, minRecPages(mRec)...) } return } func recTypePages(rec Rectangle, types string) (mrp []minRecPage) { cutrec := cutRec(rec, types) mrp = minRecsPages(cutrec) return } // RecTypePois RecTypePois func RecTypePois(rec Rectangle, types string) (pois []Poi) { pages := recTypePages(rec, types) pois = minRecPagesPois(pages) return } func recRequest(para map[string]string) (result PoiResult, err error) { para["key"] = key resp, err := resty. SetTimeout(10 * time.Second). SetRetryCount(5). SetRetryWaitTime(10 * time.Second). SetRetryMaxWaitTime(65 * time.Second). R(). SetQueryParams(para). Get(gaoDePolygonURL) if err != nil { return } json.Unmarshal(resp.Body(), &result) if err != nil { return } if result.Status != "1" || result.Infocode != "10000" { err = fmt.Errorf(result.Status, result.Infocode, result.Info) return } return } // Detail Detail type Detail struct { Status string `json:"status"` Data struct { Base struct { PoiTag string `json:"poi_tag"` Code string `json:"code"` ImportanceVipFlag int `json:"importance_vip_flag"` CityAdcode string `json:"city_adcode"` Telephone string `json:"telephone"` NewType string `json:"new_type"` CityName string `json:"city_name"` NewKeytype string `json:"new_keytype"` Checked string `json:"checked"` Title string `json:"title"` CreFlag int `json:"cre_flag"` StdTTag0V string `json:"std_t_tag_0_v"` NaviGeometry string `json:"navi_geometry"` Classify string `json:"classify"` Business string `json:"business"` ShopInfo struct { Claim int `json:"claim"` } `json:"shop_info"` PoiTagHasTTag int `json:"poi_tag_has_t_tag"` Pixelx string `json:"pixelx"` Pixely string `json:"pixely"` Geodata struct { Aoi []struct { Name string `json:"name"` Mainpoi string `json:"mainpoi"` Area float64 `json:"area"` } `json:"aoi"` } `json:"geodata"` Poiid string `json:"poiid"` Distance int `json:"distance"` Name string `json:"name"` StdVTag0V string `json:"std_v_tag_0_v"` EndPoiExtension string `json:"end_poi_extension"` Y string `json:"y"` X string `json:"x"` Address string `json:"address"` Bcs string `json:"bcs"` Tag string `json:"tag"` } `json:"base"` Spec struct { MiningShape
minRecsPages
identifier_name
models.py
("将保证金改为0") # 增加不良记录天数 self.none_punch_days = 1 elif self.none_punch_days >= 1 and self.down_payment > 0: print("如果不良天数不等于1") #防止修改数据库debug而出现的错误 self.guaranty = 0 # 如果是日常模式 if self.guaranty == 0: # 底金次数 pay_out = self.average print(pay_out, "当保证金等于0的时候需要扣除的底金金额") # 如果有降低投入 # 从账户中扣除金额 self.down_payment -= pay_out print("扣除之后需要将用户的底金减去") # 不良天数记录+1 self.none_punch_days += 1 # 如果是自由模式 else: print("若是自由模式,开始扣款") if float(self.left_distance) > 0.0: print("当剩余距离大于0的时候才开始扣款") #剩余的距离 left_distance = self.left_distance # 求解剩余距离 if left_distance<=1: pay_out = self.guaranty print("当剩余的距离小于1的时候,直接扣除用户的保证金{}".format(self.guaranty)) self.guaranty = 0 else: remain = math.floor(self.left_distance)-1 print("剩余的距离减去1是:{}".format(remain)) if remain <=self.down_num: print(type(remain),type(self.down_num),"remain:{},down_num{}".format(remain,self.down_num)) print("走这里就对了") pay_out = remain*self.average+self.guaranty self.guaranty=0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance)-1),"平均需要扣除的金额{}".format(self.average)) self.down_payment -= remain * self.average else: # remain = self.down_num print("若剩余距离大于底金次数,那么剩余距离{}".format(remain)) pay_out = self.down_num * self.average + self.guaranty self.guaranty = 0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance) - 1), "平均需要扣除的金额{}".format(self.average)) self.down_payment -= self.down_num*self.average else: pay_out = 0 print("当剩余的距离大于零的时候,需要付出的金额就是保证金") if pay_out > 0: # 更新值 self.save() # 把本次瓜分金额写入数据库记录中 UserSettlement.objects.loose_pay(goal_id=self.goal_id, bonus=pay_out) print("瓜分记录写入成功") # 完成所有瓜分金额的计算 return pay_out @staticmethod def get_activity(): return "1" def update_activity(self, user_id): # 更新该种活动的总系数 Activity.objects.add_bonus_coeff(RunningGoal.get_activity(), self.guaranty + self.down_payment, self.coefficient) # 增加用户的累计参加次数 UserRecord.objects.update_join(user=UserInfo.objects.get(user_id=user_id), coeff=self.coefficient) def update_activity_person(self): Activity.objects.update_person(RunningGoal.get_activity()) Activity.objects.update_coeff(RunningGoal.get_activity(), -self.coefficient) import base64 # TODO class RunningPunchRecordManager(models.Manager): # 创建一个新的record def create_record(self, goal, filename, distance,punch_record_time, document,base64_str): print(3333333333333333333333333333333333333333) # 文件存储的实际路径 filePath = os.path.join(settings.MEDIA_DIR, timezone.now().strftime("%Y-%m-%d")+"/") # # 引用所使用的路径 refPath = os.path.join(settings.MEDIA_ROOT, timezone.now().strftime("%Y-%m-%d")+"/") #mysql存储的地址 file_filepath = filePath+filename file_refpath = refPath+filename if not os.path.exists(filePath): os.makedirs(filePath) print(444444444444444444444444444444444) # 写入文件内容 with open(filePath+filename, 'wb') as f: f.write(base64_str) print("保存图片成功") # 如果是日常模式打卡,则规定distance必须为日常距离 if goal.goal_type: distance = goal.kilos_day print(666666666666666666666666666666666666) record = self.create(goal=goal, voucher_ref=file_refpath, voucher_store=file_filepath, distance=distance,record_time = punch_record_time, document=document) print(555555555555555555555555555555555555555) # 如果是自由模式, 则计算剩余距离 if not goal.goal_type: goal.left_distance -= distance goal.save() return record # # 获取时间 def get_day_record(self, daydelta): """ :param day: 表示一个timedelta :return: """ # 判断现在的时间距离开始时间的时长 # day = (timezone.now()-self.recod_time) # print(day) # 今天的日期加上 today = timezone.now().date() + timedelta(daydelta) print(today,"这个时间加上一个时间段") # 明天 end = today + timedelta(1) print(end,"today加上一天,表示的是那一天的一整天的时间段") return self.filter(record_time__range=(today, end)) # 第一天是否存在打卡记录 # user对某punch点赞 def praise_punch(self, user_id, punch_id): try: praise = RunningPunchPraise(user_id=user_id, punch_id=punch_id) praise.save() record = self.get(punch_id=punch_id) record.praise += 1 record.save() except Exception: pass # user对某punch举报 def report_punch(self, user_id, punch_id): try: praise = RunningPunchReport(user_id=user_id, punch_id=punch_id) praise.save() record = self.get(punch_id=punch_id) record.report += 1 record.save() except Exception: pass # 是否存在某user对某punch的点赞 def exist_praise_punch(self, user_id, punch_id): record = RunningPunchPraise.objects.filter(user_id=user_id, punch_id=punch_id) if record: return True else: return False # 是否存在某user对某punch的点赞 def exist_report_punch(self, user_id, punch_id): record = RunningPunchReport.objects.filter(user_id=user_id, punch_id=punch_id) if record: return True else: return False class RunningPunchRecord(models.Model): """ Model for running task record To save user's actual running distance per day """ # 主键ID,标识打卡记录 punch_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) # 外键ID,标识对应目标 goal = models.ForeignKey(RunningGoal, related_name="punch", on_delete=models.PROTECT) # Time when user creates the record record_time = models.DateTimeField(null=False) # 截图的引用地址 # voucher_ref = models.CharField(max_length=256, null=False) voucher_ref = models.TextField(null=False) # 截图的存储地址 voucher_store = models.TextField(null=False) # 跑步距离 distance = models.FloatField(default=0) # 被赞数 praise = models.IntegerField(default=0) # 被举报数 report = models.IntegerField(default=0) # 保存的一段话 document = models.TextField(default=" ", null=True) # 重新打卡 reload = models.IntegerField(default=0, null=True) # 指定一个Manager objects = RunningPunchRecordManager() # 点赞 class RunningPunchPraise(models.Model): # 点赞的人 user_id = models.IntegerField() # punch id punch_id = models.UUIDField() class Meta: unique_together = ("punch_id", "user_id") # 举报 class RunningPunchReport(models.Model): # 举报的人 user_id = models.IntegerField(null=False, default=0) # punch id punch_id = models.UUIDField(null=False, default=uuid.uuid4) class Meta: unique_together = ("punch_id", "user_id")
identifier_body
models.py
= distance distances = int(distance) kilos_day = 2 * distances // actual_day_map[goal_day] # 查询出没有支付的活动 goal = self.filter(user_id=user_id).filter(start_time=start_time).filter(status="PENDING") # 如果存在的话就删掉 if goal: goal.first().delete() goal = self.create(user_id=user_id, activity_type=RunningGoal.get_activity(), start_time=start_time, goal_day=goal_day, mode=mode, guaranty=guaranty, down_payment=down_payment, activate_deposit=activate_deposit, coefficient=coefficient, goal_type=running_type, goal_distance=goal_distance, left_distance=left_distance, kilos_day=kilos_day, extra_earn=extra_earn, average=average, reality_price=reality_price, deserve_price=deserve_price, down_num=down_num ) # 更新活动的免签卡券 if running_type: nosgin_number = int(nosign) UserTicket.objects.create_ticket(goal.goal_id, "NS", nosgin_number) return goal # 删除一个目标 def delete_goal(self, goal_id): goal = self.get(goal_id=goal_id) # 删除本目标对应的所有打卡记录 goal.punch.all().delete() # 删除本目标 goal.delete() class RunningGoal(Goal): """ Model for running goal User needs to set running duration days and distance as objective """ # 目标距离 goal_distance = models.FloatField(null=True) # 单日目标距离,对于自由模式来说,kilos_day为单日目标上限 kilos_day = models.FloatField(null=True) # 剩余距离, 只针对自由模式有效 left_distance = models.FloatField(null=True) # 用户实际要付出的金额 reality_price = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 用户应该要付出的金额 deserve_price = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 扣完底金需要的次数 down_num = models.IntegerField(default=1, null=False) # 平均每次要扣的 average = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 活动押金 activate_deposit = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 累计距离,只对自由模式有效 add_distance = models.FloatField(default=0,null=True) # 活动额外收益 extra_earn = models.DecimalField(max_digits=12, decimal_places=2, null=False) objects = RunningGoalManager() @staticmethod def get_start_date(): return datetime.strptime("00:01", "%H:%M").time() def calc_pay_out(self): print("计算开始..........") pay_out = 0 # 如果是日常模式 if self.goal_type==1: # 如果之前没有过不良记录, 则扣除保证金 if self.none_punch_days == 0: pay_out = self.guaranty print(pay_out,'如果之前没有过不良记录, 则扣除保证金,扣除金额就是保证金的数量') # 清除个人的保证金数额 self.guaranty = 0 print("将保证金改为0") # 增加不良记录天数 self.none_punch_days = 1 elif self.none_punch_days >= 1 and self.down_payment > 0: print("如果不良天数不等于1") #防止修改数据库debug而出现的错误 self.guaranty = 0 # 如果是日常模式 if self.guaranty == 0: # 底金次数 pay_out = self.average print(pay_out, "当保证金等于0的时候需要扣除的底金金额") # 如果有降低投入 # 从账户中扣除金额 self.down_payment -= pay_out print("扣除之后需要将用户的底金减去") # 不良天数记录+1 self.none_punch_days += 1 # 如果是自由模式 else: print("若是自由模式,开始扣款") if float(self.left_distance) > 0.0: print("当剩余距离大于0的时候才开始扣款") #剩余的距离 left_distance = self.left_distance # 求解剩余距离 if left_distance<=1: pay_out = self.guaranty print("当剩余的距离小于1的时候,直接扣除用户的保证金{}".format(self.guaranty)) self.guaranty = 0 else: remain = math.floor(self.left_distance)-1 print("剩余的距离减去1是:{}".format(remain)) if remain <=self.down_num: print(type(remain),type(self.down_num),"remain:{},down_num{}".format(remain,self.down_num)) print("走这里就对了") pay_out = remain*self.average+self.guaranty self.guaranty=0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance)-1),"平均需要扣除的金额{}".format(self.average)) self.down_payment -= remain * self.average else: # remain = self.down_num print("若剩余距离大于底金次数,那么剩余距离{}".format(remain)) pay_out = self.down_num * self.average + self.guaranty self.guaranty = 0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance) - 1), "平均需要扣除的金额{}".format(self.average)) self.down_payment -= self.down_num*self.average else: pay_out = 0 print("当剩余的距离大于零的时候,需要付出的金额就是保证金") if pay_out > 0: # 更新值 self.save() # 把本次瓜分金额写入数据库记录中 UserSettlement.objects.loose_pay(goal_id=self.goal_id, bonus=pay_out) print("瓜分记录写入成功") # 完成所有瓜分金额的计算 return pay_out @staticmethod def get_activity(): return "1" def update_activity(self, user_id): # 更新该种活动的总系数 Activity.objects.add_bonus_coeff(RunningGoal.get_activity(), self.guaranty + self.down_payment, self.coefficient) # 增加用户的累计参加次数 UserRecord.objects.update_join(user=UserInfo.objects.get(user_id=user_id), coeff=self.coefficient) def update_activity_person(self): Activity.objects.update_person(RunningGoal.get_activity()) Activity.objects.update_coeff(RunningGoal.get_activity(), -self.coefficient) import base64 # TODO class RunningPunchRecordManager(models.Manager): # 创建一个新的record def create_record(self, goal, filename, distance,punch_record_time, document,base64_str): print(3333333333333333333333333333333333333333) # 文件存储的实际路径 filePath = os.path.join(settings.MEDIA_DIR, timezone.now().strftime("%Y-%m-%d")+"/") # # 引用所使用的路径 refPath = os.path.join(settings.MEDIA_ROOT, timezone.now().strftime("%Y-%m-%d")+"/") #mysql存储的地址 file_filepath = filePath+filename file_refpath = refPath+filename if not os.path.exists(filePath): os.makedirs(filePath) print(444444444444444444444444444444444) # 写入文件内容 with open(filePath+filename, 'wb') as f: f.write(base64_str) print("保存图片成功") # 如果是日常模式打卡,则规定distance必须为日常距离 if goal.goal_type: distance = goal.kilos_day print(666666666666666666666666666666666666)
te(goal=goal, voucher_ref=file_refpath, voucher_store=file_filepath, distance=distance,record_time = punch_record_time, document=document) print(555555555555555555555555555555555555555) # 如果是自由模式, 则计算剩余距离 if not goal.goal_type: goal.left_distance -= distance goal.save() return record # # 获取时间 def get_day_record(self, daydelta): """ :param day: 表示一个timedelta :return: """ # 判断现在的时间距离开始时间的时长 # day = (timezone.now()-self.recod_time) # print
record = self.crea
identifier_name
models.py
filter(start_time=start_time).filter(status="PENDING") # 如果存在的话就删掉 if goal: goal.first().delete() goal = self.create(user_id=user_id, activity_type=RunningGoal.get_activity(), start_time=start_time, goal_day=goal_day, mode=mode, guaranty=guaranty, down_payment=down_payment, activate_deposit=activate_deposit, coefficient=coefficient, goal_type=running_type, goal_distance=goal_distance, left_distance=left_distance, kilos_day=kilos_day, extra_earn=extra_earn, average=average, reality_price=reality_price, deserve_price=deserve_price, down_num=down_num ) # 更新活动的免签卡券 if running_type: nosgin_number = int(nosign) UserTicket.objects.create_ticket(goal.goal_id, "NS", nosgin_number) return goal # 删除一个目标 def delete_goal(self, goal_id): goal = self.get(goal_id=goal_id) # 删除本目标对应的所有打卡记录 goal.punch.all().delete() # 删除本目标 goal.delete() class RunningGoal(Goal): """ Model for running goal User needs to set running duration days and distance as objective """ # 目标距离 goal_distance = models.FloatField(null=True) # 单日目标距离,对于自由模式来说,kilos_day为单日目标上限 kilos_day = models.FloatField(null=True) # 剩余距离, 只针对自由模式有效 left_distance = models.FloatField(null=True) # 用户实际要付出的金额 reality_price = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 用户应该要付出的金额 deserve_price = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 扣完底金需要的次数 down_num = models.IntegerField(default=1, null=False) # 平均每次要扣的 average = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 活动押金 activate_deposit = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 累计距离,只对自由模式有效 add_distance = models.FloatField(default=0,null=True) # 活动额外收益 extra_earn = models.DecimalField(max_digits=12, decimal_places=2, null=False) objects = RunningGoalManager() @staticmethod def get_start_date(): return datetime.strptime("00:01", "%H:%M").time() def calc_pay_out(self): print("计算开始..........") pay_out = 0 # 如果是日常模式 if self.goal_type==1: # 如果之前没有过不良记录, 则扣除保证金 if self.none_punch_days == 0: pay_out = self.guaranty print(pay_out,'如果之前没有过不良记录, 则扣除保证金,扣除金额就是保证金的数量') # 清除个人的保证金数额 self.guaranty = 0 print("将保证金改为0") # 增加不良记录天数 self.none_punch_days = 1 elif self.none_punch_days >= 1 and self.down_payment > 0: print("如果不良天数不等于1") #防止修改数据库debug而出现的错误 self.guaranty = 0 # 如果是日常模式 if self.guaranty == 0: # 底金次数 pay_out = self.average print(pay_out, "当保证金等于0的时候需要扣除的底金金额") # 如果有降低投入 # 从账户中扣除金额 self.down_payment -= pay_out print("扣除之后需要将用户的底金减去") # 不良天数记录+1 self.none_punch_days += 1 # 如果是自由模式 else: print("若是自由模式,开始扣款") if float(self.left_distance) > 0.0: print("当剩余距离大于0的时候才开始扣款") #剩余的距离 left_distance = self.left_distance # 求解剩余距离 if left_distance<=1: pay_out = self.guaranty print("当剩余的距离小于1的时候,直接扣除用户的保证金{}".format(self.guaranty)) self.guaranty = 0 else: remain = math.floor(self.left_distance)-1 print("剩余的距离减去1是:{}".format(remain)) if remain <=self.down_num: print(type(remain),type(self.down_num),"remain:{},down_num{}".format(remain,self.down_num)) print("走这里就对了") pay_out = remain*self.average+self.guaranty self.guaranty=0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance)-1),"平均需要扣除的金额{}".format(self.average)) self.down_payment -= remain * self.average else: # remain = self.down_num print("若剩余距离大于底金次数,那么剩余距离{}".format(remain)) pay_out = self.down_num * self.average + self.guaranty self.guaranty = 0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance) - 1), "平均需要扣除的金额{}".format(self.average)) self.down_payment -= self.down_num*self.average else: pay_out = 0 print("当剩余的距离大于零的时候,需要付出的金额就是保证金") if pay_out > 0: # 更新值 self.save() # 把本次瓜分金额写入数据库记录中 UserSettlement.objects.loose_pay(goal_id=self.goal_id, bonus=pay_out) print("瓜分记录写入成功") # 完成所有瓜分金额的计算 return pay_out @staticmethod def get_activity(): return "1" def update_activity(self, user_id): # 更新该种活动的总系数 Activity.objects.add_bonus_coeff(RunningGoal.get_activity(), self.guaranty + self.down_payment, self.coefficient) # 增加用户的累计参加次数 UserRecord.objects.update_join(user=UserInfo.objects.get(user_id=user_id), coeff=self.coefficient) def update_activity_person(self): Activity.objects.update_person(RunningGoal.get_activity()) Activity.objects.update_coeff(RunningGoal.get_activity(), -self.coefficient) import base64 # TODO class RunningPunchRecordManager(models.Manager): # 创建一个新的record def create_record(self, goal, filename, distance,punch_record_time, document,base64_str): print(3333333333333333333333333333333333333333) # 文件存储的实际路径 filePath = os.path.join(settings.MEDIA_DIR, timezone.now().strftime("%Y-%m-%d")+"/") # # 引用所使用的路径 refPath = os.path.join(settings.MEDIA_ROOT, timezone.now().strftime("%Y-%m-%d")+"/") #mysql存储的地址 file_filepath = filePath+filename file_refpath = refPath+filename if not os.path.exists(filePath): os.makedirs(filePath) print(444444444444444444444444444444444) # 写入文件内容 with open(filePath+filename, 'wb') as f: f.write(base64_str) print("保存图片成功") # 如果是日常模式打卡,则规定distance必须为日常距离 if goal.goal_type: distance = goal.kilos_day print(666666666666666666666666666666666666) record = self.create(goal=goal, voucher_ref=file_refpath, voucher_store=file_filepath, distance=distance,record_time = punch_record_time, document=document) print(555555555555555555555555555555555555555) # 如果是自由模式, 则计算剩余距离 if not goal.goal_type: goal.left_distance -= distance goal.save() return record # # 获取时间 def get_day_record(self, daydelta): """ :param day: 表示一个timedelta
21: 18, 30: 25, 61: 50 } goal_distance = distance left_distance = distance distances = int(distance) kilos_day = 2 * distances // actual_day_map[goal_day] # 查询出没有支付的活动 goal = self.filter(user_id=user_id).
conditional_block
models.py
start_time = timezone.now() # + timedelta(days=1) # start_time = datetime.strptime("2018-01-01 00:00:01", "%Y-%m-%d %H:%M:%S") kilos_day, goal_distance, left_distance = None, None, None if running_type: kilos_day = distance else: actual_day_map = { 7: 6, 14: 12, 21: 18, 30: 25, 61: 50 } goal_distance = distance left_distance = distance distances = int(distance) kilos_day = 2 * distances // actual_day_map[goal_day] # 查询出没有支付的活动 goal = self.filter(user_id=user_id).filter(start_time=start_time).filter(status="PENDING") # 如果存在的话就删掉 if goal: goal.first().delete() goal = self.create(user_id=user_id, activity_type=RunningGoal.get_activity(), start_time=start_time, goal_day=goal_day, mode=mode, guaranty=guaranty, down_payment=down_payment, activate_deposit=activate_deposit, coefficient=coefficient, goal_type=running_type, goal_distance=goal_distance, left_distance=left_distance, kilos_day=kilos_day, extra_earn=extra_earn, average=average, reality_price=reality_price, deserve_price=deserve_price, down_num=down_num ) # 更新活动的免签卡券 if running_type: nosgin_number = int(nosign) UserTicket.objects.create_ticket(goal.goal_id, "NS", nosgin_number) return goal # 删除一个目标 def delete_goal(self, goal_id): goal = self.get(goal_id=goal_id) # 删除本目标对应的所有打卡记录 goal.punch.all().delete() # 删除本目标 goal.delete() class RunningGoal(Goal): """ Model for running goal User needs to set running duration days and distance as objective """ # 目标距离 goal_distance = models.FloatField(null=True) # 单日目标距离,对于自由模式来说,kilos_day为单日目标上限 kilos_day = models.FloatField(null=True) # 剩余距离, 只针对自由模式有效 left_distance = models.FloatField(null=True) # 用户实际要付出的金额 reality_price = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 用户应该要付出的金额 deserve_price = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 扣完底金需要的次数 down_num = models.IntegerField(default=1, null=False) # 平均每次要扣的 average = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 活动押金 activate_deposit = models.DecimalField(max_digits=12, decimal_places=2, null=False) # 累计距离,只对自由模式有效 add_distance = models.FloatField(default=0,null=True) # 活动额外收益 extra_earn = models.DecimalField(max_digits=12, decimal_places=2, null=False) objects = RunningGoalManager() @staticmethod def get_start_date(): return datetime.strptime("00:01", "%H:%M").time() def calc_pay_out(self): print("计算开始..........") pay_out = 0 # 如果是日常模式 if self.goal_type==1: # 如果之前没有过不良记录, 则扣除保证金 if self.none_punch_days == 0: pay_out = self.guaranty print(pay_out,'如果之前没有过不良记录, 则扣除保证金,扣除金额就是保证金的数量') # 清除个人的保证金数额 self.guaranty = 0 print("将保证金改为0") # 增加不良记录天数 self.none_punch_days = 1 elif self.none_punch_days >= 1 and self.down_payment > 0: print("如果不良天数不等于1") #防止修改数据库debug而出现的错误 self.guaranty = 0 # 如果是日常模式 if self.guaranty == 0: # 底金次数 pay_out = self.average print(pay_out, "当保证金等于0的时候需要扣除的底金金额") # 如果有降低投入 # 从账户中扣除金额 self.down_payment -= pay_out print("扣除之后需要将用户的底金减去") # 不良天数记录+1 self.none_punch_days += 1 # 如果是自由模式 else: print("若是自由模式,开始扣款") if float(self.left_distance) > 0.0: print("当剩余距离大于0的时候才开始扣款") #剩余的距离 left_distance = self.left_distance # 求解剩余距离 if left_distance<=1: pay_out = self.guaranty print("当剩余的距离小于1的时候,直接扣除用户的保证金{}".format(self.guaranty)) self.guaranty = 0 else: remain = math.floor(self.left_distance)-1 print("剩余的距离减去1是:{}".format(remain)) if remain <=self.down_num: print(type(remain),type(self.down_num),"remain:{},down_num{}".format(remain,self.down_num)) print("走这里就对了") pay_out = remain*self.average+self.guaranty self.guaranty=0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance)-1),"平均需要扣除的金额{}".format(self.average)) self.down_payment -= remain * self.average else: # remain = self.down_num print("若剩余距离大于底金次数,那么剩余距离{}".format(remain)) pay_out = self.down_num * self.average + self.guaranty self.guaranty = 0 print("用户的剩余距离减去1之后的距离数{}".format(math.floor(self.left_distance) - 1), "平均需要扣除的金额{}".format(self.average)) self.down_payment -= self.down_num*self.average else: pay_out = 0 print("当剩余的距离大于零的时候,需要付出的金额就是保证金") if pay_out > 0: # 更新值 self.save() # 把本次瓜分金额写入数据库记录中 UserSettlement.objects.loose_pay(goal_id=self.goal_id, bonus=pay_out) print("瓜分记录写入成功") # 完成所有瓜分金额的计算 return pay_out @staticmethod def get_activity(): return "1" def update_activity(self, user_id): # 更新该种活动的总系数 Activity.objects.add_bonus_coeff(RunningGoal.get_activity(), self.guaranty + self.down_payment, self.coefficient) # 增加用户的累计参加次数 UserRecord.objects.update_join(user=UserInfo.objects.get(user_id=user_id), coeff=self.coefficient) def update_activity_person(self): Activity.objects.update_person(RunningGoal.get_activity()) Activity.objects.update_coeff(RunningGoal.get_activity(), -self.coefficient) import base64 # TODO class RunningPunchRecordManager(models.Manager): # 创建一个新的record def create_record(self, goal, filename, distance,punch_record_time, document,base64_str): print(3333333333333333333333333333333333333333) # 文件存储的实际路径 filePath = os.path.join(settings.MEDIA_DIR, timezone.now().strftime("%Y-%m-%d")+"/") # # 引用所使用的路径 refPath = os.path.join(settings.MEDIA_ROOT, timezone.now().strftime("%Y-%m-%d")+"/") #mysql存储的地址 file_filepath = filePath+filename file_refpath = refPath+filename if not os.path.exists(filePath): os.makedirs(filePath) print(444444444444444444444444444444444) # 写入文件内容 with open(filePath+filename, 'wb') as f: f.write(base64_str) print("保存图片成功") # 如果是日常模式打卡,则规定distance必须为日常距离 if goal.goal_type: distance = goal.kilos_day print(666666666666666666666666666666666666)
if settings.DEBUG: start_time = timezone.now() else: # 当天创建活动只有后一天才能参加,所以以后一天为开始日期
random_line_split
j1f.rs
(ix: u32, x: f32, y1: bool, sign: bool) -> f32 { let z: f64; let mut s: f64; let c: f64; let mut ss: f64; let mut cc: f64; s = sinf(x) as f64; if y1 { s = -s; } c = cosf(x) as f64; cc = s - c; if ix < 0x7f000000 { ss = -s - c; z = cosf(2.0 * x) as f64; if s * c > 0.0 { cc = z / ss; } else { ss = z / cc; } if ix < 0x58800000 { if y1 { ss = -ss; } cc = (ponef(x) as f64) * cc - (qonef(x) as f64) * ss; } } if sign { cc = -cc; } return (((INVSQRTPI as f64) * cc) / (sqrtf(x) as f64)) as f32; } /* R0/S0 on [0,2] */ const R00: f32 = -6.2500000000e-02; /* 0xbd800000 */ const R01: f32 = 1.4070566976e-03; /* 0x3ab86cfd */ const R02: f32 = -1.5995563444e-05; /* 0xb7862e36 */ const R03: f32 = 4.9672799207e-08; /* 0x335557d2 */ const S01: f32 = 1.9153760746e-02; /* 0x3c9ce859 */ const S02: f32 = 1.8594678841e-04; /* 0x3942fab6 */ const S03: f32 = 1.1771846857e-06; /* 0x359dffc2 */ const S04: f32 = 5.0463624390e-09; /* 0x31ad6446 */ const S05: f32 = 1.2354227016e-11; /* 0x2d59567e */ pub fn j1f(x: f32) -> f32 { let mut z: f32; let r: f32; let s: f32; let mut ix: u32; let sign: bool; ix = x.to_bits(); sign = (ix >> 31) != 0; ix &= 0x7fffffff; if ix >= 0x7f800000 { return 1.0 / (x * x); } if ix >= 0x40000000 { /* |x| >= 2 */ return common(ix, fabsf(x), false, sign); } if ix >= 0x39000000 { /* |x| >= 2**-13 */ z = x * x; r = z * (R00 + z * (R01 + z * (R02 + z * R03))); s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05)))); z = 0.5 + r / s; } else { z = 0.5; } return z * x; } const U0: [f32; 5] = [ -1.9605709612e-01, /* 0xbe48c331 */ 5.0443872809e-02, /* 0x3d4e9e3c */ -1.9125689287e-03, /* 0xbafaaf2a */ 2.3525259166e-05, /* 0x37c5581c */ -9.1909917899e-08, /* 0xb3c56003 */ ]; const V0: [f32; 5] = [ 1.9916731864e-02, /* 0x3ca3286a */ 2.0255257550e-04, /* 0x3954644b */ 1.3560879779e-06, /* 0x35b602d4 */ 6.2274145840e-09, /* 0x31d5f8eb */ 1.6655924903e-11, /* 0x2d9281cf */ ]; pub fn y1f(x: f32) -> f32 { let z: f32; let u: f32; let v: f32; let ix: u32; ix = x.to_bits(); if (ix & 0x7fffffff) == 0 { return -1.0 / 0.0; } if (ix >> 31) != 0 { return 0.0 / 0.0; } if ix >= 0x7f800000 { return 1.0 / x; } if ix >= 0x40000000 { /* |x| >= 2.0 */ return common(ix, x, true, false); } if ix < 0x33000000 { /* x < 2**-25 */ return -TPI / x; } z = x * x; u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4]))); v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4])))); return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x); } /* For x >= 8, the asymptotic expansions of pone is * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. * We approximate pone by * pone(x) = 1 + (R/S) * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 * S = 1 + ps0*s^2 + ... + ps4*s^10 * and * | pone(x)-1-R/S | <= 2 ** ( -60.06) */ const PR8: [f32; 6] = [ /* for x in [inf, 8]=1/[0,0.125] */ 0.0000000000e+00, /* 0x00000000 */ 1.1718750000e-01, /* 0x3df00000 */ 1.3239480972e+01, /* 0x4153d4ea */ 4.1205184937e+02, /* 0x43ce06a3 */ 3.8747453613e+03, /* 0x45722bed */ 7.9144794922e+03, /* 0x45f753d6 */ ]; const PS8: [f32; 5] = [ 1.1420736
common
identifier_name
j1f.rs
60174561e+02, /* 0xc43de683 */ -1.1849806641e+04, /* 0xc639273a */ -4.8438511719e+04, /* 0xc73d3683 */ ]; const QS8: [f32; 6] = [ 1.6139537048e+02, /* 0x43216537 */ 7.8253862305e+03, /* 0x45f48b17 */ 1.3387534375e+05, /* 0x4802bcd6 */ 7.1965775000e+05, /* 0x492fb29c */ 6.6660125000e+05, /* 0x4922be94 */ -2.9449025000e+05, /* 0xc88fcb48 */ ]; const QR5: [f32; 6] = [ /* for x in [8,4.5454]=1/[0.125,0.22001] */ -2.0897993405e-11, /* 0xadb7d219 */ -1.0253904760e-01, /* 0xbdd1fffe */ -8.0564479828e+00, /* 0xc100e736 */ -1.8366960144e+02, /* 0xc337ab6b */ -1.3731937256e+03, /* 0xc4aba633 */ -2.6124443359e+03, /* 0xc523471c */ ]; const QS5: [f32; 6] = [ 8.1276550293e+01, /* 0x42a28d98 */ 1.9917987061e+03, /* 0x44f8f98f */ 1.7468484375e+04, /* 0x468878f8 */ 4.9851425781e+04, /* 0x4742bb6d */ 2.7948074219e+04, /* 0x46da5826 */ -4.7191835938e+03, /* 0xc5937978 */ ]; const QR3: [f32; 6] = [ -5.0783124372e-09, /* 0xb1ae7d4f */ -1.0253783315e-01, /* 0xbdd1ff5b */ -4.6101160049e+00, /* 0xc0938612 */ -5.7847221375e+01, /* 0xc267638e */ -2.2824453735e+02, /* 0xc3643e9a */ -2.1921012878e+02, /* 0xc35b35cb */ ]; const QS3: [f32; 6] = [ 4.7665153503e+01, /* 0x423ea91e */ 6.7386511230e+02, /* 0x4428775e */ 3.3801528320e+03, /* 0x45534272 */ 5.5477290039e+03, /* 0x45ad5dd5 */ 1.9031191406e+03, /* 0x44ede3d0 */ -1.3520118713e+02, /* 0xc3073381 */ ]; const QR2: [f32; 6] = [ /* for x in [2.8570,2]=1/[0.3499,0.5] */ -1.7838172539e-07, /* 0xb43f8932 */ -1.0251704603e-01, /* 0xbdd1f475 */ -2.7522056103e+00, /* 0xc0302423 */ -1.9663616180e+01, /* 0xc19d4f16 */ -4.2325313568e+01, /* 0xc2294d1f */ -2.1371921539e+01, /* 0xc1aaf9b2 */ ]; const QS2: [f32; 6] = [ 2.9533363342e+01, /* 0x41ec4454 */ 2.5298155212e+02, /* 0x437cfb47 */ 7.5750280762e+02, /* 0x443d602e */ 7.3939318848e+02, /* 0x4438d92a */ 1.5594900513e+02, /* 0x431bf2f2 */ -4.9594988823e+00, /* 0xc09eb437 */ ]; fn qonef(x: f32) -> f32 { let p: &[f32; 6]; let q: &[f32; 6]; let s: f32; let r: f32; let z: f32; let mut ix: u32; ix = x.to_bits(); ix &= 0x7fffffff; if ix >= 0x41000000 { p = &QR8; q = &QS8; } else if ix >= 0x409173eb { p = &QR5; q = &QS5; } else if ix >= 0x4036d917 { p = &QR3; q = &QS3; } else /*ix >= 0x40000000*/ { p = &QR2; q = &QS2; } z = 1.0 / (x * x); r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); return (0.375 + r / s) / x; } // PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 #[cfg(not(target_arch = "powerpc64"))] #[cfg(test)] mod tests { use super::{j1f, y1f}; #[test] fn test_j1f_2488()
{ // 0x401F3E49 assert_eq!(j1f(2.4881766_f32), 0.49999475_f32); }
identifier_body
j1f.rs
ix = x.to_bits(); sign = (ix >> 31) != 0; ix &= 0x7fffffff; if ix >= 0x7f800000 { return 1.0 / (x * x); } if ix >= 0x40000000 { /* |x| >= 2 */ return common(ix, fabsf(x), false, sign); } if ix >= 0x39000000 { /* |x| >= 2**-13 */ z = x * x; r = z * (R00 + z * (R01 + z * (R02 + z * R03))); s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05)))); z = 0.5 + r / s; } else { z = 0.5; } return z * x; } const U0: [f32; 5] = [ -1.9605709612e-01, /* 0xbe48c331 */ 5.0443872809e-02, /* 0x3d4e9e3c */ -1.9125689287e-03, /* 0xbafaaf2a */ 2.3525259166e-05, /* 0x37c5581c */ -9.1909917899e-08, /* 0xb3c56003 */ ]; const V0: [f32; 5] = [ 1.9916731864e-02, /* 0x3ca3286a */ 2.0255257550e-04, /* 0x3954644b */ 1.3560879779e-06, /* 0x35b602d4 */ 6.2274145840e-09, /* 0x31d5f8eb */ 1.6655924903e-11, /* 0x2d9281cf */ ]; pub fn y1f(x: f32) -> f32 { let z: f32; let u: f32; let v: f32; let ix: u32; ix = x.to_bits(); if (ix & 0x7fffffff) == 0 { return -1.0 / 0.0; } if (ix >> 31) != 0 { return 0.0 / 0.0; } if ix >= 0x7f800000 { return 1.0 / x; } if ix >= 0x40000000 { /* |x| >= 2.0 */ return common(ix, x, true, false); } if ix < 0x33000000 { /* x < 2**-25 */ return -TPI / x; } z = x * x; u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4]))); v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4])))); return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x); } /* For x >= 8, the asymptotic expansions of pone is * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. * We approximate pone by * pone(x) = 1 + (R/S) * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 * S = 1 + ps0*s^2 + ... + ps4*s^10 * and * | pone(x)-1-R/S | <= 2 ** ( -60.06) */ const PR8: [f32; 6] = [ /* for x in [inf, 8]=1/[0,0.125] */ 0.0000000000e+00, /* 0x00000000 */ 1.1718750000e-01, /* 0x3df00000 */ 1.3239480972e+01, /* 0x4153d4ea */ 4.1205184937e+02, /* 0x43ce06a3 */ 3.8747453613e+03, /* 0x45722bed */ 7.9144794922e+03, /* 0x45f753d6 */ ]; const PS8: [f32; 5] = [ 1.1420736694e+02, /* 0x42e46a2c */ 3.6509309082e+03, /* 0x45642ee5 */ 3.6956207031e+04, /* 0x47105c35 */ 9.7602796875e+04, /* 0x47bea166 */ 3.0804271484e+04, /* 0x46f0a88b */ ]; const PR5: [f32; 6] = [ /* for x in [8,4.5454]=1/[0.125,0.22001] */ 1.3199052094e-11, /* 0x2d68333f */ 1.1718749255e-01, /* 0x3defffff */ 6.8027510643e+00, /* 0x40d9b023 */ 1.0830818176e+02, /* 0x42d89dca */ 5.1763616943e+02, /* 0x440168b7 */ 5.2871520996e+02, /* 0x44042dc6 */ ]; const PS5: [f32; 5] = [ 5.9280597687e+01, /* 0x426d1f55 */ 9.9140142822e+02, /* 0x4477d9b1 */ 5.3532670898e+03, /* 0x45a74a23 */ 7.8446904297e+03, /* 0x45f52586 */ 1.5040468750e+03, /* 0x44bc0180 */ ]; const PR3: [f32; 6] = [ 3.0250391081e-09, /* 0x314fe10d */ 1.1718686670e-01, /* 0x3defffab */ 3.9329774380e+00, /* 0x407bb5e7 */ 3.5119403839e+01, /* 0x420c7a45 */ 9.1055007935
let sign: bool;
random_line_split
postgres.go
dev and production type DB struct { dbProxy squirrel.StatementBuilderType } type dbProxy interface { Exec(query string, args ...interface{}) (sql.Result, error) Query(query string, args ...interface{}) (*sql.Rows, error) QueryRow(query string, args ...interface{}) *sql.Row Prepare(query string) (*sql.Stmt, error) } // dbWait waits for database connection to be established func dbWait(db *sql.DB) error { deadline := time.Now().Add(dbTimeout) var err error for tries := 0; time.Now().Before(deadline); tries++ { err = db.Ping() if err == nil { return nil } level.Warn(util_log.Logger).Log("msg", "db connection not established, retrying...", "err", err) time.Sleep(time.Second << uint(tries)) } return errors.Wrapf(err, "db connection not established after %s", dbTimeout) } // New creates a new postgres DB func New(uri, migrationsDir string) (DB, error) { db, err := sql.Open("postgres", uri) if err != nil { return DB{}, errors.Wrap(err, "cannot open postgres db") } if err := dbWait(db); err != nil { return DB{}, errors.Wrap(err, "cannot establish db connection") } if migrationsDir != "" { // Add file scheme if no scheme is present if !strings.HasPrefix(migrationsDir, "file:") { migrationsDir = "file:" + migrationsDir } m, err := migrate.New(migrationsDir, uri) if err != nil { return DB{}, errors.Wrap(err, "database migrations initialization failed") } level.Info(util_log.Logger).Log("msg", "running database migrations...") if err := m.Up(); err != nil { if err != migrate.ErrNoChange { return DB{}, errors.Wrap(err, "database migrations failed") } level.Debug(util_log.Logger).Log("msg", "no change in schema, error (ignored)", "err", err) } } return DB{ dbProxy: db, StatementBuilderType: statementBuilder(db), }, err } var statementBuilder = squirrel.StatementBuilder.PlaceholderFormat(squirrel.Dollar).RunWith func (d DB) findConfigs(filter squirrel.Sqlizer) (map[string]userconfig.View, error) { rows, err := d.Select("id", "owner_id", "config", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.View{} for rows.Next() { var cfg userconfig.View var cfgBytes []byte var userID string var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config) if err != nil { return nil, err } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetConfig gets a configuration. func (d DB) GetConfig(ctx context.Context, userID string) (userconfig.View, error) { var cfgView userconfig.View var cfgBytes []byte var deletedAt pq.NullTime err := d.Select("id", "config", "deleted_at"). From("configs"). Where(squirrel.And{allConfigs, squirrel.Eq{"owner_id": userID}}). OrderBy("id DESC"). Limit(1). QueryRow().Scan(&cfgView.ID, &cfgBytes, &deletedAt) if err != nil { return cfgView, err } cfgView.DeletedAt = deletedAt.Time err = json.Unmarshal(cfgBytes, &cfgView.Config) return cfgView, err } // SetConfig sets a configuration. func (d DB) SetConfig(ctx context.Context, userID string, cfg userconfig.Config) error
// GetAllConfigs gets all of the userconfig. func (d DB) GetAllConfigs(ctx context.Context) (map[string]userconfig.View, error) { return d.findConfigs(allConfigs) } // GetConfigs gets all of the configs that have changed recently. func (d DB) GetConfigs(ctx context.Context, since userconfig.ID) (map[string]userconfig.View, error) { return d.findConfigs(squirrel.And{ allConfigs, squirrel.Gt{"id": since}, }) } // GetRulesConfig gets the latest alertmanager config for a user. func (d DB) GetRulesConfig(ctx context.Context, userID string) (userconfig.VersionedRulesConfig, error) { current, err := d.GetConfig(ctx, userID) if err != nil { return userconfig.VersionedRulesConfig{}, err } cfg := current.GetVersionedRulesConfig() if cfg == nil { return userconfig.VersionedRulesConfig{}, sql.ErrNoRows } return *cfg, nil } // SetRulesConfig sets the current alertmanager config for a user. func (d DB) SetRulesConfig(ctx context.Context, userID string, oldConfig, newConfig userconfig.RulesConfig) (bool, error) { updated := false err := d.Transaction(func(tx DB) error { current, err := d.GetConfig(ctx, userID) if err != nil && err != sql.ErrNoRows { return err } // The supplied oldConfig must match the current config. If no config // exists, then oldConfig must be nil. Otherwise, it must exactly // equal the existing config. if !((err == sql.ErrNoRows && oldConfig.Files == nil) || oldConfig.Equal(current.Config.RulesConfig)) { return nil } new := userconfig.Config{ AlertmanagerConfig: current.Config.AlertmanagerConfig, RulesConfig: newConfig, } updated = true return d.SetConfig(ctx, userID, new) }) return updated, err } // findRulesConfigs helps GetAllRulesConfigs and GetRulesConfigs retrieve the // set of all active rules configurations across all our users. func (d DB) findRulesConfigs(filter squirrel.Sqlizer) (map[string]userconfig.VersionedRulesConfig, error) { rows, err := d.Select("id", "owner_id", "config ->> 'rules_files'", "config ->> 'rule_format_version'", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). // `->>` gets a JSON object field as text. When a config row exists // and alertmanager config is provided but ruler config has not yet // been, the 'rules_files' key will have an empty JSON object as its // value. This is (probably) the most efficient way to test for a // non-empty `rules_files` key. // // This whole situation is way too complicated. See // https://github.com/cortexproject/cortex/issues/619 for the whole // story, and our plans to improve it. Where("config ->> 'rules_files' <> '{}'"). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.VersionedRulesConfig{} for rows.Next() { var cfg userconfig.VersionedRulesConfig var userID string var cfgBytes []byte var rfvBytes []byte var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &rfvBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config.Files) if err != nil { return nil, err } // Legacy configs don't have a rule format version, in which case this will // be a zero-length (but non-nil) slice. if len(rfvBytes) > 0 { err = json.Unmarshal([]byte(`"`+string(rfvBytes)+`"`), &cfg.Config.FormatVersion) if err != nil { return nil, err } } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetAllRulesConfigs gets all alertmanager configs for all users. func (d
{ if !cfg.RulesConfig.FormatVersion.IsValid() { return fmt.Errorf("invalid rule format version %v", cfg.RulesConfig.FormatVersion) } cfgBytes, err := json.Marshal(cfg) if err != nil { return err } _, err = d.Insert("configs"). Columns("owner_id", "owner_type", "subsystem", "config"). Values(userID, entityType, subsystem, cfgBytes). Exec() return err }
identifier_body
postgres.go
migrationsDir = "file:" + migrationsDir } m, err := migrate.New(migrationsDir, uri) if err != nil { return DB{}, errors.Wrap(err, "database migrations initialization failed") } level.Info(util_log.Logger).Log("msg", "running database migrations...") if err := m.Up(); err != nil { if err != migrate.ErrNoChange { return DB{}, errors.Wrap(err, "database migrations failed") } level.Debug(util_log.Logger).Log("msg", "no change in schema, error (ignored)", "err", err) } } return DB{ dbProxy: db, StatementBuilderType: statementBuilder(db), }, err } var statementBuilder = squirrel.StatementBuilder.PlaceholderFormat(squirrel.Dollar).RunWith func (d DB) findConfigs(filter squirrel.Sqlizer) (map[string]userconfig.View, error) { rows, err := d.Select("id", "owner_id", "config", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.View{} for rows.Next() { var cfg userconfig.View var cfgBytes []byte var userID string var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config) if err != nil { return nil, err } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetConfig gets a configuration. func (d DB) GetConfig(ctx context.Context, userID string) (userconfig.View, error) { var cfgView userconfig.View var cfgBytes []byte var deletedAt pq.NullTime err := d.Select("id", "config", "deleted_at"). From("configs"). Where(squirrel.And{allConfigs, squirrel.Eq{"owner_id": userID}}). OrderBy("id DESC"). Limit(1). QueryRow().Scan(&cfgView.ID, &cfgBytes, &deletedAt) if err != nil { return cfgView, err } cfgView.DeletedAt = deletedAt.Time err = json.Unmarshal(cfgBytes, &cfgView.Config) return cfgView, err } // SetConfig sets a configuration. func (d DB) SetConfig(ctx context.Context, userID string, cfg userconfig.Config) error { if !cfg.RulesConfig.FormatVersion.IsValid() { return fmt.Errorf("invalid rule format version %v", cfg.RulesConfig.FormatVersion) } cfgBytes, err := json.Marshal(cfg) if err != nil { return err } _, err = d.Insert("configs"). Columns("owner_id", "owner_type", "subsystem", "config"). Values(userID, entityType, subsystem, cfgBytes). Exec() return err } // GetAllConfigs gets all of the userconfig. func (d DB) GetAllConfigs(ctx context.Context) (map[string]userconfig.View, error) { return d.findConfigs(allConfigs) } // GetConfigs gets all of the configs that have changed recently. func (d DB) GetConfigs(ctx context.Context, since userconfig.ID) (map[string]userconfig.View, error) { return d.findConfigs(squirrel.And{ allConfigs, squirrel.Gt{"id": since}, }) } // GetRulesConfig gets the latest alertmanager config for a user. func (d DB) GetRulesConfig(ctx context.Context, userID string) (userconfig.VersionedRulesConfig, error) { current, err := d.GetConfig(ctx, userID) if err != nil { return userconfig.VersionedRulesConfig{}, err } cfg := current.GetVersionedRulesConfig() if cfg == nil { return userconfig.VersionedRulesConfig{}, sql.ErrNoRows } return *cfg, nil } // SetRulesConfig sets the current alertmanager config for a user. func (d DB) SetRulesConfig(ctx context.Context, userID string, oldConfig, newConfig userconfig.RulesConfig) (bool, error) { updated := false err := d.Transaction(func(tx DB) error { current, err := d.GetConfig(ctx, userID) if err != nil && err != sql.ErrNoRows { return err } // The supplied oldConfig must match the current config. If no config // exists, then oldConfig must be nil. Otherwise, it must exactly // equal the existing config. if !((err == sql.ErrNoRows && oldConfig.Files == nil) || oldConfig.Equal(current.Config.RulesConfig)) { return nil } new := userconfig.Config{ AlertmanagerConfig: current.Config.AlertmanagerConfig, RulesConfig: newConfig, } updated = true return d.SetConfig(ctx, userID, new) }) return updated, err } // findRulesConfigs helps GetAllRulesConfigs and GetRulesConfigs retrieve the // set of all active rules configurations across all our users. func (d DB) findRulesConfigs(filter squirrel.Sqlizer) (map[string]userconfig.VersionedRulesConfig, error) { rows, err := d.Select("id", "owner_id", "config ->> 'rules_files'", "config ->> 'rule_format_version'", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). // `->>` gets a JSON object field as text. When a config row exists // and alertmanager config is provided but ruler config has not yet // been, the 'rules_files' key will have an empty JSON object as its // value. This is (probably) the most efficient way to test for a // non-empty `rules_files` key. // // This whole situation is way too complicated. See // https://github.com/cortexproject/cortex/issues/619 for the whole // story, and our plans to improve it. Where("config ->> 'rules_files' <> '{}'"). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.VersionedRulesConfig{} for rows.Next() { var cfg userconfig.VersionedRulesConfig var userID string var cfgBytes []byte var rfvBytes []byte var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &rfvBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config.Files) if err != nil { return nil, err } // Legacy configs don't have a rule format version, in which case this will // be a zero-length (but non-nil) slice. if len(rfvBytes) > 0 { err = json.Unmarshal([]byte(`"`+string(rfvBytes)+`"`), &cfg.Config.FormatVersion) if err != nil { return nil, err } } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetAllRulesConfigs gets all alertmanager configs for all users. func (d DB) GetAllRulesConfigs(ctx context.Context) (map[string]userconfig.VersionedRulesConfig, error) { return d.findRulesConfigs(allConfigs) } // GetRulesConfigs gets all the alertmanager configs that have changed since a given config. func (d DB) GetRulesConfigs(ctx context.Context, since userconfig.ID) (map[string]userconfig.VersionedRulesConfig, error) { return d.findRulesConfigs(squirrel.And{ allConfigs, squirrel.Gt{"id": since}, }) } // SetDeletedAtConfig sets a deletedAt for configuration // by adding a single new row with deleted_at set // the same as SetConfig is actually insert func (d DB) SetDeletedAtConfig(ctx context.Context, userID string, deletedAt pq.NullTime, cfg userconfig.Config) error { cfgBytes, err := json.Marshal(cfg) if err != nil { return err } _, err = d.Insert("configs"). Columns("owner_id", "owner_type", "subsystem", "deleted_at", "config"). Values(userID, entityType, subsystem, deletedAt, cfgBytes). Exec() return err } // DeactivateConfig deactivates a configuration. func (d DB) DeactivateConfig(ctx context.Context, userID string) error { cfg, err := d.GetConfig(ctx, userID) if err != nil {
return err } return d.SetDeletedAtConfig(ctx, userID, pq.NullTime{Time: time.Now(), Valid: true}, cfg.Config) }
random_line_split
postgres.go
dev and production type DB struct { dbProxy squirrel.StatementBuilderType } type dbProxy interface { Exec(query string, args ...interface{}) (sql.Result, error) Query(query string, args ...interface{}) (*sql.Rows, error) QueryRow(query string, args ...interface{}) *sql.Row Prepare(query string) (*sql.Stmt, error) } // dbWait waits for database connection to be established func dbWait(db *sql.DB) error { deadline := time.Now().Add(dbTimeout) var err error for tries := 0; time.Now().Before(deadline); tries++ { err = db.Ping() if err == nil { return nil } level.Warn(util_log.Logger).Log("msg", "db connection not established, retrying...", "err", err) time.Sleep(time.Second << uint(tries)) } return errors.Wrapf(err, "db connection not established after %s", dbTimeout) } // New creates a new postgres DB func New(uri, migrationsDir string) (DB, error) { db, err := sql.Open("postgres", uri) if err != nil { return DB{}, errors.Wrap(err, "cannot open postgres db") } if err := dbWait(db); err != nil { return DB{}, errors.Wrap(err, "cannot establish db connection") } if migrationsDir != "" { // Add file scheme if no scheme is present if !strings.HasPrefix(migrationsDir, "file:") { migrationsDir = "file:" + migrationsDir } m, err := migrate.New(migrationsDir, uri) if err != nil { return DB{}, errors.Wrap(err, "database migrations initialization failed") } level.Info(util_log.Logger).Log("msg", "running database migrations...") if err := m.Up(); err != nil { if err != migrate.ErrNoChange { return DB{}, errors.Wrap(err, "database migrations failed") } level.Debug(util_log.Logger).Log("msg", "no change in schema, error (ignored)", "err", err) } } return DB{ dbProxy: db, StatementBuilderType: statementBuilder(db), }, err } var statementBuilder = squirrel.StatementBuilder.PlaceholderFormat(squirrel.Dollar).RunWith func (d DB) findConfigs(filter squirrel.Sqlizer) (map[string]userconfig.View, error) { rows, err := d.Select("id", "owner_id", "config", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.View{} for rows.Next() { var cfg userconfig.View var cfgBytes []byte var userID string var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config) if err != nil { return nil, err } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetConfig gets a configuration. func (d DB) GetConfig(ctx context.Context, userID string) (userconfig.View, error) { var cfgView userconfig.View var cfgBytes []byte var deletedAt pq.NullTime err := d.Select("id", "config", "deleted_at"). From("configs"). Where(squirrel.And{allConfigs, squirrel.Eq{"owner_id": userID}}). OrderBy("id DESC"). Limit(1). QueryRow().Scan(&cfgView.ID, &cfgBytes, &deletedAt) if err != nil { return cfgView, err } cfgView.DeletedAt = deletedAt.Time err = json.Unmarshal(cfgBytes, &cfgView.Config) return cfgView, err } // SetConfig sets a configuration. func (d DB) SetConfig(ctx context.Context, userID string, cfg userconfig.Config) error { if !cfg.RulesConfig.FormatVersion.IsValid() { return fmt.Errorf("invalid rule format version %v", cfg.RulesConfig.FormatVersion) } cfgBytes, err := json.Marshal(cfg) if err != nil { return err } _, err = d.Insert("configs"). Columns("owner_id", "owner_type", "subsystem", "config"). Values(userID, entityType, subsystem, cfgBytes). Exec() return err } // GetAllConfigs gets all of the userconfig. func (d DB) GetAllConfigs(ctx context.Context) (map[string]userconfig.View, error) { return d.findConfigs(allConfigs) } // GetConfigs gets all of the configs that have changed recently. func (d DB) GetConfigs(ctx context.Context, since userconfig.ID) (map[string]userconfig.View, error) { return d.findConfigs(squirrel.And{ allConfigs, squirrel.Gt{"id": since}, }) } // GetRulesConfig gets the latest alertmanager config for a user. func (d DB) GetRulesConfig(ctx context.Context, userID string) (userconfig.VersionedRulesConfig, error) { current, err := d.GetConfig(ctx, userID) if err != nil { return userconfig.VersionedRulesConfig{}, err } cfg := current.GetVersionedRulesConfig() if cfg == nil { return userconfig.VersionedRulesConfig{}, sql.ErrNoRows } return *cfg, nil } // SetRulesConfig sets the current alertmanager config for a user. func (d DB) SetRulesConfig(ctx context.Context, userID string, oldConfig, newConfig userconfig.RulesConfig) (bool, error) { updated := false err := d.Transaction(func(tx DB) error { current, err := d.GetConfig(ctx, userID) if err != nil && err != sql.ErrNoRows { return err } // The supplied oldConfig must match the current config. If no config // exists, then oldConfig must be nil. Otherwise, it must exactly // equal the existing config. if !((err == sql.ErrNoRows && oldConfig.Files == nil) || oldConfig.Equal(current.Config.RulesConfig)) { return nil } new := userconfig.Config{ AlertmanagerConfig: current.Config.AlertmanagerConfig, RulesConfig: newConfig, } updated = true return d.SetConfig(ctx, userID, new) }) return updated, err } // findRulesConfigs helps GetAllRulesConfigs and GetRulesConfigs retrieve the // set of all active rules configurations across all our users. func (d DB) findRulesConfigs(filter squirrel.Sqlizer) (map[string]userconfig.VersionedRulesConfig, error) { rows, err := d.Select("id", "owner_id", "config ->> 'rules_files'", "config ->> 'rule_format_version'", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). // `->>` gets a JSON object field as text. When a config row exists // and alertmanager config is provided but ruler config has not yet // been, the 'rules_files' key will have an empty JSON object as its // value. This is (probably) the most efficient way to test for a // non-empty `rules_files` key. // // This whole situation is way too complicated. See // https://github.com/cortexproject/cortex/issues/619 for the whole // story, and our plans to improve it. Where("config ->> 'rules_files' <> '{}'"). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.VersionedRulesConfig{} for rows.Next() { var cfg userconfig.VersionedRulesConfig var userID string var cfgBytes []byte var rfvBytes []byte var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &rfvBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config.Files) if err != nil
// Legacy configs don't have a rule format version, in which case this will // be a zero-length (but non-nil) slice. if len(rfvBytes) > 0 { err = json.Unmarshal([]byte(`"`+string(rfvBytes)+`"`), &cfg.Config.FormatVersion) if err != nil { return nil, err } } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetAllRulesConfigs gets all alertmanager configs for all users. func (d
{ return nil, err }
conditional_block
postgres.go
, "database migrations failed") } level.Debug(util_log.Logger).Log("msg", "no change in schema, error (ignored)", "err", err) } } return DB{ dbProxy: db, StatementBuilderType: statementBuilder(db), }, err } var statementBuilder = squirrel.StatementBuilder.PlaceholderFormat(squirrel.Dollar).RunWith func (d DB) findConfigs(filter squirrel.Sqlizer) (map[string]userconfig.View, error) { rows, err := d.Select("id", "owner_id", "config", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.View{} for rows.Next() { var cfg userconfig.View var cfgBytes []byte var userID string var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config) if err != nil { return nil, err } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetConfig gets a configuration. func (d DB) GetConfig(ctx context.Context, userID string) (userconfig.View, error) { var cfgView userconfig.View var cfgBytes []byte var deletedAt pq.NullTime err := d.Select("id", "config", "deleted_at"). From("configs"). Where(squirrel.And{allConfigs, squirrel.Eq{"owner_id": userID}}). OrderBy("id DESC"). Limit(1). QueryRow().Scan(&cfgView.ID, &cfgBytes, &deletedAt) if err != nil { return cfgView, err } cfgView.DeletedAt = deletedAt.Time err = json.Unmarshal(cfgBytes, &cfgView.Config) return cfgView, err } // SetConfig sets a configuration. func (d DB) SetConfig(ctx context.Context, userID string, cfg userconfig.Config) error { if !cfg.RulesConfig.FormatVersion.IsValid() { return fmt.Errorf("invalid rule format version %v", cfg.RulesConfig.FormatVersion) } cfgBytes, err := json.Marshal(cfg) if err != nil { return err } _, err = d.Insert("configs"). Columns("owner_id", "owner_type", "subsystem", "config"). Values(userID, entityType, subsystem, cfgBytes). Exec() return err } // GetAllConfigs gets all of the userconfig. func (d DB) GetAllConfigs(ctx context.Context) (map[string]userconfig.View, error) { return d.findConfigs(allConfigs) } // GetConfigs gets all of the configs that have changed recently. func (d DB) GetConfigs(ctx context.Context, since userconfig.ID) (map[string]userconfig.View, error) { return d.findConfigs(squirrel.And{ allConfigs, squirrel.Gt{"id": since}, }) } // GetRulesConfig gets the latest alertmanager config for a user. func (d DB) GetRulesConfig(ctx context.Context, userID string) (userconfig.VersionedRulesConfig, error) { current, err := d.GetConfig(ctx, userID) if err != nil { return userconfig.VersionedRulesConfig{}, err } cfg := current.GetVersionedRulesConfig() if cfg == nil { return userconfig.VersionedRulesConfig{}, sql.ErrNoRows } return *cfg, nil } // SetRulesConfig sets the current alertmanager config for a user. func (d DB) SetRulesConfig(ctx context.Context, userID string, oldConfig, newConfig userconfig.RulesConfig) (bool, error) { updated := false err := d.Transaction(func(tx DB) error { current, err := d.GetConfig(ctx, userID) if err != nil && err != sql.ErrNoRows { return err } // The supplied oldConfig must match the current config. If no config // exists, then oldConfig must be nil. Otherwise, it must exactly // equal the existing config. if !((err == sql.ErrNoRows && oldConfig.Files == nil) || oldConfig.Equal(current.Config.RulesConfig)) { return nil } new := userconfig.Config{ AlertmanagerConfig: current.Config.AlertmanagerConfig, RulesConfig: newConfig, } updated = true return d.SetConfig(ctx, userID, new) }) return updated, err } // findRulesConfigs helps GetAllRulesConfigs and GetRulesConfigs retrieve the // set of all active rules configurations across all our users. func (d DB) findRulesConfigs(filter squirrel.Sqlizer) (map[string]userconfig.VersionedRulesConfig, error) { rows, err := d.Select("id", "owner_id", "config ->> 'rules_files'", "config ->> 'rule_format_version'", "deleted_at"). Options("DISTINCT ON (owner_id)"). From("configs"). Where(filter). // `->>` gets a JSON object field as text. When a config row exists // and alertmanager config is provided but ruler config has not yet // been, the 'rules_files' key will have an empty JSON object as its // value. This is (probably) the most efficient way to test for a // non-empty `rules_files` key. // // This whole situation is way too complicated. See // https://github.com/cortexproject/cortex/issues/619 for the whole // story, and our plans to improve it. Where("config ->> 'rules_files' <> '{}'"). OrderBy("owner_id, id DESC"). Query() if err != nil { return nil, err } defer rows.Close() cfgs := map[string]userconfig.VersionedRulesConfig{} for rows.Next() { var cfg userconfig.VersionedRulesConfig var userID string var cfgBytes []byte var rfvBytes []byte var deletedAt pq.NullTime err = rows.Scan(&cfg.ID, &userID, &cfgBytes, &rfvBytes, &deletedAt) if err != nil { return nil, err } err = json.Unmarshal(cfgBytes, &cfg.Config.Files) if err != nil { return nil, err } // Legacy configs don't have a rule format version, in which case this will // be a zero-length (but non-nil) slice. if len(rfvBytes) > 0 { err = json.Unmarshal([]byte(`"`+string(rfvBytes)+`"`), &cfg.Config.FormatVersion) if err != nil { return nil, err } } cfg.DeletedAt = deletedAt.Time cfgs[userID] = cfg } // Check for any errors encountered. err = rows.Err() if err != nil { return nil, err } return cfgs, nil } // GetAllRulesConfigs gets all alertmanager configs for all users. func (d DB) GetAllRulesConfigs(ctx context.Context) (map[string]userconfig.VersionedRulesConfig, error) { return d.findRulesConfigs(allConfigs) } // GetRulesConfigs gets all the alertmanager configs that have changed since a given config. func (d DB) GetRulesConfigs(ctx context.Context, since userconfig.ID) (map[string]userconfig.VersionedRulesConfig, error) { return d.findRulesConfigs(squirrel.And{ allConfigs, squirrel.Gt{"id": since}, }) } // SetDeletedAtConfig sets a deletedAt for configuration // by adding a single new row with deleted_at set // the same as SetConfig is actually insert func (d DB) SetDeletedAtConfig(ctx context.Context, userID string, deletedAt pq.NullTime, cfg userconfig.Config) error { cfgBytes, err := json.Marshal(cfg) if err != nil { return err } _, err = d.Insert("configs"). Columns("owner_id", "owner_type", "subsystem", "deleted_at", "config"). Values(userID, entityType, subsystem, deletedAt, cfgBytes). Exec() return err } // DeactivateConfig deactivates a configuration. func (d DB) DeactivateConfig(ctx context.Context, userID string) error { cfg, err := d.GetConfig(ctx, userID) if err != nil { return err } return d.SetDeletedAtConfig(ctx, userID, pq.NullTime{Time: time.Now(), Valid: true}, cfg.Config) } // RestoreConfig restores configuration. func (d DB) RestoreConfig(ctx context.Context, userID string) error { cfg, err := d.GetConfig(ctx, userID) if err != nil { return err } return d.SetDeletedAtConfig(ctx, userID, pq.NullTime{}, cfg.Config) } // Transaction runs the given function in a postgres transaction. If fn returns // an error the txn will be rolled back. func (d DB)
Transaction
identifier_name
chroot.go
if err != nil { return fmt.Errorf("Failed to mount '%s': %w", mount.Source, err) } } return nil } func moveMounts(mounts []ChrootMount) error { for i, mount := range mounts { // Source path tmpSource := filepath.Join("/", ".distrobuilder", fmt.Sprintf("%d", i)) // Resolve symlinks target := mount.Target for { // Get information on current target fi, err := os.Lstat(target) if err != nil { break } // If not a symlink, we're done if fi.Mode()&os.ModeSymlink == 0 { break } // If a symlink, resolve it newTarget, err := os.Readlink(target) if err != nil { break } target = newTarget } // If the target's parent directory is a symlink, we need to resolve that as well. targetDir := filepath.Dir(target) if lxd.PathExists(targetDir) { // Get information on current target fi, err := os.Lstat(targetDir) if err != nil { return fmt.Errorf("Failed to stat directory %q: %w", targetDir, err) } // If a symlink, resolve it if fi.Mode()&os.ModeSymlink != 0 { newTarget, err := os.Readlink(targetDir) if err != nil { return fmt.Errorf("Failed to get destination of %q: %w", targetDir, err) } targetDir = newTarget } } // Create parent paths if missing err := os.MkdirAll(targetDir, 0755) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", targetDir, err) } // Create target path if mount.IsDir { err = os.MkdirAll(target, 0755) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", target, err) } } else { err := os.WriteFile(target, nil, 0644) if err != nil { return fmt.Errorf("Failed to create file %q: %w", target, err) } } // Move the mount to its destination err = unix.Mount(tmpSource, target, "", unix.MS_MOVE, "") if err != nil { return fmt.Errorf("Failed to mount '%s': %w", mount.Source, err) } } // Cleanup our temporary path err := os.RemoveAll(filepath.Join("/", ".distrobuilder")) if err != nil { return fmt.Errorf("Failed to remove directory %q: %w", filepath.Join("/", ".distrobuilder"), err) } return nil } func killChrootProcesses(rootfs string) error { // List all files under /proc proc, err := os.Open(filepath.Join(rootfs, "proc")) if err != nil { return fmt.Errorf("Failed to open file %q: %w", filepath.Join(rootfs, "proc"), err) } dirs, err := proc.Readdirnames(0) if err != nil { return fmt.Errorf("Failed to read directory content of %q: %w", filepath.Join(rootfs, "proc"), err) } // Get all processes and kill them re := regexp.MustCompile(`\d+`) for _, dir := range dirs { if re.MatchString(dir) { link, _ := os.Readlink(filepath.Join(rootfs, "proc", dir, "root")) if link == rootfs { pid, _ := strconv.Atoi(dir) err = unix.Kill(pid, unix.SIGKILL) if err != nil { return fmt.Errorf("Failed killing process: %w", err) } } } } return nil } // SetupChroot sets up mount and files, a reverter and then chroots for you. func SetupChroot(rootfs string, definition Definition, m []ChrootMount) (func() error, error) { // Mount the rootfs err := unix.Mount(rootfs, rootfs, "", unix.MS_BIND, "") if err != nil { return nil, fmt.Errorf("Failed to mount '%s': %w", rootfs, err) } // Setup all other needed mounts mounts := []ChrootMount{ {"none", "/proc", "proc", 0, "", true}, {"none", "/sys", "sysfs", 0, "", true}, {"none", "/run", "tmpfs", 0, "", true}, {"none", "/tmp", "tmpfs", 0, "", true}, {"none", "/dev", "tmpfs", 0, "", true}, {"none", "/dev/shm", "tmpfs", 0, "", true}, {"/etc/resolv.conf", "/etc/resolv.conf", "", unix.MS_BIND, "", false}, } // Keep a reference to the host rootfs and cwd root, err := os.Open("/") if err != nil { return nil, err } cwd, err := os.Getwd() if err != nil { return nil, err } // Setup all needed mounts in a temporary location if len(m) > 0 { err = setupMounts(rootfs, append(mounts, m...)) } else { err = setupMounts(rootfs, mounts) } if err != nil { return nil, fmt.Errorf("Failed to mount filesystems: %w", err) } // Chroot into the container's rootfs err = unix.Chroot(rootfs) if err != nil { root.Close() return nil, err } err = unix.Chdir("/") if err != nil { return nil, err } // Move all the mounts into place err = moveMounts(append(mounts, m...)) if err != nil { return nil, err } // Populate /dev directory instead of bind mounting it from the host err = populateDev() if err != nil { return nil, fmt.Errorf("Failed to populate /dev: %w", err) } // Change permission for /dev/shm err = unix.Chmod("/dev/shm", 01777) if err != nil { return nil, fmt.Errorf("Failed to chmod /dev/shm: %w", err) } var env Environment envs := definition.Environment if envs.ClearDefaults { env = Environment{} } else { env = Environment{ "PATH": EnvVariable{ Value: "/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin", Set: true, }, "SHELL": EnvVariable{ Value: "/bin/sh", Set: true, }, "TERM": EnvVariable{ Value: "xterm", Set: true, }, "DEBIAN_FRONTEND": EnvVariable{ Value: "noninteractive", Set: true, }, } } if envs.EnvVariables != nil && len(envs.EnvVariables) > 0 { imageTargets := ImageTargetUndefined | ImageTargetAll if definition.Targets.Type == DefinitionFilterTypeContainer { imageTargets |= ImageTargetContainer } else if definition.Targets.Type == DefinitionFilterTypeVM { imageTargets |= ImageTargetVM } for _, e := range envs.EnvVariables { if !ApplyFilter(&e, definition.Image.Release, definition.Image.ArchitectureMapped, definition.Image.Variant, definition.Targets.Type, imageTargets) { continue } entry, ok := env[e.Key] if ok { entry.Value = e.Value entry.Set = true } else { env[e.Key] = EnvVariable{ Value: e.Value, Set: true, } } } } // Set environment variables oldEnv := SetEnvVariables(env) // Setup policy-rc.d override policyCleanup := false if lxd.PathExists("/usr/sbin/") && !lxd.PathExists("/usr/sbin/policy-rc.d") { err = os.WriteFile("/usr/sbin/policy-rc.d", []byte(`#!/bin/sh exit 101 `), 0755) if err != nil { return nil, err } policyCleanup = true } exitFunc := func() error { defer root.Close() // Cleanup policy-rc.d if policyCleanup { err = os.Remove("/usr/sbin/policy-rc.d") if err != nil { return fmt.Errorf("Failed to remove %q: %w", "/usr/sbin/policy-rc.d", err) } } // Reset old environment variables SetEnvVariables(oldEnv) // Switch back to the host rootfs err = root.Chdir()
// Mount to the temporary path err := unix.Mount(mount.Source, tmpTarget, mount.FSType, mount.Flags, mount.Data)
random_line_split
chroot.go
temporary path err := unix.Mount(mount.Source, tmpTarget, mount.FSType, mount.Flags, mount.Data) if err != nil { return fmt.Errorf("Failed to mount '%s': %w", mount.Source, err) } } return nil } func moveMounts(mounts []ChrootMount) error { for i, mount := range mounts { // Source path tmpSource := filepath.Join("/", ".distrobuilder", fmt.Sprintf("%d", i)) // Resolve symlinks target := mount.Target for { // Get information on current target fi, err := os.Lstat(target) if err != nil { break } // If not a symlink, we're done if fi.Mode()&os.ModeSymlink == 0 { break } // If a symlink, resolve it newTarget, err := os.Readlink(target) if err != nil { break } target = newTarget } // If the target's parent directory is a symlink, we need to resolve that as well. targetDir := filepath.Dir(target) if lxd.PathExists(targetDir) { // Get information on current target fi, err := os.Lstat(targetDir) if err != nil { return fmt.Errorf("Failed to stat directory %q: %w", targetDir, err) } // If a symlink, resolve it if fi.Mode()&os.ModeSymlink != 0 { newTarget, err := os.Readlink(targetDir) if err != nil { return fmt.Errorf("Failed to get destination of %q: %w", targetDir, err) } targetDir = newTarget } } // Create parent paths if missing err := os.MkdirAll(targetDir, 0755) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", targetDir, err) } // Create target path if mount.IsDir { err = os.MkdirAll(target, 0755) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", target, err) } } else { err := os.WriteFile(target, nil, 0644) if err != nil { return fmt.Errorf("Failed to create file %q: %w", target, err) } } // Move the mount to its destination err = unix.Mount(tmpSource, target, "", unix.MS_MOVE, "") if err != nil { return fmt.Errorf("Failed to mount '%s': %w", mount.Source, err) } } // Cleanup our temporary path err := os.RemoveAll(filepath.Join("/", ".distrobuilder")) if err != nil { return fmt.Errorf("Failed to remove directory %q: %w", filepath.Join("/", ".distrobuilder"), err) } return nil } func killChrootProcesses(rootfs string) error { // List all files under /proc proc, err := os.Open(filepath.Join(rootfs, "proc")) if err != nil { return fmt.Errorf("Failed to open file %q: %w", filepath.Join(rootfs, "proc"), err) } dirs, err := proc.Readdirnames(0) if err != nil { return fmt.Errorf("Failed to read directory content of %q: %w", filepath.Join(rootfs, "proc"), err) } // Get all processes and kill them re := regexp.MustCompile(`\d+`) for _, dir := range dirs { if re.MatchString(dir) { link, _ := os.Readlink(filepath.Join(rootfs, "proc", dir, "root")) if link == rootfs { pid, _ := strconv.Atoi(dir) err = unix.Kill(pid, unix.SIGKILL) if err != nil { return fmt.Errorf("Failed killing process: %w", err) } } } } return nil } // SetupChroot sets up mount and files, a reverter and then chroots for you. func SetupChroot(rootfs string, definition Definition, m []ChrootMount) (func() error, error)
if err != nil { return nil, err } cwd, err := os.Getwd() if err != nil { return nil, err } // Setup all needed mounts in a temporary location if len(m) > 0 { err = setupMounts(rootfs, append(mounts, m...)) } else { err = setupMounts(rootfs, mounts) } if err != nil { return nil, fmt.Errorf("Failed to mount filesystems: %w", err) } // Chroot into the container's rootfs err = unix.Chroot(rootfs) if err != nil { root.Close() return nil, err } err = unix.Chdir("/") if err != nil { return nil, err } // Move all the mounts into place err = moveMounts(append(mounts, m...)) if err != nil { return nil, err } // Populate /dev directory instead of bind mounting it from the host err = populateDev() if err != nil { return nil, fmt.Errorf("Failed to populate /dev: %w", err) } // Change permission for /dev/shm err = unix.Chmod("/dev/shm", 01777) if err != nil { return nil, fmt.Errorf("Failed to chmod /dev/shm: %w", err) } var env Environment envs := definition.Environment if envs.ClearDefaults { env = Environment{} } else { env = Environment{ "PATH": EnvVariable{ Value: "/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin", Set: true, }, "SHELL": EnvVariable{ Value: "/bin/sh", Set: true, }, "TERM": EnvVariable{ Value: "xterm", Set: true, }, "DEBIAN_FRONTEND": EnvVariable{ Value: "noninteractive", Set: true, }, } } if envs.EnvVariables != nil && len(envs.EnvVariables) > 0 { imageTargets := ImageTargetUndefined | ImageTargetAll if definition.Targets.Type == DefinitionFilterTypeContainer { imageTargets |= ImageTargetContainer } else if definition.Targets.Type == DefinitionFilterTypeVM { imageTargets |= ImageTargetVM } for _, e := range envs.EnvVariables { if !ApplyFilter(&e, definition.Image.Release, definition.Image.ArchitectureMapped, definition.Image.Variant, definition.Targets.Type, imageTargets) { continue } entry, ok := env[e.Key] if ok { entry.Value = e.Value entry.Set = true } else { env[e.Key] = EnvVariable{ Value: e.Value, Set: true, } } } } // Set environment variables oldEnv := SetEnvVariables(env) // Setup policy-rc.d override policyCleanup := false if lxd.PathExists("/usr/sbin/") && !lxd.PathExists("/usr/sbin/policy-rc.d") { err = os.WriteFile("/usr/sbin/policy-rc.d", []byte(`#!/bin/sh exit 101 `), 0755) if err != nil { return nil, err } policyCleanup = true } exitFunc := func() error { defer root.Close() // Cleanup policy-rc.d if policyCleanup { err = os.Remove("/usr/sbin/policy-rc.d") if err != nil { return fmt.Errorf("Failed to remove %q: %w", "/usr/sbin/policy-rc.d", err) } } // Reset old environment variables SetEnvVariables(oldEnv) // Switch back to the host rootfs err = root.Chdir() if err != nil {
{ // Mount the rootfs err := unix.Mount(rootfs, rootfs, "", unix.MS_BIND, "") if err != nil { return nil, fmt.Errorf("Failed to mount '%s': %w", rootfs, err) } // Setup all other needed mounts mounts := []ChrootMount{ {"none", "/proc", "proc", 0, "", true}, {"none", "/sys", "sysfs", 0, "", true}, {"none", "/run", "tmpfs", 0, "", true}, {"none", "/tmp", "tmpfs", 0, "", true}, {"none", "/dev", "tmpfs", 0, "", true}, {"none", "/dev/shm", "tmpfs", 0, "", true}, {"/etc/resolv.conf", "/etc/resolv.conf", "", unix.MS_BIND, "", false}, } // Keep a reference to the host rootfs and cwd root, err := os.Open("/")
identifier_body
chroot.go
(rootfs string, mounts []ChrootMount) error { // Create a temporary mount path err := os.MkdirAll(filepath.Join(rootfs, ".distrobuilder"), 0700) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", filepath.Join(rootfs, ".distrobuilder"), err) } for i, mount := range mounts { // Target path tmpTarget := filepath.Join(rootfs, ".distrobuilder", fmt.Sprintf("%d", i)) // Create the target mountpoint if mount.IsDir { err := os.MkdirAll(tmpTarget, 0755) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", tmpTarget, err) } } else { f, err := os.Create(tmpTarget) if err != nil { return fmt.Errorf("Failed to create file %q: %w", tmpTarget, err) } f.Close() } // Mount to the temporary path err := unix.Mount(mount.Source, tmpTarget, mount.FSType, mount.Flags, mount.Data) if err != nil { return fmt.Errorf("Failed to mount '%s': %w", mount.Source, err) } } return nil } func moveMounts(mounts []ChrootMount) error { for i, mount := range mounts { // Source path tmpSource := filepath.Join("/", ".distrobuilder", fmt.Sprintf("%d", i)) // Resolve symlinks target := mount.Target for { // Get information on current target fi, err := os.Lstat(target) if err != nil { break } // If not a symlink, we're done if fi.Mode()&os.ModeSymlink == 0 { break } // If a symlink, resolve it newTarget, err := os.Readlink(target) if err != nil { break } target = newTarget } // If the target's parent directory is a symlink, we need to resolve that as well. targetDir := filepath.Dir(target) if lxd.PathExists(targetDir) { // Get information on current target fi, err := os.Lstat(targetDir) if err != nil { return fmt.Errorf("Failed to stat directory %q: %w", targetDir, err) } // If a symlink, resolve it if fi.Mode()&os.ModeSymlink != 0 { newTarget, err := os.Readlink(targetDir) if err != nil { return fmt.Errorf("Failed to get destination of %q: %w", targetDir, err) } targetDir = newTarget } } // Create parent paths if missing err := os.MkdirAll(targetDir, 0755) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", targetDir, err) } // Create target path if mount.IsDir { err = os.MkdirAll(target, 0755) if err != nil { return fmt.Errorf("Failed to create directory %q: %w", target, err) } } else { err := os.WriteFile(target, nil, 0644) if err != nil { return fmt.Errorf("Failed to create file %q: %w", target, err) } } // Move the mount to its destination err = unix.Mount(tmpSource, target, "", unix.MS_MOVE, "") if err != nil { return fmt.Errorf("Failed to mount '%s': %w", mount.Source, err) } } // Cleanup our temporary path err := os.RemoveAll(filepath.Join("/", ".distrobuilder")) if err != nil { return fmt.Errorf("Failed to remove directory %q: %w", filepath.Join("/", ".distrobuilder"), err) } return nil } func killChrootProcesses(rootfs string) error { // List all files under /proc proc, err := os.Open(filepath.Join(rootfs, "proc")) if err != nil { return fmt.Errorf("Failed to open file %q: %w", filepath.Join(rootfs, "proc"), err) } dirs, err := proc.Readdirnames(0) if err != nil { return fmt.Errorf("Failed to read directory content of %q: %w", filepath.Join(rootfs, "proc"), err) } // Get all processes and kill them re := regexp.MustCompile(`\d+`) for _, dir := range dirs { if re.MatchString(dir) { link, _ := os.Readlink(filepath.Join(rootfs, "proc", dir, "root")) if link == rootfs { pid, _ := strconv.Atoi(dir) err = unix.Kill(pid, unix.SIGKILL) if err != nil { return fmt.Errorf("Failed killing process: %w", err) } } } } return nil } // SetupChroot sets up mount and files, a reverter and then chroots for you. func SetupChroot(rootfs string, definition Definition, m []ChrootMount) (func() error, error) { // Mount the rootfs err := unix.Mount(rootfs, rootfs, "", unix.MS_BIND, "") if err != nil { return nil, fmt.Errorf("Failed to mount '%s': %w", rootfs, err) } // Setup all other needed mounts mounts := []ChrootMount{ {"none", "/proc", "proc", 0, "", true}, {"none", "/sys", "sysfs", 0, "", true}, {"none", "/run", "tmpfs", 0, "", true}, {"none", "/tmp", "tmpfs", 0, "", true}, {"none", "/dev", "tmpfs", 0, "", true}, {"none", "/dev/shm", "tmpfs", 0, "", true}, {"/etc/resolv.conf", "/etc/resolv.conf", "", unix.MS_BIND, "", false}, } // Keep a reference to the host rootfs and cwd root, err := os.Open("/") if err != nil { return nil, err } cwd, err := os.Getwd() if err != nil { return nil, err } // Setup all needed mounts in a temporary location if len(m) > 0 { err = setupMounts(rootfs, append(mounts, m...)) } else { err = setupMounts(rootfs, mounts) } if err != nil { return nil, fmt.Errorf("Failed to mount filesystems: %w", err) } // Chroot into the container's rootfs err = unix.Chroot(rootfs) if err != nil { root.Close() return nil, err } err = unix.Chdir("/") if err != nil { return nil, err } // Move all the mounts into place err = moveMounts(append(mounts, m...)) if err != nil { return nil, err } // Populate /dev directory instead of bind mounting it from the host err = populateDev() if err != nil { return nil, fmt.Errorf("Failed to populate /dev: %w", err) } // Change permission for /dev/shm err = unix.Chmod("/dev/shm", 01777) if err != nil { return nil, fmt.Errorf("Failed to chmod /dev/shm: %w", err) } var env Environment envs := definition.Environment if envs.ClearDefaults { env = Environment{} } else { env = Environment{ "PATH": EnvVariable{ Value: "/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin", Set: true, }, "SHELL": EnvVariable{ Value: "/bin/sh", Set: true, }, "TERM": EnvVariable{ Value: "xterm", Set: true, }, "DEBIAN_FRONTEND": EnvVariable{ Value: "noninteractive", Set: true, }, } } if envs.EnvVariables != nil && len(envs.EnvVariables) > 0 { imageTargets := ImageTargetUndefined | ImageTargetAll if definition.Targets.Type == DefinitionFilterTypeContainer { imageTargets |= ImageTargetContainer } else if definition.Targets.Type == DefinitionFilterTypeVM { imageTargets |= ImageTargetVM } for _, e := range envs.EnvVariables { if !ApplyFilter(&e, definition.Image.Release, definition.Image.ArchitectureMapped, definition.Image.Variant, definition.Targets.Type, imageTargets) { continue } entry, ok := env[e.Key] if ok { entry.Value = e.Value entry.Set = true } else { env[e.Key] = EnvVariable{ Value: e.Value, Set: true, } } } }
setupMounts
identifier_name
chroot.go
distrobuilder"), err) } return nil } func killChrootProcesses(rootfs string) error { // List all files under /proc proc, err := os.Open(filepath.Join(rootfs, "proc")) if err != nil { return fmt.Errorf("Failed to open file %q: %w", filepath.Join(rootfs, "proc"), err) } dirs, err := proc.Readdirnames(0) if err != nil { return fmt.Errorf("Failed to read directory content of %q: %w", filepath.Join(rootfs, "proc"), err) } // Get all processes and kill them re := regexp.MustCompile(`\d+`) for _, dir := range dirs { if re.MatchString(dir) { link, _ := os.Readlink(filepath.Join(rootfs, "proc", dir, "root")) if link == rootfs { pid, _ := strconv.Atoi(dir) err = unix.Kill(pid, unix.SIGKILL) if err != nil { return fmt.Errorf("Failed killing process: %w", err) } } } } return nil } // SetupChroot sets up mount and files, a reverter and then chroots for you. func SetupChroot(rootfs string, definition Definition, m []ChrootMount) (func() error, error) { // Mount the rootfs err := unix.Mount(rootfs, rootfs, "", unix.MS_BIND, "") if err != nil { return nil, fmt.Errorf("Failed to mount '%s': %w", rootfs, err) } // Setup all other needed mounts mounts := []ChrootMount{ {"none", "/proc", "proc", 0, "", true}, {"none", "/sys", "sysfs", 0, "", true}, {"none", "/run", "tmpfs", 0, "", true}, {"none", "/tmp", "tmpfs", 0, "", true}, {"none", "/dev", "tmpfs", 0, "", true}, {"none", "/dev/shm", "tmpfs", 0, "", true}, {"/etc/resolv.conf", "/etc/resolv.conf", "", unix.MS_BIND, "", false}, } // Keep a reference to the host rootfs and cwd root, err := os.Open("/") if err != nil { return nil, err } cwd, err := os.Getwd() if err != nil { return nil, err } // Setup all needed mounts in a temporary location if len(m) > 0 { err = setupMounts(rootfs, append(mounts, m...)) } else { err = setupMounts(rootfs, mounts) } if err != nil { return nil, fmt.Errorf("Failed to mount filesystems: %w", err) } // Chroot into the container's rootfs err = unix.Chroot(rootfs) if err != nil { root.Close() return nil, err } err = unix.Chdir("/") if err != nil { return nil, err } // Move all the mounts into place err = moveMounts(append(mounts, m...)) if err != nil { return nil, err } // Populate /dev directory instead of bind mounting it from the host err = populateDev() if err != nil { return nil, fmt.Errorf("Failed to populate /dev: %w", err) } // Change permission for /dev/shm err = unix.Chmod("/dev/shm", 01777) if err != nil { return nil, fmt.Errorf("Failed to chmod /dev/shm: %w", err) } var env Environment envs := definition.Environment if envs.ClearDefaults { env = Environment{} } else { env = Environment{ "PATH": EnvVariable{ Value: "/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin", Set: true, }, "SHELL": EnvVariable{ Value: "/bin/sh", Set: true, }, "TERM": EnvVariable{ Value: "xterm", Set: true, }, "DEBIAN_FRONTEND": EnvVariable{ Value: "noninteractive", Set: true, }, } } if envs.EnvVariables != nil && len(envs.EnvVariables) > 0 { imageTargets := ImageTargetUndefined | ImageTargetAll if definition.Targets.Type == DefinitionFilterTypeContainer { imageTargets |= ImageTargetContainer } else if definition.Targets.Type == DefinitionFilterTypeVM { imageTargets |= ImageTargetVM } for _, e := range envs.EnvVariables { if !ApplyFilter(&e, definition.Image.Release, definition.Image.ArchitectureMapped, definition.Image.Variant, definition.Targets.Type, imageTargets) { continue } entry, ok := env[e.Key] if ok { entry.Value = e.Value entry.Set = true } else { env[e.Key] = EnvVariable{ Value: e.Value, Set: true, } } } } // Set environment variables oldEnv := SetEnvVariables(env) // Setup policy-rc.d override policyCleanup := false if lxd.PathExists("/usr/sbin/") && !lxd.PathExists("/usr/sbin/policy-rc.d") { err = os.WriteFile("/usr/sbin/policy-rc.d", []byte(`#!/bin/sh exit 101 `), 0755) if err != nil { return nil, err } policyCleanup = true } exitFunc := func() error { defer root.Close() // Cleanup policy-rc.d if policyCleanup { err = os.Remove("/usr/sbin/policy-rc.d") if err != nil { return fmt.Errorf("Failed to remove %q: %w", "/usr/sbin/policy-rc.d", err) } } // Reset old environment variables SetEnvVariables(oldEnv) // Switch back to the host rootfs err = root.Chdir() if err != nil { return fmt.Errorf("Failed to chdir: %w", err) } err = unix.Chroot(".") if err != nil { return fmt.Errorf("Failed to chroot: %w", err) } err = unix.Chdir(cwd) if err != nil { return fmt.Errorf("Failed to chdir: %w", err) } // This will kill all processes in the chroot and allow to cleanly // unmount everything. err = killChrootProcesses(rootfs) if err != nil { return fmt.Errorf("Failed killing chroot processes: %w", err) } // And now unmount the entire tree err = unix.Unmount(rootfs, unix.MNT_DETACH) if err != nil { return fmt.Errorf("Failed unmounting rootfs: %w", err) } devPath := filepath.Join(rootfs, "dev") // Wipe $rootfs/dev err := os.RemoveAll(devPath) if err != nil { return fmt.Errorf("Failed to remove directory %q: %w", devPath, err) } ActiveChroots[rootfs] = nil return os.MkdirAll(devPath, 0755) } ActiveChroots[rootfs] = exitFunc return exitFunc, nil } func populateDev() error { devs := []struct { Path string Major uint32 Minor uint32 Mode uint32 }{ {"/dev/console", 5, 1, unix.S_IFCHR | 0640}, {"/dev/full", 1, 7, unix.S_IFCHR | 0666}, {"/dev/null", 1, 3, unix.S_IFCHR | 0666}, {"/dev/random", 1, 8, unix.S_IFCHR | 0666}, {"/dev/tty", 5, 0, unix.S_IFCHR | 0666}, {"/dev/urandom", 1, 9, unix.S_IFCHR | 0666}, {"/dev/zero", 1, 5, unix.S_IFCHR | 0666}, } for _, d := range devs { if lxd.PathExists(d.Path) { continue } dev := unix.Mkdev(d.Major, d.Minor) err := unix.Mknod(d.Path, d.Mode, int(dev)) if err != nil { return fmt.Errorf("Failed to create %q: %w", d.Path, err) } // For some odd reason, unix.Mknod will not set the mode correctly. // This fixes that. err = unix.Chmod(d.Path, d.Mode) if err != nil
{ return fmt.Errorf("Failed to chmod %q: %w", d.Path, err) }
conditional_block
main.rs
: QuestionDTO, pub created_at: DateTime<Local>, pub created_at_recognizable: String, } impl AnswerDTO { fn from(a: model::Answer) -> Self { Self { id: a.id, body: a.body, created_at: a.created_at, created_at_recognizable: utils::recognizable_datetime(a.created_at), question: QuestionDTO::from(a.question) } } } #[derive(Serialize, Debug)] struct QuestionDTO { pub id: i32, pub body: String, pub created_at: DateTime<Local>, pub created_at_recognizable: String, } impl QuestionDTO { fn from(q: model::Question) -> Self { Self { id: q.id, body: q.body, created_at: q.created_at, created_at_recognizable: utils::recognizable_datetime(q.created_at) } } } /* Force ssl */ #[get("/<path..>")] fn redirect_ssl(path: PathBuf, _ssl: web::guard::ForceSSL) -> response::Redirect { let redirect_to = format!("https://{}/{}", env::var("APPLICATION_DOMAIN").unwrap(), path.as_path().display()); println!("Redirect to:{}", redirect_to); response::Redirect::to(redirect_to) } /* GET /static/ */ #[get("/static/<file..>")] fn files(file: PathBuf) -> Result<web::CachedFile, status::NotFound<String>> { let path = Path::new("static/").join(file); response::NamedFile::open(&path) .map_err(|_| status::NotFound(format!("Bad path: {:?}", path))) .map(|nf| web::CachedFile(nf)) } /* GET / */ #[derive(Serialize, Debug)] struct IndexDTO { pub profile: ProfileDTO, pub answers: Vec<AnswerDTO>, pub site_url: String, pub next_page: Option<i64>, pub prev_page: Option<i64>, } #[derive(Serialize, Debug)] struct ProfileDTO { pub username: String, pub image_url: String, } #[test] fn next_prev_page_test() { assert!((None, Some(1)) == next_prev_page(0)); assert!((Some(0), Some(2)) == next_prev_page(1)); assert!((Some(1), Some(3)) == next_prev_page(2)); } // next: newer, prev: older // older -> page number increases fn next_prev_page(current_page: i64) -> (Option<i64>, Option<i64>) { let prev_page = Some(current_page + 1); let next_page = if current_page <= 0 { None } else { Some(current_page - 1) }; return (next_page, prev_page); } const ANSWER_COUNT_PER_PAGE : i64 = 30; #[get("/")] fn index(repo: web::guard::Repository, profile: State<UserProfile>) -> Template { let page = 0; index_with_page(repo, profile, page) } #[get("/page/<page>")] fn index_with_page(repo: web::guard::Repository, profile: State<UserProfile>, page: i64) -> Template { let offset = page * ANSWER_COUNT_PER_PAGE; let answer_dtos = repo.answers(offset, ANSWER_COUNT_PER_PAGE) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let (next_page, prev_page) = next_prev_page(page); let context = IndexDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, answers: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), prev_page: prev_page, next_page: next_page, }; Template::render("index", &context) } #[derive(Serialize, Debug)] struct SearchDTO { pub profile: ProfileDTO, pub search_results: Vec<AnswerDTO>, pub site_url: String, pub query: String, } #[get("/search?<query>")] fn search(repo: web::guard::Repository, profile: State<UserProfile>, query: String) -> Template
/* POST /questions */ #[derive(FromForm)] struct PostQuestionForm { body: String } #[derive(Serialize, Debug)] struct PostQuestionFailedDTO { reason: String } #[post("/questions", data = "<params>")] fn post_question(repo: web::guard::Repository, client_ip: web::guard::ClientIP, params: request::Form<PostQuestionForm>) -> Result<response::Redirect, Template> { match repo.store_question(params.body.clone(), client_ip.address()) { Ok(question) => { let question_id = question.id; notify::send_email(question); Ok(response::Redirect::to(format!("/question/{}/after_post", question_id))) }, Err(err) => { match err { model::StoreQuestionError::BlankBody => { let context = PostQuestionFailedDTO { reason: String::from("質問の内容が空です") }; Err(Template::render("question/post_failed", &context)) } } } } } /* GET /question/after_post */ #[derive(Serialize, Debug)] struct AfterPostQuestionDTO{ pub question: QuestionDTO } #[get("/question/<question_id>/after_post")] fn after_post_question(question_id: i32, repo: web::guard::Repository) -> Result<Template, response::Redirect> { if let Some(question) = repo.find_question(question_id) { let context = AfterPostQuestionDTO{ question: QuestionDTO::from(question) }; Ok(Template::render("question/after_post", &context)) } else { Err(response::Redirect::to("/")) } } /* GET /answer/<question_id> */ #[derive(Serialize, Debug)] struct ShowAnswerDTO { pub answer: AnswerDTO, pub next_answer: Option<AnswerDTO>, pub prev_answer: Option<AnswerDTO>, } #[get("/question/<question_id>")] fn show_question(question_id: i32, repo: web::guard::Repository) -> Result<response::Redirect, status::NotFound<&'static str>> { match repo.find_answer_by_question_id(question_id) { Some(answer) => Ok(response::Redirect::to(format!("/answer/{}", answer.id))), None => Err(status::NotFound("not found")) } } #[get("/answer/<_answer_id>")] fn show_answer(_answer_id: i32, app_env: State<AppEnvironment>) -> Template { let mut context: HashMap<String, bool> = HashMap::new(); context.insert(String::from("is_production"), app_env.is_production); return Template::render("answer/show", &context); } #[get("/api/answer/<answer_id>")] fn show_answer_json(answer_id: i32, repo: web::guard::Repository) -> Result<Json<ShowAnswerDTO>, status::NotFound<&'static str>> { if let Some(answer) = repo.find_answer(answer_id) { let next_answer_opt = repo.find_next_answer(answer.created_at); let prev_answer_opt = repo.find_prev_answer(answer.created_at); let context = ShowAnswerDTO { answer: AnswerDTO::from(answer), next_answer: next_answer_opt.map(|a| AnswerDTO::from(a)), prev_answer: prev_answer_opt.map(|a| AnswerDTO::from(a)) }; return Ok(Json(context)); } return Err(status::NotFound("not found")); } /* GET /admin */ #[derive(Serialize, Debug)] struct AdminIndexDTO { pub questions: Vec<QuestionDTO> } #[get("/admin")] fn admin_index(repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question_dtos = repo.not_answered_questions() .into_iter() .filter(|q| !q.hidden ) .map(|q| QuestionDTO::from(q)) .collect::<Vec<_>>(); let context = AdminIndexDTO { questions: question_dtos }; Template::render("admin/index", &context) } /* GET /admin/question/<question_id> */ #[get("/admin/question/<question_id>")] fn admin_show_question(question_id: i32, repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question = repo.find_question(question_id).unwrap(); let context = QuestionDTO::from(question); Template::render("admin/questions/show", &context) } /* POST /question/<question_id>/answer */ #[derive(FromForm)] struct PostAnswerForm { body: String } #[post("/admin/question/<question_id>/answer", data = "<params>")] fn admin_post_answer( question_id: i32, repo: web::
{ let answer_dtos = repo.search_answers(query.clone()) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let context = SearchDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, search_results: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), query: query, }; Template::render("search", &context) }
identifier_body
main.rs
/* Force ssl */ #[get("/<path..>")] fn redirect_ssl(path: PathBuf, _ssl: web::guard::ForceSSL) -> response::Redirect { let redirect_to = format!("https://{}/{}", env::var("APPLICATION_DOMAIN").unwrap(), path.as_path().display()); println!("Redirect to:{}", redirect_to); response::Redirect::to(redirect_to) } /* GET /static/ */ #[get("/static/<file..>")] fn files(file: PathBuf) -> Result<web::CachedFile, status::NotFound<String>> { let path = Path::new("static/").join(file); response::NamedFile::open(&path) .map_err(|_| status::NotFound(format!("Bad path: {:?}", path))) .map(|nf| web::CachedFile(nf)) } /* GET / */ #[derive(Serialize, Debug)] struct IndexDTO { pub profile: ProfileDTO, pub answers: Vec<AnswerDTO>, pub site_url: String, pub next_page: Option<i64>, pub prev_page: Option<i64>, } #[derive(Serialize, Debug)] struct ProfileDTO { pub username: String, pub image_url: String, } #[test] fn next_prev_page_test() { assert!((None, Some(1)) == next_prev_page(0)); assert!((Some(0), Some(2)) == next_prev_page(1)); assert!((Some(1), Some(3)) == next_prev_page(2)); } // next: newer, prev: older // older -> page number increases fn next_prev_page(current_page: i64) -> (Option<i64>, Option<i64>) { let prev_page = Some(current_page + 1); let next_page = if current_page <= 0 { None } else { Some(current_page - 1) }; return (next_page, prev_page); } const ANSWER_COUNT_PER_PAGE : i64 = 30; #[get("/")] fn index(repo: web::guard::Repository, profile: State<UserProfile>) -> Template { let page = 0; index_with_page(repo, profile, page) } #[get("/page/<page>")] fn index_with_page(repo: web::guard::Repository, profile: State<UserProfile>, page: i64) -> Template { let offset = page * ANSWER_COUNT_PER_PAGE; let answer_dtos = repo.answers(offset, ANSWER_COUNT_PER_PAGE) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let (next_page, prev_page) = next_prev_page(page); let context = IndexDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, answers: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), prev_page: prev_page, next_page: next_page, }; Template::render("index", &context) } #[derive(Serialize, Debug)] struct SearchDTO { pub profile: ProfileDTO, pub search_results: Vec<AnswerDTO>, pub site_url: String, pub query: String, } #[get("/search?<query>")] fn search(repo: web::guard::Repository, profile: State<UserProfile>, query: String) -> Template { let answer_dtos = repo.search_answers(query.clone()) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let context = SearchDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, search_results: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), query: query, }; Template::render("search", &context) } /* POST /questions */ #[derive(FromForm)] struct PostQuestionForm { body: String } #[derive(Serialize, Debug)] struct PostQuestionFailedDTO { reason: String } #[post("/questions", data = "<params>")] fn post_question(repo: web::guard::Repository, client_ip: web::guard::ClientIP, params: request::Form<PostQuestionForm>) -> Result<response::Redirect, Template> { match repo.store_question(params.body.clone(), client_ip.address()) { Ok(question) => { let question_id = question.id; notify::send_email(question); Ok(response::Redirect::to(format!("/question/{}/after_post", question_id))) }, Err(err) => { match err { model::StoreQuestionError::BlankBody => { let context = PostQuestionFailedDTO { reason: String::from("質問の内容が空です") }; Err(Template::render("question/post_failed", &context)) } } } } } /* GET /question/after_post */ #[derive(Serialize, Debug)] struct AfterPostQuestionDTO{ pub question: QuestionDTO } #[get("/question/<question_id>/after_post")] fn after_post_question(question_id: i32, repo: web::guard::Repository) -> Result<Template, response::Redirect> { if let Some(question) = repo.find_question(question_id) { let context = AfterPostQuestionDTO{ question: QuestionDTO::from(question) }; Ok(Template::render("question/after_post", &context)) } else { Err(response::Redirect::to("/")) } } /* GET /answer/<question_id> */ #[derive(Serialize, Debug)] struct ShowAnswerDTO { pub answer: AnswerDTO, pub next_answer: Option<AnswerDTO>, pub prev_answer: Option<AnswerDTO>, } #[get("/question/<question_id>")] fn show_question(question_id: i32, repo: web::guard::Repository) -> Result<response::Redirect, status::NotFound<&'static str>> { match repo.find_answer_by_question_id(question_id) { Some(answer) => Ok(response::Redirect::to(format!("/answer/{}", answer.id))), None => Err(status::NotFound("not found")) } } #[get("/answer/<_answer_id>")] fn show_answer(_answer_id: i32, app_env: State<AppEnvironment>) -> Template { let mut context: HashMap<String, bool> = HashMap::new(); context.insert(String::from("is_production"), app_env.is_production); return Template::render("answer/show", &context); } #[get("/api/answer/<answer_id>")] fn show_answer_json(answer_id: i32, repo: web::guard::Repository) -> Result<Json<ShowAnswerDTO>, status::NotFound<&'static str>> { if let Some(answer) = repo.find_answer(answer_id) { let next_answer_opt = repo.find_next_answer(answer.created_at); let prev_answer_opt = repo.find_prev_answer(answer.created_at); let context = ShowAnswerDTO { answer: AnswerDTO::from(answer), next_answer: next_answer_opt.map(|a| AnswerDTO::from(a)), prev_answer: prev_answer_opt.map(|a| AnswerDTO::from(a)) }; return Ok(Json(context)); } return Err(status::NotFound("not found")); } /* GET /admin */ #[derive(Serialize, Debug)] struct AdminIndexDTO { pub questions: Vec<QuestionDTO> } #[get("/admin")] fn admin_index(repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question_dtos = repo.not_answered_questions() .into_iter() .filter(|q| !q.hidden ) .map(|q| QuestionDTO::from(q)) .collect::<Vec<_>>(); let context = AdminIndexDTO { questions: question_dtos }; Template::render("admin/index", &context) } /* GET /admin/question/<question_id> */ #[get("/admin/question/<question_id>")] fn admin_show_question(question_id: i32, repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question = repo.find_question(question_id).unwrap(); let context = QuestionDTO::from(question); Template::render("admin/questions/show", &context) } /* POST /question/<question_id>/answer */ #[derive(FromForm)] struct PostAnswerForm { body: String } #[post("/admin/question/<question_id>/answer", data = "<params>")] fn admin_post_answer( question_id: i32, repo: web::guard::Repository, params: request::Form<PostAnswerForm>, tweet_sender: State<SyncSender<model::Answer>>, _auth: web::guard::BasicAuth ) -> response::Redirect { let answer_body = params.body.clone(); if let Some(answer) = repo.store_answer(question_id, answer_body.clone()) { tweet_sender.send(answer).unwrap(); } response::Redirect::to("/admin") } /* POST /admin/question/<question_id>/hide */ #[post("/admin/question/<question_id>/hide")] fn admin_hide_question(question_id: i32, repo: web::guard::Repository, _auth: web::guard::BasicAuth ) -> response::Redirect { let mut question = repo.find_question(question_id).unwrap(); question.hidden = true; repo.update_question(question); response::Redirect::to("/admin") } /* Force login */ struct RequireLogin(); i
mpl<'r> resp
identifier_name
main.rs
: QuestionDTO, pub created_at: DateTime<Local>, pub created_at_recognizable: String, } impl AnswerDTO { fn from(a: model::Answer) -> Self { Self { id: a.id, body: a.body, created_at: a.created_at, created_at_recognizable: utils::recognizable_datetime(a.created_at), question: QuestionDTO::from(a.question) } } } #[derive(Serialize, Debug)] struct QuestionDTO { pub id: i32, pub body: String, pub created_at: DateTime<Local>, pub created_at_recognizable: String, } impl QuestionDTO { fn from(q: model::Question) -> Self { Self { id: q.id, body: q.body, created_at: q.created_at, created_at_recognizable: utils::recognizable_datetime(q.created_at) } } } /* Force ssl */ #[get("/<path..>")] fn redirect_ssl(path: PathBuf, _ssl: web::guard::ForceSSL) -> response::Redirect { let redirect_to = format!("https://{}/{}", env::var("APPLICATION_DOMAIN").unwrap(), path.as_path().display()); println!("Redirect to:{}", redirect_to); response::Redirect::to(redirect_to) } /* GET /static/ */ #[get("/static/<file..>")] fn files(file: PathBuf) -> Result<web::CachedFile, status::NotFound<String>> { let path = Path::new("static/").join(file); response::NamedFile::open(&path) .map_err(|_| status::NotFound(format!("Bad path: {:?}", path))) .map(|nf| web::CachedFile(nf)) } /* GET / */ #[derive(Serialize, Debug)] struct IndexDTO { pub profile: ProfileDTO, pub answers: Vec<AnswerDTO>, pub site_url: String, pub next_page: Option<i64>, pub prev_page: Option<i64>, } #[derive(Serialize, Debug)] struct ProfileDTO { pub username: String, pub image_url: String, } #[test] fn next_prev_page_test() { assert!((None, Some(1)) == next_prev_page(0)); assert!((Some(0), Some(2)) == next_prev_page(1)); assert!((Some(1), Some(3)) == next_prev_page(2)); } // next: newer, prev: older // older -> page number increases fn next_prev_page(current_page: i64) -> (Option<i64>, Option<i64>) { let prev_page = Some(current_page + 1); let next_page = if current_page <= 0 { None } else { Some(current_page - 1) }; return (next_page, prev_page); } const ANSWER_COUNT_PER_PAGE : i64 = 30; #[get("/")] fn index(repo: web::guard::Repository, profile: State<UserProfile>) -> Template { let page = 0; index_with_page(repo, profile, page) } #[get("/page/<page>")] fn index_with_page(repo: web::guard::Repository, profile: State<UserProfile>, page: i64) -> Template { let offset = page * ANSWER_COUNT_PER_PAGE; let answer_dtos = repo.answers(offset, ANSWER_COUNT_PER_PAGE) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let (next_page, prev_page) = next_prev_page(page); let context = IndexDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, answers: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), prev_page: prev_page, next_page: next_page, }; Template::render("index", &context) } #[derive(Serialize, Debug)] struct SearchDTO { pub profile: ProfileDTO, pub search_results: Vec<AnswerDTO>, pub site_url: String, pub query: String, } #[get("/search?<query>")] fn search(repo: web::guard::Repository, profile: State<UserProfile>, query: String) -> Template { let answer_dtos = repo.search_answers(query.clone()) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let context = SearchDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, search_results: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), query: query, }; Template::render("search", &context) } /* POST /questions */ #[derive(FromForm)] struct PostQuestionForm { body: String } #[derive(Serialize, Debug)] struct PostQuestionFailedDTO { reason: String } #[post("/questions", data = "<params>")] fn post_question(repo: web::guard::Repository, client_ip: web::guard::ClientIP, params: request::Form<PostQuestionForm>) -> Result<response::Redirect, Template> { match repo.store_question(params.body.clone(), client_ip.address()) { Ok(question) =>
, Err(err) => { match err { model::StoreQuestionError::BlankBody => { let context = PostQuestionFailedDTO { reason: String::from("質問の内容が空です") }; Err(Template::render("question/post_failed", &context)) } } } } } /* GET /question/after_post */ #[derive(Serialize, Debug)] struct AfterPostQuestionDTO{ pub question: QuestionDTO } #[get("/question/<question_id>/after_post")] fn after_post_question(question_id: i32, repo: web::guard::Repository) -> Result<Template, response::Redirect> { if let Some(question) = repo.find_question(question_id) { let context = AfterPostQuestionDTO{ question: QuestionDTO::from(question) }; Ok(Template::render("question/after_post", &context)) } else { Err(response::Redirect::to("/")) } } /* GET /answer/<question_id> */ #[derive(Serialize, Debug)] struct ShowAnswerDTO { pub answer: AnswerDTO, pub next_answer: Option<AnswerDTO>, pub prev_answer: Option<AnswerDTO>, } #[get("/question/<question_id>")] fn show_question(question_id: i32, repo: web::guard::Repository) -> Result<response::Redirect, status::NotFound<&'static str>> { match repo.find_answer_by_question_id(question_id) { Some(answer) => Ok(response::Redirect::to(format!("/answer/{}", answer.id))), None => Err(status::NotFound("not found")) } } #[get("/answer/<_answer_id>")] fn show_answer(_answer_id: i32, app_env: State<AppEnvironment>) -> Template { let mut context: HashMap<String, bool> = HashMap::new(); context.insert(String::from("is_production"), app_env.is_production); return Template::render("answer/show", &context); } #[get("/api/answer/<answer_id>")] fn show_answer_json(answer_id: i32, repo: web::guard::Repository) -> Result<Json<ShowAnswerDTO>, status::NotFound<&'static str>> { if let Some(answer) = repo.find_answer(answer_id) { let next_answer_opt = repo.find_next_answer(answer.created_at); let prev_answer_opt = repo.find_prev_answer(answer.created_at); let context = ShowAnswerDTO { answer: AnswerDTO::from(answer), next_answer: next_answer_opt.map(|a| AnswerDTO::from(a)), prev_answer: prev_answer_opt.map(|a| AnswerDTO::from(a)) }; return Ok(Json(context)); } return Err(status::NotFound("not found")); } /* GET /admin */ #[derive(Serialize, Debug)] struct AdminIndexDTO { pub questions: Vec<QuestionDTO> } #[get("/admin")] fn admin_index(repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question_dtos = repo.not_answered_questions() .into_iter() .filter(|q| !q.hidden ) .map(|q| QuestionDTO::from(q)) .collect::<Vec<_>>(); let context = AdminIndexDTO { questions: question_dtos }; Template::render("admin/index", &context) } /* GET /admin/question/<question_id> */ #[get("/admin/question/<question_id>")] fn admin_show_question(question_id: i32, repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question = repo.find_question(question_id).unwrap(); let context = QuestionDTO::from(question); Template::render("admin/questions/show", &context) } /* POST /question/<question_id>/answer */ #[derive(FromForm)] struct PostAnswerForm { body: String } #[post("/admin/question/<question_id>/answer", data = "<params>")] fn admin_post_answer( question_id: i32, repo: web::
{ let question_id = question.id; notify::send_email(question); Ok(response::Redirect::to(format!("/question/{}/after_post", question_id))) }
conditional_block
main.rs
: QuestionDTO, pub created_at: DateTime<Local>, pub created_at_recognizable: String, } impl AnswerDTO { fn from(a: model::Answer) -> Self { Self { id: a.id, body: a.body, created_at: a.created_at, created_at_recognizable: utils::recognizable_datetime(a.created_at), question: QuestionDTO::from(a.question) } } } #[derive(Serialize, Debug)] struct QuestionDTO { pub id: i32, pub body: String, pub created_at: DateTime<Local>, pub created_at_recognizable: String, } impl QuestionDTO { fn from(q: model::Question) -> Self { Self { id: q.id, body: q.body, created_at: q.created_at, created_at_recognizable: utils::recognizable_datetime(q.created_at) } } } /* Force ssl */ #[get("/<path..>")] fn redirect_ssl(path: PathBuf, _ssl: web::guard::ForceSSL) -> response::Redirect { let redirect_to = format!("https://{}/{}", env::var("APPLICATION_DOMAIN").unwrap(), path.as_path().display()); println!("Redirect to:{}", redirect_to); response::Redirect::to(redirect_to) } /* GET /static/ */ #[get("/static/<file..>")] fn files(file: PathBuf) -> Result<web::CachedFile, status::NotFound<String>> { let path = Path::new("static/").join(file); response::NamedFile::open(&path) .map_err(|_| status::NotFound(format!("Bad path: {:?}", path))) .map(|nf| web::CachedFile(nf)) } /* GET / */ #[derive(Serialize, Debug)] struct IndexDTO { pub profile: ProfileDTO, pub answers: Vec<AnswerDTO>, pub site_url: String, pub next_page: Option<i64>, pub prev_page: Option<i64>, } #[derive(Serialize, Debug)] struct ProfileDTO { pub username: String, pub image_url: String, } #[test] fn next_prev_page_test() { assert!((None, Some(1)) == next_prev_page(0)); assert!((Some(0), Some(2)) == next_prev_page(1)); assert!((Some(1), Some(3)) == next_prev_page(2)); } // next: newer, prev: older // older -> page number increases fn next_prev_page(current_page: i64) -> (Option<i64>, Option<i64>) { let prev_page = Some(current_page + 1); let next_page = if current_page <= 0 { None } else { Some(current_page - 1) }; return (next_page, prev_page); } const ANSWER_COUNT_PER_PAGE : i64 = 30; #[get("/")] fn index(repo: web::guard::Repository, profile: State<UserProfile>) -> Template { let page = 0; index_with_page(repo, profile, page) } #[get("/page/<page>")] fn index_with_page(repo: web::guard::Repository, profile: State<UserProfile>, page: i64) -> Template { let offset = page * ANSWER_COUNT_PER_PAGE; let answer_dtos = repo.answers(offset, ANSWER_COUNT_PER_PAGE) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let (next_page, prev_page) = next_prev_page(page); let context = IndexDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, answers: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), prev_page: prev_page, next_page: next_page, }; Template::render("index", &context) } #[derive(Serialize, Debug)] struct SearchDTO { pub profile: ProfileDTO, pub search_results: Vec<AnswerDTO>, pub site_url: String, pub query: String, } #[get("/search?<query>")] fn search(repo: web::guard::Repository, profile: State<UserProfile>, query: String) -> Template { let answer_dtos = repo.search_answers(query.clone()) .into_iter() .map(|a| AnswerDTO::from(a)) .collect::<Vec<_>>(); let context = SearchDTO { profile: ProfileDTO { username: profile.clone().name, image_url: String::from("/static/image/profile.jpg") }, search_results: answer_dtos, site_url: format!("https://{}/", env::var("APPLICATION_DOMAIN").unwrap()), query: query, }; Template::render("search", &context) } /* POST /questions */ #[derive(FromForm)] struct PostQuestionForm { body: String } #[derive(Serialize, Debug)] struct PostQuestionFailedDTO { reason: String } #[post("/questions", data = "<params>")] fn post_question(repo: web::guard::Repository, client_ip: web::guard::ClientIP, params: request::Form<PostQuestionForm>) -> Result<response::Redirect, Template> { match repo.store_question(params.body.clone(), client_ip.address()) { Ok(question) => { let question_id = question.id; notify::send_email(question); Ok(response::Redirect::to(format!("/question/{}/after_post", question_id))) }, Err(err) => { match err { model::StoreQuestionError::BlankBody => { let context = PostQuestionFailedDTO { reason: String::from("質問の内容が空です") }; Err(Template::render("question/post_failed", &context)) } } } } } /* GET /question/after_post */ #[derive(Serialize, Debug)] struct AfterPostQuestionDTO{ pub question: QuestionDTO } #[get("/question/<question_id>/after_post")] fn after_post_question(question_id: i32, repo: web::guard::Repository) -> Result<Template, response::Redirect> { if let Some(question) = repo.find_question(question_id) { let context = AfterPostQuestionDTO{ question: QuestionDTO::from(question) }; Ok(Template::render("question/after_post", &context)) } else { Err(response::Redirect::to("/")) } } /* GET /answer/<question_id> */
#[derive(Serialize, Debug)] struct ShowAnswerDTO { pub answer: AnswerDTO, pub next_answer: Option<AnswerDTO>, pub prev_answer: Option<AnswerDTO>, } #[get("/question/<question_id>")] fn show_question(question_id: i32, repo: web::guard::Repository) -> Result<response::Redirect, status::NotFound<&'static str>> { match repo.find_answer_by_question_id(question_id) { Some(answer) => Ok(response::Redirect::to(format!("/answer/{}", answer.id))), None => Err(status::NotFound("not found")) } } #[get("/answer/<_answer_id>")] fn show_answer(_answer_id: i32, app_env: State<AppEnvironment>) -> Template { let mut context: HashMap<String, bool> = HashMap::new(); context.insert(String::from("is_production"), app_env.is_production); return Template::render("answer/show", &context); } #[get("/api/answer/<answer_id>")] fn show_answer_json(answer_id: i32, repo: web::guard::Repository) -> Result<Json<ShowAnswerDTO>, status::NotFound<&'static str>> { if let Some(answer) = repo.find_answer(answer_id) { let next_answer_opt = repo.find_next_answer(answer.created_at); let prev_answer_opt = repo.find_prev_answer(answer.created_at); let context = ShowAnswerDTO { answer: AnswerDTO::from(answer), next_answer: next_answer_opt.map(|a| AnswerDTO::from(a)), prev_answer: prev_answer_opt.map(|a| AnswerDTO::from(a)) }; return Ok(Json(context)); } return Err(status::NotFound("not found")); } /* GET /admin */ #[derive(Serialize, Debug)] struct AdminIndexDTO { pub questions: Vec<QuestionDTO> } #[get("/admin")] fn admin_index(repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question_dtos = repo.not_answered_questions() .into_iter() .filter(|q| !q.hidden ) .map(|q| QuestionDTO::from(q)) .collect::<Vec<_>>(); let context = AdminIndexDTO { questions: question_dtos }; Template::render("admin/index", &context) } /* GET /admin/question/<question_id> */ #[get("/admin/question/<question_id>")] fn admin_show_question(question_id: i32, repo: web::guard::Repository, _auth: web::guard::BasicAuth) -> Template { let question = repo.find_question(question_id).unwrap(); let context = QuestionDTO::from(question); Template::render("admin/questions/show", &context) } /* POST /question/<question_id>/answer */ #[derive(FromForm)] struct PostAnswerForm { body: String } #[post("/admin/question/<question_id>/answer", data = "<params>")] fn admin_post_answer( question_id: i32, repo: web::guard::
random_line_split
lib.rs
//! ``` //! //! To get started using Crabsformer, read the quickstart tutorial below. //! //! # Quickstart Tutorial //! //! ## Prerequisites //! Before reading this quick tutorial you should know a bit of Rust. If you //! would like to refresh your memory, take a look at the [Rust book]. //! //! [Rust book]: https://doc.rust-lang.org/book/ //! //! ## The Basics //! There are two main data structures in Crabsformer: //! //! 1. [`Vector<T>`] is a fixed-length list of elements of the same //! [numeric type]. It has one atribute called [`len`] to represent the //! total number of elements. //! 2. [`Matrix<T>`] is a table of elements of the same [numeric type]. It has //! one atribute called [`shape`] that represent the number of rows and //! the number of columns. //! //! `Vector<T>` is pronounced as 'numeric vector' to avoid confussion with //! Rust's vector [`Vec<T>`] data structure. //! //! [`Vector<T>`]: vector/struct.Vector.html //! [`Matrix<T>`]: matrix/struct.Matrix.html //! [`len`]: vector/struct.Vector.html#method.len //! [`shape`]: matrix/struct.Matrix.html#method.shape //! [`Vec<T>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html //! //! ### Numeric Vector Builders //! There are several ways to create numeric vector. //! //! For example, you can create a numeric vector from a Rust vector using //! `Vector::from` static method. The type of the resulting numeric vector is //! deduced from the type of the elements in the sequences. //! //! ``` //! # use crabsformer::prelude::*; //! let x = vec![3, 1, 4, 1, 5]; //! let y = Vector::from(x); //! ``` //! //! The [`vector!`] macro is provided to make initialization of the numeric //! vector more convenient. //! //! ``` //! # use crabsformer::prelude::*; //! let v = vector![1, 10, 11, 314]; //! ``` //! //! It can also initialize each element of a numeric vector with a given value. //! //! ``` //! # use crabsformer::prelude::*; //! let v = vector![0; 5]; // vector![0, 0, 0, 0, 0] //! ``` //! //! To create a numeric vector of evenly spaced values, Crabformer provide //! [`Vector::range`] function. //! //! ``` //! # use crabsformer::prelude::*; //! let x = Vector::range(0, 10, 1).unwrap(); //! assert_eq!(x, vector![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); //! ``` //! //! To create random numeric vectors, Crabsformer provide //! [`RandomVectorBuilder`]. It can be explicitly seeded to make the results //! are reproducible. //! //! ``` //! # use crabsformer::prelude::*; //! let mut rvb = RandomVectorBuilder::new(); //! ``` //! //! The method [`rvb.uniform`] creates a numeric vector of the given length //! and populate it with random samples from a uniform distribution over the //! half-open interval. //! //! ``` //! # use crabsformer::prelude::*; //! # let mut rvb = RandomVectorBuilder::new(); //! let v = rvb.uniform(5, 0.0, 1.0).unwrap(); //! // Random //! // [0.054709196, 0.86043775, 0.21187294, 0.6413728, 0.14186311] //! ``` //! //! See also: [Numeric Vector Builders]. //! //! [`vector!`]: macro.vector.html //! [`RandomVectorBuilder`]: vector/builders/struct.RandomVectorBuilder.html //! [`rvb.uniform`]: vector/builders/struct.RandomVectorBuilder.html#method.uniform //! [Numeric Vector Builders]: vector/builders/index.html //! [`Vector::range`]: vector/struct.Vector.html#method.range //! //! ### Numeric Vector Basic Operations //! You can perform arithmetic operations on a numeric vector. Arithmetic //! operators on numeric vectors apply elementwise. A new numeric vector is //! created and filled with the result. //! //! For example, if you add the numeric vector, the arithmetic operator //! will work element-wise. The output will be a numeric vector of the same //! length. //! //! ```rust //! # use crabsformer::prelude::*; //! let x = vector![2, 4, 6] + vector![1, 3, 5]; //! assert_eq!(x, vector![3, 7, 11]); //! ``` //! //! Numeric vector substraction and multiplication also works the same: //! //! ```rust //! # use crabsformer::prelude::*; //! let x = vector![3, 1, 5] - vector![1, 3, 5]; //! assert_eq!(x, vector![2, -2, 0]); //! //! let y = vector![5, 4, 1] * vector![2, 1, 4]; //! assert_eq!(y, vector![10, 4, 4]); //! ``` //! //! You can run an arithmetic operation on the numeric vector with a scalar //! value too. For example, this code multiplies each element of the numeric //! vector by 2. //! //! ``` //! # use crabsformer::prelude::*; //! let x = vector![3, 1, 4] * 2; //! assert_eq!(x, vector![6, 2, 8]); //! ``` //! //! Some operations, such as `+=` and `*=`, act in place to modify an //! existing numeric vector rather than create a new one. //! //! ``` //! # use crabsformer::prelude::*; //! let mut x = vector![3, 1, 4]; //! //! x += 3; //! assert_eq!(x, vector![6, 4, 7]); //! //! x -= 1; //! assert_eq!(x, vector![5, 3, 6]); //! //! x *= 2; //! assert_eq!(x, vector![10, 6, 12]); //! ``` //! //! If you try to add, substract or multiply numeric vector with a different //! number of elements, you will get an error. For example: //! //! ```should_panic //! # use crabsformer::prelude::*; //! let x = vector![3, 1, 4, 1, 5] + vector![2, 10, 9]; //! // thread 'main' panicked at 'Vector addition with invalid length: 5 != 3' src/main.rs:12:13 //! ``` //! //! *TODO: add alternative x.add() to return Result instead of panics* //! //! If you would like to square of the individual elements of the numeric //! vector, or even higher up, use the [`power`] method. Here, each element of the //! numeric vector is raised to the power 2. //! //! ``` //! # use crabsformer::prelude::*; //! let x = vector![3, 1, 4, 1]; //! let y = x.power(2); //! assert_eq!(y, vector![9, 1, 16, 1]); //! ``` //! //! [`power`]: struct.Vector.html#method.power //! //! When operating with numeric vectors of different types, //! the Rust compiler will raise error like the following: //! //! ```text //! cannot add `vector::Vector<{integer}>` to `vector::Vector<{float}>` //! ``` //! //! Many unary operations, such as computing the sum of all the elements in the //! numeric vector, are implemented as methods. //! //! ``` //! # use crabsformer::prelude::*; //! let x = vector![3, 1, 4]; //! let sum = x.sum(); //! assert_eq!(sum, 8); //! assert_eq!(*x.max(), 4); //! assert_eq!(*x.min(), 1); //! ``` //! //! See also: [`power`], [`filter`], [`sum`], [`max`], [`min`]. //! //! [`power`]: struct.Vector.html#method.power //! [`filter`]: struct.Vector.html#method.filter //! [`sum`]: struct.Vector.html#method.sum //! [`max`]: struct.Vector.html#method.max //! [`min`]: struct.Vector.html#method.min //! //! ### Indexing, Slicing and Iterating Numeric Vector //! Numeric vectors can be indexed, sliced and iterated over, much like //! Rust's vector. //! //! ``` //! # use crabsformer::prelude::*; //! let x = vector![3, 1, 4, 1]; //! //! // Indexing numeric vector //! assert_eq!(x[0], 3); //! assert_eq!(x[2], 4); //! //! // Slicing numeric vector //! x.slice(0..2); // [3, 1] //! x.slice(2..); // [4, 1] //! x.slice(..2); // [3,
//! //! and this to your crate root: //! //! ``` //! use crabsformer::prelude::*;
random_line_split
2.1.dl_tf_intermediate_classifications.py
, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) data.dtypes #One hot encode data = Encoding(data, LABEL, scale_and_center = True, fileTrain = "./data/kaggle_titanic_train_EncodedScaled.csv") data.head(2) #Get list of independent features ar_independent_features = np.setdiff1d(data.columns, LABEL) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15) del(data) training_set.shape training_set.head(2) len_fea = len(ar_independent_features) # Build the model model = tf.keras.models.Sequential() # same as tf.keras.Sequential() model.add(tf.keras.layers.Dense(2*len_fea, input_shape=(len_fea,), activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(len_fea, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(2, activation=tf.nn.softmax)) model.summary() #Compile model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train it model.fit(training_set[ar_independent_features].values, training_set[LABEL].values, epochs=100, batch_size=batch_size) # 6 min #Save and retrieve model.save('./model/model_tf_kaggle_titanic_binary_classsification.h5') #model = tf.keras.models.load_model('./model/model_tf_kaggle_titanic_binary_classsification.h5') # Evaluate on test data model.evaluate(test_set[ar_independent_features].values, test_set[LABEL].values, verbose = 0) # loss value & metrics values: [0.45, 0.79] #Making Predictions predictions = model.predict(x=test_set[ar_independent_features].values) # Extracting max probability predictions_number = np.array([]) for row_num in range(predictions.shape[0]): # row_num = 0 predictions_number = np.append(predictions_number, np.argmax(predictions[row_num])) #Few statistics confusion_matrix(test_set[LABEL].values, predictions_number) classification_report(test_set[LABEL].values, predictions_number) #Statistics are also available as follows print("Overall Accuracy is ", round(accuracy_score(test_set[LABEL].values, predictions_number), 2),", Kappa is ", round(abs(cohen_kappa_score(test_set[LABEL].values, predictions_number)), 2)) #Overall Accuracy is 0.81 , Kappa is 0.56 del(training_set, test_set, predictions_number); gc.collect() #%% Binary classification: Explore few more ways to better classification # Restart the Spyder import pandas as pd import numpy as np import tensorflow as tf import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, cohen_kappa_score, confusion_matrix, classification_report import gc; gc.enable() tf.keras.backend.clear_session() # For easy reset of notebook state #Set PANDAS to show all columns in DataFrame pd.set_option('display.max_columns', None) #Set PANDAS to show all rows in DataFrame pd.set_option('display.max_rows', None) pd.set_option('precision', 2) os.chdir("D:\\trainings\\tensorflow") tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) # fix random seed for reproducibility seed = 123; np.random.seed(seed); tf.compat.v1.set_random_seed(seed) # Read data data = pd.read_csv("./data/kaggle_titanic_train.csv") data.shape data.dtypes data.head(2) data.info() print(data.describe()) #print(data.describe(include = [np.number])) # for number only #Drop few columns, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15, random_state = seed, stratify = data[LABEL]) #Building the input_fn: regressor accepts Tensors and custom function to convert pandas #Dataframe and return feature column and label values as Tensors: def input_fn(features, labels = None, custom_batch_size = batch_size, caller_source = 'train'): # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(dict(features)) if caller_source != 'test':
if caller_source == 'train': dataset = dataset.shuffle(len(features)) #if ".repeat()" is added here then add "epochs steps_per_epoch" in fit dataset = dataset.batch(custom_batch_size) return dataset #train in iterable dataset ds_train = input_fn(training_set[FEATURES], training_set[LABEL],custom_batch_size = batch_size) #Create feature columns feature_cols = [] # numeric cols for num_col in NUM_FEATURES: feature_cols.append(tf.feature_column.numeric_column(num_col, dtype=tf.float32)) #bucketized cols: If don't want to feed a number directly odel, but instead split its value into #different categories based on numerical ranges. #Buckets include the left boundary, and exclude the right boundary. bucketized_col = tf.feature_column.numeric_column(bucketized_FEATURES, dtype=tf.float32) age_buckets = tf.feature_column.bucketized_column(bucketized_col, boundaries=[30, 40, 50, 60]) feature_cols.append(age_buckets) # indicator cols cat_vocab = tf.feature_column.categorical_column_with_vocabulary_list(categorical_FEATURES, pd.unique(data[categorical_FEATURES].values)) cat_one_hot = tf.feature_column.indicator_column(cat_vocab) feature_cols.append(cat_one_hot) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(cat_one_hot) print(feature_layer(first_batch).numpy()) #Embedding cols: When there are large values per category then use an embedding column to #overcome this limitation. Instead of representing the data as a one-hot vector of many #dimensions, an embedding column represents that data as a lower-dimensional, dense vector in #which each cell can contain any number, not just 0 or 1. The size of the embedding (8, in the #example below) is a parameter that must be tuned. embedding_col = tf.feature_column.embedding_column(cat_vocab, dimension=8) # 8 Need to be tuned feature_cols.append(embedding_col) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(embedding_col) print(feature_layer(first_batch).numpy()) #CW: Read 'Hashed feature columns' and practice above ## crossed cols TBD: Not working #cat_vocab_crosssed = tf.feature_column.categorical_column_with_vocabulary_list(crossed_FEATURES, pd.unique
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
conditional_block
2.1.dl_tf_intermediate_classifications.py
, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) data.dtypes #One hot encode data = Encoding(data, LABEL, scale_and_center = True, fileTrain = "./data/kaggle_titanic_train_EncodedScaled.csv") data.head(2) #Get list of independent features ar_independent_features = np.setdiff1d(data.columns, LABEL) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15) del(data) training_set.shape training_set.head(2) len_fea = len(ar_independent_features) # Build the model model = tf.keras.models.Sequential() # same as tf.keras.Sequential() model.add(tf.keras.layers.Dense(2*len_fea, input_shape=(len_fea,), activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(len_fea, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(2, activation=tf.nn.softmax)) model.summary() #Compile model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train it model.fit(training_set[ar_independent_features].values, training_set[LABEL].values, epochs=100, batch_size=batch_size) # 6 min #Save and retrieve model.save('./model/model_tf_kaggle_titanic_binary_classsification.h5') #model = tf.keras.models.load_model('./model/model_tf_kaggle_titanic_binary_classsification.h5') # Evaluate on test data model.evaluate(test_set[ar_independent_features].values, test_set[LABEL].values, verbose = 0) # loss value & metrics values: [0.45, 0.79] #Making Predictions predictions = model.predict(x=test_set[ar_independent_features].values) # Extracting max probability predictions_number = np.array([]) for row_num in range(predictions.shape[0]): # row_num = 0 predictions_number = np.append(predictions_number, np.argmax(predictions[row_num])) #Few statistics confusion_matrix(test_set[LABEL].values, predictions_number) classification_report(test_set[LABEL].values, predictions_number) #Statistics are also available as follows print("Overall Accuracy is ", round(accuracy_score(test_set[LABEL].values, predictions_number), 2),", Kappa is ", round(abs(cohen_kappa_score(test_set[LABEL].values, predictions_number)), 2)) #Overall Accuracy is 0.81 , Kappa is 0.56 del(training_set, test_set, predictions_number); gc.collect() #%% Binary classification: Explore few more ways to better classification # Restart the Spyder import pandas as pd import numpy as np import tensorflow as tf import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, cohen_kappa_score, confusion_matrix, classification_report import gc; gc.enable() tf.keras.backend.clear_session() # For easy reset of notebook state #Set PANDAS to show all columns in DataFrame pd.set_option('display.max_columns', None) #Set PANDAS to show all rows in DataFrame pd.set_option('display.max_rows', None) pd.set_option('precision', 2) os.chdir("D:\\trainings\\tensorflow") tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) # fix random seed for reproducibility seed = 123; np.random.seed(seed); tf.compat.v1.set_random_seed(seed) # Read data data = pd.read_csv("./data/kaggle_titanic_train.csv") data.shape data.dtypes data.head(2) data.info() print(data.describe()) #print(data.describe(include = [np.number])) # for number only #Drop few columns, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15, random_state = seed, stratify = data[LABEL]) #Building the input_fn: regressor accepts Tensors and custom function to convert pandas #Dataframe and return feature column and label values as Tensors: def
(features, labels = None, custom_batch_size = batch_size, caller_source = 'train'): # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(dict(features)) if caller_source != 'test': dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) if caller_source == 'train': dataset = dataset.shuffle(len(features)) #if ".repeat()" is added here then add "epochs steps_per_epoch" in fit dataset = dataset.batch(custom_batch_size) return dataset #train in iterable dataset ds_train = input_fn(training_set[FEATURES], training_set[LABEL],custom_batch_size = batch_size) #Create feature columns feature_cols = [] # numeric cols for num_col in NUM_FEATURES: feature_cols.append(tf.feature_column.numeric_column(num_col, dtype=tf.float32)) #bucketized cols: If don't want to feed a number directly odel, but instead split its value into #different categories based on numerical ranges. #Buckets include the left boundary, and exclude the right boundary. bucketized_col = tf.feature_column.numeric_column(bucketized_FEATURES, dtype=tf.float32) age_buckets = tf.feature_column.bucketized_column(bucketized_col, boundaries=[30, 40, 50, 60]) feature_cols.append(age_buckets) # indicator cols cat_vocab = tf.feature_column.categorical_column_with_vocabulary_list(categorical_FEATURES, pd.unique(data[categorical_FEATURES].values)) cat_one_hot = tf.feature_column.indicator_column(cat_vocab) feature_cols.append(cat_one_hot) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(cat_one_hot) print(feature_layer(first_batch).numpy()) #Embedding cols: When there are large values per category then use an embedding column to #overcome this limitation. Instead of representing the data as a one-hot vector of many #dimensions, an embedding column represents that data as a lower-dimensional, dense vector in #which each cell can contain any number, not just 0 or 1. The size of the embedding (8, in the #example below) is a parameter that must be tuned. embedding_col = tf.feature_column.embedding_column(cat_vocab, dimension=8) # 8 Need to be tuned feature_cols.append(embedding_col) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(embedding_col) print(feature_layer(first_batch).numpy()) #CW: Read 'Hashed feature columns' and practice above ## crossed cols TBD: Not working #cat_vocab_crosssed = tf.feature_column.categorical_column_with_vocabulary_list(crossed_FEATURES, pd
input_fn
identifier_name
2.1.dl_tf_intermediate_classifications.py
, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) data.dtypes #One hot encode data = Encoding(data, LABEL, scale_and_center = True, fileTrain = "./data/kaggle_titanic_train_EncodedScaled.csv") data.head(2) #Get list of independent features ar_independent_features = np.setdiff1d(data.columns, LABEL) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15) del(data)
training_set.shape training_set.head(2) len_fea = len(ar_independent_features) # Build the model model = tf.keras.models.Sequential() # same as tf.keras.Sequential() model.add(tf.keras.layers.Dense(2*len_fea, input_shape=(len_fea,), activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(len_fea, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(2, activation=tf.nn.softmax)) model.summary() #Compile model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train it model.fit(training_set[ar_independent_features].values, training_set[LABEL].values, epochs=100, batch_size=batch_size) # 6 min #Save and retrieve model.save('./model/model_tf_kaggle_titanic_binary_classsification.h5') #model = tf.keras.models.load_model('./model/model_tf_kaggle_titanic_binary_classsification.h5') # Evaluate on test data model.evaluate(test_set[ar_independent_features].values, test_set[LABEL].values, verbose = 0) # loss value & metrics values: [0.45, 0.79] #Making Predictions predictions = model.predict(x=test_set[ar_independent_features].values) # Extracting max probability predictions_number = np.array([]) for row_num in range(predictions.shape[0]): # row_num = 0 predictions_number = np.append(predictions_number, np.argmax(predictions[row_num])) #Few statistics confusion_matrix(test_set[LABEL].values, predictions_number) classification_report(test_set[LABEL].values, predictions_number) #Statistics are also available as follows print("Overall Accuracy is ", round(accuracy_score(test_set[LABEL].values, predictions_number), 2),", Kappa is ", round(abs(cohen_kappa_score(test_set[LABEL].values, predictions_number)), 2)) #Overall Accuracy is 0.81 , Kappa is 0.56 del(training_set, test_set, predictions_number); gc.collect() #%% Binary classification: Explore few more ways to better classification # Restart the Spyder import pandas as pd import numpy as np import tensorflow as tf import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, cohen_kappa_score, confusion_matrix, classification_report import gc; gc.enable() tf.keras.backend.clear_session() # For easy reset of notebook state #Set PANDAS to show all columns in DataFrame pd.set_option('display.max_columns', None) #Set PANDAS to show all rows in DataFrame pd.set_option('display.max_rows', None) pd.set_option('precision', 2) os.chdir("D:\\trainings\\tensorflow") tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) # fix random seed for reproducibility seed = 123; np.random.seed(seed); tf.compat.v1.set_random_seed(seed) # Read data data = pd.read_csv("./data/kaggle_titanic_train.csv") data.shape data.dtypes data.head(2) data.info() print(data.describe()) #print(data.describe(include = [np.number])) # for number only #Drop few columns, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15, random_state = seed, stratify = data[LABEL]) #Building the input_fn: regressor accepts Tensors and custom function to convert pandas #Dataframe and return feature column and label values as Tensors: def input_fn(features, labels = None, custom_batch_size = batch_size, caller_source = 'train'): # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(dict(features)) if caller_source != 'test': dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) if caller_source == 'train': dataset = dataset.shuffle(len(features)) #if ".repeat()" is added here then add "epochs steps_per_epoch" in fit dataset = dataset.batch(custom_batch_size) return dataset #train in iterable dataset ds_train = input_fn(training_set[FEATURES], training_set[LABEL],custom_batch_size = batch_size) #Create feature columns feature_cols = [] # numeric cols for num_col in NUM_FEATURES: feature_cols.append(tf.feature_column.numeric_column(num_col, dtype=tf.float32)) #bucketized cols: If don't want to feed a number directly odel, but instead split its value into #different categories based on numerical ranges. #Buckets include the left boundary, and exclude the right boundary. bucketized_col = tf.feature_column.numeric_column(bucketized_FEATURES, dtype=tf.float32) age_buckets = tf.feature_column.bucketized_column(bucketized_col, boundaries=[30, 40, 50, 60]) feature_cols.append(age_buckets) # indicator cols cat_vocab = tf.feature_column.categorical_column_with_vocabulary_list(categorical_FEATURES, pd.unique(data[categorical_FEATURES].values)) cat_one_hot = tf.feature_column.indicator_column(cat_vocab) feature_cols.append(cat_one_hot) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(cat_one_hot) print(feature_layer(first_batch).numpy()) #Embedding cols: When there are large values per category then use an embedding column to #overcome this limitation. Instead of representing the data as a one-hot vector of many #dimensions, an embedding column represents that data as a lower-dimensional, dense vector in #which each cell can contain any number, not just 0 or 1. The size of the embedding (8, in the #example below) is a parameter that must be tuned. embedding_col = tf.feature_column.embedding_column(cat_vocab, dimension=8) # 8 Need to be tuned feature_cols.append(embedding_col) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(embedding_col) print(feature_layer(first_batch).numpy()) #CW: Read 'Hashed feature columns' and practice above ## crossed cols TBD: Not working #cat_vocab_crosssed = tf.feature_column.categorical_column_with_vocabulary_list(crossed_FEATURES, pd
random_line_split
2.1.dl_tf_intermediate_classifications.py
, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) data.dtypes #One hot encode data = Encoding(data, LABEL, scale_and_center = True, fileTrain = "./data/kaggle_titanic_train_EncodedScaled.csv") data.head(2) #Get list of independent features ar_independent_features = np.setdiff1d(data.columns, LABEL) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15) del(data) training_set.shape training_set.head(2) len_fea = len(ar_independent_features) # Build the model model = tf.keras.models.Sequential() # same as tf.keras.Sequential() model.add(tf.keras.layers.Dense(2*len_fea, input_shape=(len_fea,), activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(len_fea, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(2, activation=tf.nn.softmax)) model.summary() #Compile model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train it model.fit(training_set[ar_independent_features].values, training_set[LABEL].values, epochs=100, batch_size=batch_size) # 6 min #Save and retrieve model.save('./model/model_tf_kaggle_titanic_binary_classsification.h5') #model = tf.keras.models.load_model('./model/model_tf_kaggle_titanic_binary_classsification.h5') # Evaluate on test data model.evaluate(test_set[ar_independent_features].values, test_set[LABEL].values, verbose = 0) # loss value & metrics values: [0.45, 0.79] #Making Predictions predictions = model.predict(x=test_set[ar_independent_features].values) # Extracting max probability predictions_number = np.array([]) for row_num in range(predictions.shape[0]): # row_num = 0 predictions_number = np.append(predictions_number, np.argmax(predictions[row_num])) #Few statistics confusion_matrix(test_set[LABEL].values, predictions_number) classification_report(test_set[LABEL].values, predictions_number) #Statistics are also available as follows print("Overall Accuracy is ", round(accuracy_score(test_set[LABEL].values, predictions_number), 2),", Kappa is ", round(abs(cohen_kappa_score(test_set[LABEL].values, predictions_number)), 2)) #Overall Accuracy is 0.81 , Kappa is 0.56 del(training_set, test_set, predictions_number); gc.collect() #%% Binary classification: Explore few more ways to better classification # Restart the Spyder import pandas as pd import numpy as np import tensorflow as tf import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, cohen_kappa_score, confusion_matrix, classification_report import gc; gc.enable() tf.keras.backend.clear_session() # For easy reset of notebook state #Set PANDAS to show all columns in DataFrame pd.set_option('display.max_columns', None) #Set PANDAS to show all rows in DataFrame pd.set_option('display.max_rows', None) pd.set_option('precision', 2) os.chdir("D:\\trainings\\tensorflow") tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) # fix random seed for reproducibility seed = 123; np.random.seed(seed); tf.compat.v1.set_random_seed(seed) # Read data data = pd.read_csv("./data/kaggle_titanic_train.csv") data.shape data.dtypes data.head(2) data.info() print(data.describe()) #print(data.describe(include = [np.number])) # for number only #Drop few columns, may not be use ful for current analysis data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) data.info() # Now see if any missing values in any columns #Note: how to impute missing value is purview of ML. Here, do simple thing so that we focus on DL age_avg = data['Age'].mean() data['Age'].fillna(value = age_avg, inplace=True) #Now, drop rows if any missing data.dropna(inplace=True) data.info() # Now see if any missing values in any columns # identifications of features and response. Detail'll be explained in a few minutes NUM_FEATURES = ['Pclass','SibSp','Parch','Fare'] bucketized_FEATURES = 'Age' categorical_FEATURES = 'Sex' embedding_FEATURES = 'Embarked' crossed_FEATURES = 'Embarked' # With Age FEATURES = np.append(np.append(np.append(np.append(NUM_FEATURES, bucketized_FEATURES), categorical_FEATURES), embedding_FEATURES), crossed_FEATURES) FEATURES = np.unique(FEATURES) LABEL = "Survived" batch_size = 8 #Do the data type conversion for category data[[categorical_FEATURES,embedding_FEATURES]] = data[[categorical_FEATURES,embedding_FEATURES]].apply(lambda x: x.astype('category')) #Segragate 85% and 15% training_set ,test_set = train_test_split(data,test_size=0.15, random_state = seed, stratify = data[LABEL]) #Building the input_fn: regressor accepts Tensors and custom function to convert pandas #Dataframe and return feature column and label values as Tensors: def input_fn(features, labels = None, custom_batch_size = batch_size, caller_source = 'train'): # Convert the inputs to a Dataset.
#train in iterable dataset ds_train = input_fn(training_set[FEATURES], training_set[LABEL],custom_batch_size = batch_size) #Create feature columns feature_cols = [] # numeric cols for num_col in NUM_FEATURES: feature_cols.append(tf.feature_column.numeric_column(num_col, dtype=tf.float32)) #bucketized cols: If don't want to feed a number directly odel, but instead split its value into #different categories based on numerical ranges. #Buckets include the left boundary, and exclude the right boundary. bucketized_col = tf.feature_column.numeric_column(bucketized_FEATURES, dtype=tf.float32) age_buckets = tf.feature_column.bucketized_column(bucketized_col, boundaries=[30, 40, 50, 60]) feature_cols.append(age_buckets) # indicator cols cat_vocab = tf.feature_column.categorical_column_with_vocabulary_list(categorical_FEATURES, pd.unique(data[categorical_FEATURES].values)) cat_one_hot = tf.feature_column.indicator_column(cat_vocab) feature_cols.append(cat_one_hot) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(cat_one_hot) print(feature_layer(first_batch).numpy()) #Embedding cols: When there are large values per category then use an embedding column to #overcome this limitation. Instead of representing the data as a one-hot vector of many #dimensions, an embedding column represents that data as a lower-dimensional, dense vector in #which each cell can contain any number, not just 0 or 1. The size of the embedding (8, in the #example below) is a parameter that must be tuned. embedding_col = tf.feature_column.embedding_column(cat_vocab, dimension=8) # 8 Need to be tuned feature_cols.append(embedding_col) # Just to see - one hot encoding first_batch = next(iter(ds_train))[0] feature_layer = tf.keras.layers.DenseFeatures(embedding_col) print(feature_layer(first_batch).numpy()) #CW: Read 'Hashed feature columns' and practice above ## crossed cols TBD: Not working #cat_vocab_crosssed = tf.feature_column.categorical_column_with_vocabulary_list(crossed_FEATURES, pd.unique
dataset = tf.data.Dataset.from_tensor_slices(dict(features)) if caller_source != 'test': dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) if caller_source == 'train': dataset = dataset.shuffle(len(features)) #if ".repeat()" is added here then add "epochs steps_per_epoch" in fit dataset = dataset.batch(custom_batch_size) return dataset
identifier_body
ivf_torch.py
elif dtype == int: return int elif dtype == list: return "float32" else: raise ValueError( "[KeOps] {} data type incompatible with KeOps.".format(dtype) ) @staticmethod def rand(m, n, dtype=default_dtype, device="cpu"): return torch.rand(m, n, dtype=dtype, device=device) @staticmethod def randn(m, n, dtype=default_dtype, device="cpu"): return torch.randn(m, n, dtype=dtype, device=device) @staticmethod def zeros(shape, dtype=default_dtype, device="cpu"): return torch.zeros(shape, dtype=dtype, device=device) @staticmethod def eye(n, dtype=default_dtype, device="cpu"): return torch.eye(n, dtype=dtype, device=device) @staticmethod def array(x, dtype=default_dtype, device="cpu"): if dtype == "float32": dtype = torch.float32 elif dtype == "float64": dtype = torch.float64 elif dtype == "float16": dtype = torch.float16 else: raise ValueError("[KeOps] data type incompatible with KeOps.") return torch.tensor(x, dtype=dtype, device=device) @staticmethod def device(x): if isinstance(x, torch.Tensor): return x.device else: return None @staticmethod def distance_function(metric): def euclidean(x,y): return ((x-y) ** 2).sum(-1) def manhattan(x,y): return ((x-y).abs()).sum(-1) def angular(x,y): return -(x | y) def angular_full(x,y): return angular(x,y)/((angular(x,x)*angular(y,y)).sqrt()) def hyperbolic(x,y): return ((x - y) ** 2).sum(-1) / (x[0] * y[0]) if metric=='euclidean': return euclidean elif metric=='manhattan': return manhattan elif metric=='angular': return angular elif metric=='angular_full': return angular_full elif metric=='hyperbolic': return hyperbolic else: raise ValueError('Unknown metric') @staticmethod def sort(x): return torch.sort(x) @staticmethod def unsqueeze(x,n): return torch.unsqueeze(x,n) @staticmethod def arange(n,device="cpu"): return torch.arange(n,device=device) @staticmethod def repeat(x,n): return torch.repeat_interleave(x,n) @staticmethod def to(x,device): return x.to(device) @staticmethod def index_select(input,dim,index): return torch.index_select(input,dim,index) @staticmethod def norm(x,p=2,dim=-1): return torch.norm(x,p=p,dim=dim) @staticmethod def kmeans(x, distance=None, K=10, Niter=10, device="cuda", approx=False, n=10): from pykeops.torch import LazyTensor if distance is None: distance = torchtools.distance_function("euclidean") def calc_centroid(x, c, cl, n=10): "Helper function to optimise centroid location" c = torch.clone(c.detach()).to(device) c.requires_grad = True x1 = LazyTensor(x.unsqueeze(0)) op = torch.optim.Adam([c], lr=1 / n) scaling = 1 / torch.gather(torch.bincount(cl), 0, cl).view(-1, 1) scaling.requires_grad = False with torch.autograd.set_detect_anomaly(True): for _ in range(n): c.requires_grad = True op.zero_grad() c1 = LazyTensor(torch.index_select(c, 0, cl).unsqueeze(0)) d = distance(x1, c1) loss = ( d.sum(0) * scaling ).sum() # calculate distance to centroid for each datapoint, divide by total number of points in that cluster, and sum loss.backward(retain_graph=False) op.step() return c.detach() N, D = x.shape c = x[:K, :].clone() x_i = LazyTensor(x.view(N, 1, D).to(device)) for i in range(Niter): c_j = LazyTensor(c.view(1, K, D).to(device)) D_ij = distance(x_i, c_j) cl = D_ij.argmin(dim=1).long().view(-1) # updating c: either with approximation or exact if approx: # approximate with GD optimisation c = calc_centroid(x, c, cl, n) else: # exact from average c.zero_() c.scatter_add_(0, cl[:, None].repeat(1, D), x) Ncl = torch.bincount(cl, minlength=K).type_as(c).view(K, 1) c /= Ncl if torch.any(torch.isnan(c)): raise ValueError( "NaN detected in centroids during KMeans, please check metric is correct" ) return cl, c def squared_distances(x, y): x_norm = (x ** 2).sum(1).reshape(-1, 1) y_norm = (y ** 2).sum(1).reshape(1, -1) dist = x_norm + y_norm - 2.0 * torch.matmul(x, torch.transpose(y, 0, 1)) return dist def torch_kernel(x, y, s, kernel): sq = squared_distances(x, y) _kernel = { "gaussian": lambda _sq, _s: torch.exp(-_sq / (_s * _s)), "laplacian": lambda _sq, _s: torch.exp(-torch.sqrt(_sq) / _s), "cauchy": lambda _sq, _s: 1.0 / (1 + _sq / (_s * _s)), "inverse_multiquadric": lambda _sq, _s: torch.rsqrt(1 + _sq / (_s * _s)), } return _kernel[kernel](sq, s) class GenericIVF: """Abstract class to compute IVF functions End-users should use 'pykeops.numpy.ivf' or 'pykeops.torch.ivf' """ def __init__(self, k, metric, normalise, LazyTensor): self.__k = k self.__normalise = normalise self.__update_metric(metric) self.__LazyTensor = LazyTensor self.__c = None def __update_metric(self, metric): if isinstance(metric, str): self.__distance = self.tools.distance_function(metric) self.__metric = metric elif callable(metric): self.__distance = metric self.__metric = "custom" else: raise ValueError("Unrecognised metric input type") @property def metric(self): """Returns the metric used in the search""" return self.__metric @property def c(self): """Returns the clusters obtained through K-Means""" if self.__c is not None: return self.__c else: raise ValueError("Run .fit() first!") def __get_tools(self): pass def __k_argmin(self, x, y, k=1): x_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(x, 1), self.__device) ) y_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(y, 0), self.__device) ) d = self.__distance(x_LT, y_LT) if not self.tools.is_tensor(x): if self.__backend: d.backend = self.__backend if k == 1: return self.tools.view(self.tools.long(d.argmin(dim=1)), -1) else: return self.tools.long(d.argKmin(K=k, dim=1)) def __sort_clusters(self, x, lab, store_x=True): lab, perm = self.tools.sort(self.tools.view(lab, -1)) if store_x: self.__x_perm = perm else: self.__y_perm = perm return x[perm], lab def __unsort(self, nn): return self.tools.index_select(self.__x_perm[nn], 0, self.__y_perm.argsort()) def _fit( self, x, clusters=50, a=5, Niter=15, device=None, backend=None, approx=False, n=50, ): """ Fits the main dataset """ if type(clusters) != int: raise ValueError("Clusters must be an integer") if clusters >= len(x): raise ValueError("Number of clusters must be less than length of dataset") if type(a) != int: raise ValueError("Number of clusters to search over must be an integer") if a > clusters: raise ValueError( "Number of clusters to search over must be less than total number of clusters" ) if len(x
return "float64" elif dtype == torch.float16: return "float16"
random_line_split
ivf_torch.py
list: return "float32" else: raise ValueError( "[KeOps] {} data type incompatible with KeOps.".format(dtype) ) @staticmethod def rand(m, n, dtype=default_dtype, device="cpu"): return torch.rand(m, n, dtype=dtype, device=device) @staticmethod def randn(m, n, dtype=default_dtype, device="cpu"): return torch.randn(m, n, dtype=dtype, device=device) @staticmethod def zeros(shape, dtype=default_dtype, device="cpu"): return torch.zeros(shape, dtype=dtype, device=device) @staticmethod def eye(n, dtype=default_dtype, device="cpu"): return torch.eye(n, dtype=dtype, device=device) @staticmethod def array(x, dtype=default_dtype, device="cpu"): if dtype == "float32": dtype = torch.float32 elif dtype == "float64": dtype = torch.float64 elif dtype == "float16": dtype = torch.float16 else: raise ValueError("[KeOps] data type incompatible with KeOps.") return torch.tensor(x, dtype=dtype, device=device) @staticmethod def device(x): if isinstance(x, torch.Tensor): return x.device else: return None @staticmethod def distance_function(metric): def euclidean(x,y): return ((x-y) ** 2).sum(-1) def manhattan(x,y): return ((x-y).abs()).sum(-1) def angular(x,y): return -(x | y) def angular_full(x,y): return angular(x,y)/((angular(x,x)*angular(y,y)).sqrt()) def hyperbolic(x,y): return ((x - y) ** 2).sum(-1) / (x[0] * y[0]) if metric=='euclidean': return euclidean elif metric=='manhattan': return manhattan elif metric=='angular': return angular elif metric=='angular_full': return angular_full elif metric=='hyperbolic': return hyperbolic else: raise ValueError('Unknown metric') @staticmethod def sort(x): return torch.sort(x) @staticmethod def unsqueeze(x,n): return torch.unsqueeze(x,n) @staticmethod def arange(n,device="cpu"): return torch.arange(n,device=device) @staticmethod def repeat(x,n): return torch.repeat_interleave(x,n) @staticmethod def to(x,device): return x.to(device) @staticmethod def index_select(input,dim,index): return torch.index_select(input,dim,index) @staticmethod def norm(x,p=2,dim=-1): return torch.norm(x,p=p,dim=dim) @staticmethod def kmeans(x, distance=None, K=10, Niter=10, device="cuda", approx=False, n=10): from pykeops.torch import LazyTensor if distance is None: distance = torchtools.distance_function("euclidean") def calc_centroid(x, c, cl, n=10): "Helper function to optimise centroid location" c = torch.clone(c.detach()).to(device) c.requires_grad = True x1 = LazyTensor(x.unsqueeze(0)) op = torch.optim.Adam([c], lr=1 / n) scaling = 1 / torch.gather(torch.bincount(cl), 0, cl).view(-1, 1) scaling.requires_grad = False with torch.autograd.set_detect_anomaly(True): for _ in range(n): c.requires_grad = True op.zero_grad() c1 = LazyTensor(torch.index_select(c, 0, cl).unsqueeze(0)) d = distance(x1, c1) loss = ( d.sum(0) * scaling ).sum() # calculate distance to centroid for each datapoint, divide by total number of points in that cluster, and sum loss.backward(retain_graph=False) op.step() return c.detach() N, D = x.shape c = x[:K, :].clone() x_i = LazyTensor(x.view(N, 1, D).to(device)) for i in range(Niter): c_j = LazyTensor(c.view(1, K, D).to(device)) D_ij = distance(x_i, c_j) cl = D_ij.argmin(dim=1).long().view(-1) # updating c: either with approximation or exact if approx: # approximate with GD optimisation c = calc_centroid(x, c, cl, n) else: # exact from average c.zero_() c.scatter_add_(0, cl[:, None].repeat(1, D), x) Ncl = torch.bincount(cl, minlength=K).type_as(c).view(K, 1) c /= Ncl if torch.any(torch.isnan(c)): raise ValueError( "NaN detected in centroids during KMeans, please check metric is correct" ) return cl, c def squared_distances(x, y): x_norm = (x ** 2).sum(1).reshape(-1, 1) y_norm = (y ** 2).sum(1).reshape(1, -1) dist = x_norm + y_norm - 2.0 * torch.matmul(x, torch.transpose(y, 0, 1)) return dist def torch_kernel(x, y, s, kernel): sq = squared_distances(x, y) _kernel = { "gaussian": lambda _sq, _s: torch.exp(-_sq / (_s * _s)), "laplacian": lambda _sq, _s: torch.exp(-torch.sqrt(_sq) / _s), "cauchy": lambda _sq, _s: 1.0 / (1 + _sq / (_s * _s)), "inverse_multiquadric": lambda _sq, _s: torch.rsqrt(1 + _sq / (_s * _s)), } return _kernel[kernel](sq, s) class GenericIVF: """Abstract class to compute IVF functions End-users should use 'pykeops.numpy.ivf' or 'pykeops.torch.ivf' """ def __init__(self, k, metric, normalise, LazyTensor): self.__k = k self.__normalise = normalise self.__update_metric(metric) self.__LazyTensor = LazyTensor self.__c = None def __update_metric(self, metric): if isinstance(metric, str): self.__distance = self.tools.distance_function(metric) self.__metric = metric elif callable(metric): self.__distance = metric self.__metric = "custom" else: raise ValueError("Unrecognised metric input type") @property def metric(self): """Returns the metric used in the search""" return self.__metric @property def c(self): """Returns the clusters obtained through K-Means""" if self.__c is not None: return self.__c else: raise ValueError("Run .fit() first!") def __get_tools(self): pass def __k_argmin(self, x, y, k=1): x_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(x, 1), self.__device) ) y_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(y, 0), self.__device) ) d = self.__distance(x_LT, y_LT) if not self.tools.is_tensor(x): if self.__backend:
if k == 1: return self.tools.view(self.tools.long(d.argmin(dim=1)), -1) else: return self.tools.long(d.argKmin(K=k, dim=1)) def __sort_clusters(self, x, lab, store_x=True): lab, perm = self.tools.sort(self.tools.view(lab, -1)) if store_x: self.__x_perm = perm else: self.__y_perm = perm return x[perm], lab def __unsort(self, nn): return self.tools.index_select(self.__x_perm[nn], 0, self.__y_perm.argsort()) def _fit( self, x, clusters=50, a=5, Niter=15, device=None, backend=None, approx=False, n=50, ): """ Fits the main dataset """ if type(clusters) != int: raise ValueError("Clusters must be an integer") if clusters >= len(x): raise ValueError("Number of clusters must be less than length of dataset") if type(a) != int: raise ValueError("Number of clusters to search over must be an integer") if a > clusters: raise ValueError( "Number of clusters to search over must be less than total number of clusters" ) if len(x.shape) != 2: raise ValueError("Input must be a 2D array") if self.__normalise: x = x / self.tools.repeat(self.tools.norm
d.backend = self.__backend
conditional_block
ivf_torch.py
list: return "float32" else: raise ValueError( "[KeOps] {} data type incompatible with KeOps.".format(dtype) ) @staticmethod def rand(m, n, dtype=default_dtype, device="cpu"): return torch.rand(m, n, dtype=dtype, device=device) @staticmethod def randn(m, n, dtype=default_dtype, device="cpu"): return torch.randn(m, n, dtype=dtype, device=device) @staticmethod def zeros(shape, dtype=default_dtype, device="cpu"): return torch.zeros(shape, dtype=dtype, device=device) @staticmethod def eye(n, dtype=default_dtype, device="cpu"): return torch.eye(n, dtype=dtype, device=device) @staticmethod def array(x, dtype=default_dtype, device="cpu"): if dtype == "float32": dtype = torch.float32 elif dtype == "float64": dtype = torch.float64 elif dtype == "float16": dtype = torch.float16 else: raise ValueError("[KeOps] data type incompatible with KeOps.") return torch.tensor(x, dtype=dtype, device=device) @staticmethod def device(x): if isinstance(x, torch.Tensor): return x.device else: return None @staticmethod def distance_function(metric): def euclidean(x,y): return ((x-y) ** 2).sum(-1) def manhattan(x,y): return ((x-y).abs()).sum(-1) def angular(x,y): return -(x | y) def angular_full(x,y): return angular(x,y)/((angular(x,x)*angular(y,y)).sqrt()) def hyperbolic(x,y): return ((x - y) ** 2).sum(-1) / (x[0] * y[0]) if metric=='euclidean': return euclidean elif metric=='manhattan': return manhattan elif metric=='angular': return angular elif metric=='angular_full': return angular_full elif metric=='hyperbolic': return hyperbolic else: raise ValueError('Unknown metric') @staticmethod def sort(x): return torch.sort(x) @staticmethod def unsqueeze(x,n): return torch.unsqueeze(x,n) @staticmethod def arange(n,device="cpu"): return torch.arange(n,device=device) @staticmethod def repeat(x,n): return torch.repeat_interleave(x,n) @staticmethod def to(x,device): return x.to(device) @staticmethod def index_select(input,dim,index): return torch.index_select(input,dim,index) @staticmethod def norm(x,p=2,dim=-1): return torch.norm(x,p=p,dim=dim) @staticmethod def kmeans(x, distance=None, K=10, Niter=10, device="cuda", approx=False, n=10): from pykeops.torch import LazyTensor if distance is None: distance = torchtools.distance_function("euclidean") def calc_centroid(x, c, cl, n=10):
N, D = x.shape c = x[:K, :].clone() x_i = LazyTensor(x.view(N, 1, D).to(device)) for i in range(Niter): c_j = LazyTensor(c.view(1, K, D).to(device)) D_ij = distance(x_i, c_j) cl = D_ij.argmin(dim=1).long().view(-1) # updating c: either with approximation or exact if approx: # approximate with GD optimisation c = calc_centroid(x, c, cl, n) else: # exact from average c.zero_() c.scatter_add_(0, cl[:, None].repeat(1, D), x) Ncl = torch.bincount(cl, minlength=K).type_as(c).view(K, 1) c /= Ncl if torch.any(torch.isnan(c)): raise ValueError( "NaN detected in centroids during KMeans, please check metric is correct" ) return cl, c def squared_distances(x, y): x_norm = (x ** 2).sum(1).reshape(-1, 1) y_norm = (y ** 2).sum(1).reshape(1, -1) dist = x_norm + y_norm - 2.0 * torch.matmul(x, torch.transpose(y, 0, 1)) return dist def torch_kernel(x, y, s, kernel): sq = squared_distances(x, y) _kernel = { "gaussian": lambda _sq, _s: torch.exp(-_sq / (_s * _s)), "laplacian": lambda _sq, _s: torch.exp(-torch.sqrt(_sq) / _s), "cauchy": lambda _sq, _s: 1.0 / (1 + _sq / (_s * _s)), "inverse_multiquadric": lambda _sq, _s: torch.rsqrt(1 + _sq / (_s * _s)), } return _kernel[kernel](sq, s) class GenericIVF: """Abstract class to compute IVF functions End-users should use 'pykeops.numpy.ivf' or 'pykeops.torch.ivf' """ def __init__(self, k, metric, normalise, LazyTensor): self.__k = k self.__normalise = normalise self.__update_metric(metric) self.__LazyTensor = LazyTensor self.__c = None def __update_metric(self, metric): if isinstance(metric, str): self.__distance = self.tools.distance_function(metric) self.__metric = metric elif callable(metric): self.__distance = metric self.__metric = "custom" else: raise ValueError("Unrecognised metric input type") @property def metric(self): """Returns the metric used in the search""" return self.__metric @property def c(self): """Returns the clusters obtained through K-Means""" if self.__c is not None: return self.__c else: raise ValueError("Run .fit() first!") def __get_tools(self): pass def __k_argmin(self, x, y, k=1): x_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(x, 1), self.__device) ) y_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(y, 0), self.__device) ) d = self.__distance(x_LT, y_LT) if not self.tools.is_tensor(x): if self.__backend: d.backend = self.__backend if k == 1: return self.tools.view(self.tools.long(d.argmin(dim=1)), -1) else: return self.tools.long(d.argKmin(K=k, dim=1)) def __sort_clusters(self, x, lab, store_x=True): lab, perm = self.tools.sort(self.tools.view(lab, -1)) if store_x: self.__x_perm = perm else: self.__y_perm = perm return x[perm], lab def __unsort(self, nn): return self.tools.index_select(self.__x_perm[nn], 0, self.__y_perm.argsort()) def _fit( self, x, clusters=50, a=5, Niter=15, device=None, backend=None, approx=False, n=50, ): """ Fits the main dataset """ if type(clusters) != int: raise ValueError("Clusters must be an integer") if clusters >= len(x): raise ValueError("Number of clusters must be less than length of dataset") if type(a) != int: raise ValueError("Number of clusters to search over must be an integer") if a > clusters: raise ValueError( "Number of clusters to search over must be less than total number of clusters" ) if len(x.shape) != 2: raise ValueError("Input must be a 2D array") if self.__normalise: x = x / self.tools.repeat(self.tools
"Helper function to optimise centroid location" c = torch.clone(c.detach()).to(device) c.requires_grad = True x1 = LazyTensor(x.unsqueeze(0)) op = torch.optim.Adam([c], lr=1 / n) scaling = 1 / torch.gather(torch.bincount(cl), 0, cl).view(-1, 1) scaling.requires_grad = False with torch.autograd.set_detect_anomaly(True): for _ in range(n): c.requires_grad = True op.zero_grad() c1 = LazyTensor(torch.index_select(c, 0, cl).unsqueeze(0)) d = distance(x1, c1) loss = ( d.sum(0) * scaling ).sum() # calculate distance to centroid for each datapoint, divide by total number of points in that cluster, and sum loss.backward(retain_graph=False) op.step() return c.detach()
identifier_body
ivf_torch.py
list: return "float32" else: raise ValueError( "[KeOps] {} data type incompatible with KeOps.".format(dtype) ) @staticmethod def rand(m, n, dtype=default_dtype, device="cpu"): return torch.rand(m, n, dtype=dtype, device=device) @staticmethod def randn(m, n, dtype=default_dtype, device="cpu"): return torch.randn(m, n, dtype=dtype, device=device) @staticmethod def zeros(shape, dtype=default_dtype, device="cpu"): return torch.zeros(shape, dtype=dtype, device=device) @staticmethod def eye(n, dtype=default_dtype, device="cpu"): return torch.eye(n, dtype=dtype, device=device) @staticmethod def array(x, dtype=default_dtype, device="cpu"): if dtype == "float32": dtype = torch.float32 elif dtype == "float64": dtype = torch.float64 elif dtype == "float16": dtype = torch.float16 else: raise ValueError("[KeOps] data type incompatible with KeOps.") return torch.tensor(x, dtype=dtype, device=device) @staticmethod def device(x): if isinstance(x, torch.Tensor): return x.device else: return None @staticmethod def distance_function(metric): def euclidean(x,y): return ((x-y) ** 2).sum(-1) def manhattan(x,y): return ((x-y).abs()).sum(-1) def angular(x,y): return -(x | y) def angular_full(x,y): return angular(x,y)/((angular(x,x)*angular(y,y)).sqrt()) def hyperbolic(x,y): return ((x - y) ** 2).sum(-1) / (x[0] * y[0]) if metric=='euclidean': return euclidean elif metric=='manhattan': return manhattan elif metric=='angular': return angular elif metric=='angular_full': return angular_full elif metric=='hyperbolic': return hyperbolic else: raise ValueError('Unknown metric') @staticmethod def sort(x): return torch.sort(x) @staticmethod def unsqueeze(x,n): return torch.unsqueeze(x,n) @staticmethod def arange(n,device="cpu"): return torch.arange(n,device=device) @staticmethod def repeat(x,n): return torch.repeat_interleave(x,n) @staticmethod def to(x,device): return x.to(device) @staticmethod def index_select(input,dim,index): return torch.index_select(input,dim,index) @staticmethod def norm(x,p=2,dim=-1): return torch.norm(x,p=p,dim=dim) @staticmethod def kmeans(x, distance=None, K=10, Niter=10, device="cuda", approx=False, n=10): from pykeops.torch import LazyTensor if distance is None: distance = torchtools.distance_function("euclidean") def calc_centroid(x, c, cl, n=10): "Helper function to optimise centroid location" c = torch.clone(c.detach()).to(device) c.requires_grad = True x1 = LazyTensor(x.unsqueeze(0)) op = torch.optim.Adam([c], lr=1 / n) scaling = 1 / torch.gather(torch.bincount(cl), 0, cl).view(-1, 1) scaling.requires_grad = False with torch.autograd.set_detect_anomaly(True): for _ in range(n): c.requires_grad = True op.zero_grad() c1 = LazyTensor(torch.index_select(c, 0, cl).unsqueeze(0)) d = distance(x1, c1) loss = ( d.sum(0) * scaling ).sum() # calculate distance to centroid for each datapoint, divide by total number of points in that cluster, and sum loss.backward(retain_graph=False) op.step() return c.detach() N, D = x.shape c = x[:K, :].clone() x_i = LazyTensor(x.view(N, 1, D).to(device)) for i in range(Niter): c_j = LazyTensor(c.view(1, K, D).to(device)) D_ij = distance(x_i, c_j) cl = D_ij.argmin(dim=1).long().view(-1) # updating c: either with approximation or exact if approx: # approximate with GD optimisation c = calc_centroid(x, c, cl, n) else: # exact from average c.zero_() c.scatter_add_(0, cl[:, None].repeat(1, D), x) Ncl = torch.bincount(cl, minlength=K).type_as(c).view(K, 1) c /= Ncl if torch.any(torch.isnan(c)): raise ValueError( "NaN detected in centroids during KMeans, please check metric is correct" ) return cl, c def squared_distances(x, y): x_norm = (x ** 2).sum(1).reshape(-1, 1) y_norm = (y ** 2).sum(1).reshape(1, -1) dist = x_norm + y_norm - 2.0 * torch.matmul(x, torch.transpose(y, 0, 1)) return dist def torch_kernel(x, y, s, kernel): sq = squared_distances(x, y) _kernel = { "gaussian": lambda _sq, _s: torch.exp(-_sq / (_s * _s)), "laplacian": lambda _sq, _s: torch.exp(-torch.sqrt(_sq) / _s), "cauchy": lambda _sq, _s: 1.0 / (1 + _sq / (_s * _s)), "inverse_multiquadric": lambda _sq, _s: torch.rsqrt(1 + _sq / (_s * _s)), } return _kernel[kernel](sq, s) class GenericIVF: """Abstract class to compute IVF functions End-users should use 'pykeops.numpy.ivf' or 'pykeops.torch.ivf' """ def __init__(self, k, metric, normalise, LazyTensor): self.__k = k self.__normalise = normalise self.__update_metric(metric) self.__LazyTensor = LazyTensor self.__c = None def __update_metric(self, metric): if isinstance(metric, str): self.__distance = self.tools.distance_function(metric) self.__metric = metric elif callable(metric): self.__distance = metric self.__metric = "custom" else: raise ValueError("Unrecognised metric input type") @property def metric(self): """Returns the metric used in the search""" return self.__metric @property def c(self): """Returns the clusters obtained through K-Means""" if self.__c is not None: return self.__c else: raise ValueError("Run .fit() first!") def
(self): pass def __k_argmin(self, x, y, k=1): x_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(x, 1), self.__device) ) y_LT = self.__LazyTensor( self.tools.to(self.tools.unsqueeze(y, 0), self.__device) ) d = self.__distance(x_LT, y_LT) if not self.tools.is_tensor(x): if self.__backend: d.backend = self.__backend if k == 1: return self.tools.view(self.tools.long(d.argmin(dim=1)), -1) else: return self.tools.long(d.argKmin(K=k, dim=1)) def __sort_clusters(self, x, lab, store_x=True): lab, perm = self.tools.sort(self.tools.view(lab, -1)) if store_x: self.__x_perm = perm else: self.__y_perm = perm return x[perm], lab def __unsort(self, nn): return self.tools.index_select(self.__x_perm[nn], 0, self.__y_perm.argsort()) def _fit( self, x, clusters=50, a=5, Niter=15, device=None, backend=None, approx=False, n=50, ): """ Fits the main dataset """ if type(clusters) != int: raise ValueError("Clusters must be an integer") if clusters >= len(x): raise ValueError("Number of clusters must be less than length of dataset") if type(a) != int: raise ValueError("Number of clusters to search over must be an integer") if a > clusters: raise ValueError( "Number of clusters to search over must be less than total number of clusters" ) if len(x.shape) != 2: raise ValueError("Input must be a 2D array") if self.__normalise: x = x / self.tools.repeat(self.tools
__get_tools
identifier_name
views.py
, title=title, description=description, start_time=start_time, end_time=end_time, location= location ) return HttpResponseRedirect(reverse('manCal:calendar')) return render(request, 'event.html', {'form': form}) #generic update view for event edit class EventEdit(LoginRequiredMixin, generic.UpdateView): #In which model the data are stored model = Event #fields to update fields = ['title', 'description', 'start_time', 'end_time', 'location'] #template to use to get data template_name = 'event.html' #generic delete vie for event delete class EventDelete(LoginRequiredMixin, generic.DeleteView): model = Event template_name = 'event_delete.html' success_url = reverse_lazy('manCal:calendar') #overriding data in confermation form to provide cancel button def post(self, request, *args, **kwargs): if "cancel" in request.POST: return redirect('manCal:calendar') else: return super(EventDelete, self).post(request, *args, **kwargs) #event details view @login_required def event_details(request, event_id): #locating event in database useing the event_id given in the url event = Event.objects.get(id=event_id) #getting members and files attached to the event eventmember = EventMember.objects.filter(event=event) eventfiles = EventFiles.objects.filter(event=event) #defining variables for API call API_KEY = 'AIzaSyDio4Zj99JOhP8SBQBM3CydIsc91ld-Jbs' address = event.location params = { 'key' : API_KEY, 'address': address } lat = 51.509865 lon = -0.118092 base_url = 'https://maps.googleapis.com/maps/api/geocode/json?' #API response conteining geo-cordinates response = requests.get(base_url, params=params).json() #checking if the request was succesful if response['status'] == 'OK': geometry = response['results'][0]['geometry'] #obtaing latiture and longitude lat = geometry['location']['lat'] lon = geometry['location']['lng'] context = { #pasing retrived data to the template 'event': event, 'eventmember': eventmember, 'eventfiles': eventfiles, 'lat' : lat, 'lon' : lon, } return render(request, 'event-details.html', context) #weather view @login_required def weatherView(request): #API variable for weather API url = 'http://api.openweathermap.org/data/2.5/onecall?lat={lat}&exclude=hourly,minutely&lon={lon}&units=metric&appid=dbd607d4b59f61a34125bf4f2a185f8d' user = CustomUser.objects.get(username= request.user) #API variable for google API API_KEY = 'AIzaSyDio4Zj99JOhP8SBQBM3CydIsc91ld-Jbs' base_url = 'https://maps.googleapis.com/maps/api/geocode/json?' #chekc if the search form was submitted or the page was reloaded if request.method == 'POST': #if form submitted, get input from request location = request.POST.get('location') #check if location already exist cityCount = Locations.objects.filter(user=user).filter(location = location).count() form = AddLocation(request.POST) #validateing from if form.is_valid(): if cityCount == 0: #if city does not exist in database params = { 'key' : API_KEY, 'address': location } #check if the location exist useing google API response_test = requests.get(base_url, params=params).json() if response_test['status'] == 'OK': #if exist save city in database obj= form.save(commit=False) obj.user = user obj.save() #should be simple params not weather becasue we are useing Google API paramsWeather = { 'key' : API_KEY, 'address': obj.location } #getting location cord response = requests.get(base_url, params=paramsWeather).json() if response['status'] == 'OK': #if infomation available geometry = response['results'][0]['geometry'] lat = geometry['location']['lat'] lon = geometry['location']['lng'] #send request for weather information r = requests.get(url.format(lat=lat, lon=lon)).json() #adding info in dictionary city_weather = { 'location_id' : obj.id, 'city' : obj.location, 'temperature' : round(r['current']['temp']), 'main' : r['daily'][0]['weather'][0]['main'], 'icon' : r['daily'][0]['weather'][0]['icon'], 'tempMax' : round(r['daily'][0]['temp']['max']), 'tempMin' : round(r['daily'][0]['temp']['min']), } #return dictionary to Ajax reqeust with JsonResponse return JsonResponse({'city_weather' : city_weather, 'errorCode' : "200"}, status= 200) else: return JsonResponse({'error' : "Location not found", 'errorCode' : "500"}, status= 200) elif cityCount > 0: return JsonResponse({'error' : "Location already added", 'errorCode' : "500"}, status= 200) return JsonResponse({'error' : "Invalid input", 'errorCode' : "500"}, status= 200) form = AddLocation() #if the page was loaded without from submittion #get all weather location saved by the user cities = Locations.objects.filter(user=user) #create empty arrasy to store all weather data about each city weather_data = [] #do the same thing as we did when a city was added for each city in the database for city in cities: params = { 'key' : API_KEY, 'address': city.location } response = requests.get(base_url, params=params).json() if response['status'] == 'OK': geometry = response['results'][0]['geometry'] #check if lat and lgn are obtained correctly lat = geometry['location']['lat'] lon = geometry['location']['lng'] r = requests.get(url.format(lat=lat, lon=lon)).json() city_weather = { 'location_id' : city.id, 'city' : city.location, 'temperature' : round(r['current']['temp']), 'main' : r['daily'][0]['weather'][0]['main'], 'icon' : r['daily'][0]['weather'][0]['icon'], 'tempMax' : round(r['daily'][0]['temp']['max']), 'tempMin' : round(r['daily'][0]['temp']['min']), } #append the data for the city to weather_data before passing to the next city weather_data.append(city_weather) context = { 'form' : form, 'weather_data' : weather_data, } return render(request, 'weather.html', context) #add a member for an event @login_required def add_eventmember(request, event_id): forms = AddMemberForm() #check request method if request.method == 'POST': #if POST validate and sabe forms = AddMemberForm(request.POST) if forms.is_valid(): member = EventMember.objects.filter(event=event_id) event = Event.objects.get(id=event_id) #maximum 9 member for event if member.count() <= 9: #save meber user = forms.cleaned_data['user'] EventMember.objects.create( event=event, user=user ) return redirect('manCal:event-detail', event_id = event.id,) else: print('--------------User limit exceed!-----------------') context = { 'form': forms } return render(request, 'add_member.html', context) #delete member @login_required def member_delete(request, member_id): #get member useing the member_id in the url member = EventMember.objects.get(id= member_id) #delete form database member.delete() #return succesfful response to Ajax request return JsonResponse({'result' : 'ok'}, status=200) #delete file, same process as delete member @login_required def file_delete(request, file_id): file = EventFiles.objects.get(id = file_id) file.delete() return JsonResponse({'result' : 'ok'}, status=200) #delete location, same process as delete member @login_required def location_delete(request, location_id): location = Locations.objects.get(id = location_id) location.delete() return JsonResponse({'result' : 'ok'}, status=200) #note delte same process as delete member @login_required def
note_delete
identifier_name
views.py
else: Http404('Wrong credentials') # If logged in, session variables are cleaned up and user logged out. Otherwise redirected to login page @login_required def logoutView(request): logout(request) #registration def signUpView(request): #checking if methos is POST if request.method == "POST": #getting from from request form = signUpForm(request.POST) #validateing from if form.is_valid(): #if valid save and redirect to login with messege form.save() messages.success(request,"Registration Successful!") return redirect("/login") else: #error print('failed after falidation') else: #clean up form form = signUpForm() return render(request, "signup.html", {"form": form}) #view to updated account info @login_required def profileView(request): #checking request methos if request.method == 'POST': #extracting form infromation form request and storing them in local variable user = CustomUser.objects.get(username= request.user) first_name = request.POST.get('first_name') last_name = request.POST.get('last_name') email = request.POST.get('email') #updateding existing value with updated one user.first_name= first_name user.last_name = last_name user.email=email #save and redirect to same page user.save() return redirect("manCal:profile") context = { } return render(request, "profile.html", context) # start calendar render views #get date for starting calendar date def get_date(req_day): if req_day: year, month = (int(x) for x in req_day.split('-')) return date(year, month, day=1) return datetime.today() #action to go prev month def prev_month(d): #changeing the day with which the calendar is started first = d.replace(day=1) prev_month = first - timedelta(days=1) #coverting and formatting data for html month = 'month=' + str(prev_month.year) + '-' + str(prev_month.month) return month ##same as prev_month def next_month(d): days_in_month = calendar.monthrange(d.year, d.month)[1] last = d.replace(day=days_in_month) next_month = last + timedelta(days=1) month = 'month=' + str(next_month.year) + '-' + str(next_month.month) return month #calendar genric list view class CalendarView(LoginRequiredMixin, generic.ListView): model = Event #template to render template_name = 'calendar.html' #setting up context data def get_context_data(self, **kwargs): #supercalss call context = super().get_context_data(**kwargs) #getting date for calendar start d = get_date(self.request.GET.get('month', None)) user = CustomUser.objects.get(username= self.request.user) #pasing initializing variable for calendar cal = Calendar(d.year, d.month, user) html_cal = cal.formatmonth(withyear=True) #getting user notes notes = Notes.objects.filter(user=user) #defining new context data context['calendar'] = mark_safe(html_cal) context['prev_month'] = prev_month(d) context['next_month'] = next_month(d) context['notes'] = notes context['user']= user return context #create events @login_required def create_event(request): form = EventForm(request.POST or None) #checking if the request type is post and if the form is valid if request.POST and form.is_valid(): #getting specific inputs from Django form and storing them in separated variable title = form.cleaned_data['title'] description = form.cleaned_data['description'] start_time = form.cleaned_data['start_time'] end_time = form.cleaned_data['end_time'] location = form.cleaned_data['location'] #creating new event object Event.objects.get_or_create( user=request.user, title=title, description=description, start_time=start_time, end_time=end_time, location= location ) return HttpResponseRedirect(reverse('manCal:calendar')) return render(request, 'event.html', {'form': form}) #generic update view for event edit class EventEdit(LoginRequiredMixin, generic.UpdateView): #In which model the data are stored model = Event #fields to update fields = ['title', 'description', 'start_time', 'end_time', 'location'] #template to use to get data template_name = 'event.html' #generic delete vie for event delete class EventDelete(LoginRequiredMixin, generic.DeleteView): model = Event template_name = 'event_delete.html' success_url = reverse_lazy('manCal:calendar') #overriding data in confermation form to provide cancel button def post(self, request, *args, **kwargs): if "cancel" in request.POST: return redirect('manCal:calendar') else: return super(EventDelete, self).post(request, *args, **kwargs) #event details view @login_required def event_details(request, event_id): #locating event in database useing the event_id given in the url event = Event.objects.get(id=event_id) #getting members and files attached to the event eventmember = EventMember.objects.filter(event=event) eventfiles = EventFiles.objects.filter(event=event) #defining variables for API call API_KEY = 'AIzaSyDio4Zj99JOhP8SBQBM3CydIsc91ld-Jbs' address = event.location params = { 'key' : API_KEY, 'address': address } lat = 51.509865 lon = -0.118092 base_url = 'https://maps.googleapis.com/maps/api/geocode/json?' #API response conteining geo-cordinates response = requests.get(base_url, params=params).json() #checking if the request was succesful if response['status'] == 'OK': geometry = response['results'][0]['geometry'] #obtaing latiture and longitude lat = geometry['location']['lat'] lon = geometry['location']['lng'] context = { #pasing retrived data to the template 'event': event, 'eventmember': eventmember, 'eventfiles': eventfiles, 'lat' : lat, 'lon' : lon, } return render(request, 'event-details.html', context) #weather view @login_required def weatherView(request): #API variable for weather API url = 'http://api.openweathermap.org/data/2.5/onecall?lat={lat}&exclude=hourly,minutely&lon={lon}&units=metric&appid=dbd607d4b59f61a34125bf4f2a185f8d' user = CustomUser.objects.get(username= request.user) #API variable for google API API_KEY = 'AIzaSyDio4Zj99JOhP8SBQBM3CydIsc91ld-Jbs' base_url = 'https://maps.googleapis.com/maps/api/geocode/json?' #chekc if the search form was submitted or the page was reloaded if request.method == 'POST': #if form submitted, get input from request location = request.POST.get('location') #check if location already exist cityCount = Locations.objects.filter(user=user).filter(location = location).count() form = AddLocation(request.POST) #validateing from if form.is_valid(): if cityCount == 0: #if city does not exist in database params = { 'key' : API_KEY, 'address': location } #check if the location exist useing google API response_test = requests.get(base_url, params=params).json() if response_test['status'] == 'OK': #if exist save city in database obj= form.save(commit=False) obj.user = user obj.save() #should be simple params not weather becasue we are useing Google API paramsWeather = { 'key' : API_KEY, 'address': obj.location } #getting location cord response = requests.get(base_url, params=paramsWeather).json() if response['status'] == 'OK': #if
request.session['username'] = username request.session['password'] = password context = { 'username': username, 'password': password, 'loggedin': True } response = render(request, 'index.html', context) # Remember last login in cookie now = D.datetime.utcnow() max_age = 365 * 24 * 60 * 60 #one year delta = now + D.timedelta(seconds=max_age) format = "%a, %d-%b-%Y %H:%M:%S GMT" expires = D.datetime.strftime(delta, format) response.set_cookie('last_login',now,expires=expires) #return response return redirect("/index")
conditional_block
views.py
.com/maps/api/geocode/json?' #API response conteining geo-cordinates response = requests.get(base_url, params=params).json() #checking if the request was succesful if response['status'] == 'OK': geometry = response['results'][0]['geometry'] #obtaing latiture and longitude lat = geometry['location']['lat'] lon = geometry['location']['lng'] context = { #pasing retrived data to the template 'event': event, 'eventmember': eventmember, 'eventfiles': eventfiles, 'lat' : lat, 'lon' : lon, } return render(request, 'event-details.html', context) #weather view @login_required def weatherView(request): #API variable for weather API url = 'http://api.openweathermap.org/data/2.5/onecall?lat={lat}&exclude=hourly,minutely&lon={lon}&units=metric&appid=dbd607d4b59f61a34125bf4f2a185f8d' user = CustomUser.objects.get(username= request.user) #API variable for google API API_KEY = 'AIzaSyDio4Zj99JOhP8SBQBM3CydIsc91ld-Jbs' base_url = 'https://maps.googleapis.com/maps/api/geocode/json?' #chekc if the search form was submitted or the page was reloaded if request.method == 'POST': #if form submitted, get input from request location = request.POST.get('location') #check if location already exist cityCount = Locations.objects.filter(user=user).filter(location = location).count() form = AddLocation(request.POST) #validateing from if form.is_valid(): if cityCount == 0: #if city does not exist in database params = { 'key' : API_KEY, 'address': location } #check if the location exist useing google API response_test = requests.get(base_url, params=params).json() if response_test['status'] == 'OK': #if exist save city in database obj= form.save(commit=False) obj.user = user obj.save() #should be simple params not weather becasue we are useing Google API paramsWeather = { 'key' : API_KEY, 'address': obj.location } #getting location cord response = requests.get(base_url, params=paramsWeather).json() if response['status'] == 'OK': #if infomation available geometry = response['results'][0]['geometry'] lat = geometry['location']['lat'] lon = geometry['location']['lng'] #send request for weather information r = requests.get(url.format(lat=lat, lon=lon)).json() #adding info in dictionary city_weather = { 'location_id' : obj.id, 'city' : obj.location, 'temperature' : round(r['current']['temp']), 'main' : r['daily'][0]['weather'][0]['main'], 'icon' : r['daily'][0]['weather'][0]['icon'], 'tempMax' : round(r['daily'][0]['temp']['max']), 'tempMin' : round(r['daily'][0]['temp']['min']), } #return dictionary to Ajax reqeust with JsonResponse return JsonResponse({'city_weather' : city_weather, 'errorCode' : "200"}, status= 200) else: return JsonResponse({'error' : "Location not found", 'errorCode' : "500"}, status= 200) elif cityCount > 0: return JsonResponse({'error' : "Location already added", 'errorCode' : "500"}, status= 200) return JsonResponse({'error' : "Invalid input", 'errorCode' : "500"}, status= 200) form = AddLocation() #if the page was loaded without from submittion #get all weather location saved by the user cities = Locations.objects.filter(user=user) #create empty arrasy to store all weather data about each city weather_data = [] #do the same thing as we did when a city was added for each city in the database for city in cities: params = { 'key' : API_KEY, 'address': city.location } response = requests.get(base_url, params=params).json() if response['status'] == 'OK': geometry = response['results'][0]['geometry'] #check if lat and lgn are obtained correctly lat = geometry['location']['lat'] lon = geometry['location']['lng'] r = requests.get(url.format(lat=lat, lon=lon)).json() city_weather = { 'location_id' : city.id, 'city' : city.location, 'temperature' : round(r['current']['temp']), 'main' : r['daily'][0]['weather'][0]['main'], 'icon' : r['daily'][0]['weather'][0]['icon'], 'tempMax' : round(r['daily'][0]['temp']['max']), 'tempMin' : round(r['daily'][0]['temp']['min']), } #append the data for the city to weather_data before passing to the next city weather_data.append(city_weather) context = { 'form' : form, 'weather_data' : weather_data, } return render(request, 'weather.html', context) #add a member for an event @login_required def add_eventmember(request, event_id): forms = AddMemberForm() #check request method if request.method == 'POST': #if POST validate and sabe forms = AddMemberForm(request.POST) if forms.is_valid(): member = EventMember.objects.filter(event=event_id) event = Event.objects.get(id=event_id) #maximum 9 member for event if member.count() <= 9: #save meber user = forms.cleaned_data['user'] EventMember.objects.create( event=event, user=user ) return redirect('manCal:event-detail', event_id = event.id,) else: print('--------------User limit exceed!-----------------') context = { 'form': forms } return render(request, 'add_member.html', context) #delete member @login_required def member_delete(request, member_id): #get member useing the member_id in the url member = EventMember.objects.get(id= member_id) #delete form database member.delete() #return succesfful response to Ajax request return JsonResponse({'result' : 'ok'}, status=200) #delete file, same process as delete member @login_required def file_delete(request, file_id): file = EventFiles.objects.get(id = file_id) file.delete() return JsonResponse({'result' : 'ok'}, status=200) #delete location, same process as delete member @login_required def location_delete(request, location_id): location = Locations.objects.get(id = location_id) location.delete() return JsonResponse({'result' : 'ok'}, status=200) #note delte same process as delete member @login_required def note_delete(request, note_id): note= Notes.objects.get(id= note_id) note.delete() return JsonResponse({'result' : 'ok'}, status=200) #add file for event view @login_required def add_files(request): #getting the event to which we want to add file event_id = request.POST.get('event_id') event = Event.objects.get(id=event_id) #list of the file to upload, this is a list becasue in the HTML form we allowed the user to select multiple files files = request.FILES.getlist('files') #looping throw all seleted files for file in files: fs= FileSystemStorage() #saveing the file and getting the path to it file_path = fs.save(file.name, file) #creating new EventFiles object sfile= EventFiles(event = event, files = file_path) #saveing the object sfile.save() return redirect('manCal:event-detail', event_id = event_id,) #create note @login_required def add_note(request): #getting the user and the content of the note if request.method == 'POST': user = CustomUser.objects.get(username= request.user) note = request.POST.get('note') #createing new note new_note = Notes.objects.create( user = user, note = note ) #returning created object to Ajax request converting the model data to dictionary return JsonResponse({'note' : model_to_dict(new_note)}, status=200) #update note status @login_required def note_complited(request, note_id): #getting note from note id note = Notes.objects.get(id=note_id) #changeing note staus if note.complited == True:
note.complited = False elif note.complited == False: note.complited = True #saveing new status
random_line_split
views.py
variable title = form.cleaned_data['title'] description = form.cleaned_data['description'] start_time = form.cleaned_data['start_time'] end_time = form.cleaned_data['end_time'] location = form.cleaned_data['location'] #creating new event object Event.objects.get_or_create( user=request.user, title=title, description=description, start_time=start_time, end_time=end_time, location= location ) return HttpResponseRedirect(reverse('manCal:calendar')) return render(request, 'event.html', {'form': form}) #generic update view for event edit class EventEdit(LoginRequiredMixin, generic.UpdateView): #In which model the data are stored model = Event #fields to update fields = ['title', 'description', 'start_time', 'end_time', 'location'] #template to use to get data template_name = 'event.html' #generic delete vie for event delete class EventDelete(LoginRequiredMixin, generic.DeleteView): model = Event template_name = 'event_delete.html' success_url = reverse_lazy('manCal:calendar') #overriding data in confermation form to provide cancel button def post(self, request, *args, **kwargs): if "cancel" in request.POST: return redirect('manCal:calendar') else: return super(EventDelete, self).post(request, *args, **kwargs) #event details view @login_required def event_details(request, event_id): #locating event in database useing the event_id given in the url event = Event.objects.get(id=event_id) #getting members and files attached to the event eventmember = EventMember.objects.filter(event=event) eventfiles = EventFiles.objects.filter(event=event) #defining variables for API call API_KEY = 'AIzaSyDio4Zj99JOhP8SBQBM3CydIsc91ld-Jbs' address = event.location params = { 'key' : API_KEY, 'address': address } lat = 51.509865 lon = -0.118092 base_url = 'https://maps.googleapis.com/maps/api/geocode/json?' #API response conteining geo-cordinates response = requests.get(base_url, params=params).json() #checking if the request was succesful if response['status'] == 'OK': geometry = response['results'][0]['geometry'] #obtaing latiture and longitude lat = geometry['location']['lat'] lon = geometry['location']['lng'] context = { #pasing retrived data to the template 'event': event, 'eventmember': eventmember, 'eventfiles': eventfiles, 'lat' : lat, 'lon' : lon, } return render(request, 'event-details.html', context) #weather view @login_required def weatherView(request): #API variable for weather API url = 'http://api.openweathermap.org/data/2.5/onecall?lat={lat}&exclude=hourly,minutely&lon={lon}&units=metric&appid=dbd607d4b59f61a34125bf4f2a185f8d' user = CustomUser.objects.get(username= request.user) #API variable for google API API_KEY = 'AIzaSyDio4Zj99JOhP8SBQBM3CydIsc91ld-Jbs' base_url = 'https://maps.googleapis.com/maps/api/geocode/json?' #chekc if the search form was submitted or the page was reloaded if request.method == 'POST': #if form submitted, get input from request location = request.POST.get('location') #check if location already exist cityCount = Locations.objects.filter(user=user).filter(location = location).count() form = AddLocation(request.POST) #validateing from if form.is_valid(): if cityCount == 0: #if city does not exist in database params = { 'key' : API_KEY, 'address': location } #check if the location exist useing google API response_test = requests.get(base_url, params=params).json() if response_test['status'] == 'OK': #if exist save city in database obj= form.save(commit=False) obj.user = user obj.save() #should be simple params not weather becasue we are useing Google API paramsWeather = { 'key' : API_KEY, 'address': obj.location } #getting location cord response = requests.get(base_url, params=paramsWeather).json() if response['status'] == 'OK': #if infomation available geometry = response['results'][0]['geometry'] lat = geometry['location']['lat'] lon = geometry['location']['lng'] #send request for weather information r = requests.get(url.format(lat=lat, lon=lon)).json() #adding info in dictionary city_weather = { 'location_id' : obj.id, 'city' : obj.location, 'temperature' : round(r['current']['temp']), 'main' : r['daily'][0]['weather'][0]['main'], 'icon' : r['daily'][0]['weather'][0]['icon'], 'tempMax' : round(r['daily'][0]['temp']['max']), 'tempMin' : round(r['daily'][0]['temp']['min']), } #return dictionary to Ajax reqeust with JsonResponse return JsonResponse({'city_weather' : city_weather, 'errorCode' : "200"}, status= 200) else: return JsonResponse({'error' : "Location not found", 'errorCode' : "500"}, status= 200) elif cityCount > 0: return JsonResponse({'error' : "Location already added", 'errorCode' : "500"}, status= 200) return JsonResponse({'error' : "Invalid input", 'errorCode' : "500"}, status= 200) form = AddLocation() #if the page was loaded without from submittion #get all weather location saved by the user cities = Locations.objects.filter(user=user) #create empty arrasy to store all weather data about each city weather_data = [] #do the same thing as we did when a city was added for each city in the database for city in cities: params = { 'key' : API_KEY, 'address': city.location } response = requests.get(base_url, params=params).json() if response['status'] == 'OK': geometry = response['results'][0]['geometry'] #check if lat and lgn are obtained correctly lat = geometry['location']['lat'] lon = geometry['location']['lng'] r = requests.get(url.format(lat=lat, lon=lon)).json() city_weather = { 'location_id' : city.id, 'city' : city.location, 'temperature' : round(r['current']['temp']), 'main' : r['daily'][0]['weather'][0]['main'], 'icon' : r['daily'][0]['weather'][0]['icon'], 'tempMax' : round(r['daily'][0]['temp']['max']), 'tempMin' : round(r['daily'][0]['temp']['min']), } #append the data for the city to weather_data before passing to the next city weather_data.append(city_weather) context = { 'form' : form, 'weather_data' : weather_data, } return render(request, 'weather.html', context) #add a member for an event @login_required def add_eventmember(request, event_id): forms = AddMemberForm() #check request method if request.method == 'POST': #if POST validate and sabe forms = AddMemberForm(request.POST) if forms.is_valid(): member = EventMember.objects.filter(event=event_id) event = Event.objects.get(id=event_id) #maximum 9 member for event if member.count() <= 9: #save meber user = forms.cleaned_data['user'] EventMember.objects.create( event=event, user=user ) return redirect('manCal:event-detail', event_id = event.id,) else: print('--------------User limit exceed!-----------------') context = { 'form': forms } return render(request, 'add_member.html', context) #delete member @login_required def member_delete(request, member_id): #get member useing the member_id in the url member = EventMember.objects.get(id= member_id) #delete form database member.delete() #return succesfful response to Ajax request return JsonResponse({'result' : 'ok'}, status=200) #delete file, same process as delete member @login_required def file_delete(request, file_id):
file = EventFiles.objects.get(id = file_id) file.delete() return JsonResponse({'result' : 'ok'}, status=200)
identifier_body
utils.py
and SENTENCE_END tokens print("Reading CSV file...") with open(filename, 'rt') as f: reader = csv.reader(f, skipinitialspace=True) reader.next() # Split full comments into sentences sentences = itertools.chain(*[nltk.sent_tokenize(x[0].decode("utf-8").lower()) for x in reader]) # Filter sentences sentences = [s for s in sentences if len(s) >= min_sent_characters] sentences = [s for s in sentences if "http" not in s] # Append SENTENCE_START and SENTENCE_END sentences = ["%s %s %s" % (SENTENCE_START_TOKEN, x, SENTENCE_END_TOKEN) for x in sentences] print("Parsed %d sentences." % (len(sentences))) # Tokenize the sentences into words tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences] # Count the word frequencies word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences)) print("Found %d unique words tokens." % len(word_freq.items())) # Get the most common words and build index_to_word and word_to_index vectors vocab = sorted(word_freq.items(), key=lambda x: (x[1], x[0]), reverse=True)[:vocabulary_size-2] print("Using vocabulary size %d." % vocabulary_size) print("The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[-1][0], vocab[-1][1])) sorted_vocab = sorted(vocab, key=operator.itemgetter(1)) index_to_word = ["<MASK/>", UNKNOWN_TOKEN] + [x[0] for x in sorted_vocab] word_to_index = dict([(w, i) for i, w in enumerate(index_to_word)]) # Replace all words not in our vocabulary with the unknown token for i, sent in enumerate(tokenized_sentences): tokenized_sentences[i] = [w if w in word_to_index else UNKNOWN_TOKEN for w in sent] # Create the training data X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences]) y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences]) return X_train, y_train, word_to_index, index_to_word def loadText(path, origin="", vocsize=1000, maxlen=25, training_type=1, verbose=True): """ type(path): string path : path of text file to save to origin : URL where text is vocsize : vocabulary size maxlen : max size of one sentence Return: x_train, y_train, vocabulary eg: x,y,voc,i2w,w2i = loadData('pg11.txt', origin="http://www.gutenberg.org/cache/epub/11/pg11.txt") """ filesource = get_file(path, origin=origin) text = open(filesource).read() text = SENTENCE_START_TOKEN + text + SENTENCE_END_TOKEN if verbose:
tokens = word_tokenize(text) word_freq = nltk.FreqDist(tokens) if verbose: print("Found %d unique words tokens." % len(word_freq.items())) vocab = word_freq.most_common(vocsize-3) indices_word = [x[0] for x in vocab] indices_word.append(UNKNOWN_TOKEN) indices_word.append(SENTENCE_START_TOKEN) indices_word.append(SENTENCE_END_TOKEN) word_indices = dict([(w,i) for i,w in enumerate(indices_word)]) for i, word in enumerate(tokens): tokens[i] = [word if word in word_indices else UNKNOWN_TOKEN] # now the whole text is indices of words in the vocabulary for i, word in enumerate(tokens): tokens[i] = word_indices[word[0]] # Create the training data xx = np.asarray(tokens[:-1], dtype=np.int32) yy = np.asarray(tokens[1:], dtype=np.int32) return xx, yy, vocab, word_indices, indices_word def train_with_sgd(model, X_train, y_train, learning_rate=0.001, nepoch=40, startfrom = 0, decay=0.9, callback_every=10000, callback=None): for epoch in range(startfrom, nepoch): num_examples_seen = 0 # For each training example... for i in np.random.permutation(len(y_train)): # One SGD step model.sgd_step(X_train[i], y_train[i], learning_rate, decay) num_examples_seen += 1 # Optionally do callback if (callback and callback_every and num_examples_seen % callback_every == 0): callback(model, epoch, num_examples_seen) return model def save_model_parameters_theano(model, outfile): np.savez(outfile, E=model.E.get_value(), U=model.U.get_value(), W=model.W.get_value(), V=model.V.get_value(), b=model.b.get_value(), c=model.c.get_value()) print "Saved model parameters to %s." % outfile def load_model_parameters_theano(path, modelClass=GRUTheano): npzfile = np.load(path) E, U, W, V, b, c = npzfile["E"], npzfile["U"], npzfile["W"], npzfile["V"], npzfile["b"], npzfile["c"] hidden_dim, word_dim = E.shape[0], E.shape[1] print "Building model from %s with word_dim=%d" % (path, word_dim) sys.stdout.flush() model = modelClass(word_dim, hidden_dim=hidden_dim) model.E.set_value(E) model.U.set_value(U) model.W.set_value(W) model.V.set_value(V) model.b.set_value(b) model.c.set_value(c) return model def gradient_check_theano(model, x, y, h=0.001, error_threshold=0.01): # Overwrite the bptt attribute. We need to backpropagate all the way to get the correct gradient model.bptt_truncate = 1000 # Calculate the gradients using backprop bptt_gradients = model.bptt(x, y) # List of all parameters we want to chec. model_parameters = ['E', 'U', 'W', 'b', 'V', 'c'] # Gradient check for each parameter for pidx, pname in enumerate(model_parameters): # Get the actual parameter value from the mode, e.g. model.W parameter_T = operator.attrgetter(pname)(model) parameter = parameter_T.get_value() print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape)) # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ... it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index # Save the original value so we can reset it later original_value = parameter[ix] # Estimate the gradient using (f(x+h) - f(x-h))/(2*h) parameter[ix] = original_value + h parameter_T.set_value(parameter) gradplus = model.calculate_total_loss([x],[y]) parameter[ix] = original_value - h parameter_T.set_value(parameter) gradminus = model.calculate_total_loss([x],[y]) estimated_gradient = (gradplus - gradminus)/(2*h) parameter[ix] = original_value parameter_T.set_value(parameter) # The gradient for this parameter calculated using backpropagation backprop_gradient = bptt_gradients[pidx][ix] # calculate The relative error: (|x - y|/(|x| + |y|)) relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient)) # If the error is to large fail the gradient check if relative_error > error_threshold: print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix) print "+h Loss: %f" % gradplus print "-h Loss: %f" % gradminus print "Estimated_gradient: %f" % estimated_gradient print "Backpropagation gradient: %f" % backprop_gradient print "Relative Error: %f" % relative_error return it.iternext() print "Gradient check for parameter %s passed." % (pname) def print_sentence(s, index_to_word): sentence_str = [index_to_word[x] for x in s[1:-1]] print(" ".join(sentence_str)) sys.stdout.flush() def generate_sentence(model, index_to_word, word_to_index, min_length=5): # We start the sentence with the start token new_sentence = [word_to_index[SENTENCE_START_TOKEN]] # Repeat until we get an end token while not new_sentence[-1] == word_to_index[SENT
print('corpus length:', len(text))
conditional_block
utils.py
_to_index = dict([(w, i) for i, w in enumerate(index_to_word)]) # Replace all words not in our vocabulary with the unknown token for i, sent in enumerate(tokenized_sentences): tokenized_sentences[i] = [w if w in word_to_index else UNKNOWN_TOKEN for w in sent] # Create the training data X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences]) y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences]) return X_train, y_train, word_to_index, index_to_word def loadText(path, origin="", vocsize=1000, maxlen=25, training_type=1, verbose=True): """ type(path): string path : path of text file to save to origin : URL where text is vocsize : vocabulary size maxlen : max size of one sentence Return: x_train, y_train, vocabulary eg: x,y,voc,i2w,w2i = loadData('pg11.txt', origin="http://www.gutenberg.org/cache/epub/11/pg11.txt") """ filesource = get_file(path, origin=origin) text = open(filesource).read() text = SENTENCE_START_TOKEN + text + SENTENCE_END_TOKEN if verbose: print('corpus length:', len(text)) tokens = word_tokenize(text) word_freq = nltk.FreqDist(tokens) if verbose: print("Found %d unique words tokens." % len(word_freq.items())) vocab = word_freq.most_common(vocsize-3) indices_word = [x[0] for x in vocab] indices_word.append(UNKNOWN_TOKEN) indices_word.append(SENTENCE_START_TOKEN) indices_word.append(SENTENCE_END_TOKEN) word_indices = dict([(w,i) for i,w in enumerate(indices_word)]) for i, word in enumerate(tokens): tokens[i] = [word if word in word_indices else UNKNOWN_TOKEN] # now the whole text is indices of words in the vocabulary for i, word in enumerate(tokens): tokens[i] = word_indices[word[0]] # Create the training data xx = np.asarray(tokens[:-1], dtype=np.int32) yy = np.asarray(tokens[1:], dtype=np.int32) return xx, yy, vocab, word_indices, indices_word def train_with_sgd(model, X_train, y_train, learning_rate=0.001, nepoch=40, startfrom = 0, decay=0.9, callback_every=10000, callback=None): for epoch in range(startfrom, nepoch): num_examples_seen = 0 # For each training example... for i in np.random.permutation(len(y_train)): # One SGD step model.sgd_step(X_train[i], y_train[i], learning_rate, decay) num_examples_seen += 1 # Optionally do callback if (callback and callback_every and num_examples_seen % callback_every == 0): callback(model, epoch, num_examples_seen) return model def save_model_parameters_theano(model, outfile): np.savez(outfile, E=model.E.get_value(), U=model.U.get_value(), W=model.W.get_value(), V=model.V.get_value(), b=model.b.get_value(), c=model.c.get_value()) print "Saved model parameters to %s." % outfile def load_model_parameters_theano(path, modelClass=GRUTheano): npzfile = np.load(path) E, U, W, V, b, c = npzfile["E"], npzfile["U"], npzfile["W"], npzfile["V"], npzfile["b"], npzfile["c"] hidden_dim, word_dim = E.shape[0], E.shape[1] print "Building model from %s with word_dim=%d" % (path, word_dim) sys.stdout.flush() model = modelClass(word_dim, hidden_dim=hidden_dim) model.E.set_value(E) model.U.set_value(U) model.W.set_value(W) model.V.set_value(V) model.b.set_value(b) model.c.set_value(c) return model def gradient_check_theano(model, x, y, h=0.001, error_threshold=0.01): # Overwrite the bptt attribute. We need to backpropagate all the way to get the correct gradient model.bptt_truncate = 1000 # Calculate the gradients using backprop bptt_gradients = model.bptt(x, y) # List of all parameters we want to chec. model_parameters = ['E', 'U', 'W', 'b', 'V', 'c'] # Gradient check for each parameter for pidx, pname in enumerate(model_parameters): # Get the actual parameter value from the mode, e.g. model.W parameter_T = operator.attrgetter(pname)(model) parameter = parameter_T.get_value() print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape)) # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ... it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index # Save the original value so we can reset it later original_value = parameter[ix] # Estimate the gradient using (f(x+h) - f(x-h))/(2*h) parameter[ix] = original_value + h parameter_T.set_value(parameter) gradplus = model.calculate_total_loss([x],[y]) parameter[ix] = original_value - h parameter_T.set_value(parameter) gradminus = model.calculate_total_loss([x],[y]) estimated_gradient = (gradplus - gradminus)/(2*h) parameter[ix] = original_value parameter_T.set_value(parameter) # The gradient for this parameter calculated using backpropagation backprop_gradient = bptt_gradients[pidx][ix] # calculate The relative error: (|x - y|/(|x| + |y|)) relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient)) # If the error is to large fail the gradient check if relative_error > error_threshold: print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix) print "+h Loss: %f" % gradplus print "-h Loss: %f" % gradminus print "Estimated_gradient: %f" % estimated_gradient print "Backpropagation gradient: %f" % backprop_gradient print "Relative Error: %f" % relative_error return it.iternext() print "Gradient check for parameter %s passed." % (pname) def print_sentence(s, index_to_word): sentence_str = [index_to_word[x] for x in s[1:-1]] print(" ".join(sentence_str)) sys.stdout.flush() def generate_sentence(model, index_to_word, word_to_index, min_length=5): # We start the sentence with the start token new_sentence = [word_to_index[SENTENCE_START_TOKEN]] # Repeat until we get an end token while not new_sentence[-1] == word_to_index[SENTENCE_END_TOKEN]: #print('not finished') next_word_probs = model.predict(new_sentence)[-1] if sum(next_word_probs) < 1.: samples = np.random.multinomial(1, next_word_probs) sampled_word = np.argmax(samples) else: sampled_word = word_to_index[UNKNOWN_TOKEN] if sampled_word < len(index_to_word): new_sentence.append(sampled_word) else: new_sentence.append(word_to_index[UNKNOWN_TOKEN]) # Seomtimes we get stuck if the sentence becomes too long, e.g. "........" :( # And: We don't want sentences with UNKNOWN_TOKEN's #print(new_sentence) if len(new_sentence) > 50 or sampled_word == word_to_index[UNKNOWN_TOKEN]: #return None return new_sentence if len(new_sentence) < min_length: return None return new_sentence def generate_sentences(model, n, index_to_word, word_to_index): for i in range(n): sent = None while not sent: sent = generate_sentence(model, index_to_word, word_to_index) print_sentence(sent, index_to_word) def saveStuff(stuff, path=None):
""" Saves stuff to disk as pickle object :type stuff: any type :param stuff: data to be stored Return: create pickle file at path """ if path == None: # TODO take name from something output = open('results/i-will-be-overwritten.pkl', 'wb') else: output = open(path, 'wb') # Pickle the list using the highest protocol available. cPickle.dump(stuff, output, -1) output.close()
identifier_body
utils.py
and SENTENCE_END tokens print("Reading CSV file...") with open(filename, 'rt') as f: reader = csv.reader(f, skipinitialspace=True) reader.next() # Split full comments into sentences sentences = itertools.chain(*[nltk.sent_tokenize(x[0].decode("utf-8").lower()) for x in reader]) # Filter sentences sentences = [s for s in sentences if len(s) >= min_sent_characters] sentences = [s for s in sentences if "http" not in s] # Append SENTENCE_START and SENTENCE_END sentences = ["%s %s %s" % (SENTENCE_START_TOKEN, x, SENTENCE_END_TOKEN) for x in sentences] print("Parsed %d sentences." % (len(sentences))) # Tokenize the sentences into words tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences] # Count the word frequencies word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences)) print("Found %d unique words tokens." % len(word_freq.items())) # Get the most common words and build index_to_word and word_to_index vectors vocab = sorted(word_freq.items(), key=lambda x: (x[1], x[0]), reverse=True)[:vocabulary_size-2] print("Using vocabulary size %d." % vocabulary_size) print("The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[-1][0], vocab[-1][1])) sorted_vocab = sorted(vocab, key=operator.itemgetter(1)) index_to_word = ["<MASK/>", UNKNOWN_TOKEN] + [x[0] for x in sorted_vocab] word_to_index = dict([(w, i) for i, w in enumerate(index_to_word)]) # Replace all words not in our vocabulary with the unknown token for i, sent in enumerate(tokenized_sentences): tokenized_sentences[i] = [w if w in word_to_index else UNKNOWN_TOKEN for w in sent] # Create the training data X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences]) y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences]) return X_train, y_train, word_to_index, index_to_word def loadText(path, origin="", vocsize=1000, maxlen=25, training_type=1, verbose=True): """ type(path): string path : path of text file to save to origin : URL where text is vocsize : vocabulary size maxlen : max size of one sentence Return: x_train, y_train, vocabulary eg: x,y,voc,i2w,w2i = loadData('pg11.txt', origin="http://www.gutenberg.org/cache/epub/11/pg11.txt") """ filesource = get_file(path, origin=origin) text = open(filesource).read() text = SENTENCE_START_TOKEN + text + SENTENCE_END_TOKEN if verbose: print('corpus length:', len(text)) tokens = word_tokenize(text) word_freq = nltk.FreqDist(tokens) if verbose: print("Found %d unique words tokens." % len(word_freq.items())) vocab = word_freq.most_common(vocsize-3) indices_word = [x[0] for x in vocab] indices_word.append(UNKNOWN_TOKEN) indices_word.append(SENTENCE_START_TOKEN) indices_word.append(SENTENCE_END_TOKEN) word_indices = dict([(w,i) for i,w in enumerate(indices_word)]) for i, word in enumerate(tokens): tokens[i] = [word if word in word_indices else UNKNOWN_TOKEN] # now the whole text is indices of words in the vocabulary for i, word in enumerate(tokens): tokens[i] = word_indices[word[0]] # Create the training data xx = np.asarray(tokens[:-1], dtype=np.int32) yy = np.asarray(tokens[1:], dtype=np.int32) return xx, yy, vocab, word_indices, indices_word def train_with_sgd(model, X_train, y_train, learning_rate=0.001, nepoch=40, startfrom = 0, decay=0.9, callback_every=10000, callback=None): for epoch in range(startfrom, nepoch): num_examples_seen = 0 # For each training example... for i in np.random.permutation(len(y_train)): # One SGD step model.sgd_step(X_train[i], y_train[i], learning_rate, decay) num_examples_seen += 1 # Optionally do callback if (callback and callback_every and num_examples_seen % callback_every == 0): callback(model, epoch, num_examples_seen) return model def save_model_parameters_theano(model, outfile): np.savez(outfile, E=model.E.get_value(), U=model.U.get_value(), W=model.W.get_value(), V=model.V.get_value(), b=model.b.get_value(), c=model.c.get_value()) print "Saved model parameters to %s." % outfile def load_model_parameters_theano(path, modelClass=GRUTheano): npzfile = np.load(path) E, U, W, V, b, c = npzfile["E"], npzfile["U"], npzfile["W"], npzfile["V"], npzfile["b"], npzfile["c"] hidden_dim, word_dim = E.shape[0], E.shape[1] print "Building model from %s with word_dim=%d" % (path, word_dim) sys.stdout.flush() model = modelClass(word_dim, hidden_dim=hidden_dim) model.E.set_value(E) model.U.set_value(U) model.W.set_value(W) model.V.set_value(V) model.b.set_value(b) model.c.set_value(c) return model def gradient_check_theano(model, x, y, h=0.001, error_threshold=0.01): # Overwrite the bptt attribute. We need to backpropagate all the way to get the correct gradient model.bptt_truncate = 1000 # Calculate the gradients using backprop bptt_gradients = model.bptt(x, y) # List of all parameters we want to chec. model_parameters = ['E', 'U', 'W', 'b', 'V', 'c'] # Gradient check for each parameter for pidx, pname in enumerate(model_parameters): # Get the actual parameter value from the mode, e.g. model.W parameter_T = operator.attrgetter(pname)(model) parameter = parameter_T.get_value() print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape)) # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ... it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index # Save the original value so we can reset it later original_value = parameter[ix] # Estimate the gradient using (f(x+h) - f(x-h))/(2*h) parameter[ix] = original_value + h parameter_T.set_value(parameter) gradplus = model.calculate_total_loss([x],[y]) parameter[ix] = original_value - h parameter_T.set_value(parameter) gradminus = model.calculate_total_loss([x],[y]) estimated_gradient = (gradplus - gradminus)/(2*h) parameter[ix] = original_value parameter_T.set_value(parameter) # The gradient for this parameter calculated using backpropagation backprop_gradient = bptt_gradients[pidx][ix] # calculate The relative error: (|x - y|/(|x| + |y|)) relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient)) # If the error is to large fail the gradient check if relative_error > error_threshold: print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix) print "+h Loss: %f" % gradplus print "-h Loss: %f" % gradminus print "Estimated_gradient: %f" % estimated_gradient print "Backpropagation gradient: %f" % backprop_gradient print "Relative Error: %f" % relative_error return it.iternext() print "Gradient check for parameter %s passed." % (pname) def
(s, index_to_word): sentence_str = [index_to_word[x] for x in s[1:-1]] print(" ".join(sentence_str)) sys.stdout.flush() def generate_sentence(model, index_to_word, word_to_index, min_length=5): # We start the sentence with the start token new_sentence = [word_to_index[SENTENCE_START_TOKEN]] # Repeat until we get an end token while not new_sentence[-1] == word_to_index[SENT
print_sentence
identifier_name
utils.py
and SENTENCE_END tokens print("Reading CSV file...") with open(filename, 'rt') as f: reader = csv.reader(f, skipinitialspace=True) reader.next() # Split full comments into sentences sentences = itertools.chain(*[nltk.sent_tokenize(x[0].decode("utf-8").lower()) for x in reader]) # Filter sentences sentences = [s for s in sentences if len(s) >= min_sent_characters] sentences = [s for s in sentences if "http" not in s] # Append SENTENCE_START and SENTENCE_END sentences = ["%s %s %s" % (SENTENCE_START_TOKEN, x, SENTENCE_END_TOKEN) for x in sentences] print("Parsed %d sentences." % (len(sentences))) # Tokenize the sentences into words tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences] # Count the word frequencies word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences)) print("Found %d unique words tokens." % len(word_freq.items())) # Get the most common words and build index_to_word and word_to_index vectors vocab = sorted(word_freq.items(), key=lambda x: (x[1], x[0]), reverse=True)[:vocabulary_size-2] print("Using vocabulary size %d." % vocabulary_size) print("The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[-1][0], vocab[-1][1])) sorted_vocab = sorted(vocab, key=operator.itemgetter(1)) index_to_word = ["<MASK/>", UNKNOWN_TOKEN] + [x[0] for x in sorted_vocab] word_to_index = dict([(w, i) for i, w in enumerate(index_to_word)]) # Replace all words not in our vocabulary with the unknown token for i, sent in enumerate(tokenized_sentences): tokenized_sentences[i] = [w if w in word_to_index else UNKNOWN_TOKEN for w in sent] # Create the training data X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences]) y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences]) return X_train, y_train, word_to_index, index_to_word def loadText(path, origin="", vocsize=1000, maxlen=25, training_type=1, verbose=True): """ type(path): string path : path of text file to save to origin : URL where text is vocsize : vocabulary size maxlen : max size of one sentence Return: x_train, y_train, vocabulary eg: x,y,voc,i2w,w2i = loadData('pg11.txt', origin="http://www.gutenberg.org/cache/epub/11/pg11.txt") """ filesource = get_file(path, origin=origin) text = open(filesource).read() text = SENTENCE_START_TOKEN + text + SENTENCE_END_TOKEN if verbose: print('corpus length:', len(text)) tokens = word_tokenize(text) word_freq = nltk.FreqDist(tokens) if verbose: print("Found %d unique words tokens." % len(word_freq.items())) vocab = word_freq.most_common(vocsize-3) indices_word = [x[0] for x in vocab] indices_word.append(UNKNOWN_TOKEN) indices_word.append(SENTENCE_START_TOKEN) indices_word.append(SENTENCE_END_TOKEN) word_indices = dict([(w,i) for i,w in enumerate(indices_word)]) for i, word in enumerate(tokens): tokens[i] = [word if word in word_indices else UNKNOWN_TOKEN] # now the whole text is indices of words in the vocabulary for i, word in enumerate(tokens): tokens[i] = word_indices[word[0]]
return xx, yy, vocab, word_indices, indices_word def train_with_sgd(model, X_train, y_train, learning_rate=0.001, nepoch=40, startfrom = 0, decay=0.9, callback_every=10000, callback=None): for epoch in range(startfrom, nepoch): num_examples_seen = 0 # For each training example... for i in np.random.permutation(len(y_train)): # One SGD step model.sgd_step(X_train[i], y_train[i], learning_rate, decay) num_examples_seen += 1 # Optionally do callback if (callback and callback_every and num_examples_seen % callback_every == 0): callback(model, epoch, num_examples_seen) return model def save_model_parameters_theano(model, outfile): np.savez(outfile, E=model.E.get_value(), U=model.U.get_value(), W=model.W.get_value(), V=model.V.get_value(), b=model.b.get_value(), c=model.c.get_value()) print "Saved model parameters to %s." % outfile def load_model_parameters_theano(path, modelClass=GRUTheano): npzfile = np.load(path) E, U, W, V, b, c = npzfile["E"], npzfile["U"], npzfile["W"], npzfile["V"], npzfile["b"], npzfile["c"] hidden_dim, word_dim = E.shape[0], E.shape[1] print "Building model from %s with word_dim=%d" % (path, word_dim) sys.stdout.flush() model = modelClass(word_dim, hidden_dim=hidden_dim) model.E.set_value(E) model.U.set_value(U) model.W.set_value(W) model.V.set_value(V) model.b.set_value(b) model.c.set_value(c) return model def gradient_check_theano(model, x, y, h=0.001, error_threshold=0.01): # Overwrite the bptt attribute. We need to backpropagate all the way to get the correct gradient model.bptt_truncate = 1000 # Calculate the gradients using backprop bptt_gradients = model.bptt(x, y) # List of all parameters we want to chec. model_parameters = ['E', 'U', 'W', 'b', 'V', 'c'] # Gradient check for each parameter for pidx, pname in enumerate(model_parameters): # Get the actual parameter value from the mode, e.g. model.W parameter_T = operator.attrgetter(pname)(model) parameter = parameter_T.get_value() print "Performing gradient check for parameter %s with size %d." % (pname, np.prod(parameter.shape)) # Iterate over each element of the parameter matrix, e.g. (0,0), (0,1), ... it = np.nditer(parameter, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index # Save the original value so we can reset it later original_value = parameter[ix] # Estimate the gradient using (f(x+h) - f(x-h))/(2*h) parameter[ix] = original_value + h parameter_T.set_value(parameter) gradplus = model.calculate_total_loss([x],[y]) parameter[ix] = original_value - h parameter_T.set_value(parameter) gradminus = model.calculate_total_loss([x],[y]) estimated_gradient = (gradplus - gradminus)/(2*h) parameter[ix] = original_value parameter_T.set_value(parameter) # The gradient for this parameter calculated using backpropagation backprop_gradient = bptt_gradients[pidx][ix] # calculate The relative error: (|x - y|/(|x| + |y|)) relative_error = np.abs(backprop_gradient - estimated_gradient)/(np.abs(backprop_gradient) + np.abs(estimated_gradient)) # If the error is to large fail the gradient check if relative_error > error_threshold: print "Gradient Check ERROR: parameter=%s ix=%s" % (pname, ix) print "+h Loss: %f" % gradplus print "-h Loss: %f" % gradminus print "Estimated_gradient: %f" % estimated_gradient print "Backpropagation gradient: %f" % backprop_gradient print "Relative Error: %f" % relative_error return it.iternext() print "Gradient check for parameter %s passed." % (pname) def print_sentence(s, index_to_word): sentence_str = [index_to_word[x] for x in s[1:-1]] print(" ".join(sentence_str)) sys.stdout.flush() def generate_sentence(model, index_to_word, word_to_index, min_length=5): # We start the sentence with the start token new_sentence = [word_to_index[SENTENCE_START_TOKEN]] # Repeat until we get an end token while not new_sentence[-1] == word_to_index[SENTENCE
# Create the training data xx = np.asarray(tokens[:-1], dtype=np.int32) yy = np.asarray(tokens[1:], dtype=np.int32)
random_line_split
Surreal.py
# # Hugues THOMAS - 11/06/2018 # Nicolas DONATI - 01/01/2020 # ---------------------------------------------------------------------------------------------------------------------- # # Imports and global variables # \**********************************/ # # Basic libs import tensorflow as tf import numpy as np # Dataset parent class from datasets.common import Dataset import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling # ---------------------------------------------------------------------------------------------------------------------- # # Utility functions # \***********************/ # def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0): """ CPP wrapper for a grid subsampling (method = barycenter for points and features :param points: (N, 3) matrix of input points :param features: optional (N, d) matrix of features (floating number) :param labels: optional (N,) matrix of integer labels :param sampleDl: parameter defining the size of grid voxels :param verbose: 1 to display :return: subsampled points, with features and/or labels depending of the input """ if (features is None) and (labels is None): return cpp_subsampling.compute(points, sampleDl=sampleDl, verbose=verbose) elif (labels is None): return cpp_subsampling.compute(points, features=features, sampleDl=sampleDl, verbose=verbose) elif (features is None): return cpp_subsampling.compute(points, classes=labels, sampleDl=sampleDl, verbose=verbose) else: return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=sampleDl, verbose=verbose) # ---------------------------------------------------------------------------------------------------------------------- # # Class Definition # \***************/ # class SurrealDataset(Dataset): """ Class to handle any subset of 5000 shapes of the surreal dataset introduced in 3D coded (for comparison in exp2) this dataset is composed of 6890-points shapes, so the spectral data is relatively heavy. """ # Initiation methods # ------------------------------------------------------------------------------------------------------------------ def __init__(self, config): Dataset.__init__(self, 'surreal') #################### # Dataset parameters #################### # Type of task conducted on this dataset # self.network_model = 'shape_matching' # this is the only type of model here but it comes from KPConc code ########################## # Parameters for the files ########################## # Path of the folder containing files self.dataset_name = 'surreal' self.path = '../../../media/donati/Data1/Datasets/shapes_surreal/' self.data_folder = 'off_2/' self.spectral_folder = 'spectral_full/' self.txt_file = 'surreal5000_training.txt' #################################################### #################################################### #################################################### # decide the number of shapes to keep in the training set (exp 2 setting) self.split = config.split self.num_train = config.num_train # -1 for all # Number of eigenvalues kept for this model fmaps self.neig = config.neig self.neig_full = config.neig_full # Number of thread for input pipeline self.num_threads = config.input_threads # Utility methods # ------------------------------------------------------------------------------------------------------------------ def get_batch_gen(self, config): """ A function defining the batch generator for each split. Should return the generator, the generated types and generated shapes :param split: string in "training", "validation" or "test" (here we just keep training) :param config: configuration file :return: gen_func, gen_types, gen_shapes """ ################ # Def generators ################ def random_balanced_gen(): print('trying to generate batch series with ', self.num_train, 'shapes') # Initiate concatenation lists tp_list = [] # points tev_list = [] # eigen vectors tevt_list = [] # transposed eigen vectors tv_list = [] # eigen values tevf_list = [] # full eigen vectors for ground truth maps ti_list = [] # cloud indices batch_n = 0 i_batch = 0 gen_indices = np.random.permutation(int(self.num_train)) # initiate indices for the generator # if we had to test on this dataset we would need to introduce a test/val case with non-shuffled indices # print(gen_indices.shape, config.batch_num) # if config.split == 'test': # print('test setting here not fully supported') # n_shapes = self.num_test # has to be defined # gen_indices = [] # for i in range(n_shapes - 1): # for j in range(i + 1, n_shapes): # gen_indices += [i, j] # put all the pairs in order # gen_indices = np.array(gen_indices) # Generator loop for p_i in gen_indices: # Get points and other input data new_points = self.input_points[p_i] new_evecs = self.input_evecs[p_i][:, :self.neig] new_evecs_trans = self.input_evecs_trans[p_i][:self.neig, :] new_evals = self.input_evals[p_i][:self.neig] new_evecs_full = self.input_evecs_full[p_i][:, :self.neig] n = new_points.shape[0] if i_batch == config.batch_num: yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) tp_list = [] tev_list = [] tevt_list = [] tv_list = [] tevf_list = [] ti_list = [] batch_n = 0 i_batch = 0 # Add data to current batch tp_list += [new_points] tev_list += [new_evecs] tevt_list += [new_evecs_trans] tv_list += [new_evals] tevf_list += [new_evecs_full] ti_list += [p_i] # Update batch size batch_n += n i_batch += 1 # yield the rest if necessary (it will not be a full batch and could lead to mistakes because of # shape matching needing pairs !!!!) yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) ################## # Return generator ################## # Generator types and shapes gen_types = (tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.int32, tf.int32) gen_shapes = ([None, 3], [None, self.neig], [self.neig, None], [self.neig, None], [None, self.neig], [None], [None]) return random_balanced_gen, gen_types, gen_shapes def get_tf_mapping(self, config): def
(stacked_points, stacked_evecs, stacked_evecs_trans, stacked_evals, stacked_evecs_full, obj_inds, stack_lengths): """ From the input point cloud, this function compute all the point clouds at each conv layer, the neighbors indices, the pooling indices and other useful variables. :param stacked_points: Tensor with size [None, 3] where None is the total number of points :param stack_lengths: Tensor with size [None] where None = number of batch // number of points in a batch """ # Get batch indice for each point batch_inds = self.tf_get_batch_inds(stack_lengths) # Augment input points stacked_points, scales, rots = self.tf_augment_input(stacked_points, batch_inds, config) # First add a column of 1 as feature for the network to be able to learn 3D shapes stacked_features = tf.ones((tf.shape(stacked_points)[0], 1), dtype=tf.float32) # Then use positions or not if config.in_features_dim == 1: pass elif config.in_features_dim == 3: stacked_features = tf.concat((stacked_features, stacked_points), axis=1) else: raise ValueError('Only accepted input dimensions are 1, 3 (with or without XYZ)') # Get the whole input list input_list = self.tf_shape_matching_inputs(config, stacked_points, stacked_features, stack_lengths, batch_inds) # Add scale and rotation for testing input_list += [scales, rots, obj_inds] input_list += [stack_lengths] # in order further
tf_map
identifier_name
Surreal.py
# # Hugues THOMAS - 11/06/2018 # Nicolas DONATI - 01/01/2020 # ---------------------------------------------------------------------------------------------------------------------- # # Imports and global variables # \**********************************/ # # Basic libs import tensorflow as tf import numpy as np # Dataset parent class from datasets.common import Dataset import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling # ---------------------------------------------------------------------------------------------------------------------- # # Utility functions # \***********************/ # def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0): """ CPP wrapper for a grid subsampling (method = barycenter for points and features :param points: (N, 3) matrix of input points :param features: optional (N, d) matrix of features (floating number) :param labels: optional (N,) matrix of integer labels :param sampleDl: parameter defining the size of grid voxels :param verbose: 1 to display :return: subsampled points, with features and/or labels depending of the input """ if (features is None) and (labels is None): return cpp_subsampling.compute(points, sampleDl=sampleDl, verbose=verbose) elif (labels is None): return cpp_subsampling.compute(points, features=features, sampleDl=sampleDl, verbose=verbose) elif (features is None): return cpp_subsampling.compute(points, classes=labels, sampleDl=sampleDl, verbose=verbose) else: return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=sampleDl, verbose=verbose) # ---------------------------------------------------------------------------------------------------------------------- # # Class Definition # \***************/ # class SurrealDataset(Dataset): """ Class to handle any subset of 5000 shapes of the surreal dataset introduced in 3D coded (for comparison in exp2) this dataset is composed of 6890-points shapes, so the spectral data is relatively heavy. """ # Initiation methods # ------------------------------------------------------------------------------------------------------------------ def __init__(self, config): Dataset.__init__(self, 'surreal') #################### # Dataset parameters #################### # Type of task conducted on this dataset # self.network_model = 'shape_matching' # this is the only type of model here but it comes from KPConc code ########################## # Parameters for the files ########################## # Path of the folder containing files self.dataset_name = 'surreal' self.path = '../../../media/donati/Data1/Datasets/shapes_surreal/' self.data_folder = 'off_2/' self.spectral_folder = 'spectral_full/' self.txt_file = 'surreal5000_training.txt' #################################################### #################################################### #################################################### # decide the number of shapes to keep in the training set (exp 2 setting) self.split = config.split self.num_train = config.num_train # -1 for all # Number of eigenvalues kept for this model fmaps self.neig = config.neig self.neig_full = config.neig_full # Number of thread for input pipeline self.num_threads = config.input_threads # Utility methods # ------------------------------------------------------------------------------------------------------------------ def get_batch_gen(self, config): """ A function defining the batch generator for each split. Should return the generator, the generated types and generated shapes :param split: string in "training", "validation" or "test" (here we just keep training) :param config: configuration file :return: gen_func, gen_types, gen_shapes """ ################ # Def generators ################ def random_balanced_gen(): print('trying to generate batch series with ', self.num_train, 'shapes') # Initiate concatenation lists tp_list = [] # points tev_list = [] # eigen vectors tevt_list = [] # transposed eigen vectors tv_list = [] # eigen values tevf_list = [] # full eigen vectors for ground truth maps ti_list = [] # cloud indices batch_n = 0 i_batch = 0 gen_indices = np.random.permutation(int(self.num_train)) # initiate indices for the generator # if we had to test on this dataset we would need to introduce a test/val case with non-shuffled indices # print(gen_indices.shape, config.batch_num) # if config.split == 'test': # print('test setting here not fully supported') # n_shapes = self.num_test # has to be defined # gen_indices = [] # for i in range(n_shapes - 1): # for j in range(i + 1, n_shapes): # gen_indices += [i, j] # put all the pairs in order # gen_indices = np.array(gen_indices) # Generator loop for p_i in gen_indices: # Get points and other input data new_points = self.input_points[p_i] new_evecs = self.input_evecs[p_i][:, :self.neig] new_evecs_trans = self.input_evecs_trans[p_i][:self.neig, :] new_evals = self.input_evals[p_i][:self.neig] new_evecs_full = self.input_evecs_full[p_i][:, :self.neig] n = new_points.shape[0] if i_batch == config.batch_num: yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) tp_list = [] tev_list = [] tevt_list = [] tv_list = [] tevf_list = [] ti_list = [] batch_n = 0 i_batch = 0 # Add data to current batch tp_list += [new_points] tev_list += [new_evecs] tevt_list += [new_evecs_trans] tv_list += [new_evals] tevf_list += [new_evecs_full] ti_list += [p_i] # Update batch size batch_n += n i_batch += 1 # yield the rest if necessary (it will not be a full batch and could lead to mistakes because of # shape matching needing pairs !!!!) yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) ################## # Return generator ################## # Generator types and shapes gen_types = (tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.int32, tf.int32) gen_shapes = ([None, 3], [None, self.neig], [self.neig, None], [self.neig, None], [None, self.neig], [None], [None]) return random_balanced_gen, gen_types, gen_shapes def get_tf_mapping(self, config): def tf_map(stacked_points, stacked_evecs, stacked_evecs_trans, stacked_evals, stacked_evecs_full, obj_inds, stack_lengths):
pass elif config.in_features_dim == 3: stacked_features = tf.concat((stacked_features, stacked_points), axis=1) else: raise ValueError('Only accepted input dimensions are 1, 3 (with or without XYZ)') # Get the whole input list input_list = self.tf_shape_matching_inputs(config, stacked_points, stacked_features, stack_lengths, batch_inds) # Add scale and rotation for testing input_list += [scales, rots, obj_inds] input_list += [stack_lengths] # in order further on
""" From the input point cloud, this function compute all the point clouds at each conv layer, the neighbors indices, the pooling indices and other useful variables. :param stacked_points: Tensor with size [None, 3] where None is the total number of points :param stack_lengths: Tensor with size [None] where None = number of batch // number of points in a batch """ # Get batch indice for each point batch_inds = self.tf_get_batch_inds(stack_lengths) # Augment input points stacked_points, scales, rots = self.tf_augment_input(stacked_points, batch_inds, config) # First add a column of 1 as feature for the network to be able to learn 3D shapes stacked_features = tf.ones((tf.shape(stacked_points)[0], 1), dtype=tf.float32) # Then use positions or not if config.in_features_dim == 1:
identifier_body
Surreal.py
# # Hugues THOMAS - 11/06/2018 # Nicolas DONATI - 01/01/2020 # ---------------------------------------------------------------------------------------------------------------------- # # Imports and global variables # \**********************************/ # # Basic libs import tensorflow as tf import numpy as np # Dataset parent class from datasets.common import Dataset import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling # ---------------------------------------------------------------------------------------------------------------------- # # Utility functions # \***********************/ # def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0): """ CPP wrapper for a grid subsampling (method = barycenter for points and features :param points: (N, 3) matrix of input points :param features: optional (N, d) matrix of features (floating number) :param labels: optional (N,) matrix of integer labels :param sampleDl: parameter defining the size of grid voxels :param verbose: 1 to display :return: subsampled points, with features and/or labels depending of the input """ if (features is None) and (labels is None): return cpp_subsampling.compute(points, sampleDl=sampleDl, verbose=verbose) elif (labels is None): return cpp_subsampling.compute(points, features=features, sampleDl=sampleDl, verbose=verbose) elif (features is None):
else: return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=sampleDl, verbose=verbose) # ---------------------------------------------------------------------------------------------------------------------- # # Class Definition # \***************/ # class SurrealDataset(Dataset): """ Class to handle any subset of 5000 shapes of the surreal dataset introduced in 3D coded (for comparison in exp2) this dataset is composed of 6890-points shapes, so the spectral data is relatively heavy. """ # Initiation methods # ------------------------------------------------------------------------------------------------------------------ def __init__(self, config): Dataset.__init__(self, 'surreal') #################### # Dataset parameters #################### # Type of task conducted on this dataset # self.network_model = 'shape_matching' # this is the only type of model here but it comes from KPConc code ########################## # Parameters for the files ########################## # Path of the folder containing files self.dataset_name = 'surreal' self.path = '../../../media/donati/Data1/Datasets/shapes_surreal/' self.data_folder = 'off_2/' self.spectral_folder = 'spectral_full/' self.txt_file = 'surreal5000_training.txt' #################################################### #################################################### #################################################### # decide the number of shapes to keep in the training set (exp 2 setting) self.split = config.split self.num_train = config.num_train # -1 for all # Number of eigenvalues kept for this model fmaps self.neig = config.neig self.neig_full = config.neig_full # Number of thread for input pipeline self.num_threads = config.input_threads # Utility methods # ------------------------------------------------------------------------------------------------------------------ def get_batch_gen(self, config): """ A function defining the batch generator for each split. Should return the generator, the generated types and generated shapes :param split: string in "training", "validation" or "test" (here we just keep training) :param config: configuration file :return: gen_func, gen_types, gen_shapes """ ################ # Def generators ################ def random_balanced_gen(): print('trying to generate batch series with ', self.num_train, 'shapes') # Initiate concatenation lists tp_list = [] # points tev_list = [] # eigen vectors tevt_list = [] # transposed eigen vectors tv_list = [] # eigen values tevf_list = [] # full eigen vectors for ground truth maps ti_list = [] # cloud indices batch_n = 0 i_batch = 0 gen_indices = np.random.permutation(int(self.num_train)) # initiate indices for the generator # if we had to test on this dataset we would need to introduce a test/val case with non-shuffled indices # print(gen_indices.shape, config.batch_num) # if config.split == 'test': # print('test setting here not fully supported') # n_shapes = self.num_test # has to be defined # gen_indices = [] # for i in range(n_shapes - 1): # for j in range(i + 1, n_shapes): # gen_indices += [i, j] # put all the pairs in order # gen_indices = np.array(gen_indices) # Generator loop for p_i in gen_indices: # Get points and other input data new_points = self.input_points[p_i] new_evecs = self.input_evecs[p_i][:, :self.neig] new_evecs_trans = self.input_evecs_trans[p_i][:self.neig, :] new_evals = self.input_evals[p_i][:self.neig] new_evecs_full = self.input_evecs_full[p_i][:, :self.neig] n = new_points.shape[0] if i_batch == config.batch_num: yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) tp_list = [] tev_list = [] tevt_list = [] tv_list = [] tevf_list = [] ti_list = [] batch_n = 0 i_batch = 0 # Add data to current batch tp_list += [new_points] tev_list += [new_evecs] tevt_list += [new_evecs_trans] tv_list += [new_evals] tevf_list += [new_evecs_full] ti_list += [p_i] # Update batch size batch_n += n i_batch += 1 # yield the rest if necessary (it will not be a full batch and could lead to mistakes because of # shape matching needing pairs !!!!) yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) ################## # Return generator ################## # Generator types and shapes gen_types = (tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.int32, tf.int32) gen_shapes = ([None, 3], [None, self.neig], [self.neig, None], [self.neig, None], [None, self.neig], [None], [None]) return random_balanced_gen, gen_types, gen_shapes def get_tf_mapping(self, config): def tf_map(stacked_points, stacked_evecs, stacked_evecs_trans, stacked_evals, stacked_evecs_full, obj_inds, stack_lengths): """ From the input point cloud, this function compute all the point clouds at each conv layer, the neighbors indices, the pooling indices and other useful variables. :param stacked_points: Tensor with size [None, 3] where None is the total number of points :param stack_lengths: Tensor with size [None] where None = number of batch // number of points in a batch """ # Get batch indice for each point batch_inds = self.tf_get_batch_inds(stack_lengths) # Augment input points stacked_points, scales, rots = self.tf_augment_input(stacked_points, batch_inds, config) # First add a column of 1 as feature for the network to be able to learn 3D shapes stacked_features = tf.ones((tf.shape(stacked_points)[0], 1), dtype=tf.float32) # Then use positions or not if config.in_features_dim == 1: pass elif config.in_features_dim == 3: stacked_features = tf.concat((stacked_features, stacked_points), axis=1) else: raise ValueError('Only accepted input dimensions are 1, 3 (with or without XYZ)') # Get the whole input list input_list = self.tf_shape_matching_inputs(config, stacked_points, stacked_features, stack_lengths, batch_inds) # Add scale and rotation for testing input_list += [scales, rots, obj_inds] input_list += [stack_lengths] # in order further
return cpp_subsampling.compute(points, classes=labels, sampleDl=sampleDl, verbose=verbose)
conditional_block
Surreal.py
------ # # Hugues THOMAS - 11/06/2018 # Nicolas DONATI - 01/01/2020 # ---------------------------------------------------------------------------------------------------------------------- # # Imports and global variables # \**********************************/ # # Basic libs import tensorflow as tf import numpy as np # Dataset parent class from datasets.common import Dataset import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling # ---------------------------------------------------------------------------------------------------------------------- # # Utility functions # \***********************/ # def grid_subsampling(points, features=None, labels=None, sampleDl=0.1, verbose=0): """ CPP wrapper for a grid subsampling (method = barycenter for points and features
:param labels: optional (N,) matrix of integer labels :param sampleDl: parameter defining the size of grid voxels :param verbose: 1 to display :return: subsampled points, with features and/or labels depending of the input """ if (features is None) and (labels is None): return cpp_subsampling.compute(points, sampleDl=sampleDl, verbose=verbose) elif (labels is None): return cpp_subsampling.compute(points, features=features, sampleDl=sampleDl, verbose=verbose) elif (features is None): return cpp_subsampling.compute(points, classes=labels, sampleDl=sampleDl, verbose=verbose) else: return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=sampleDl, verbose=verbose) # ---------------------------------------------------------------------------------------------------------------------- # # Class Definition # \***************/ # class SurrealDataset(Dataset): """ Class to handle any subset of 5000 shapes of the surreal dataset introduced in 3D coded (for comparison in exp2) this dataset is composed of 6890-points shapes, so the spectral data is relatively heavy. """ # Initiation methods # ------------------------------------------------------------------------------------------------------------------ def __init__(self, config): Dataset.__init__(self, 'surreal') #################### # Dataset parameters #################### # Type of task conducted on this dataset # self.network_model = 'shape_matching' # this is the only type of model here but it comes from KPConc code ########################## # Parameters for the files ########################## # Path of the folder containing files self.dataset_name = 'surreal' self.path = '../../../media/donati/Data1/Datasets/shapes_surreal/' self.data_folder = 'off_2/' self.spectral_folder = 'spectral_full/' self.txt_file = 'surreal5000_training.txt' #################################################### #################################################### #################################################### # decide the number of shapes to keep in the training set (exp 2 setting) self.split = config.split self.num_train = config.num_train # -1 for all # Number of eigenvalues kept for this model fmaps self.neig = config.neig self.neig_full = config.neig_full # Number of thread for input pipeline self.num_threads = config.input_threads # Utility methods # ------------------------------------------------------------------------------------------------------------------ def get_batch_gen(self, config): """ A function defining the batch generator for each split. Should return the generator, the generated types and generated shapes :param split: string in "training", "validation" or "test" (here we just keep training) :param config: configuration file :return: gen_func, gen_types, gen_shapes """ ################ # Def generators ################ def random_balanced_gen(): print('trying to generate batch series with ', self.num_train, 'shapes') # Initiate concatenation lists tp_list = [] # points tev_list = [] # eigen vectors tevt_list = [] # transposed eigen vectors tv_list = [] # eigen values tevf_list = [] # full eigen vectors for ground truth maps ti_list = [] # cloud indices batch_n = 0 i_batch = 0 gen_indices = np.random.permutation(int(self.num_train)) # initiate indices for the generator # if we had to test on this dataset we would need to introduce a test/val case with non-shuffled indices # print(gen_indices.shape, config.batch_num) # if config.split == 'test': # print('test setting here not fully supported') # n_shapes = self.num_test # has to be defined # gen_indices = [] # for i in range(n_shapes - 1): # for j in range(i + 1, n_shapes): # gen_indices += [i, j] # put all the pairs in order # gen_indices = np.array(gen_indices) # Generator loop for p_i in gen_indices: # Get points and other input data new_points = self.input_points[p_i] new_evecs = self.input_evecs[p_i][:, :self.neig] new_evecs_trans = self.input_evecs_trans[p_i][:self.neig, :] new_evals = self.input_evals[p_i][:self.neig] new_evecs_full = self.input_evecs_full[p_i][:, :self.neig] n = new_points.shape[0] if i_batch == config.batch_num: yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) tp_list = [] tev_list = [] tevt_list = [] tv_list = [] tevf_list = [] ti_list = [] batch_n = 0 i_batch = 0 # Add data to current batch tp_list += [new_points] tev_list += [new_evecs] tevt_list += [new_evecs_trans] tv_list += [new_evals] tevf_list += [new_evecs_full] ti_list += [p_i] # Update batch size batch_n += n i_batch += 1 # yield the rest if necessary (it will not be a full batch and could lead to mistakes because of # shape matching needing pairs !!!!) yield (np.concatenate(tp_list, axis=0), np.concatenate(tev_list, axis=0), np.concatenate(tevt_list, axis=1), np.concatenate(tv_list, axis=1), np.concatenate(tevf_list, axis=0), np.array(ti_list, dtype=np.int32), np.array([tp.shape[0] for tp in tp_list])) ################## # Return generator ################## # Generator types and shapes gen_types = (tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.int32, tf.int32) gen_shapes = ([None, 3], [None, self.neig], [self.neig, None], [self.neig, None], [None, self.neig], [None], [None]) return random_balanced_gen, gen_types, gen_shapes def get_tf_mapping(self, config): def tf_map(stacked_points, stacked_evecs, stacked_evecs_trans, stacked_evals, stacked_evecs_full, obj_inds, stack_lengths): """ From the input point cloud, this function compute all the point clouds at each conv layer, the neighbors indices, the pooling indices and other useful variables. :param stacked_points: Tensor with size [None, 3] where None is the total number of points :param stack_lengths: Tensor with size [None] where None = number of batch // number of points in a batch """ # Get batch indice for each point batch_inds = self.tf_get_batch_inds(stack_lengths) # Augment input points stacked_points, scales, rots = self.tf_augment_input(stacked_points, batch_inds, config) # First add a column of 1 as feature for the network to be able to learn 3D shapes stacked_features = tf.ones((tf.shape(stacked_points)[0], 1), dtype=tf.float32) # Then use positions or not if config.in_features_dim == 1: pass elif config.in_features_dim == 3: stacked_features = tf.concat((stacked_features, stacked_points), axis=1) else: raise ValueError('Only accepted input dimensions are 1, 3 (with or without XYZ)') # Get the whole input list input_list = self.tf_shape_matching_inputs(config, stacked_points, stacked_features, stack_lengths, batch_inds) # Add scale and rotation for testing input_list += [scales, rots, obj_inds] input_list += [stack_lengths] # in order further on
:param points: (N, 3) matrix of input points :param features: optional (N, d) matrix of features (floating number)
random_line_split
widget.rs
, ) -> Option<(NodeId, CallWidgetsConfig)> { let query_data = self.widget_queries.get_mut(&target)?; let (definitions, errors) = configuration::deserialize_widget_definitions( &data, &self.graph.suggestion_db(), &self.graph.parser(), ); for error in errors { error!("{:?}", error); } trace!("Widget definitions: {definitions:?}"); let definitions = Rc::new(definitions); query_data.last_definitions = Some(definitions.clone()); let call_id = query_data.call_expression; Some((query_data.node_id, CallWidgetsConfig { call_id, definitions })) } /// Handle a widget request from presenter. Returns the widget updates if the request can be /// immediately fulfilled from the cache. fn request_widget(&mut self, request: &Request) -> Option<(NodeId, CallWidgetsConfig)> { let suggestion_db = self.graph.suggestion_db(); let suggestion = suggestion_db.lookup(request.call_suggestion).ok()?; use std::collections::hash_map::Entry; match self.widget_queries.entry(request.target_expression) { Entry::Occupied(mut occupied) => { let query = occupied.get_mut(); if query.node_id != request.node_id { self.widgets_of_node.remove_widget(query.node_id, request.target_expression); self.widgets_of_node.insert_widget(request.node_id, request.target_expression); } let visualization_modified = query.update(&suggestion, request); if visualization_modified { trace!("Updating widget visualization for {}", request.target_expression); query.request_visualization(&self.manager, request.target_expression); // The request is now pending. Once the request completes, the widget update // will happen in the response handler. None } else { // In the event that the visualization was not modified, we want to respond with // the last known visualization data. Each widget request needs to be responded // to, otherwise the widget might not be displayed after the widget view has // been temporarily removed and created again. query.last_definitions() } } Entry::Vacant(vacant) => { self.widgets_of_node.insert_widget(request.node_id, request.target_expression); let query = vacant.insert(QueryData::new(&suggestion, request)); trace!("Registering widget visualization for {}", request.target_expression); query.request_visualization(&self.manager, request.target_expression); // The request is now pending. Once the request completes, the widget update will // happen in the response handler. None } } } /// Remove all widget queries of given node that are attached to expressions outside of provided /// list. No widget update is emitted after a query is cleaned up. fn retain_node_expressions(&mut self, node_id: NodeId, expressions: &HashSet<ast::Id>) { self.widgets_of_node.retain_node_widgets(node_id, expressions, |expr_id| { self.manager.remove_visualization(expr_id); }); } /// Remove all widget queries of given node. No widget update is emitted after a query is /// cleaned up. fn remove_all_node_widgets(&mut self, node_id: NodeId) { for expr_id in self.widgets_of_node.remove_node_widgets(node_id) { self.manager.remove_visualization(expr_id); } } } // ============================ // === NodeToWidgetsMapping === // ============================ /// A map of widgets attached to nodes. Used to perform cleanup of node widget queries when node is /// removed. #[derive(Debug, Default)] struct NodeToWidgetsMapping { attached_widgets: HashMap<NodeId, Vec<ExpressionId>>, } impl NodeToWidgetsMapping { fn remove_widget(&mut self, node_id: NodeId, target: ast::Id) { self.attached_widgets.entry(node_id).and_modify(|exprs| { let Some(index) = exprs.iter().position(|e| *e == target) else { return }; exprs.swap_remove(index); }); } fn insert_widget(&mut self, node_id: NodeId, target: ast::Id) { self.attached_widgets.entry(node_id).or_default().push(target); } fn retain_node_widgets( &mut self, node_id: NodeId, remaining_expressions: &HashSet<ast::Id>, mut on_remove: impl FnMut(ExpressionId), ) { if let Some(registered) = self.attached_widgets.get_mut(&node_id) { registered.retain(|expr_id| { let retained = remaining_expressions.contains(expr_id); if !retained { on_remove(*expr_id); } retained }); } } fn remove_node_widgets(&mut self, node_id: NodeId) -> Vec<ExpressionId> { self.attached_widgets.remove(&node_id).unwrap_or_default() } } // =============== // === Request === // =============== /// Definition of a widget request. Defines the node subexpression that the widgets will be attached /// to, and the method call that corresponds to that expression. #[derive(Debug, Default, Clone, Copy)] pub struct Request { /// The node ID of a node that contains the widget. pub node_id: NodeId, /// Expression of the whole method call. Only used to correlate the visualization response with /// the widget view. pub call_expression: ExpressionId, /// Target (`self`) argument in the call expression. Used as a visualization target. pub target_expression: ExpressionId, /// The suggestion ID of the method that this call refers to. pub call_suggestion: SuggestionId, } // ================= // === QueryData === // ================= /// Data of ongoing widget query. Defines which expressions a visualization query is attached to, /// and maintains enough data to correlate the response with respective widget view. #[derive(Debug)] struct QueryData { node_id: NodeId, call_expression: ExpressionId, method_name: ImString, arguments: Vec<ImString>, last_definitions: Option<Rc<Vec<ArgumentWidgetConfig>>>, } impl QueryData { fn new(suggestion: &enso_suggestion_database::Entry, req: &Request) -> Self { let node_id = req.node_id; let arguments = suggestion.arguments.iter().map(|arg| arg.name.clone().into()).collect(); let method_name = suggestion.name.clone(); let call_expression = req.call_expression; let last_definitions = None; QueryData { node_id, arguments, method_name, call_expression, last_definitions } } /// Update existing query data on new request. Returns true if the visualization query needs to /// be updated. fn update(&mut self, suggestion: &enso_suggestion_database::Entry, req: &Request) -> bool { let mut visualization_modified = false; if self.method_name != suggestion.name { self.method_name = suggestion.name.clone(); visualization_modified = true; } let mut zipped_arguments = self.arguments.iter().zip(&suggestion.arguments); if self.arguments.len() != suggestion.arguments.len() || !zipped_arguments.all(|(a, b)| a == &b.name) { self.arguments = suggestion.arguments.iter().map(|arg| arg.name.clone().into()).collect(); visualization_modified = true; } self.node_id = req.node_id; self.call_expression = req.call_expression; visualization_modified } fn last_definitions(&self) -> Option<(NodeId, CallWidgetsConfig)> { self.last_definitions.as_ref().map(|definitions| { let call_id = self.call_expression; let config = CallWidgetsConfig { call_id, definitions: definitions.clone() }; (self.node_id, config) }) } fn request_visualization(&mut self, manager: &Rc<Manager>, target_expression: ast::Id) { // When visualization is requested, remove stale queried value to prevent updates while // language server request is pending. self.last_definitions.take(); let vis_metadata = self.visualization_metadata(); manager.request_visualization(target_expression, vis_metadata); } /// Generate visualization metadata for this query. fn visualization_metadata(&self) -> Metadata { let arguments: Vec<Code> = vec![ Self::as_unresolved_symbol(&self.method_name).into(), Self::arg_sequence(&self.arguments).into(), ]; let preprocessor = visualization::instance::PreprocessorConfiguration { module: WIDGET_VISUALIZATION_MODULE.into(), method: WIDGET_VISUALIZATION_METHOD.into(), arguments: Rc::new(arguments), }; Metadata { preprocessor } } /// Escape a string to be used as a visualization argument. Transforms the string into an enso /// expression with string literal. fn escape_visualization_argument(arg: &str) -> String { Ast::raw_text_literal(arg).repr() } /// Creates unresolved symbol via ".name" syntax. Unresolved symbol contains name and also /// module scope to resolve it properly. fn as_unresolved_symbol(arg: &str) -> String { format!(".{arg}") } /// Escape a list of strings to be used as a visualization argument. Transforms the strings into /// an enso expression with a list of string literals. fn arg_sequence(args: &[ImString]) -> String { let mut buffer = String::from("["); for (i, arg) in args.iter().enumerate() { if i > 0 { buffer.push_str(", "); } buffer.push_str(&Self::escape_visualization_argument(arg));
} buffer.push(']');
random_line_split
widget.rs
, manager_notifications) = Manager::new(executed_graph.clone_ref()); let frp = Frp::new(); let model = Rc::new(RefCell::new(Model { manager, graph: executed_graph.clone_ref(), widgets_of_node: default(), widget_queries: default(), })); let network = &frp.network; let input = &frp.input; let output = &frp.private.output; frp::extend! { network updates_from_cache <- input.request_widgets.filter_map( f!((definition) model.borrow_mut().request_widget(definition)) ); output.widget_data <+ updates_from_cache; eval input.retain_node_expressions(((node_id, expr_ids)) { model.borrow_mut().retain_node_expressions(*node_id, expr_ids) }); eval input.remove_all_node_widgets((node_id) { model.borrow_mut().remove_all_node_widgets(*node_id) }); }; let out_widget_data = output.widget_data.clone_ref(); let weak = Rc::downgrade(&model); spawn_stream_handler(weak, manager_notifications, move |notification, model| { let data = model.borrow_mut().handle_notification(notification); if let Some(data) = data { out_widget_data.emit(data); } std::future::ready(()) }); Self { frp, model } } } // ============= // === Model === // ============= /// Model of the Widget controller. Manages the widget queries, stores responses in cache. See /// [`Controller`] for more information. #[derive(Debug)] pub struct Model { manager: Rc<Manager>, graph: ExecutedGraph, widgets_of_node: NodeToWidgetsMapping, /// Map of queries by the target expression ID. Required to be able to map visualization update /// responses to the corresponding widgets. widget_queries: HashMap<ExpressionId, QueryData>, } impl Model { /// Visualization update notification handler. Updates the cache and returns the widget updates /// when the notification provides new data. fn handle_notification( &mut self, notification: Notification, ) -> Option<(NodeId, CallWidgetsConfig)> { let report_error = |message, error| { error!("{message}: {error}"); None }; match notification { Notification::ValueUpdate { target, data, .. } => self.handle_visualization_value_update(target, data), Notification::FailedToAttach { error, .. } => report_error("Failed to attach widget visualization", error), Notification::FailedToDetach { error, .. } => report_error("Failed to detach widget visualization", error), Notification::FailedToModify { error, .. } => report_error("Failed to modify widget visualization", error), } } /// Handle visualization data update. Return widget update data. fn handle_visualization_value_update( &mut self, target: ast::Id, data: VisualizationUpdateData, ) -> Option<(NodeId, CallWidgetsConfig)> { let query_data = self.widget_queries.get_mut(&target)?; let (definitions, errors) = configuration::deserialize_widget_definitions( &data, &self.graph.suggestion_db(), &self.graph.parser(), ); for error in errors { error!("{:?}", error); } trace!("Widget definitions: {definitions:?}"); let definitions = Rc::new(definitions); query_data.last_definitions = Some(definitions.clone()); let call_id = query_data.call_expression; Some((query_data.node_id, CallWidgetsConfig { call_id, definitions })) } /// Handle a widget request from presenter. Returns the widget updates if the request can be /// immediately fulfilled from the cache. fn request_widget(&mut self, request: &Request) -> Option<(NodeId, CallWidgetsConfig)> { let suggestion_db = self.graph.suggestion_db(); let suggestion = suggestion_db.lookup(request.call_suggestion).ok()?; use std::collections::hash_map::Entry; match self.widget_queries.entry(request.target_expression) { Entry::Occupied(mut occupied) => { let query = occupied.get_mut(); if query.node_id != request.node_id { self.widgets_of_node.remove_widget(query.node_id, request.target_expression); self.widgets_of_node.insert_widget(request.node_id, request.target_expression); } let visualization_modified = query.update(&suggestion, request); if visualization_modified { trace!("Updating widget visualization for {}", request.target_expression); query.request_visualization(&self.manager, request.target_expression); // The request is now pending. Once the request completes, the widget update // will happen in the response handler. None } else { // In the event that the visualization was not modified, we want to respond with // the last known visualization data. Each widget request needs to be responded // to, otherwise the widget might not be displayed after the widget view has // been temporarily removed and created again. query.last_definitions() } } Entry::Vacant(vacant) => { self.widgets_of_node.insert_widget(request.node_id, request.target_expression); let query = vacant.insert(QueryData::new(&suggestion, request)); trace!("Registering widget visualization for {}", request.target_expression); query.request_visualization(&self.manager, request.target_expression); // The request is now pending. Once the request completes, the widget update will // happen in the response handler. None } } } /// Remove all widget queries of given node that are attached to expressions outside of provided /// list. No widget update is emitted after a query is cleaned up. fn retain_node_expressions(&mut self, node_id: NodeId, expressions: &HashSet<ast::Id>) { self.widgets_of_node.retain_node_widgets(node_id, expressions, |expr_id| { self.manager.remove_visualization(expr_id); }); } /// Remove all widget queries of given node. No widget update is emitted after a query is /// cleaned up. fn remove_all_node_widgets(&mut self, node_id: NodeId) { for expr_id in self.widgets_of_node.remove_node_widgets(node_id) { self.manager.remove_visualization(expr_id); } } } // ============================ // === NodeToWidgetsMapping === // ============================ /// A map of widgets attached to nodes. Used to perform cleanup of node widget queries when node is /// removed. #[derive(Debug, Default)] struct NodeToWidgetsMapping { attached_widgets: HashMap<NodeId, Vec<ExpressionId>>, } impl NodeToWidgetsMapping { fn remove_widget(&mut self, node_id: NodeId, target: ast::Id) { self.attached_widgets.entry(node_id).and_modify(|exprs| { let Some(index) = exprs.iter().position(|e| *e == target) else { return }; exprs.swap_remove(index); }); } fn insert_widget(&mut self, node_id: NodeId, target: ast::Id) { self.attached_widgets.entry(node_id).or_default().push(target); } fn retain_node_widgets( &mut self, node_id: NodeId, remaining_expressions: &HashSet<ast::Id>, mut on_remove: impl FnMut(ExpressionId), ) { if let Some(registered) = self.attached_widgets.get_mut(&node_id) { registered.retain(|expr_id| { let retained = remaining_expressions.contains(expr_id); if !retained { on_remove(*expr_id); } retained }); } } fn remove_node_widgets(&mut self, node_id: NodeId) -> Vec<ExpressionId> { self.attached_widgets.remove(&node_id).unwrap_or_default() } } // =============== // === Request === // =============== /// Definition of a widget request. Defines the node subexpression that the widgets will be attached /// to, and the method call that corresponds to that expression. #[derive(Debug, Default, Clone, Copy)] pub struct Request { /// The node ID of a node that contains the widget. pub node_id: NodeId, /// Expression of the whole method call. Only used to correlate the visualization response with /// the widget view. pub call_expression: ExpressionId, /// Target (`self`) argument in the call expression. Used as a visualization target. pub target_expression: ExpressionId, /// The suggestion ID of the method that this call refers to. pub call_suggestion: SuggestionId, } // ================= // === QueryData === // ================= /// Data of ongoing widget query. Defines which expressions a visualization query is attached to, /// and maintains enough data to correlate the response with respective widget view. #[derive(Debug)] struct QueryData { node_id: NodeId, call_expression: ExpressionId, method_name: ImString, arguments: Vec<ImString>, last_definitions: Option<Rc<Vec<ArgumentWidgetConfig>>>, } impl QueryData { fn new(suggestion: &enso_suggestion_database::Entry, req: &Request) -> Self { let node_id = req.node_id; let arguments = suggestion.arguments.iter().map(|arg| arg.name.clone().into()).collect(); let method_name = suggestion.name.clone(); let call_expression = req.call_expression; let last_definitions = None; QueryData { node_id, arguments, method_name, call_expression, last_definitions } } /// Update existing query data on new request. Returns true if the visualization query needs to /// be updated. fn
update
identifier_name
argument_parser.py
(locustfile): """ Attempt to locate a locustfile, either explicitly or by searching parent dirs. """ # Obtain env value names = [locustfile] # Create .py version if necessary if not names[0].endswith('.py'): names.append(names[0] + '.py') # Does the name contain path elements? if os.path.dirname(names[0]): # If so, expand home-directory markers and test for existence for name in names: expanded = os.path.expanduser(name) if os.path.exists(expanded): if name.endswith('.py') or _is_package(expanded): return os.path.abspath(expanded) else: # Otherwise, start in cwd and work downwards towards filesystem root path = os.path.abspath('.') while True: for name in names: joined = os.path.join(path, name) if os.path.exists(joined): if name.endswith('.py') or _is_package(joined): return os.path.abspath(joined) parent_path = os.path.dirname(path) if parent_path == path: # we've reached the root path which has been checked this iteration break path = parent_path # Implicit 'return None' if nothing was found def get_empty_argument_parser(add_help=True, default_config_files=DEFAULT_CONFIG_FILES): parser = configargparse.ArgumentParser( default_config_files=default_config_files, auto_env_var_prefix="LOCUST_", add_env_var_help=False, add_config_file_help=False, add_help=add_help, formatter_class=argparse.RawDescriptionHelpFormatter, usage=argparse.SUPPRESS, description=textwrap.dedent(""" Usage: locust [OPTIONS] [LocustClass ...] """), #epilog="", ) parser.add_argument( '-f', '--locustfile', default='locustfile', help="Python module file to import, e.g. '../other.py'. Default: locustfile" ) return parser def parse_locustfile_option(args=None): """ Construct a command line parser that is only used to parse the -f argument so that we can import the test scripts in case any of them adds additional command line arguments to the parser """ parser = get_empty_argument_parser(add_help=False) parser.add_argument( '-h', '--help', action='store_true', default=False, ) parser.add_argument( '--version', '-V', action='store_true', default=False, ) options, _ = parser.parse_known_args(args=args) locustfile = find_locustfile(options.locustfile) if not locustfile: if options.help or options.version: # if --help or --version is specified we'll call parse_options which will print the help/version message parse_options(args=args) sys.stderr.write("Could not find any locustfile! Ensure file ends in '.py' and see --help for available options.\n") sys.exit(1) if locustfile == "locust.py": sys.stderr.write("The locustfile must not be named `locust.py`. Please rename the file and try again.\n") sys.exit(1) return locustfile def setup_parser_arguments(parser): """ Setup command-line options Takes a configargparse.ArgumentParser as argument and calls it's add_argument for each of the supported arguments """ parser._optionals.title = "Common options" parser.add_argument( '-H', '--host', help="Host to load test in the following format: http://10.21.32.33" ) # Number of Locust users parser.add_argument( '-c', '--clients', type=int, dest='num_clients', default=1, help="Number of concurrent Locust users. Only used together with --headless" ) # User hatch rate parser.add_argument( '-r', '--hatch-rate', type=float, default=1, help="The rate per second in which clients are spawned. Only used together with --headless" ) # Time limit of the test run parser.add_argument( '-t', '--run-time', help="Stop after the specified amount of time, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with --headless" ) # List locust commands found in loaded locust files/source files parser.add_argument( '-l', '--list', action='store_true', dest='list_commands', help="Show list of possible locust classes and exit" ) web_ui_group = parser.add_argument_group("Web UI options") web_ui_group.add_argument( '--web-host', default="", help="Host to bind the web interface to. Defaults to '*' (all interfaces)" ) web_ui_group.add_argument( '--web-port', '-P', type=int, default=8089, help="Port on which to run web host" ) # if we should print stats in the console web_ui_group.add_argument( '--headless', action='store_true', help="Disable the web interface, and instead start the load test immediately. Requires -c and -t to be specified." ) web_ui_group.add_argument( '--web-auth', type=str, dest='web_auth', default=None, help='Turn on Basic Auth for the web interface. Should be supplied in the following format: username:password' ) master_group = parser.add_argument_group( "Master options", "Options for running a Locust Master node when running Locust distributed. A Master node need Worker nodes that connect to it before it can run load tests.", ) # if locust should be run in distributed mode as master master_group.add_argument( '--master', action='store_true', help="Set locust to run in distributed mode with this process as master" ) master_group.add_argument( '--master-bind-host', default="*", help="Interfaces (hostname, ip) that locust master should bind to. Only used when running with --master. Defaults to * (all available interfaces)." ) master_group.add_argument( '--master-bind-port', type=int, default=5557, help="Port that locust master should bind to. Only used when running with --master. Defaults to 5557." ) master_group.add_argument( '--expect-workers', type=int, default=1, help="How many workers master should expect to connect before starting the test (only when --headless used)." ) master_group.add_argument( '--expect-slaves', action='store_true', help=configargparse.SUPPRESS ) worker_group = parser.add_argument_group( "Worker options", textwrap.dedent(""" Options for running a Locust Worker node when running Locust distributed. Only the LOCUSTFILE (-f option) need to be specified when starting a Worker, since other options such as -c, -r, -t are specified on the Master node. """), ) # if locust should be run in distributed mode as worker worker_group.add_argument( '--worker', action='store_true', help="Set locust to run in distributed mode with this process as worker" ) worker_group.add_argument( '--slave', action='store_true', help=configargparse.SUPPRESS ) # master host options worker_group.add_argument( '--master-host', default="127.0.0.1", help="Host or IP address of locust master for distributed load testing. Only used when running with --worker. Defaults to 127.0.0.1." ) worker_group.add_argument( '--master-port', type=int, default=5557, help="The port to connect to that is used by the locust master for distributed load testing. Only used when running with --worker. Defaults to 5557." ) stats_group = parser.add_argument_group("Request statistics options") # A file that contains the current request stats. stats_group.add_argument( '--csv', '--csv-base-name', dest='csvfilebase', help="Store current request stats to files in CSV format.", ) # Adds each stats entry at every iteration to the _stats_history.csv file. stats_group.add_argument( '--csv-full-history', action='store_true', default=False, dest='stats_history_enabled', help="Store each stats entry in CSV format to _stats_history.csv file", ) # if we should print stats in the console stats_group.add_argument( '--print-stats', action='store_true', help="Print stats in the console" ) # only print summary stats stats_group.add_argument( '--only-summary', action='store_true', help='Only print the summary stats' ) stats_group.add_argument( '--reset-stats', action='store_true', help="Reset statistics once hatching has been completed. Should
find_locustfile
identifier_name
argument_parser.py
parse_options(args=args) sys.stderr.write("Could not find any locustfile! Ensure file ends in '.py' and see --help for available options.\n") sys.exit(1) if locustfile == "locust.py": sys.stderr.write("The locustfile must not be named `locust.py`. Please rename the file and try again.\n") sys.exit(1) return locustfile def setup_parser_arguments(parser): """ Setup command-line options Takes a configargparse.ArgumentParser as argument and calls it's add_argument for each of the supported arguments """ parser._optionals.title = "Common options" parser.add_argument( '-H', '--host', help="Host to load test in the following format: http://10.21.32.33" ) # Number of Locust users parser.add_argument( '-c', '--clients', type=int, dest='num_clients', default=1, help="Number of concurrent Locust users. Only used together with --headless" ) # User hatch rate parser.add_argument( '-r', '--hatch-rate', type=float, default=1, help="The rate per second in which clients are spawned. Only used together with --headless" ) # Time limit of the test run parser.add_argument( '-t', '--run-time', help="Stop after the specified amount of time, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with --headless" ) # List locust commands found in loaded locust files/source files parser.add_argument( '-l', '--list', action='store_true', dest='list_commands', help="Show list of possible locust classes and exit" ) web_ui_group = parser.add_argument_group("Web UI options") web_ui_group.add_argument( '--web-host', default="", help="Host to bind the web interface to. Defaults to '*' (all interfaces)" ) web_ui_group.add_argument( '--web-port', '-P', type=int, default=8089, help="Port on which to run web host" ) # if we should print stats in the console web_ui_group.add_argument( '--headless', action='store_true', help="Disable the web interface, and instead start the load test immediately. Requires -c and -t to be specified." ) web_ui_group.add_argument( '--web-auth', type=str, dest='web_auth', default=None, help='Turn on Basic Auth for the web interface. Should be supplied in the following format: username:password' ) master_group = parser.add_argument_group( "Master options", "Options for running a Locust Master node when running Locust distributed. A Master node need Worker nodes that connect to it before it can run load tests.", ) # if locust should be run in distributed mode as master master_group.add_argument( '--master', action='store_true', help="Set locust to run in distributed mode with this process as master" ) master_group.add_argument( '--master-bind-host', default="*", help="Interfaces (hostname, ip) that locust master should bind to. Only used when running with --master. Defaults to * (all available interfaces)." ) master_group.add_argument( '--master-bind-port', type=int, default=5557, help="Port that locust master should bind to. Only used when running with --master. Defaults to 5557." ) master_group.add_argument( '--expect-workers', type=int, default=1, help="How many workers master should expect to connect before starting the test (only when --headless used)." ) master_group.add_argument( '--expect-slaves', action='store_true', help=configargparse.SUPPRESS ) worker_group = parser.add_argument_group( "Worker options", textwrap.dedent(""" Options for running a Locust Worker node when running Locust distributed. Only the LOCUSTFILE (-f option) need to be specified when starting a Worker, since other options such as -c, -r, -t are specified on the Master node. """), ) # if locust should be run in distributed mode as worker worker_group.add_argument( '--worker', action='store_true', help="Set locust to run in distributed mode with this process as worker" ) worker_group.add_argument( '--slave', action='store_true', help=configargparse.SUPPRESS ) # master host options worker_group.add_argument( '--master-host', default="127.0.0.1", help="Host or IP address of locust master for distributed load testing. Only used when running with --worker. Defaults to 127.0.0.1." ) worker_group.add_argument( '--master-port', type=int, default=5557, help="The port to connect to that is used by the locust master for distributed load testing. Only used when running with --worker. Defaults to 5557." ) stats_group = parser.add_argument_group("Request statistics options") # A file that contains the current request stats. stats_group.add_argument( '--csv', '--csv-base-name', dest='csvfilebase', help="Store current request stats to files in CSV format.", ) # Adds each stats entry at every iteration to the _stats_history.csv file. stats_group.add_argument( '--csv-full-history', action='store_true', default=False, dest='stats_history_enabled', help="Store each stats entry in CSV format to _stats_history.csv file", ) # if we should print stats in the console stats_group.add_argument( '--print-stats', action='store_true', help="Print stats in the console" ) # only print summary stats stats_group.add_argument( '--only-summary', action='store_true', help='Only print the summary stats' ) stats_group.add_argument( '--reset-stats', action='store_true', help="Reset statistics once hatching has been completed. Should be set on both master and workers when running in distributed mode", ) log_group = parser.add_argument_group("Logging options") # skip logging setup log_group.add_argument( '--skip-log-setup', action='store_true', dest='skip_log_setup', default=False, help="Disable Locust's logging setup. Instead, the configuration is provided by the Locust test or Python defaults." ) # log level log_group.add_argument( '--loglevel', '-L', default='INFO', help="Choose between DEBUG/INFO/WARNING/ERROR/CRITICAL. Default is INFO.", ) # log file log_group.add_argument( '--logfile', help="Path to log file. If not set, log will go to stdout/stderr", ) step_load_group = parser.add_argument_group("Step load options") # Enable Step Load mode step_load_group.add_argument( '--step-load', action='store_true', help="Enable Step Load mode to monitor how performance metrics varies when user load increases. Requires --step-clients and --step-time to be specified." ) # Number of clients to incease by Step step_load_group.add_argument( '--step-clients', type=int, default=1, help="Client count to increase by step in Step Load mode. Only used together with --step-load" ) # Time limit of each step step_load_group.add_argument( '--step-time', help="Step duration in Step Load mode, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with --step-load" ) other_group = parser.add_argument_group("Other options") # Display ratio table of all tasks other_group.add_argument( '--show-task-ratio', action='store_true', help="Print table of the locust classes' task execution ratio" ) # Display ratio table of all tasks in JSON format other_group.add_argument( '--show-task-ratio-json', action='store_true', help="Print json data of the locust classes' task execution ratio" ) # Version number (optparse gives you --version but we have to do it # ourselves to get -V too. sigh) other_group.add_argument( '--version', '-V', action='version', help="Show program's version number and exit", version='%(prog)s {}'.format(version), ) # set the exit code to post on errors other_group.add_argument( '--exit-code-on-error', type=int, default=1, help="Sets the process exit code to use when a test result contain any failure or error" ) other_group.add_argument(
'-s', '--stop-timeout', action='store', type=int,
random_line_split
argument_parser.py
parent_path = os.path.dirname(path) if parent_path == path: # we've reached the root path which has been checked this iteration break path = parent_path # Implicit 'return None' if nothing was found def get_empty_argument_parser(add_help=True, default_config_files=DEFAULT_CONFIG_FILES): parser = configargparse.ArgumentParser( default_config_files=default_config_files, auto_env_var_prefix="LOCUST_", add_env_var_help=False, add_config_file_help=False, add_help=add_help, formatter_class=argparse.RawDescriptionHelpFormatter, usage=argparse.SUPPRESS, description=textwrap.dedent(""" Usage: locust [OPTIONS] [LocustClass ...] """), #epilog="", ) parser.add_argument( '-f', '--locustfile', default='locustfile', help="Python module file to import, e.g. '../other.py'. Default: locustfile" ) return parser def parse_locustfile_option(args=None): """ Construct a command line parser that is only used to parse the -f argument so that we can import the test scripts in case any of them adds additional command line arguments to the parser """ parser = get_empty_argument_parser(add_help=False) parser.add_argument( '-h', '--help', action='store_true', default=False, ) parser.add_argument( '--version', '-V', action='store_true', default=False, ) options, _ = parser.parse_known_args(args=args) locustfile = find_locustfile(options.locustfile) if not locustfile:
if locustfile == "locust.py": sys.stderr.write("The locustfile must not be named `locust.py`. Please rename the file and try again.\n") sys.exit(1) return locustfile def setup_parser_arguments(parser): """ Setup command-line options Takes a configargparse.ArgumentParser as argument and calls it's add_argument for each of the supported arguments """ parser._optionals.title = "Common options" parser.add_argument( '-H', '--host', help="Host to load test in the following format: http://10.21.32.33" ) # Number of Locust users parser.add_argument( '-c', '--clients', type=int, dest='num_clients', default=1, help="Number of concurrent Locust users. Only used together with --headless" ) # User hatch rate parser.add_argument( '-r', '--hatch-rate', type=float, default=1, help="The rate per second in which clients are spawned. Only used together with --headless" ) # Time limit of the test run parser.add_argument( '-t', '--run-time', help="Stop after the specified amount of time, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with --headless" ) # List locust commands found in loaded locust files/source files parser.add_argument( '-l', '--list', action='store_true', dest='list_commands', help="Show list of possible locust classes and exit" ) web_ui_group = parser.add_argument_group("Web UI options") web_ui_group.add_argument( '--web-host', default="", help="Host to bind the web interface to. Defaults to '*' (all interfaces)" ) web_ui_group.add_argument( '--web-port', '-P', type=int, default=8089, help="Port on which to run web host" ) # if we should print stats in the console web_ui_group.add_argument( '--headless', action='store_true', help="Disable the web interface, and instead start the load test immediately. Requires -c and -t to be specified." ) web_ui_group.add_argument( '--web-auth', type=str, dest='web_auth', default=None, help='Turn on Basic Auth for the web interface. Should be supplied in the following format: username:password' ) master_group = parser.add_argument_group( "Master options", "Options for running a Locust Master node when running Locust distributed. A Master node need Worker nodes that connect to it before it can run load tests.", ) # if locust should be run in distributed mode as master master_group.add_argument( '--master', action='store_true', help="Set locust to run in distributed mode with this process as master" ) master_group.add_argument( '--master-bind-host', default="*", help="Interfaces (hostname, ip) that locust master should bind to. Only used when running with --master. Defaults to * (all available interfaces)." ) master_group.add_argument( '--master-bind-port', type=int, default=5557, help="Port that locust master should bind to. Only used when running with --master. Defaults to 5557." ) master_group.add_argument( '--expect-workers', type=int, default=1, help="How many workers master should expect to connect before starting the test (only when --headless used)." ) master_group.add_argument( '--expect-slaves', action='store_true', help=configargparse.SUPPRESS ) worker_group = parser.add_argument_group( "Worker options", textwrap.dedent(""" Options for running a Locust Worker node when running Locust distributed. Only the LOCUSTFILE (-f option) need to be specified when starting a Worker, since other options such as -c, -r, -t are specified on the Master node. """), ) # if locust should be run in distributed mode as worker worker_group.add_argument( '--worker', action='store_true', help="Set locust to run in distributed mode with this process as worker" ) worker_group.add_argument( '--slave', action='store_true', help=configargparse.SUPPRESS ) # master host options worker_group.add_argument( '--master-host', default="127.0.0.1", help="Host or IP address of locust master for distributed load testing. Only used when running with --worker. Defaults to 127.0.0.1." ) worker_group.add_argument( '--master-port', type=int, default=5557, help="The port to connect to that is used by the locust master for distributed load testing. Only used when running with --worker. Defaults to 5557." ) stats_group = parser.add_argument_group("Request statistics options") # A file that contains the current request stats. stats_group.add_argument( '--csv', '--csv-base-name', dest='csvfilebase', help="Store current request stats to files in CSV format.", ) # Adds each stats entry at every iteration to the _stats_history.csv file. stats_group.add_argument( '--csv-full-history', action='store_true', default=False, dest='stats_history_enabled', help="Store each stats entry in CSV format to _stats_history.csv file", ) # if we should print stats in the console stats_group.add_argument( '--print-stats', action='store_true', help="Print stats in the console" ) # only print summary stats stats_group.add_argument( '--only-summary', action='store_true', help='Only print the summary stats' ) stats_group.add_argument( '--reset-stats', action='store_true', help="Reset statistics once hatching has been completed. Should be set on both master and workers when running in distributed mode", ) log_group = parser.add_argument_group("Logging options") # skip logging setup log_group.add_argument( '--skip-log-setup', action='store_true', dest='skip_log_setup', default=False, help="Disable Locust's logging setup. Instead, the configuration is provided by the Locust test or Python defaults." ) # log level log_group.add_argument( '--loglevel', '-L', default='INFO', help="Choose between DEBUG/INFO/WARNING/ERROR/CRITICAL. Default is INFO.", ) # log file log_group.add_argument( '--logfile', help="Path to log file. If not set, log will go to stdout/stderr", ) step_load_group = parser.add_argument_group("Step load options") # Enable Step Load mode step_load_group.add_argument( '--step-load', action='store_true', help="Enable Step Load mode to monitor how performance metrics varies when
if options.help or options.version: # if --help or --version is specified we'll call parse_options which will print the help/version message parse_options(args=args) sys.stderr.write("Could not find any locustfile! Ensure file ends in '.py' and see --help for available options.\n") sys.exit(1)
conditional_block
argument_parser.py
parent_path = os.path.dirname(path) if parent_path == path: # we've reached the root path which has been checked this iteration break path = parent_path # Implicit 'return None' if nothing was found def get_empty_argument_parser(add_help=True, default_config_files=DEFAULT_CONFIG_FILES): parser = configargparse.ArgumentParser( default_config_files=default_config_files, auto_env_var_prefix="LOCUST_", add_env_var_help=False, add_config_file_help=False, add_help=add_help, formatter_class=argparse.RawDescriptionHelpFormatter, usage=argparse.SUPPRESS, description=textwrap.dedent(""" Usage: locust [OPTIONS] [LocustClass ...] """), #epilog="", ) parser.add_argument( '-f', '--locustfile', default='locustfile', help="Python module file to import, e.g. '../other.py'. Default: locustfile" ) return parser def parse_locustfile_option(args=None): """ Construct a command line parser that is only used to parse the -f argument so that we can import the test scripts in case any of them adds additional command line arguments to the parser """ parser = get_empty_argument_parser(add_help=False) parser.add_argument( '-h', '--help', action='store_true', default=False, ) parser.add_argument( '--version', '-V', action='store_true', default=False, ) options, _ = parser.parse_known_args(args=args) locustfile = find_locustfile(options.locustfile) if not locustfile: if options.help or options.version: # if --help or --version is specified we'll call parse_options which will print the help/version message parse_options(args=args) sys.stderr.write("Could not find any locustfile! Ensure file ends in '.py' and see --help for available options.\n") sys.exit(1) if locustfile == "locust.py": sys.stderr.write("The locustfile must not be named `locust.py`. Please rename the file and try again.\n") sys.exit(1) return locustfile def setup_parser_arguments(parser):
parser.add_argument( '-r', '--hatch-rate', type=float, default=1, help="The rate per second in which clients are spawned. Only used together with --headless" ) # Time limit of the test run parser.add_argument( '-t', '--run-time', help="Stop after the specified amount of time, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with --headless" ) # List locust commands found in loaded locust files/source files parser.add_argument( '-l', '--list', action='store_true', dest='list_commands', help="Show list of possible locust classes and exit" ) web_ui_group = parser.add_argument_group("Web UI options") web_ui_group.add_argument( '--web-host', default="", help="Host to bind the web interface to. Defaults to '*' (all interfaces)" ) web_ui_group.add_argument( '--web-port', '-P', type=int, default=8089, help="Port on which to run web host" ) # if we should print stats in the console web_ui_group.add_argument( '--headless', action='store_true', help="Disable the web interface, and instead start the load test immediately. Requires -c and -t to be specified." ) web_ui_group.add_argument( '--web-auth', type=str, dest='web_auth', default=None, help='Turn on Basic Auth for the web interface. Should be supplied in the following format: username:password' ) master_group = parser.add_argument_group( "Master options", "Options for running a Locust Master node when running Locust distributed. A Master node need Worker nodes that connect to it before it can run load tests.", ) # if locust should be run in distributed mode as master master_group.add_argument( '--master', action='store_true', help="Set locust to run in distributed mode with this process as master" ) master_group.add_argument( '--master-bind-host', default="*", help="Interfaces (hostname, ip) that locust master should bind to. Only used when running with --master. Defaults to * (all available interfaces)." ) master_group.add_argument( '--master-bind-port', type=int, default=5557, help="Port that locust master should bind to. Only used when running with --master. Defaults to 5557." ) master_group.add_argument( '--expect-workers', type=int, default=1, help="How many workers master should expect to connect before starting the test (only when --headless used)." ) master_group.add_argument( '--expect-slaves', action='store_true', help=configargparse.SUPPRESS ) worker_group = parser.add_argument_group( "Worker options", textwrap.dedent(""" Options for running a Locust Worker node when running Locust distributed. Only the LOCUSTFILE (-f option) need to be specified when starting a Worker, since other options such as -c, -r, -t are specified on the Master node. """), ) # if locust should be run in distributed mode as worker worker_group.add_argument( '--worker', action='store_true', help="Set locust to run in distributed mode with this process as worker" ) worker_group.add_argument( '--slave', action='store_true', help=configargparse.SUPPRESS ) # master host options worker_group.add_argument( '--master-host', default="127.0.0.1", help="Host or IP address of locust master for distributed load testing. Only used when running with --worker. Defaults to 127.0.0.1." ) worker_group.add_argument( '--master-port', type=int, default=5557, help="The port to connect to that is used by the locust master for distributed load testing. Only used when running with --worker. Defaults to 5557." ) stats_group = parser.add_argument_group("Request statistics options") # A file that contains the current request stats. stats_group.add_argument( '--csv', '--csv-base-name', dest='csvfilebase', help="Store current request stats to files in CSV format.", ) # Adds each stats entry at every iteration to the _stats_history.csv file. stats_group.add_argument( '--csv-full-history', action='store_true', default=False, dest='stats_history_enabled', help="Store each stats entry in CSV format to _stats_history.csv file", ) # if we should print stats in the console stats_group.add_argument( '--print-stats', action='store_true', help="Print stats in the console" ) # only print summary stats stats_group.add_argument( '--only-summary', action='store_true', help='Only print the summary stats' ) stats_group.add_argument( '--reset-stats', action='store_true', help="Reset statistics once hatching has been completed. Should be set on both master and workers when running in distributed mode", ) log_group = parser.add_argument_group("Logging options") # skip logging setup log_group.add_argument( '--skip-log-setup', action='store_true', dest='skip_log_setup', default=False, help="Disable Locust's logging setup. Instead, the configuration is provided by the Locust test or Python defaults." ) # log level log_group.add_argument( '--loglevel', '-L', default='INFO', help="Choose between DEBUG/INFO/WARNING/ERROR/CRITICAL. Default is INFO.", ) # log file log_group.add_argument( '--logfile', help="Path to log file. If not set, log will go to stdout/stderr", ) step_load_group = parser.add_argument_group("Step load options") # Enable Step Load mode step_load_group.add_argument( '--step-load', action='store_true', help="Enable Step Load mode to monitor how performance metrics varies when user
""" Setup command-line options Takes a configargparse.ArgumentParser as argument and calls it's add_argument for each of the supported arguments """ parser._optionals.title = "Common options" parser.add_argument( '-H', '--host', help="Host to load test in the following format: http://10.21.32.33" ) # Number of Locust users parser.add_argument( '-c', '--clients', type=int, dest='num_clients', default=1, help="Number of concurrent Locust users. Only used together with --headless" ) # User hatch rate
identifier_body
client.rs
client may receive. #[derive(Clone, Debug, PartialEq, Eq)] pub enum Notification { /// A new data has been sent for a visualization. VisualizationUpdate { /// Identifies the specific visualization. context: VisualizationContext, /// Data to be passed to the visualization. data: Vec<u8>, }, } /// Events emitted by the LS binary protocol client. pub type Event = crate::common::event::Event<Notification>; // =========== // === API === // =========== /// The Engine Services Language Server Binary Protocol Client API. #[automock] pub trait API { /// Initializes the protocol. Must be called exactly once before making any other calls. fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult>; /// Writes binary data to the file. fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult>; /// Retrieves the file contents as a binary data. fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>>; /// Writes a set of bytes to the specified file at the specified offset. fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>>; /// Asynchronous event stream with notification and errors. /// /// On a repeated call, previous stream is closed. fn event_stream(&self) -> StaticBoxStream<Event>; } // ============== // === Client === // ============== /// The client for Engine Services Language Server Binary Protocol. #[derive(Clone, Derivative)] #[derivative(Debug)] pub struct Client { handler: Handler<Uuid, FromServerPayloadOwned, Notification>, } impl Client { /// Helper function that fails if the received message represents a remote error. fn expect_success(result: FromServerPayloadOwned) -> FallibleResult { if let FromServerPayloadOwned::Success {} = result { Ok(()) } else
} /// Function that does early processing of the peer's message and decides how it shall be /// handled. Returns a function so that it may be passed to the `Handler`. fn processor( ) -> impl FnMut(TransportEvent) -> Disposition<Uuid, FromServerPayloadOwned, Notification> + 'static { move |event: TransportEvent| { let binary_data = match event { TransportEvent::BinaryMessage(data) => data, _ => return Disposition::error(UnexpectedTextMessage), }; let message = match MessageFromServerOwned::deserialize(&binary_data) { Ok(message) => message, Err(e) => return Disposition::error(e), }; debug!("Deserialized incoming binary message: {message:?}"); let correlation_id = message.correlation_id; match message.0.payload { FromServerPayloadOwned::VisualizationUpdate { context, data } => Disposition::notify(Notification::VisualizationUpdate { data, context }), payload => { if let Some(id) = correlation_id { Disposition::HandleReply { id, reply: payload } } else { // Not a known notification and yet not a response to our request. Disposition::error(UnexpectedMessage) } } } } } /// Creates a new client from the given transport to the Language Server Data Endpoint. /// /// Before client is functional: /// * `runner` must be scheduled for execution; /// * `init` must be called or it needs to be wrapped into `Connection`. pub fn new(transport: impl Transport + 'static) -> Client { let processor = Self::processor(); Client { handler: Handler::new(transport, processor) } } /// Starts a new request, described by the given payload. /// Function `f` serves to retrieve the request's result from the more general `Reply` type. pub fn make_request<F, R>( &self, payload: ToServerPayload, f: F, ) -> StaticBoxFuture<FallibleResult<R>> where F: FnOnce(FromServerPayloadOwned) -> FallibleResult<R>, R: 'static, F: 'static, { let message = MessageToServerRef::new(payload); let id = message.message_id; let completer = move |reply| { info!("Completing request {id} with a reply: {reply:?}"); if let FromServerPayloadOwned::Error { code, message, data } = reply { let code = code as i64; let error = json_rpc::messages::Error { code, message, data }; Err(RpcError::RemoteError(error).into()) } else { f(reply) } }; let fut = self.handler.make_request(&message, completer); Box::pin(fut) } /// A `runner`. Its execution must be scheduled for `Client` to be able to complete requests and /// emit events. pub fn runner(&self) -> impl Future<Output = ()> { self.handler.runner() } } impl API for Client { fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult> { info!("Initializing binary connection as client with id {client_id}."); let payload = ToServerPayload::InitSession { client_id }; self.make_request(payload, Self::expect_success) } fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult> { info!("Writing file {} with {} bytes.", path, contents.len()); let payload = ToServerPayload::WriteFile { path, contents }; self.make_request(payload, Self::expect_success) } fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>> { info!("Reading file {path}."); let payload = ToServerPayload::ReadFile { path }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::FileContentsReply { contents } = result { Ok(contents) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>> { info!("Writing {} bytes to {path} at offset {byte_offset}", bytes.len()); let payload = ToServerPayload::WriteBytes { path, byte_offset, overwrite, bytes }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::WriteBytesReply { checksum } = result { Ok(checksum.into()) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn event_stream(&self) -> StaticBoxStream<Event> { self.handler.event_stream().boxed_local() } } // ============= // === Tests === // ============= #[cfg(test)] mod tests { use super::*; use crate::binary::message::MessageFromServer; use crate::binary::message::MessageToServerOwned; use crate::binary::message::ToServerPayloadOwned; use futures::task::LocalSpawnExt; use json_rpc::test_util::transport::mock::MockTransport; // =============== // === Fixture === // =============== struct ClientFixture { transport: MockTransport, client: Client, executor: futures::executor::LocalPool, } impl ClientFixture { fn new() -> ClientFixture { let transport = MockTransport::new(); let client = Client::new(transport.clone()); let executor = futures::executor::LocalPool::new(); executor.spawner().spawn_local(client.runner()).unwrap(); ClientFixture { transport, client, executor } } } // ======================== // === Testing Requests === // ======================== fn test_request<R>( make_request: impl Fn(&Client) -> StaticBoxFuture<FallibleResult<R>>, expected_result: R, expected_request: ToServerPayloadOwned, mock_reply: FromServerPayloadOwned, ) where R: Debug + PartialEq + Sized, { let mut fixture = ClientFixture::new(); let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); assert_eq!(generated_message.payload, expected_request); fut.expect_pending(); let mut mock_reply = MessageFromServer::new(mock_reply); mock_reply.correlation_id = Some(generated_message.message_id); mock_reply.with_serialized(|data| fixture.transport.mock_peer_binary_message(data)); fixture.executor.run_until_stalled(); assert_eq!(fut.expect_ok(), expected_result); // Repeat request but now answer with error. let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); let mock_error_code = 444; let mock_error_message = "This is error".to_string(); let mut mock_reply = MessageFromServer::
{ Err(RpcError::MismatchedResponseType.into()) }
conditional_block
client.rs
client may receive. #[derive(Clone, Debug, PartialEq, Eq)] pub enum Notification { /// A new data has been sent for a visualization. VisualizationUpdate { /// Identifies the specific visualization. context: VisualizationContext, /// Data to be passed to the visualization. data: Vec<u8>, }, } /// Events emitted by the LS binary protocol client. pub type Event = crate::common::event::Event<Notification>; // =========== // === API === // =========== /// The Engine Services Language Server Binary Protocol Client API. #[automock] pub trait API { /// Initializes the protocol. Must be called exactly once before making any other calls. fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult>; /// Writes binary data to the file. fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult>; /// Retrieves the file contents as a binary data. fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>>; /// Writes a set of bytes to the specified file at the specified offset. fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>>; /// Asynchronous event stream with notification and errors. /// /// On a repeated call, previous stream is closed. fn event_stream(&self) -> StaticBoxStream<Event>; } // ============== // === Client === // ============== /// The client for Engine Services Language Server Binary Protocol. #[derive(Clone, Derivative)] #[derivative(Debug)] pub struct Client { handler: Handler<Uuid, FromServerPayloadOwned, Notification>, } impl Client { /// Helper function that fails if the received message represents a remote error. fn expect_success(result: FromServerPayloadOwned) -> FallibleResult { if let FromServerPayloadOwned::Success {} = result { Ok(()) } else { Err(RpcError::MismatchedResponseType.into()) } } /// Function that does early processing of the peer's message and decides how it shall be /// handled. Returns a function so that it may be passed to the `Handler`. fn
( ) -> impl FnMut(TransportEvent) -> Disposition<Uuid, FromServerPayloadOwned, Notification> + 'static { move |event: TransportEvent| { let binary_data = match event { TransportEvent::BinaryMessage(data) => data, _ => return Disposition::error(UnexpectedTextMessage), }; let message = match MessageFromServerOwned::deserialize(&binary_data) { Ok(message) => message, Err(e) => return Disposition::error(e), }; debug!("Deserialized incoming binary message: {message:?}"); let correlation_id = message.correlation_id; match message.0.payload { FromServerPayloadOwned::VisualizationUpdate { context, data } => Disposition::notify(Notification::VisualizationUpdate { data, context }), payload => { if let Some(id) = correlation_id { Disposition::HandleReply { id, reply: payload } } else { // Not a known notification and yet not a response to our request. Disposition::error(UnexpectedMessage) } } } } } /// Creates a new client from the given transport to the Language Server Data Endpoint. /// /// Before client is functional: /// * `runner` must be scheduled for execution; /// * `init` must be called or it needs to be wrapped into `Connection`. pub fn new(transport: impl Transport + 'static) -> Client { let processor = Self::processor(); Client { handler: Handler::new(transport, processor) } } /// Starts a new request, described by the given payload. /// Function `f` serves to retrieve the request's result from the more general `Reply` type. pub fn make_request<F, R>( &self, payload: ToServerPayload, f: F, ) -> StaticBoxFuture<FallibleResult<R>> where F: FnOnce(FromServerPayloadOwned) -> FallibleResult<R>, R: 'static, F: 'static, { let message = MessageToServerRef::new(payload); let id = message.message_id; let completer = move |reply| { info!("Completing request {id} with a reply: {reply:?}"); if let FromServerPayloadOwned::Error { code, message, data } = reply { let code = code as i64; let error = json_rpc::messages::Error { code, message, data }; Err(RpcError::RemoteError(error).into()) } else { f(reply) } }; let fut = self.handler.make_request(&message, completer); Box::pin(fut) } /// A `runner`. Its execution must be scheduled for `Client` to be able to complete requests and /// emit events. pub fn runner(&self) -> impl Future<Output = ()> { self.handler.runner() } } impl API for Client { fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult> { info!("Initializing binary connection as client with id {client_id}."); let payload = ToServerPayload::InitSession { client_id }; self.make_request(payload, Self::expect_success) } fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult> { info!("Writing file {} with {} bytes.", path, contents.len()); let payload = ToServerPayload::WriteFile { path, contents }; self.make_request(payload, Self::expect_success) } fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>> { info!("Reading file {path}."); let payload = ToServerPayload::ReadFile { path }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::FileContentsReply { contents } = result { Ok(contents) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>> { info!("Writing {} bytes to {path} at offset {byte_offset}", bytes.len()); let payload = ToServerPayload::WriteBytes { path, byte_offset, overwrite, bytes }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::WriteBytesReply { checksum } = result { Ok(checksum.into()) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn event_stream(&self) -> StaticBoxStream<Event> { self.handler.event_stream().boxed_local() } } // ============= // === Tests === // ============= #[cfg(test)] mod tests { use super::*; use crate::binary::message::MessageFromServer; use crate::binary::message::MessageToServerOwned; use crate::binary::message::ToServerPayloadOwned; use futures::task::LocalSpawnExt; use json_rpc::test_util::transport::mock::MockTransport; // =============== // === Fixture === // =============== struct ClientFixture { transport: MockTransport, client: Client, executor: futures::executor::LocalPool, } impl ClientFixture { fn new() -> ClientFixture { let transport = MockTransport::new(); let client = Client::new(transport.clone()); let executor = futures::executor::LocalPool::new(); executor.spawner().spawn_local(client.runner()).unwrap(); ClientFixture { transport, client, executor } } } // ======================== // === Testing Requests === // ======================== fn test_request<R>( make_request: impl Fn(&Client) -> StaticBoxFuture<FallibleResult<R>>, expected_result: R, expected_request: ToServerPayloadOwned, mock_reply: FromServerPayloadOwned, ) where R: Debug + PartialEq + Sized, { let mut fixture = ClientFixture::new(); let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); assert_eq!(generated_message.payload, expected_request); fut.expect_pending(); let mut mock_reply = MessageFromServer::new(mock_reply); mock_reply.correlation_id = Some(generated_message.message_id); mock_reply.with_serialized(|data| fixture.transport.mock_peer_binary_message(data)); fixture.executor.run_until_stalled(); assert_eq!(fut.expect_ok(), expected_result); // Repeat request but now answer with error. let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); let mock_error_code = 444; let mock_error_message = "This is error".to_string(); let mut mock_reply = MessageFromServer::new
processor
identifier_name
client.rs
client may receive. #[derive(Clone, Debug, PartialEq, Eq)] pub enum Notification { /// A new data has been sent for a visualization. VisualizationUpdate { /// Identifies the specific visualization. context: VisualizationContext, /// Data to be passed to the visualization. data: Vec<u8>, }, } /// Events emitted by the LS binary protocol client. pub type Event = crate::common::event::Event<Notification>; // =========== // === API === // =========== /// The Engine Services Language Server Binary Protocol Client API. #[automock] pub trait API { /// Initializes the protocol. Must be called exactly once before making any other calls. fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult>; /// Writes binary data to the file. fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult>; /// Retrieves the file contents as a binary data. fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>>; /// Writes a set of bytes to the specified file at the specified offset. fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>>; /// Asynchronous event stream with notification and errors. /// /// On a repeated call, previous stream is closed. fn event_stream(&self) -> StaticBoxStream<Event>; } // ============== // === Client === // ============== /// The client for Engine Services Language Server Binary Protocol. #[derive(Clone, Derivative)] #[derivative(Debug)] pub struct Client { handler: Handler<Uuid, FromServerPayloadOwned, Notification>, } impl Client { /// Helper function that fails if the received message represents a remote error. fn expect_success(result: FromServerPayloadOwned) -> FallibleResult { if let FromServerPayloadOwned::Success {} = result { Ok(()) } else { Err(RpcError::MismatchedResponseType.into()) } } /// Function that does early processing of the peer's message and decides how it shall be /// handled. Returns a function so that it may be passed to the `Handler`. fn processor( ) -> impl FnMut(TransportEvent) -> Disposition<Uuid, FromServerPayloadOwned, Notification> + 'static { move |event: TransportEvent| { let binary_data = match event { TransportEvent::BinaryMessage(data) => data, _ => return Disposition::error(UnexpectedTextMessage), }; let message = match MessageFromServerOwned::deserialize(&binary_data) { Ok(message) => message, Err(e) => return Disposition::error(e), }; debug!("Deserialized incoming binary message: {message:?}"); let correlation_id = message.correlation_id; match message.0.payload { FromServerPayloadOwned::VisualizationUpdate { context, data } => Disposition::notify(Notification::VisualizationUpdate { data, context }), payload => { if let Some(id) = correlation_id { Disposition::HandleReply { id, reply: payload } } else { // Not a known notification and yet not a response to our request. Disposition::error(UnexpectedMessage) } } } } } /// Creates a new client from the given transport to the Language Server Data Endpoint. /// /// Before client is functional: /// * `runner` must be scheduled for execution; /// * `init` must be called or it needs to be wrapped into `Connection`. pub fn new(transport: impl Transport + 'static) -> Client { let processor = Self::processor(); Client { handler: Handler::new(transport, processor) } } /// Starts a new request, described by the given payload. /// Function `f` serves to retrieve the request's result from the more general `Reply` type. pub fn make_request<F, R>( &self, payload: ToServerPayload, f: F, ) -> StaticBoxFuture<FallibleResult<R>> where F: FnOnce(FromServerPayloadOwned) -> FallibleResult<R>, R: 'static, F: 'static, { let message = MessageToServerRef::new(payload); let id = message.message_id; let completer = move |reply| { info!("Completing request {id} with a reply: {reply:?}"); if let FromServerPayloadOwned::Error { code, message, data } = reply { let code = code as i64; let error = json_rpc::messages::Error { code, message, data }; Err(RpcError::RemoteError(error).into()) } else { f(reply) } }; let fut = self.handler.make_request(&message, completer); Box::pin(fut) } /// A `runner`. Its execution must be scheduled for `Client` to be able to complete requests and /// emit events. pub fn runner(&self) -> impl Future<Output = ()> { self.handler.runner() } } impl API for Client { fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult>
fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult> { info!("Writing file {} with {} bytes.", path, contents.len()); let payload = ToServerPayload::WriteFile { path, contents }; self.make_request(payload, Self::expect_success) } fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>> { info!("Reading file {path}."); let payload = ToServerPayload::ReadFile { path }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::FileContentsReply { contents } = result { Ok(contents) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>> { info!("Writing {} bytes to {path} at offset {byte_offset}", bytes.len()); let payload = ToServerPayload::WriteBytes { path, byte_offset, overwrite, bytes }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::WriteBytesReply { checksum } = result { Ok(checksum.into()) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn event_stream(&self) -> StaticBoxStream<Event> { self.handler.event_stream().boxed_local() } } // ============= // === Tests === // ============= #[cfg(test)] mod tests { use super::*; use crate::binary::message::MessageFromServer; use crate::binary::message::MessageToServerOwned; use crate::binary::message::ToServerPayloadOwned; use futures::task::LocalSpawnExt; use json_rpc::test_util::transport::mock::MockTransport; // =============== // === Fixture === // =============== struct ClientFixture { transport: MockTransport, client: Client, executor: futures::executor::LocalPool, } impl ClientFixture { fn new() -> ClientFixture { let transport = MockTransport::new(); let client = Client::new(transport.clone()); let executor = futures::executor::LocalPool::new(); executor.spawner().spawn_local(client.runner()).unwrap(); ClientFixture { transport, client, executor } } } // ======================== // === Testing Requests === // ======================== fn test_request<R>( make_request: impl Fn(&Client) -> StaticBoxFuture<FallibleResult<R>>, expected_result: R, expected_request: ToServerPayloadOwned, mock_reply: FromServerPayloadOwned, ) where R: Debug + PartialEq + Sized, { let mut fixture = ClientFixture::new(); let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); assert_eq!(generated_message.payload, expected_request); fut.expect_pending(); let mut mock_reply = MessageFromServer::new(mock_reply); mock_reply.correlation_id = Some(generated_message.message_id); mock_reply.with_serialized(|data| fixture.transport.mock_peer_binary_message(data)); fixture.executor.run_until_stalled(); assert_eq!(fut.expect_ok(), expected_result); // Repeat request but now answer with error. let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); let mock_error_code = 444; let mock_error_message = "This is error".to_string(); let mut mock_reply = MessageFromServer::
{ info!("Initializing binary connection as client with id {client_id}."); let payload = ToServerPayload::InitSession { client_id }; self.make_request(payload, Self::expect_success) }
identifier_body
client.rs
client may receive. #[derive(Clone, Debug, PartialEq, Eq)] pub enum Notification { /// A new data has been sent for a visualization. VisualizationUpdate { /// Identifies the specific visualization. context: VisualizationContext, /// Data to be passed to the visualization. data: Vec<u8>, }, } /// Events emitted by the LS binary protocol client. pub type Event = crate::common::event::Event<Notification>; // =========== // === API === // =========== /// The Engine Services Language Server Binary Protocol Client API. #[automock] pub trait API { /// Initializes the protocol. Must be called exactly once before making any other calls. fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult>; /// Writes binary data to the file. fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult>; /// Retrieves the file contents as a binary data. fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>>; /// Writes a set of bytes to the specified file at the specified offset. fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>>; /// Asynchronous event stream with notification and errors. /// /// On a repeated call, previous stream is closed. fn event_stream(&self) -> StaticBoxStream<Event>; } // ============== // === Client === // ============== /// The client for Engine Services Language Server Binary Protocol. #[derive(Clone, Derivative)] #[derivative(Debug)] pub struct Client { handler: Handler<Uuid, FromServerPayloadOwned, Notification>, } impl Client { /// Helper function that fails if the received message represents a remote error. fn expect_success(result: FromServerPayloadOwned) -> FallibleResult { if let FromServerPayloadOwned::Success {} = result { Ok(()) } else { Err(RpcError::MismatchedResponseType.into()) } } /// Function that does early processing of the peer's message and decides how it shall be /// handled. Returns a function so that it may be passed to the `Handler`. fn processor( ) -> impl FnMut(TransportEvent) -> Disposition<Uuid, FromServerPayloadOwned, Notification> + 'static { move |event: TransportEvent| { let binary_data = match event { TransportEvent::BinaryMessage(data) => data, _ => return Disposition::error(UnexpectedTextMessage), }; let message = match MessageFromServerOwned::deserialize(&binary_data) { Ok(message) => message, Err(e) => return Disposition::error(e), }; debug!("Deserialized incoming binary message: {message:?}"); let correlation_id = message.correlation_id; match message.0.payload { FromServerPayloadOwned::VisualizationUpdate { context, data } => Disposition::notify(Notification::VisualizationUpdate { data, context }), payload => { if let Some(id) = correlation_id { Disposition::HandleReply { id, reply: payload } } else { // Not a known notification and yet not a response to our request. Disposition::error(UnexpectedMessage) } } } } } /// Creates a new client from the given transport to the Language Server Data Endpoint. /// /// Before client is functional: /// * `runner` must be scheduled for execution; /// * `init` must be called or it needs to be wrapped into `Connection`. pub fn new(transport: impl Transport + 'static) -> Client { let processor = Self::processor(); Client { handler: Handler::new(transport, processor) } } /// Starts a new request, described by the given payload. /// Function `f` serves to retrieve the request's result from the more general `Reply` type. pub fn make_request<F, R>( &self, payload: ToServerPayload, f: F, ) -> StaticBoxFuture<FallibleResult<R>> where F: FnOnce(FromServerPayloadOwned) -> FallibleResult<R>, R: 'static, F: 'static, { let message = MessageToServerRef::new(payload); let id = message.message_id; let completer = move |reply| { info!("Completing request {id} with a reply: {reply:?}"); if let FromServerPayloadOwned::Error { code, message, data } = reply { let code = code as i64; let error = json_rpc::messages::Error { code, message, data }; Err(RpcError::RemoteError(error).into()) } else { f(reply) } }; let fut = self.handler.make_request(&message, completer); Box::pin(fut) } /// A `runner`. Its execution must be scheduled for `Client` to be able to complete requests and /// emit events. pub fn runner(&self) -> impl Future<Output = ()> { self.handler.runner() } } impl API for Client { fn init(&self, client_id: Uuid) -> StaticBoxFuture<FallibleResult> { info!("Initializing binary connection as client with id {client_id}."); let payload = ToServerPayload::InitSession { client_id }; self.make_request(payload, Self::expect_success) } fn write_file(&self, path: &Path, contents: &[u8]) -> StaticBoxFuture<FallibleResult> { info!("Writing file {} with {} bytes.", path, contents.len()); let payload = ToServerPayload::WriteFile { path, contents }; self.make_request(payload, Self::expect_success) } fn read_file(&self, path: &Path) -> StaticBoxFuture<FallibleResult<Vec<u8>>> { info!("Reading file {path}."); let payload = ToServerPayload::ReadFile { path }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::FileContentsReply { contents } = result { Ok(contents) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn write_bytes( &self, path: &Path, byte_offset: u64, overwrite: bool, bytes: &[u8], ) -> StaticBoxFuture<FallibleResult<Sha3_224>> { info!("Writing {} bytes to {path} at offset {byte_offset}", bytes.len()); let payload = ToServerPayload::WriteBytes { path, byte_offset, overwrite, bytes }; self.make_request(payload, move |result| { if let FromServerPayloadOwned::WriteBytesReply { checksum } = result { Ok(checksum.into()) } else { Err(RpcError::MismatchedResponseType.into()) } }) } fn event_stream(&self) -> StaticBoxStream<Event> { self.handler.event_stream().boxed_local() } } // ============= // === Tests === // ============= #[cfg(test)] mod tests { use super::*; use crate::binary::message::MessageFromServer; use crate::binary::message::MessageToServerOwned; use crate::binary::message::ToServerPayloadOwned; use futures::task::LocalSpawnExt; use json_rpc::test_util::transport::mock::MockTransport;
// =============== struct ClientFixture { transport: MockTransport, client: Client, executor: futures::executor::LocalPool, } impl ClientFixture { fn new() -> ClientFixture { let transport = MockTransport::new(); let client = Client::new(transport.clone()); let executor = futures::executor::LocalPool::new(); executor.spawner().spawn_local(client.runner()).unwrap(); ClientFixture { transport, client, executor } } } // ======================== // === Testing Requests === // ======================== fn test_request<R>( make_request: impl Fn(&Client) -> StaticBoxFuture<FallibleResult<R>>, expected_result: R, expected_request: ToServerPayloadOwned, mock_reply: FromServerPayloadOwned, ) where R: Debug + PartialEq + Sized, { let mut fixture = ClientFixture::new(); let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); assert_eq!(generated_message.payload, expected_request); fut.expect_pending(); let mut mock_reply = MessageFromServer::new(mock_reply); mock_reply.correlation_id = Some(generated_message.message_id); mock_reply.with_serialized(|data| fixture.transport.mock_peer_binary_message(data)); fixture.executor.run_until_stalled(); assert_eq!(fut.expect_ok(), expected_result); // Repeat request but now answer with error. let mut fut = make_request(&fixture.client); let generated_message = fixture.transport.expect_binary_message(); let generated_message = MessageToServerOwned::deserialize(&generated_message).unwrap(); let mock_error_code = 444; let mock_error_message = "This is error".to_string(); let mut mock_reply = MessageFromServer::new(
// =============== // === Fixture ===
random_line_split
anlyzPRR.py
2d' % (recdDateTime.year, recdDateTime.month) except Exception as e: print('huh') if prr['status'] == 'Closed': # 180228 # closeDate = prr['statusUpDate'] closeDate = prr['closeDate'] if closeDate==None: nmissClose += 1 missCloseDetails[dept][recdMonKey].append(prrID) continue respDelay = closeDate - recdDateTime delayDays = respDelay.days responseMon[recdMonKey][delayDays] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDresp[recdMonKey][delayDays] += 1 else: openReqMon[recdMonKey] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDopen[recdMonKey] += 1 print('"%s",%d,%d,%d' % (dept,nolder,nmissRecd,nmissClose)) allMonth = list(responseMon.keys()) allMonth.sort() normDept = normDeptName(dept) outf = outdir + normDept + '-RT.csv' outs = open(outf,'w') outs.write('Month,NClose,NOpen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(responseMon[recdMonKey]) medianDelay = compMedian(responseMon[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,openReqMon[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + normDept + '-nopen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,openReqMon[recdMonKey])) # outs.close() allMonth = list(nonOPDresp.keys()) allMonth.sort() outf = outdir + 'NonOPD-RT.csv' outs = open(outf,'w') outs.write('Month,N,NOPen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(nonOPDresp[recdMonKey]) medianDelay = compMedian(nonOPDresp[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,nonOPDopen[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + 'NonOPD-NOpen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,nonOPDopen[recdMonKey])) # outs.close() outf = outdir + 'missClose.csv' outs = open(outf,'w') # missCloseDetails: dept -> recd -> freq allDateSet = set() for dept in missCloseDetails.keys(): allDateSet.update(missCloseDetails[dept].keys()) allDates = sorted(list(allDateSet)) hdr = 'Dept' for date in allDates: hdr += ',%s' % (date,) outs.write(hdr+'\n') for dept in sorted(missCloseDetails.keys()): line = dept for date in allDates: if date in missCloseDetails[dept]: line += ',%d' % (len(missCloseDetails[dept][date]),) else: line += ', ' outs.write(line+'\n') outs.close() def rptDeptFreq(prrTbl, deptTbl,startDate,outf): # freq = defaultdict(int) outs = open(outf,'w') outs.write('Dept,Freq\n') for dept in sorted(deptTbl.keys()): nrecent = 0 for prrIdx in deptTbl[dept]: prr = prrTbl[prrIdx] if prr['createDate'] >= startDate: nrecent += 1 outs.write('%s,%d\n' % (dept,nrecent)) outs.close() def rptOpenPRR(prrTbl,outf): daysOpen = defaultdict(lambda: defaultdict(list)) # ndays -> OPD/non -> [prrID] runDate = datetime.datetime.today() for prrID in prrTbl.keys(): prr = prrTbl[prrID] opdP = 'Police Department' in prr['dept'] if prr['status'] == 'Open' or prr['status'] == 'Overdue' or prr['status'] == 'Due soon': recdDateTime = prr['createDate'] openPeriod = runDate - recdDateTime openDays = openPeriod.days # NB: capture integer dividend openYears = openDays // 365 if openYears == 0: dkey = openDays else: dkey = 1000 + openYears daysOpen[opdP][dkey].append(prrID) outs = open(outf,'w') outs.write('DaysOpen,NOPD,NOther,PRR-OPD,PRR-non\n') allNDaySet = set(daysOpen[0].keys()).union(set(daysOpen[0].keys())) allNDay = sorted(list(allNDaySet)) for nday in allNDay: if nday > 365: lbl = '> %d year' % (nday-1000) else: lbl = '%d' % nday opdList = daysOpen[1][nday] if nday in daysOpen[1] else [] nonList = daysOpen[0][nday] if nday in daysOpen[0] else [] outs.write('%s,%d,%d,"%s","%s"\n' % (lbl,len(opdList),len(nonList), opdList,nonList)) outs.close() def getWebPages(prrTbl,outf): outs = open(outf,'w') outs.write('PRRID,OPD,Text\n') nempty = 0 npdf = 0 for i,prrID in enumerate(sorted(prrTbl.keys())): prr = prrTbl[prrID] if prr['URL'] == '': nempty += 1 continue opdP = 'Police Department' in prr['dept'] url = prr['URL'] response = urllib.request.urlopen(url) webContentBytes = response.read() webContent = webContentBytes.decode("utf-8") if webContent.find('pdf') != -1: print('here') npdf += 1 else: continue if i % 100 == 0: print(i,npdf,nempty) # outs.write('%s,%d,"%s"\n' % (prrID,opdP,prr['text'])) outs.close() print('prr20-text: NPRR=%d NEmpty=%d' % (len(prrTbl),nempty)) def loadPRRQuery(inf): reader = csv.DictReader(open(inf)) prrIDList = [] for i,entry in enumerate(reader): # Exhibit,PRRId prrIDList.append(entry['PRRId'].strip()) return prrIDList def rptQry(qryList,outf): outs = open(outf,'w') outs.write('PRID,CreateDate,DaysOpen,Status\n') runDate = datetime.datetime.today() for prrID in qryList: prr = prr20Recent[prrID] recdDateTime = prr['createDate'] openPeriod = runDate - recdDateTime openDays = openPeriod.days outs.write('%s,%s,%d,%s\n' % (prrID,prr['createDate'].date(),openDays,prr['status'])) outs.close() if __name__ == '__main__': dataDir = '/Users/rik/Data/c4a-Data/OAK_data/recordTrac/' startDate = datetime.datetime(2017,1,1) csvFile = dataDir + 'requests-2020-07-01-sdoran.csv' # prr20, deptTbl = bldIndexTblCSV(csvFile) prr20Recent, deptTbl = bldIndexTblCSV(csvFile,startDate) openPRRFile = dataDir + 'openPRR_200831.csv'
random_line_split
anlyzPRR.py
rrID] = prr print('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % \ (len(prrTbl),len(deptTbl),nmultDept,ncloseDate)) if startDate != None: print('bldIndexTblCSV: NOld dropped=%d' % (nolder)) # freqList = freqHist3(deptTbl) # print('Dept,Freq') # for dept,freq in freqList: # print('"%s",%d' % (dept,freq)) freqList = freqHist3(statusTbl) print('Status,Freq') for status,freq in freqList: print('"%s",%d' % (status,freq)) return (prrTbl, deptTbl) def compHistAvg(hist): '''compute first moment ASSUME hist: value -> freq ''' sum = n = 0 for v in hist.keys(): n += hist[v] sum += v * hist[v] return n,float(sum) / n def compMedian(hist): '''compute MEDIAN value ASSUME hist: value -> freq ''' # only singletons thwart the search for half-way point if len(hist) == 1: return hist[0] sum = n = 0 vn = {} for v in sorted(hist.keys()): n += hist[v] sum += v * hist[v] vn[v] = n half = float(n/2.) for v in sorted(hist.keys()): if vn[v] > half: return v def anlyzCreateDates(prrIDTbl,outf): '''distribution of create dates ''' dateDist = defaultdict(int) nmissdate = 0 for prrID,prr in prrIDTbl.items(): # 180204 # for dtype in DateTypes.values(): # if dtype in prr: # if cdateFnd == None: # cdateFnd = prr[dtype] # else: # if prr[dtype] != cdateFnd: # cdateFnd = min([cdateFnd,prr[dtype]]) cdateFnd = prr['createDate'] if cdateFnd== None: nmissdate += 1 continue mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month) dateDist[mkey] += 1 print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl),nmissdate)) allMon = list(dateDist.keys()) allMon.sort() outs = open(outf,'w') outs.write('Month,Freq\n') for mkey in allMon: outs.write('%s,%d\n' % (mkey,dateDist[mkey])) outs.close() def normDeptName(dept): return re.sub('\W','_',dept.upper()) def anlyzClearDates(prrIDTbl,deptTbl,startDate,outdir,minDeptFreq=10): '''Compute average (over previous 90 days) number of days to respond to request Number requests open at month start ''' allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) > minDeptFreq ] allDept.sort() nonOPDresp = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq nonOPDopen = defaultdict(int) # month -> freq print('\n# Dept,NOld,NMissRecd,NMissClose') missCloseDetails = defaultdict(lambda: defaultdict(list)) # dept -> recd -> [prrID] for dept in allDept: responseMon = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq openReqMon = defaultdict(int) # month -> freq nmissRecd = 0 nmissClose = 0 nolder = 0 for prrID in deptTbl[dept]: prr = prrIDTbl[prrID] # 180228 # recdDateTime = prr['recdDate'] recdDateTime = prr['createDate'] if recdDateTime==None: nmissRecd += 1 continue if recdDateTime < startDate: nolder += 1 continue try: recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month) except Exception as e: print('huh') if prr['status'] == 'Closed': # 180228 # closeDate = prr['statusUpDate'] closeDate = prr['closeDate'] if closeDate==None: nmissClose += 1 missCloseDetails[dept][recdMonKey].append(prrID) continue respDelay = closeDate - recdDateTime delayDays = respDelay.days responseMon[recdMonKey][delayDays] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDresp[recdMonKey][delayDays] += 1 else: openReqMon[recdMonKey] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDopen[recdMonKey] += 1 print('"%s",%d,%d,%d' % (dept,nolder,nmissRecd,nmissClose)) allMonth = list(responseMon.keys()) allMonth.sort() normDept = normDeptName(dept) outf = outdir + normDept + '-RT.csv' outs = open(outf,'w') outs.write('Month,NClose,NOpen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(responseMon[recdMonKey]) medianDelay = compMedian(responseMon[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,openReqMon[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + normDept + '-nopen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,openReqMon[recdMonKey])) # outs.close() allMonth = list(nonOPDresp.keys()) allMonth.sort() outf = outdir + 'NonOPD-RT.csv' outs = open(outf,'w') outs.write('Month,N,NOPen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(nonOPDresp[recdMonKey]) medianDelay = compMedian(nonOPDresp[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,nonOPDopen[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + 'NonOPD-NOpen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,nonOPDopen[recdMonKey])) # outs.close() outf = outdir + 'missClose.csv' outs = open(outf,'w') # missCloseDetails: dept -> recd -> freq allDateSet = set() for dept in missCloseDetails.keys(): allDateSet.update(missCloseDetails[dept].keys()) allDates = sorted(list(allDateSet)) hdr = 'Dept' for date in allDates: hdr += ',%s' % (date,) outs.write(hdr+'\n') for dept in sorted(missCloseDetails.keys()): line = dept for date in allDates: if date in missCloseDetails[dept]: line += ',%d' % (len(missCloseDetails[dept][date]),) else: line += ', ' outs.write(line+'\n') outs.close() def rptDeptFreq(prrTbl, deptTbl,startDate,outf): # freq = defaultdict(int)
outs = open(outf,'w') outs.write('Dept,Freq\n') for dept in sorted(deptTbl.keys()): nrecent = 0 for prrIdx in deptTbl[dept]: prr = prrTbl[prrIdx] if prr['createDate'] >= startDate: nrecent += 1 outs.write('%s,%d\n' % (dept,nrecent)) outs.close()
identifier_body
anlyzPRR.py
(a,b): "decreasing order of frequencies" return b[1] - a[1] flist = list(tbl.items()) #python3 flist.sort(key=cmp_to_key(cmpd1)) return flist AllCSVHeader = ['Id', 'Created At', 'Request Text', 'Due Date', 'Point of Contact', 'Request Date', 'Status', 'URL', 'Visibility', 'Closed Date', 'Closure Reasons', 'Departments', 'Format Received', 'Staff Time (hrs:minutes)', 'Staff Time (minutes)', 'Tags', 'Embargo Ends On Date', 'Staff Cost', 'Date First Contact', 'First Contact Event', 'Compliance', 'Anticipated Fulfillment Date', 'Expiration Date', 'Requester City', 'Requester State', 'Requester Zipcode', 'Requester Company'] DeptNorm = {"Admin: Planning, Building & Neighborhood Preserv": "Admin: Building Inspection", "Budget and Fiscal": "Budget and Revenue - Revenue Division", "City Attorney Administration Unit": "City Attorney", "City Auditor Unit": "City Auditor", "City Clerk Unit": "City Clerk", "Oakland Police Department": "Police Department", "Contracts and Compliance": "Contracts Compliance", "Transportation Services - Administration": "Department of Transportation", "Fire": "Fire Department", "Human Resources Management": "Human Resources", "Information Technology (IT)": "Information Technology", "Public Works Agency": "Public Works"} CSVDTFormat = '%m/%d/%Y %H:%M:%S %p' # 07/01/2020 09:54:53 AM def bldIndexTblCSV(inf,startDate=None): '''return prrIDTbl, deptTbl ''' prrTbl = {} deptTbl = defaultdict(list) # keep list of all prrIDs statusTbl = defaultdict(int) ncloseDate = 0 nolder = 0 nmultDept = 0 deptSepChar = b'\xef\xbf\xbd' # only used in Finance reader = csv.DictReader(open(inf,encoding = "utf8",errors='replace')) for i,entry in enumerate(reader): prr = {} prrID = entry['Id'] createDateStr = entry['Created At'].strip() prr['createDate'] = datetime.datetime.strptime(createDateStr,CSVDTFormat) if createDateStr != '' else None if prr['createDate'] == None or \ (startDate != None and prr['createDate'] < startDate): nolder += 1 continue deptStr = entry['Departments'].strip() # NB: multiple department separated by semi-colon if deptStr.find(';') == -1: deptList = [deptStr] else: nmultDept += 1 deptList = [dept.strip() for dept in deptStr.split(';')] deptList2 = [] for dept in deptList: ndept = DeptNorm[dept] if dept in DeptNorm else dept if ndept != '': deptList2.append(ndept) deptTbl[ndept].append(prrID) prr['dept'] = deptList2 closeDateStr = entry['Closed Date'].strip() prr['closeDate'] = datetime.datetime.strptime(closeDateStr,CSVDTFormat) if closeDateStr != '' else None prr['status'] = entry['Status'].strip() prr['text'] = entry['Request Text'].strip() prr['closeReason'] = entry['Closure Reasons'].strip() prr['URL'] = entry['URL'].strip() statusTbl[ prr['status'] ] += 1 if prr['closeDate'] != None: ncloseDate += 1 prrTbl[prrID] = prr print('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % \ (len(prrTbl),len(deptTbl),nmultDept,ncloseDate)) if startDate != None: print('bldIndexTblCSV: NOld dropped=%d' % (nolder)) # freqList = freqHist3(deptTbl) # print('Dept,Freq') # for dept,freq in freqList: # print('"%s",%d' % (dept,freq)) freqList = freqHist3(statusTbl) print('Status,Freq') for status,freq in freqList: print('"%s",%d' % (status,freq)) return (prrTbl, deptTbl) def compHistAvg(hist): '''compute first moment ASSUME hist: value -> freq ''' sum = n = 0 for v in hist.keys(): n += hist[v] sum += v * hist[v] return n,float(sum) / n def compMedian(hist): '''compute MEDIAN value ASSUME hist: value -> freq ''' # only singletons thwart the search for half-way point if len(hist) == 1: return hist[0] sum = n = 0 vn = {} for v in sorted(hist.keys()): n += hist[v] sum += v * hist[v] vn[v] = n half = float(n/2.) for v in sorted(hist.keys()): if vn[v] > half: return v def anlyzCreateDates(prrIDTbl,outf): '''distribution of create dates ''' dateDist = defaultdict(int) nmissdate = 0 for prrID,prr in prrIDTbl.items(): # 180204 # for dtype in DateTypes.values(): # if dtype in prr: # if cdateFnd == None: # cdateFnd = prr[dtype] # else: # if prr[dtype] != cdateFnd: # cdateFnd = min([cdateFnd,prr[dtype]]) cdateFnd = prr['createDate'] if cdateFnd== None: nmissdate += 1 continue mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month) dateDist[mkey] += 1 print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl),nmissdate)) allMon = list(dateDist.keys()) allMon.sort() outs = open(outf,'w') outs.write('Month,Freq\n') for mkey in allMon: outs.write('%s,%d\n' % (mkey,dateDist[mkey])) outs.close() def normDeptName(dept): return re.sub('\W','_',dept.upper()) def anlyzClearDates(prrIDTbl,deptTbl,startDate,outdir,minDeptFreq=10): '''Compute average (over previous 90 days) number of days to respond to request Number requests open at month start ''' allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) > minDeptFreq ] allDept.sort() nonOPDresp = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq nonOPDopen = defaultdict(int) # month -> freq print('\n# Dept,NOld,NMissRecd,NMissClose') missCloseDetails = defaultdict(lambda: defaultdict(list)) # dept -> recd -> [prrID] for dept in allDept: responseMon = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq openReqMon = defaultdict(int) # month -> freq nmissRecd = 0 nmissClose = 0 nolder = 0 for prrID in deptTbl[dept]: prr = prrIDTbl[prrID] # 180228 # recdDateTime = prr['recdDate'] recdDateTime = prr['createDate'] if recdDateTime==None: nmissRecd += 1 continue if recdDateTime < startDate: nolder += 1 continue try: recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month) except Exception as e: print('huh') if prr['status'] == 'Closed': # 180228 # closeDate = prr['statusUpDate'] closeDate = prr['closeDate'] if closeDate==None: nmissClose += 1 missCloseDetails[dept][recdMonKey].append(prrID) continue respDelay = closeDate - recdDateTime delayDays = respDelay.days responseMon[recdMonKey][delayDays] += 1 # NB: was 'Oakland Police Deparment' in 180204 if
cmpd1
identifier_name
anlyzPRR.py
hist: value -> freq ''' sum = n = 0 for v in hist.keys(): n += hist[v] sum += v * hist[v] return n,float(sum) / n def compMedian(hist): '''compute MEDIAN value ASSUME hist: value -> freq ''' # only singletons thwart the search for half-way point if len(hist) == 1: return hist[0] sum = n = 0 vn = {} for v in sorted(hist.keys()): n += hist[v] sum += v * hist[v] vn[v] = n half = float(n/2.) for v in sorted(hist.keys()): if vn[v] > half: return v def anlyzCreateDates(prrIDTbl,outf): '''distribution of create dates ''' dateDist = defaultdict(int) nmissdate = 0 for prrID,prr in prrIDTbl.items(): # 180204 # for dtype in DateTypes.values(): # if dtype in prr: # if cdateFnd == None: # cdateFnd = prr[dtype] # else: # if prr[dtype] != cdateFnd: # cdateFnd = min([cdateFnd,prr[dtype]]) cdateFnd = prr['createDate'] if cdateFnd== None: nmissdate += 1 continue mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month) dateDist[mkey] += 1 print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl),nmissdate)) allMon = list(dateDist.keys()) allMon.sort() outs = open(outf,'w') outs.write('Month,Freq\n') for mkey in allMon: outs.write('%s,%d\n' % (mkey,dateDist[mkey])) outs.close() def normDeptName(dept): return re.sub('\W','_',dept.upper()) def anlyzClearDates(prrIDTbl,deptTbl,startDate,outdir,minDeptFreq=10): '''Compute average (over previous 90 days) number of days to respond to request Number requests open at month start ''' allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) > minDeptFreq ] allDept.sort() nonOPDresp = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq nonOPDopen = defaultdict(int) # month -> freq print('\n# Dept,NOld,NMissRecd,NMissClose') missCloseDetails = defaultdict(lambda: defaultdict(list)) # dept -> recd -> [prrID] for dept in allDept: responseMon = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq openReqMon = defaultdict(int) # month -> freq nmissRecd = 0 nmissClose = 0 nolder = 0 for prrID in deptTbl[dept]: prr = prrIDTbl[prrID] # 180228 # recdDateTime = prr['recdDate'] recdDateTime = prr['createDate'] if recdDateTime==None: nmissRecd += 1 continue if recdDateTime < startDate: nolder += 1 continue try: recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month) except Exception as e: print('huh') if prr['status'] == 'Closed': # 180228 # closeDate = prr['statusUpDate'] closeDate = prr['closeDate'] if closeDate==None: nmissClose += 1 missCloseDetails[dept][recdMonKey].append(prrID) continue respDelay = closeDate - recdDateTime delayDays = respDelay.days responseMon[recdMonKey][delayDays] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDresp[recdMonKey][delayDays] += 1 else: openReqMon[recdMonKey] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDopen[recdMonKey] += 1 print('"%s",%d,%d,%d' % (dept,nolder,nmissRecd,nmissClose)) allMonth = list(responseMon.keys()) allMonth.sort() normDept = normDeptName(dept) outf = outdir + normDept + '-RT.csv' outs = open(outf,'w') outs.write('Month,NClose,NOpen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(responseMon[recdMonKey]) medianDelay = compMedian(responseMon[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,openReqMon[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + normDept + '-nopen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,openReqMon[recdMonKey])) # outs.close() allMonth = list(nonOPDresp.keys()) allMonth.sort() outf = outdir + 'NonOPD-RT.csv' outs = open(outf,'w') outs.write('Month,N,NOPen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(nonOPDresp[recdMonKey]) medianDelay = compMedian(nonOPDresp[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,nonOPDopen[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + 'NonOPD-NOpen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,nonOPDopen[recdMonKey])) # outs.close() outf = outdir + 'missClose.csv' outs = open(outf,'w') # missCloseDetails: dept -> recd -> freq allDateSet = set() for dept in missCloseDetails.keys(): allDateSet.update(missCloseDetails[dept].keys()) allDates = sorted(list(allDateSet)) hdr = 'Dept' for date in allDates: hdr += ',%s' % (date,) outs.write(hdr+'\n') for dept in sorted(missCloseDetails.keys()): line = dept for date in allDates: if date in missCloseDetails[dept]: line += ',%d' % (len(missCloseDetails[dept][date]),) else: line += ', ' outs.write(line+'\n') outs.close() def rptDeptFreq(prrTbl, deptTbl,startDate,outf): # freq = defaultdict(int) outs = open(outf,'w') outs.write('Dept,Freq\n') for dept in sorted(deptTbl.keys()): nrecent = 0 for prrIdx in deptTbl[dept]: prr = prrTbl[prrIdx] if prr['createDate'] >= startDate: nrecent += 1 outs.write('%s,%d\n' % (dept,nrecent)) outs.close() def rptOpenPRR(prrTbl,outf): daysOpen = defaultdict(lambda: defaultdict(list)) # ndays -> OPD/non -> [prrID] runDate = datetime.datetime.today() for prrID in prrTbl.keys(): prr = prrTbl[prrID] opdP = 'Police Department' in prr['dept'] if prr['status'] == 'Open' or prr['status'] == 'Overdue' or prr['status'] == 'Due soon': recdDateTime = prr['createDate'] openPeriod = runDate - recdDateTime openDays = openPeriod.days # NB: capture integer dividend openYears = openDays // 365 if openYears == 0: dkey = openDays else:
dkey = 1000 + openYears
conditional_block
control.rs
This configuration file is meant to specify its //! running state. It can be reloaded at runtime, to change the whole state of the server. //! //! The first time the configuration file is read, ellidri uses it to create the tokio runtime. //! This is because the number of workers is yet unknown, and cannot be changed afterwards. //! //! Configuration can then be reloaded upon receiving a SIGUSR1 signal (on UNIX systems only, //! windows is not yet supported), or a REHASH command. When it happens, `Control` reread the //! configuration file and performs a diff algorithm to know which task needs to be stopped. This //! is really simple: //! //! - If an old binding is not present in the new configuration, `Control` drops the binding, //! - If a new binding was not present in the old configuration, `Control` spawns the binding on //! the runtime, //! - If a binding is present in both configurations, `Control` will keep the binding and send a //! command to it, either to make it listen for raw TCP connections, or to listen for TLS //! connections with a given `TlsAcceptor` (see `tokio-tls` doc for that). //! //! Bindings are identified by their socket address (IP address + TCP port). TLS identities are //! not kept track of, thus ellidri might reload the same TLS identity for a binding (it is fine to //! let it do we are not reading thousands for TLS identities here). use crate::{Config, net, State, tls}; use crate::config::{Binding, Tls}; use std::future::Future; use std::net::SocketAddr; use std::sync::Arc; use std::{fs, process}; use tokio::runtime as rt; use tokio::sync::{mpsc, Notify}; use tokio::task; /// A command from `Control` to binding tasks. pub enum Command { /// Ask the binding task to listen for raw TCP connections and not use TLS. UsePlain, /// Ask the binding task to listen for TLS connections with the given acceptor. UseTls(tls::Acceptor), } /// A binding task that is ready to be spawned on the runtime. struct LoadedBinding<F> { /// The address to be bound. address: SocketAddr, /// Either `None` when the binding listens for raw TCP connections, or `Some(acceptor)` when the /// bindings listens for TLS connections with `acceptor`. acceptor: Option<tls::Acceptor>, /// The sending end of the channel that brings commands to the task. handle: mpsc::Sender<Command>, /// The actual task, ready to be polled. future: F, } /// Creates a tokio runtime with the given number of worker threads. fn create_runtime(workers: usize) -> rt::Runtime { let mut builder = rt::Builder::new_multi_thread(); if workers != 0 { builder.worker_threads(workers); } builder .enable_io() .enable_time() .build() .unwrap_or_else(|err| { log::error!("Failed to start the tokio runtime: {}", err); process::exit(1); }) } /// Creates the bindings tasks and spawns them on the given runtime. /// /// This function is what `Control` calls on startup to generate the bindings. Because it exits /// the program on failure, it is not to be called for reloading. /// /// It spawns all the generated bindings on the runtime, and returns their listening address and /// command channel. fn load_bindings( bindings: Vec<Binding>, shared: &State, stop: &mpsc::Sender<SocketAddr>, ) -> Vec<(SocketAddr, mpsc::Sender<Command>)> { let mut res = Vec::with_capacity(bindings.len()); let mut store = tls::IdentityStore::default(); for Binding { address, tls } in bindings { let (handle, commands) = mpsc::channel(8); if let Some(Tls { certificate, key, .. }) = tls { let acceptor = match store.acceptor(certificate, key) { Ok(acceptor) => acceptor, Err(_) => process::exit(1), }; let server = net::listen( address, shared.clone(), Some(acceptor), stop.clone(), commands, ); res.push((address, handle)); tokio::spawn(server); } else { let server = net::listen(address, shared.clone(), None, stop.clone(), commands); res.push((address, handle)); tokio::spawn(server); } } res } /// Reloads the configuration at `config_path`. /// /// In four steps: /// /// - Read the configuration and load the authentication provider, /// - Remove old bindings that are not used anymore, /// - Add new bindings, or send them a command to listen for raw TCP or TLS connections, /// - Update the shared state. async fn do_rehash( config_path: String, shared: &State, stop: mpsc::Sender<SocketAddr>, bindings: &mut Vec<(SocketAddr, mpsc::Sender<Command>)>, ) { log::info!("Reloading configuration from {:?}", config_path); let shared_clone = shared.clone(); let reloaded = task::spawn_blocking(|| reload_config(config_path, shared_clone, stop)).await; let (cfg, new_bindings) = match reloaded { Ok(Some(reloaded)) => reloaded, _ => return, }; let mut i = 0; while i < bindings.len() { let old_address = bindings[i].0; if new_bindings .iter() .all(|new_b| old_address != new_b.address) { bindings.swap_remove(i); } else { i += 1; } } for new_b in new_bindings { if let Some(i) = bindings.iter().position(|old_b| old_b.0 == new_b.address) { let res = bindings[i] .1 .send(match new_b.acceptor { Some(acceptor) => Command::UseTls(acceptor), None => Command::UsePlain, }) .await; if res.is_err()
} else { tokio::spawn(new_b.future); bindings.push((new_b.address, new_b.handle)); } } shared.rehash(cfg.state).await; log::info!("Configuration reloaded"); } /// Re-read the configuration file and re-generate the bindings. /// /// See documentation of `reload_bindings` for how bindings are re-generated. /// /// This function will put the contents of the MOTD file into `Config.motd_file`, so that the /// shared state can use the field as-is, since it must not use blocking operations such as reading /// a file. fn reload_config( config_path: String, shared: State, stop: mpsc::Sender<SocketAddr>, ) -> Option<(Config, Vec<LoadedBinding<impl Future<Output = ()>>>)> { let mut cfg = match Config::from_file(&config_path) { Ok(cfg) => cfg, Err(err) => { log::error!("Failed to read {:?}: {}", config_path, err); return None; } }; cfg.state.motd_file = match fs::read_to_string(&cfg.state.motd_file) { Ok(motd) => motd, Err(err) => { log::warn!("Failed to read {:?}: {}", cfg.state.motd_file, err); String::new() } }; let new_bindings = reload_bindings(&cfg.bindings, &shared, &stop); Some((cfg, new_bindings)) } /// Equivalent of `load_bindings` for when exiting the program is not acceptable. /// /// Instead of spawning the binding tasks on the runtime, this function returns them in an array. /// Also instead of exiting on failure, it continues its process. Binding tasks that could not /// be generated are not returned. /// /// Otherwise both functions have the same behavior. fn reload_bindings( bindings: &[Binding], shared: &State, stop: &mpsc::Sender<SocketAddr>, ) -> Vec<LoadedBinding<impl Future<Output = ()>>> { let mut res = Vec::with_capacity(bindings.len()); let mut store = tls::IdentityStore::default(); for Binding { address, tls } in bindings { let (handle, commands) = mpsc::channel(8); if let Some(Tls { certificate, key, .. }) = tls { let acceptor = match store.acceptor(certificate, key) { Ok(acceptor) => acceptor, Err(_) => continue, }; let future = net::listen( *address, shared.clone(), Some(acceptor.clone()), stop.clone(), commands, ); res
{ // Failure to send the command means either the binding task have dropped the // command channel, or the binding task doesn't exist anymore. Both possibilities // shouldn't happen (see doc for `Control.bindings`); but in the opposite case // let's remove the binding from the array that keeps track of them, and spawn the // new one on the runtime. bindings.swap_remove(i); tokio::spawn(new_b.future); bindings.push((new_b.address, new_b.handle)); }
conditional_block
control.rs
. This configuration file is meant to specify its //! running state. It can be reloaded at runtime, to change the whole state of the server. //! //! The first time the configuration file is read, ellidri uses it to create the tokio runtime. //! This is because the number of workers is yet unknown, and cannot be changed afterwards. //! //! Configuration can then be reloaded upon receiving a SIGUSR1 signal (on UNIX systems only, //! windows is not yet supported), or a REHASH command. When it happens, `Control` reread the //! configuration file and performs a diff algorithm to know which task needs to be stopped. This //! is really simple: //! //! - If an old binding is not present in the new configuration, `Control` drops the binding, //! - If a new binding was not present in the old configuration, `Control` spawns the binding on //! the runtime, //! - If a binding is present in both configurations, `Control` will keep the binding and send a //! command to it, either to make it listen for raw TCP connections, or to listen for TLS //! connections with a given `TlsAcceptor` (see `tokio-tls` doc for that). //! //! Bindings are identified by their socket address (IP address + TCP port). TLS identities are //! not kept track of, thus ellidri might reload the same TLS identity for a binding (it is fine to //! let it do we are not reading thousands for TLS identities here). use crate::{Config, net, State, tls}; use crate::config::{Binding, Tls}; use std::future::Future; use std::net::SocketAddr; use std::sync::Arc; use std::{fs, process}; use tokio::runtime as rt; use tokio::sync::{mpsc, Notify}; use tokio::task; /// A command from `Control` to binding tasks. pub enum Command { /// Ask the binding task to listen for raw TCP connections and not use TLS. UsePlain, /// Ask the binding task to listen for TLS connections with the given acceptor. UseTls(tls::Acceptor), } /// A binding task that is ready to be spawned on the runtime. struct LoadedBinding<F> { /// The address to be bound. address: SocketAddr, /// Either `None` when the binding listens for raw TCP connections, or `Some(acceptor)` when the /// bindings listens for TLS connections with `acceptor`. acceptor: Option<tls::Acceptor>, /// The sending end of the channel that brings commands to the task. handle: mpsc::Sender<Command>, /// The actual task, ready to be polled. future: F, } /// Creates a tokio runtime with the given number of worker threads. fn create_runtime(workers: usize) -> rt::Runtime { let mut builder = rt::Builder::new_multi_thread(); if workers != 0 { builder.worker_threads(workers); } builder .enable_io() .enable_time() .build() .unwrap_or_else(|err| { log::error!("Failed to start the tokio runtime: {}", err); process::exit(1); }) } /// Creates the bindings tasks and spawns them on the given runtime. /// /// This function is what `Control` calls on startup to generate the bindings. Because it exits /// the program on failure, it is not to be called for reloading. /// /// It spawns all the generated bindings on the runtime, and returns their listening address and /// command channel. fn load_bindings( bindings: Vec<Binding>, shared: &State, stop: &mpsc::Sender<SocketAddr>, ) -> Vec<(SocketAddr, mpsc::Sender<Command>)> { let mut res = Vec::with_capacity(bindings.len()); let mut store = tls::IdentityStore::default(); for Binding { address, tls } in bindings { let (handle, commands) = mpsc::channel(8); if let Some(Tls { certificate, key, .. }) = tls { let acceptor = match store.acceptor(certificate, key) { Ok(acceptor) => acceptor, Err(_) => process::exit(1), }; let server = net::listen( address, shared.clone(), Some(acceptor), stop.clone(), commands, ); res.push((address, handle)); tokio::spawn(server); } else { let server = net::listen(address, shared.clone(), None, stop.clone(), commands); res.push((address, handle)); tokio::spawn(server); } } res } /// Reloads the configuration at `config_path`. /// /// In four steps: /// /// - Read the configuration and load the authentication provider, /// - Remove old bindings that are not used anymore, /// - Add new bindings, or send them a command to listen for raw TCP or TLS connections, /// - Update the shared state. async fn do_rehash( config_path: String, shared: &State, stop: mpsc::Sender<SocketAddr>, bindings: &mut Vec<(SocketAddr, mpsc::Sender<Command>)>, ) { log::info!("Reloading configuration from {:?}", config_path); let shared_clone = shared.clone(); let reloaded = task::spawn_blocking(|| reload_config(config_path, shared_clone, stop)).await; let (cfg, new_bindings) = match reloaded { Ok(Some(reloaded)) => reloaded, _ => return, }; let mut i = 0; while i < bindings.len() { let old_address = bindings[i].0; if new_bindings .iter() .all(|new_b| old_address != new_b.address) { bindings.swap_remove(i); } else { i += 1; } } for new_b in new_bindings { if let Some(i) = bindings.iter().position(|old_b| old_b.0 == new_b.address) { let res = bindings[i] .1 .send(match new_b.acceptor { Some(acceptor) => Command::UseTls(acceptor), None => Command::UsePlain, }) .await; if res.is_err() { // Failure to send the command means either the binding task have dropped the // command channel, or the binding task doesn't exist anymore. Both possibilities // shouldn't happen (see doc for `Control.bindings`); but in the opposite case // let's remove the binding from the array that keeps track of them, and spawn the // new one on the runtime. bindings.swap_remove(i); tokio::spawn(new_b.future); bindings.push((new_b.address, new_b.handle)); } } else { tokio::spawn(new_b.future); bindings.push((new_b.address, new_b.handle)); } } shared.rehash(cfg.state).await; log::info!("Configuration reloaded"); } /// Re-read the configuration file and re-generate the bindings. /// /// See documentation of `reload_bindings` for how bindings are re-generated. /// /// This function will put the contents of the MOTD file into `Config.motd_file`, so that the /// shared state can use the field as-is, since it must not use blocking operations such as reading /// a file. fn
( config_path: String, shared: State, stop: mpsc::Sender<SocketAddr>, ) -> Option<(Config, Vec<LoadedBinding<impl Future<Output = ()>>>)> { let mut cfg = match Config::from_file(&config_path) { Ok(cfg) => cfg, Err(err) => { log::error!("Failed to read {:?}: {}", config_path, err); return None; } }; cfg.state.motd_file = match fs::read_to_string(&cfg.state.motd_file) { Ok(motd) => motd, Err(err) => { log::warn!("Failed to read {:?}: {}", cfg.state.motd_file, err); String::new() } }; let new_bindings = reload_bindings(&cfg.bindings, &shared, &stop); Some((cfg, new_bindings)) } /// Equivalent of `load_bindings` for when exiting the program is not acceptable. /// /// Instead of spawning the binding tasks on the runtime, this function returns them in an array. /// Also instead of exiting on failure, it continues its process. Binding tasks that could not /// be generated are not returned. /// /// Otherwise both functions have the same behavior. fn reload_bindings( bindings: &[Binding], shared: &State, stop: &mpsc::Sender<SocketAddr>, ) -> Vec<LoadedBinding<impl Future<Output = ()>>> { let mut res = Vec::with_capacity(bindings.len()); let mut store = tls::IdentityStore::default(); for Binding { address, tls } in bindings { let (handle, commands) = mpsc::channel(8); if let Some(Tls { certificate, key, .. }) = tls { let acceptor = match store.acceptor(certificate, key) { Ok(acceptor) => acceptor, Err(_) => continue, }; let future = net::listen( *address, shared.clone(), Some(acceptor.clone()), stop.clone(), commands, ); res
reload_config
identifier_name
control.rs
. This configuration file is meant to specify its //! running state. It can be reloaded at runtime, to change the whole state of the server. //! //! The first time the configuration file is read, ellidri uses it to create the tokio runtime. //! This is because the number of workers is yet unknown, and cannot be changed afterwards. //! //! Configuration can then be reloaded upon receiving a SIGUSR1 signal (on UNIX systems only, //! windows is not yet supported), or a REHASH command. When it happens, `Control` reread the //! configuration file and performs a diff algorithm to know which task needs to be stopped. This //! is really simple: //! //! - If an old binding is not present in the new configuration, `Control` drops the binding, //! - If a new binding was not present in the old configuration, `Control` spawns the binding on //! the runtime,
//! //! Bindings are identified by their socket address (IP address + TCP port). TLS identities are //! not kept track of, thus ellidri might reload the same TLS identity for a binding (it is fine to //! let it do we are not reading thousands for TLS identities here). use crate::{Config, net, State, tls}; use crate::config::{Binding, Tls}; use std::future::Future; use std::net::SocketAddr; use std::sync::Arc; use std::{fs, process}; use tokio::runtime as rt; use tokio::sync::{mpsc, Notify}; use tokio::task; /// A command from `Control` to binding tasks. pub enum Command { /// Ask the binding task to listen for raw TCP connections and not use TLS. UsePlain, /// Ask the binding task to listen for TLS connections with the given acceptor. UseTls(tls::Acceptor), } /// A binding task that is ready to be spawned on the runtime. struct LoadedBinding<F> { /// The address to be bound. address: SocketAddr, /// Either `None` when the binding listens for raw TCP connections, or `Some(acceptor)` when the /// bindings listens for TLS connections with `acceptor`. acceptor: Option<tls::Acceptor>, /// The sending end of the channel that brings commands to the task. handle: mpsc::Sender<Command>, /// The actual task, ready to be polled. future: F, } /// Creates a tokio runtime with the given number of worker threads. fn create_runtime(workers: usize) -> rt::Runtime { let mut builder = rt::Builder::new_multi_thread(); if workers != 0 { builder.worker_threads(workers); } builder .enable_io() .enable_time() .build() .unwrap_or_else(|err| { log::error!("Failed to start the tokio runtime: {}", err); process::exit(1); }) } /// Creates the bindings tasks and spawns them on the given runtime. /// /// This function is what `Control` calls on startup to generate the bindings. Because it exits /// the program on failure, it is not to be called for reloading. /// /// It spawns all the generated bindings on the runtime, and returns their listening address and /// command channel. fn load_bindings( bindings: Vec<Binding>, shared: &State, stop: &mpsc::Sender<SocketAddr>, ) -> Vec<(SocketAddr, mpsc::Sender<Command>)> { let mut res = Vec::with_capacity(bindings.len()); let mut store = tls::IdentityStore::default(); for Binding { address, tls } in bindings { let (handle, commands) = mpsc::channel(8); if let Some(Tls { certificate, key, .. }) = tls { let acceptor = match store.acceptor(certificate, key) { Ok(acceptor) => acceptor, Err(_) => process::exit(1), }; let server = net::listen( address, shared.clone(), Some(acceptor), stop.clone(), commands, ); res.push((address, handle)); tokio::spawn(server); } else { let server = net::listen(address, shared.clone(), None, stop.clone(), commands); res.push((address, handle)); tokio::spawn(server); } } res } /// Reloads the configuration at `config_path`. /// /// In four steps: /// /// - Read the configuration and load the authentication provider, /// - Remove old bindings that are not used anymore, /// - Add new bindings, or send them a command to listen for raw TCP or TLS connections, /// - Update the shared state. async fn do_rehash( config_path: String, shared: &State, stop: mpsc::Sender<SocketAddr>, bindings: &mut Vec<(SocketAddr, mpsc::Sender<Command>)>, ) { log::info!("Reloading configuration from {:?}", config_path); let shared_clone = shared.clone(); let reloaded = task::spawn_blocking(|| reload_config(config_path, shared_clone, stop)).await; let (cfg, new_bindings) = match reloaded { Ok(Some(reloaded)) => reloaded, _ => return, }; let mut i = 0; while i < bindings.len() { let old_address = bindings[i].0; if new_bindings .iter() .all(|new_b| old_address != new_b.address) { bindings.swap_remove(i); } else { i += 1; } } for new_b in new_bindings { if let Some(i) = bindings.iter().position(|old_b| old_b.0 == new_b.address) { let res = bindings[i] .1 .send(match new_b.acceptor { Some(acceptor) => Command::UseTls(acceptor), None => Command::UsePlain, }) .await; if res.is_err() { // Failure to send the command means either the binding task have dropped the // command channel, or the binding task doesn't exist anymore. Both possibilities // shouldn't happen (see doc for `Control.bindings`); but in the opposite case // let's remove the binding from the array that keeps track of them, and spawn the // new one on the runtime. bindings.swap_remove(i); tokio::spawn(new_b.future); bindings.push((new_b.address, new_b.handle)); } } else { tokio::spawn(new_b.future); bindings.push((new_b.address, new_b.handle)); } } shared.rehash(cfg.state).await; log::info!("Configuration reloaded"); } /// Re-read the configuration file and re-generate the bindings. /// /// See documentation of `reload_bindings` for how bindings are re-generated. /// /// This function will put the contents of the MOTD file into `Config.motd_file`, so that the /// shared state can use the field as-is, since it must not use blocking operations such as reading /// a file. fn reload_config( config_path: String, shared: State, stop: mpsc::Sender<SocketAddr>, ) -> Option<(Config, Vec<LoadedBinding<impl Future<Output = ()>>>)> { let mut cfg = match Config::from_file(&config_path) { Ok(cfg) => cfg, Err(err) => { log::error!("Failed to read {:?}: {}", config_path, err); return None; } }; cfg.state.motd_file = match fs::read_to_string(&cfg.state.motd_file) { Ok(motd) => motd, Err(err) => { log::warn!("Failed to read {:?}: {}", cfg.state.motd_file, err); String::new() } }; let new_bindings = reload_bindings(&cfg.bindings, &shared, &stop); Some((cfg, new_bindings)) } /// Equivalent of `load_bindings` for when exiting the program is not acceptable. /// /// Instead of spawning the binding tasks on the runtime, this function returns them in an array. /// Also instead of exiting on failure, it continues its process. Binding tasks that could not /// be generated are not returned. /// /// Otherwise both functions have the same behavior. fn reload_bindings( bindings: &[Binding], shared: &State, stop: &mpsc::Sender<SocketAddr>, ) -> Vec<LoadedBinding<impl Future<Output = ()>>> { let mut res = Vec::with_capacity(bindings.len()); let mut store = tls::IdentityStore::default(); for Binding { address, tls } in bindings { let (handle, commands) = mpsc::channel(8); if let Some(Tls { certificate, key, .. }) = tls { let acceptor = match store.acceptor(certificate, key) { Ok(acceptor) => acceptor, Err(_) => continue, }; let future = net::listen( *address, shared.clone(), Some(acceptor.clone()), stop.clone(), commands, ); res.push
//! - If a binding is present in both configurations, `Control` will keep the binding and send a //! command to it, either to make it listen for raw TCP connections, or to listen for TLS //! connections with a given `TlsAcceptor` (see `tokio-tls` doc for that).
random_line_split
config.rs
env = "PATHFINDER_ETHEREUM_API_PASSWORD", )] ethereum_password: Option<String>, #[arg( long = "ethereum.url", long_help = r"This should point to the HTTP RPC endpoint of your Ethereum entry-point, typically a local Ethereum client or a hosted gateway service such as Infura or Cloudflare. Examples: infura: https://goerli.infura.io/v3/<PROJECT_ID> geth: https://localhost:8545", value_name = "HTTP(s) URL", value_hint = clap::ValueHint::Url, env = "PATHFINDER_ETHEREUM_API_URL", )] ethereum_url: Url, #[arg( long = "http-rpc", long_help = "HTTP-RPC listening address", value_name = "IP:PORT", default_value = "127.0.0.1:9545", env = "PATHFINDER_HTTP_RPC_ADDRESS" )] rpc_address: SocketAddr, #[arg( long = "rpc.websocket", long_help = "Enable RPC WebSocket transport", default_value = "false", env = "PATHFINDER_RPC_WEBSOCKET" )] ws: bool, #[arg( long = "rpc.websocket.capacity", long_help = "Maximum number of websocket subscriptions per subscription type", default_value = "100", env = "PATHFINDER_RPC_WEBSOCKET_CAPACITY" )] ws_capacity: NonZeroUsize, #[arg( long = "rpc.cors-domains", long_help = r"Comma separated list of domains from which Cross-Origin requests will be accepted by the RPC server. Use '*' to indicate any domain and an empty list to disable CORS. Examples: single: http://one.io a list: http://first.com,http://second.com:1234 any: *", value_name = "DOMAIN-LIST", value_delimiter = ',', env = "PATHFINDER_RPC_CORS_DOMAINS" )] rpc_cors_domains: Vec<String>, #[arg( long = "monitor-address", long_help = "The address at which pathfinder will serve monitoring related information", value_name = "IP:PORT", env = "PATHFINDER_MONITOR_ADDRESS" )] monitor_address: Option<SocketAddr>, #[clap(flatten)] network: NetworkCli, #[arg( long = "poll-pending", long_help = "Enable polling pending block", action = clap::ArgAction::Set, default_value = "false", env = "PATHFINDER_POLL_PENDING", )] poll_pending: bool, #[arg( long = "python-subprocesses", long_help = "Number of Python starknet VMs subprocesses to start", default_value = "2", env = "PATHFINDER_PYTHON_SUBPROCESSES" )] python_subprocesses: std::num::NonZeroUsize, #[arg( long = "sqlite-wal", long_help = "Enable SQLite write-ahead logging", action = clap::ArgAction::Set, default_value = "true", env = "PATHFINDER_SQLITE_WAL", )] sqlite_wal: bool, #[arg( long = "max-rpc-connections", long_help = "Set the maximum number of connections allowed", env = "PATHFINDER_MAX_RPC_CONNECTIONS", default_value = "1024" )] max_rpc_connections: std::num::NonZeroU32, #[arg( long = "sync.poll-interval", long_help = "New block poll interval in seconds", default_value = "5", env = "PATHFINDER_HEAD_POLL_INTERVAL_SECONDS" )] poll_interval: std::num::NonZeroU64, #[arg( long = "color", long_help = "This flag controls when to use colors in the output logs.", default_value = "auto", env = "PATHFINDER_COLOR", value_name = "WHEN" )] color: Color, } #[derive(clap::ValueEnum, Debug, Clone, Copy, PartialEq)] pub enum Color { Auto, Never, Always, } impl Color { /// Returns true if color should be enabled, either because the setting is [Color::Always], /// or because it is [Color::Auto] and stdout is targetting a terminal. pub fn is_color_enabled(&self) -> bool { use std::io::IsTerminal; match self { Color::Auto => std::io::stdout().is_terminal(), Color::Never => false, Color::Always => true, } } } #[derive(clap::Args)] struct NetworkCli { #[arg( long = "network", long_help = r"Specify the Starknet network for pathfinder to operate on. Note that 'custom' requires also setting the --gateway-url and --feeder-gateway-url options.", value_enum, env = "PATHFINDER_NETWORK" )] network: Option<Network>, #[arg( long, long_help = "Set a custom Starknet chain ID (e.g. SN_GOERLI)", value_name = "CHAIN ID", env = "PATHFINDER_CHAIN_ID", required_if_eq("network", Network::Custom) )] chain_id: Option<String>, #[arg( long = "feeder-gateway-url", value_name = "URL", value_hint = clap::ValueHint::Url, long_help = "Specify a custom Starknet feeder gateway url. Can be used to run pathfinder on a custom Starknet network, or to use a gateway proxy. Requires '--network custom'.", env = "PATHFINDER_FEEDER_GATEWAY_URL", required_if_eq("network", Network::Custom), )] feeder_gateway: Option<Url>, #[arg( long = "gateway-url", value_name = "URL", value_hint = clap::ValueHint::Url, long_help = "Specify a custom Starknet gateway url. Can be used to run pathfinder on a custom Starknet network, or to use a gateway proxy. Requires '--network custom'.", env = "PATHFINDER_GATEWAY_URL", required_if_eq("network", Network::Custom), )] gateway: Option<Url>, } #[derive(clap::ValueEnum, Clone)] enum Network { Mainnet, Testnet, Testnet2, Integration, Custom, } impl From<Network> for clap::builder::OsStr { fn from(value: Network) -> Self { match value { Network::Mainnet => "mainnet", Network::Testnet => "testnet", Network::Testnet2 => "testnet2", Network::Integration => "integration", Network::Custom => "custom", } .into() } } fn parse_cors(inputs: Vec<String>) -> Result<Option<AllowedOrigins>, RpcCorsDomainsParseError> { if inputs.is_empty() { return Ok(None); } if inputs.len() == 1 && inputs[0] == "*" { return Ok(Some(AllowedOrigins::Any)); } if inputs.iter().any(|s| s == "*") { return Err(RpcCorsDomainsParseError::WildcardAmongOtherValues); } let valid_origins = inputs .into_iter() .map(|input| match url::Url::parse(&input) { // Valid URL but has to be limited to origin form, i.e. no path, query, trailing slash for default path etc. Ok(url) => { let origin = url.origin(); if !origin.is_tuple() { return Err(RpcCorsDomainsParseError::InvalidDomain(input)); } if origin.ascii_serialization() == input { Ok(input) } else { // Valid URL but not a valid origin Err(RpcCorsDomainsParseError::InvalidDomain(input)) } } // Not an URL hence invalid origin Err(_e) => { eprintln!("Url_parse_error: {_e}"); Err(RpcCorsDomainsParseError::InvalidDomain(input)) } }) .collect::<Result<HashSet<_>, RpcCorsDomainsParseError>>()?; Ok(Some(AllowedOrigins::List( valid_origins.into_iter().collect(), ))) } pub fn parse_cors_or_exit(input: Vec<String>) -> Option<AllowedOrigins> { use clap::error::ErrorKind; match parse_cors(input) { Ok(parsed) => parsed, Err(error) => Cli::command() .error(ErrorKind::ValueValidation, error) .exit(), } } #[derive(Debug, thiserror::Error, PartialEq)] #[error("Invalid domain for CORS: {0}")] struct InvalidCorsDomainError(String); #[derive(Debug, thiserror::Error, PartialEq)] enum RpcCorsDomainsParseError { #[error("Invalid allowed domain for CORS: {0}.")] InvalidDomain(String), #[error( "Specify either wildcard '*' or a comma separated list of allowed domains for CORS, not both." )] WildcardAmongOtherValues, } pub struct Config { pub data_directory: PathBuf, pub ethereum:
#[arg( long = "ethereum.password", long_help = "The optional password to use for the Ethereum API", value_name = None,
random_line_split
config.rs
{ #[arg( long, value_name = "DIR", value_hint = clap::ValueHint::DirPath, long_help = "Directory where the node should store its data", env = "PATHFINDER_DATA_DIRECTORY", default_value_os_t = (&std::path::Component::CurDir).into() )] data_directory: PathBuf, #[arg( long = "ethereum.password", long_help = "The optional password to use for the Ethereum API", value_name = None, env = "PATHFINDER_ETHEREUM_API_PASSWORD", )] ethereum_password: Option<String>, #[arg( long = "ethereum.url", long_help = r"This should point to the HTTP RPC endpoint of your Ethereum entry-point, typically a local Ethereum client or a hosted gateway service such as Infura or Cloudflare. Examples: infura: https://goerli.infura.io/v3/<PROJECT_ID> geth: https://localhost:8545", value_name = "HTTP(s) URL", value_hint = clap::ValueHint::Url, env = "PATHFINDER_ETHEREUM_API_URL", )] ethereum_url: Url, #[arg( long = "http-rpc", long_help = "HTTP-RPC listening address", value_name = "IP:PORT", default_value = "127.0.0.1:9545", env = "PATHFINDER_HTTP_RPC_ADDRESS" )] rpc_address: SocketAddr, #[arg( long = "rpc.websocket", long_help = "Enable RPC WebSocket transport", default_value = "false", env = "PATHFINDER_RPC_WEBSOCKET" )] ws: bool, #[arg( long = "rpc.websocket.capacity", long_help = "Maximum number of websocket subscriptions per subscription type", default_value = "100", env = "PATHFINDER_RPC_WEBSOCKET_CAPACITY" )] ws_capacity: NonZeroUsize, #[arg( long = "rpc.cors-domains", long_help = r"Comma separated list of domains from which Cross-Origin requests will be accepted by the RPC server. Use '*' to indicate any domain and an empty list to disable CORS. Examples: single: http://one.io a list: http://first.com,http://second.com:1234 any: *", value_name = "DOMAIN-LIST", value_delimiter = ',', env = "PATHFINDER_RPC_CORS_DOMAINS" )] rpc_cors_domains: Vec<String>, #[arg( long = "monitor-address", long_help = "The address at which pathfinder will serve monitoring related information", value_name = "IP:PORT", env = "PATHFINDER_MONITOR_ADDRESS" )] monitor_address: Option<SocketAddr>, #[clap(flatten)] network: NetworkCli, #[arg( long = "poll-pending", long_help = "Enable polling pending block", action = clap::ArgAction::Set, default_value = "false", env = "PATHFINDER_POLL_PENDING", )] poll_pending: bool, #[arg( long = "python-subprocesses", long_help = "Number of Python starknet VMs subprocesses to start", default_value = "2", env = "PATHFINDER_PYTHON_SUBPROCESSES" )] python_subprocesses: std::num::NonZeroUsize, #[arg( long = "sqlite-wal", long_help = "Enable SQLite write-ahead logging", action = clap::ArgAction::Set, default_value = "true", env = "PATHFINDER_SQLITE_WAL", )] sqlite_wal: bool, #[arg( long = "max-rpc-connections", long_help = "Set the maximum number of connections allowed", env = "PATHFINDER_MAX_RPC_CONNECTIONS", default_value = "1024" )] max_rpc_connections: std::num::NonZeroU32, #[arg( long = "sync.poll-interval", long_help = "New block poll interval in seconds", default_value = "5", env = "PATHFINDER_HEAD_POLL_INTERVAL_SECONDS" )] poll_interval: std::num::NonZeroU64, #[arg( long = "color", long_help = "This flag controls when to use colors in the output logs.", default_value = "auto", env = "PATHFINDER_COLOR", value_name = "WHEN" )] color: Color, } #[derive(clap::ValueEnum, Debug, Clone, Copy, PartialEq)] pub enum Color { Auto, Never, Always, } impl Color { /// Returns true if color should be enabled, either because the setting is [Color::Always], /// or because it is [Color::Auto] and stdout is targetting a terminal. pub fn is_color_enabled(&self) -> bool { use std::io::IsTerminal; match self { Color::Auto => std::io::stdout().is_terminal(), Color::Never => false, Color::Always => true, } } } #[derive(clap::Args)] struct NetworkCli { #[arg( long = "network", long_help = r"Specify the Starknet network for pathfinder to operate on. Note that 'custom' requires also setting the --gateway-url and --feeder-gateway-url options.", value_enum, env = "PATHFINDER_NETWORK" )] network: Option<Network>, #[arg( long, long_help = "Set a custom Starknet chain ID (e.g. SN_GOERLI)", value_name = "CHAIN ID", env = "PATHFINDER_CHAIN_ID", required_if_eq("network", Network::Custom) )] chain_id: Option<String>, #[arg( long = "feeder-gateway-url", value_name = "URL", value_hint = clap::ValueHint::Url, long_help = "Specify a custom Starknet feeder gateway url. Can be used to run pathfinder on a custom Starknet network, or to use a gateway proxy. Requires '--network custom'.", env = "PATHFINDER_FEEDER_GATEWAY_URL", required_if_eq("network", Network::Custom), )] feeder_gateway: Option<Url>, #[arg( long = "gateway-url", value_name = "URL", value_hint = clap::ValueHint::Url, long_help = "Specify a custom Starknet gateway url. Can be used to run pathfinder on a custom Starknet network, or to use a gateway proxy. Requires '--network custom'.", env = "PATHFINDER_GATEWAY_URL", required_if_eq("network", Network::Custom), )] gateway: Option<Url>, } #[derive(clap::ValueEnum, Clone)] enum Network { Mainnet, Testnet, Testnet2, Integration, Custom, } impl From<Network> for clap::builder::OsStr { fn from(value: Network) -> Self { match value { Network::Mainnet => "mainnet", Network::Testnet => "testnet", Network::Testnet2 => "testnet2", Network::Integration => "integration", Network::Custom => "custom", } .into() } } fn parse_cors(inputs: Vec<String>) -> Result<Option<AllowedOrigins>, RpcCorsDomainsParseError> { if inputs.is_empty() { return Ok(None); } if inputs.len() == 1 && inputs[0] == "*" { return Ok(Some(AllowedOrigins::Any)); } if inputs.iter().any(|s| s == "*") { return Err(RpcCorsDomainsParseError::WildcardAmongOtherValues); } let valid_origins = inputs .into_iter() .map(|input| match url::Url::parse(&input) { // Valid URL but has to be limited to origin form, i.e. no path, query, trailing slash for default path etc. Ok(url) => { let origin = url.origin(); if !origin.is_tuple() { return Err(RpcCorsDomainsParseError::InvalidDomain(input)); } if origin.ascii_serialization() == input { Ok(input) } else { // Valid URL but not a valid origin Err(RpcCorsDomainsParseError::InvalidDomain(input)) } } // Not an URL hence invalid origin Err(_e) => { eprintln!("Url_parse_error: {_e}"); Err(RpcCorsDomainsParseError::InvalidDomain(input)) } }) .collect::<Result<HashSet<_>, RpcCorsDomainsParseError>>()?; Ok(Some(AllowedOrigins::List( valid_origins.into_iter().collect(), ))) } pub fn parse_cors_or_exit(input: Vec<String>) -> Option<AllowedOrigins> { use clap::error::ErrorKind; match parse_cors(input) { Ok(parsed) => parsed, Err(error) => Cli::command() .error(ErrorKind::ValueValidation, error) .exit(), } } #[derive(Debug, thiserror::Error, PartialEq)] #[error("Invalid domain for CORS: {0}")] struct InvalidCorsDomainError(String); #[derive(Debug, thiserror::
Cli
identifier_name
vacuum.py
.clean import CleanAction, CleanArea, CleanMode from deebot_client.commands.custom import CustomCommand from deebot_client.events import ( BatteryEvent, CustomCommandEvent, ErrorEvent, FanSpeedEvent, ReportStatsEvent, RoomsEvent, StatusEvent, ) from deebot_client.events.event_bus import EventListener from deebot_client.models import Room, VacuumState from deebot_client.vacuum_bot import VacuumBot from homeassistant.components.vacuum import ( SUPPORT_BATTERY, SUPPORT_FAN_SPEED, SUPPORT_LOCATE, SUPPORT_MAP, SUPPORT_PAUSE, SUPPORT_RETURN_HOME, SUPPORT_SEND_COMMAND, SUPPORT_START, SUPPORT_STATE, SUPPORT_STOP, StateVacuumEntity, StateVacuumEntityDescription, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_platform from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import StateType from homeassistant.util import slugify from .const import ( DOMAIN, EVENT_CLEANING_JOB, EVENT_CUSTOM_COMMAND, LAST_ERROR, REFRESH_MAP, REFRESH_STR_TO_EVENT_DTO, VACUUMSTATE_TO_STATE, ) from .entity import DeebotEntity from .hub import DeebotHub from .util import dataclass_to_dict, unsubscribe_listeners _LOGGER = logging.getLogger(__name__) SUPPORT_DEEBOT: int = ( SUPPORT_PAUSE | SUPPORT_STOP | SUPPORT_RETURN_HOME | SUPPORT_FAN_SPEED | SUPPORT_BATTERY | SUPPORT_SEND_COMMAND | SUPPORT_LOCATE | SUPPORT_MAP | SUPPORT_STATE | SUPPORT_START ) # Must be kept in sync with services.yaml SERVICE_REFRESH = "refresh" SERVICE_REFRESH_PART = "part" SERVICE_REFRESH_SCHEMA = { vol.Required(SERVICE_REFRESH_PART): vol.In( [*REFRESH_STR_TO_EVENT_DTO.keys(), REFRESH_MAP] ) } async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Add entities for passed config_entry in HA.""" hub: DeebotHub = hass.data[DOMAIN][config_entry.entry_id] new_devices = [] for vacbot in hub.vacuum_bots: new_devices.append(DeebotVacuum(vacbot)) if new_devices: async_add_entities(new_devices) platform = entity_platform.async_get_current_platform() platform.async_register_entity_service( SERVICE_REFRESH, SERVICE_REFRESH_SCHEMA, "_service_refresh", ) class DeebotVacuum(DeebotEntity, StateVacuumEntity): # type: ignore """Deebot Vacuum.""" def __init__(self, vacuum_bot: VacuumBot): """Initialize the Deebot Vacuum.""" device_info = vacuum_bot.device_info if device_info.nick is not None: name: str = device_info.nick else: # In case there is no nickname defined, use the device id name = device_info.did super().__init__(vacuum_bot, StateVacuumEntityDescription(key="", name=name)) self._battery: Optional[int] = None self._fan_speed: Optional[str] = None self._state: Optional[VacuumState] = None self._rooms: list[Room] = [] self._last_error: Optional[ErrorEvent] = None async def async_added_to_hass(self) -> None: """Set up the event listeners now that hass is ready.""" await super().async_added_to_hass() async def on_battery(event: BatteryEvent) -> None: self._battery = event.value self.async_write_ha_state() async def on_custom_command(event: CustomCommandEvent) -> None: self.hass.bus.fire(EVENT_CUSTOM_COMMAND, dataclass_to_dict(event)) async def on_error(event: ErrorEvent) -> None: self._last_error = event self.async_write_ha_state() async def on_fan_speed(event: FanSpeedEvent) -> None: self._fan_speed = event.speed self.async_write_ha_state() async def on_report_stats(event: ReportStatsEvent) -> None: self.hass.bus.fire(EVENT_CLEANING_JOB, dataclass_to_dict(event)) async def on_rooms(event: RoomsEvent) -> None:
async def on_status(event: StatusEvent) -> None: self._state = event.state self.async_write_ha_state() listeners: list[EventListener] = [ self._vacuum_bot.events.subscribe(BatteryEvent, on_battery), self._vacuum_bot.events.subscribe(CustomCommandEvent, on_custom_command), self._vacuum_bot.events.subscribe(ErrorEvent, on_error), self._vacuum_bot.events.subscribe(FanSpeedEvent, on_fan_speed), self._vacuum_bot.events.subscribe(ReportStatsEvent, on_report_stats), self._vacuum_bot.events.subscribe(RoomsEvent, on_rooms), self._vacuum_bot.events.subscribe(StatusEvent, on_status), ] self.async_on_remove(lambda: unsubscribe_listeners(listeners)) @property def supported_features(self) -> int: """Flag vacuum cleaner robot features that are supported.""" return SUPPORT_DEEBOT @property def state(self) -> StateType: """Return the state of the vacuum cleaner.""" if self._state is not None and self.available: return VACUUMSTATE_TO_STATE[self._state] @property def battery_level(self) -> Optional[int]: """Return the battery level of the vacuum cleaner.""" return self._battery @property def fan_speed(self) -> Optional[str]: """Return the fan speed of the vacuum cleaner.""" return self._fan_speed @property def fan_speed_list(self) -> list[str]: """Get the list of available fan speed steps of the vacuum cleaner.""" return [level.display_name for level in FanSpeedLevel] @property def extra_state_attributes(self) -> Optional[Mapping[str, Any]]: """Return entity specific state attributes. Implemented by platform classes. Convention for attribute names is lowercase snake_case. """ attributes: dict[str, Any] = {} rooms: dict[str, Any] = {} for room in self._rooms: # convert room name to snake_case to meet the convention room_name = slugify(room.subtype) room_values = rooms.get(room_name) if room_values is None: rooms[room_name] = room.id elif isinstance(room_values, list): room_values.append(room.id) else: # Convert from int to list rooms[room_name] = [room_values, room.id] if rooms: attributes["rooms"] = rooms if self._last_error: attributes[ LAST_ERROR ] = f"{self._last_error.description} ({self._last_error.code})" return attributes async def async_set_fan_speed(self, fan_speed: str, **kwargs: Any) -> None: """Set fan speed.""" await self._vacuum_bot.execute_command(SetFanSpeed(fan_speed)) async def async_return_to_base(self, **kwargs: Any) -> None: """Set the vacuum cleaner to return to the dock.""" await self._vacuum_bot.execute_command(Charge()) async def async_stop(self, **kwargs: Any) -> None: """Stop the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.STOP)) async def async_pause(self) -> None: """Pause the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.PAUSE)) async def async_start(self) -> None: """Start the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.START)) async def async_locate(self, **kwargs: Any) -> None: """Locate the vacuum cleaner.""" await self._vacuum_bot.execute_command(PlaySound()) async def async_send_command( self, command: str, params: Optional[dict[str, Any]] = None, **kwargs: Any ) -> None: """Send a command to a vacuum cleaner.""" _LOGGER.debug("async_send_command %s with %s", command, params) if command in ["relocate", SetRelocationState.name]: _LOGGER.warning("DEPRECATED! Please use relocate button entity instead.") await self._vacuum_bot.execute_command(SetRelocationState()) elif command == "auto_clean": clean_type = params.get("type", "auto") if params else "auto" if clean_type == "auto": _LOGGER.warning('DEPRECATED! Please use "vacuum.start" instead.') await self.async_start() elif command in ["spot_area", "custom_area", "set_water"]: if params is None: raise RuntimeError("Params are required!") if command in "spot_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.SPOT_AREA, area=str(params["rooms"]), cleanings=params.get("cleanings", 1), ) ) elif command == "custom_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.CUSTOM_AREA, area=str(params["coordinates"]), cleanings=params.get
self._rooms = event.rooms self.async_write_ha_state()
identifier_body
vacuum.py
.clean import CleanAction, CleanArea, CleanMode from deebot_client.commands.custom import CustomCommand from deebot_client.events import ( BatteryEvent, CustomCommandEvent, ErrorEvent, FanSpeedEvent, ReportStatsEvent, RoomsEvent, StatusEvent, ) from deebot_client.events.event_bus import EventListener from deebot_client.models import Room, VacuumState from deebot_client.vacuum_bot import VacuumBot from homeassistant.components.vacuum import ( SUPPORT_BATTERY, SUPPORT_FAN_SPEED, SUPPORT_LOCATE, SUPPORT_MAP, SUPPORT_PAUSE, SUPPORT_RETURN_HOME, SUPPORT_SEND_COMMAND, SUPPORT_START, SUPPORT_STATE, SUPPORT_STOP, StateVacuumEntity, StateVacuumEntityDescription, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_platform from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import StateType from homeassistant.util import slugify from .const import ( DOMAIN, EVENT_CLEANING_JOB, EVENT_CUSTOM_COMMAND, LAST_ERROR, REFRESH_MAP, REFRESH_STR_TO_EVENT_DTO, VACUUMSTATE_TO_STATE, ) from .entity import DeebotEntity from .hub import DeebotHub from .util import dataclass_to_dict, unsubscribe_listeners _LOGGER = logging.getLogger(__name__)
| SUPPORT_RETURN_HOME | SUPPORT_FAN_SPEED | SUPPORT_BATTERY | SUPPORT_SEND_COMMAND | SUPPORT_LOCATE | SUPPORT_MAP | SUPPORT_STATE | SUPPORT_START ) # Must be kept in sync with services.yaml SERVICE_REFRESH = "refresh" SERVICE_REFRESH_PART = "part" SERVICE_REFRESH_SCHEMA = { vol.Required(SERVICE_REFRESH_PART): vol.In( [*REFRESH_STR_TO_EVENT_DTO.keys(), REFRESH_MAP] ) } async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Add entities for passed config_entry in HA.""" hub: DeebotHub = hass.data[DOMAIN][config_entry.entry_id] new_devices = [] for vacbot in hub.vacuum_bots: new_devices.append(DeebotVacuum(vacbot)) if new_devices: async_add_entities(new_devices) platform = entity_platform.async_get_current_platform() platform.async_register_entity_service( SERVICE_REFRESH, SERVICE_REFRESH_SCHEMA, "_service_refresh", ) class DeebotVacuum(DeebotEntity, StateVacuumEntity): # type: ignore """Deebot Vacuum.""" def __init__(self, vacuum_bot: VacuumBot): """Initialize the Deebot Vacuum.""" device_info = vacuum_bot.device_info if device_info.nick is not None: name: str = device_info.nick else: # In case there is no nickname defined, use the device id name = device_info.did super().__init__(vacuum_bot, StateVacuumEntityDescription(key="", name=name)) self._battery: Optional[int] = None self._fan_speed: Optional[str] = None self._state: Optional[VacuumState] = None self._rooms: list[Room] = [] self._last_error: Optional[ErrorEvent] = None async def async_added_to_hass(self) -> None: """Set up the event listeners now that hass is ready.""" await super().async_added_to_hass() async def on_battery(event: BatteryEvent) -> None: self._battery = event.value self.async_write_ha_state() async def on_custom_command(event: CustomCommandEvent) -> None: self.hass.bus.fire(EVENT_CUSTOM_COMMAND, dataclass_to_dict(event)) async def on_error(event: ErrorEvent) -> None: self._last_error = event self.async_write_ha_state() async def on_fan_speed(event: FanSpeedEvent) -> None: self._fan_speed = event.speed self.async_write_ha_state() async def on_report_stats(event: ReportStatsEvent) -> None: self.hass.bus.fire(EVENT_CLEANING_JOB, dataclass_to_dict(event)) async def on_rooms(event: RoomsEvent) -> None: self._rooms = event.rooms self.async_write_ha_state() async def on_status(event: StatusEvent) -> None: self._state = event.state self.async_write_ha_state() listeners: list[EventListener] = [ self._vacuum_bot.events.subscribe(BatteryEvent, on_battery), self._vacuum_bot.events.subscribe(CustomCommandEvent, on_custom_command), self._vacuum_bot.events.subscribe(ErrorEvent, on_error), self._vacuum_bot.events.subscribe(FanSpeedEvent, on_fan_speed), self._vacuum_bot.events.subscribe(ReportStatsEvent, on_report_stats), self._vacuum_bot.events.subscribe(RoomsEvent, on_rooms), self._vacuum_bot.events.subscribe(StatusEvent, on_status), ] self.async_on_remove(lambda: unsubscribe_listeners(listeners)) @property def supported_features(self) -> int: """Flag vacuum cleaner robot features that are supported.""" return SUPPORT_DEEBOT @property def state(self) -> StateType: """Return the state of the vacuum cleaner.""" if self._state is not None and self.available: return VACUUMSTATE_TO_STATE[self._state] @property def battery_level(self) -> Optional[int]: """Return the battery level of the vacuum cleaner.""" return self._battery @property def fan_speed(self) -> Optional[str]: """Return the fan speed of the vacuum cleaner.""" return self._fan_speed @property def fan_speed_list(self) -> list[str]: """Get the list of available fan speed steps of the vacuum cleaner.""" return [level.display_name for level in FanSpeedLevel] @property def extra_state_attributes(self) -> Optional[Mapping[str, Any]]: """Return entity specific state attributes. Implemented by platform classes. Convention for attribute names is lowercase snake_case. """ attributes: dict[str, Any] = {} rooms: dict[str, Any] = {} for room in self._rooms: # convert room name to snake_case to meet the convention room_name = slugify(room.subtype) room_values = rooms.get(room_name) if room_values is None: rooms[room_name] = room.id elif isinstance(room_values, list): room_values.append(room.id) else: # Convert from int to list rooms[room_name] = [room_values, room.id] if rooms: attributes["rooms"] = rooms if self._last_error: attributes[ LAST_ERROR ] = f"{self._last_error.description} ({self._last_error.code})" return attributes async def async_set_fan_speed(self, fan_speed: str, **kwargs: Any) -> None: """Set fan speed.""" await self._vacuum_bot.execute_command(SetFanSpeed(fan_speed)) async def async_return_to_base(self, **kwargs: Any) -> None: """Set the vacuum cleaner to return to the dock.""" await self._vacuum_bot.execute_command(Charge()) async def async_stop(self, **kwargs: Any) -> None: """Stop the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.STOP)) async def async_pause(self) -> None: """Pause the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.PAUSE)) async def async_start(self) -> None: """Start the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.START)) async def async_locate(self, **kwargs: Any) -> None: """Locate the vacuum cleaner.""" await self._vacuum_bot.execute_command(PlaySound()) async def async_send_command( self, command: str, params: Optional[dict[str, Any]] = None, **kwargs: Any ) -> None: """Send a command to a vacuum cleaner.""" _LOGGER.debug("async_send_command %s with %s", command, params) if command in ["relocate", SetRelocationState.name]: _LOGGER.warning("DEPRECATED! Please use relocate button entity instead.") await self._vacuum_bot.execute_command(SetRelocationState()) elif command == "auto_clean": clean_type = params.get("type", "auto") if params else "auto" if clean_type == "auto": _LOGGER.warning('DEPRECATED! Please use "vacuum.start" instead.') await self.async_start() elif command in ["spot_area", "custom_area", "set_water"]: if params is None: raise RuntimeError("Params are required!") if command in "spot_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.SPOT_AREA, area=str(params["rooms"]), cleanings=params.get("cleanings", 1), ) ) elif command == "custom_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.CUSTOM_AREA, area=str(params["coordinates"]), cleanings=params.get("clean
SUPPORT_DEEBOT: int = ( SUPPORT_PAUSE | SUPPORT_STOP
random_line_split
vacuum.py
.clean import CleanAction, CleanArea, CleanMode from deebot_client.commands.custom import CustomCommand from deebot_client.events import ( BatteryEvent, CustomCommandEvent, ErrorEvent, FanSpeedEvent, ReportStatsEvent, RoomsEvent, StatusEvent, ) from deebot_client.events.event_bus import EventListener from deebot_client.models import Room, VacuumState from deebot_client.vacuum_bot import VacuumBot from homeassistant.components.vacuum import ( SUPPORT_BATTERY, SUPPORT_FAN_SPEED, SUPPORT_LOCATE, SUPPORT_MAP, SUPPORT_PAUSE, SUPPORT_RETURN_HOME, SUPPORT_SEND_COMMAND, SUPPORT_START, SUPPORT_STATE, SUPPORT_STOP, StateVacuumEntity, StateVacuumEntityDescription, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_platform from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import StateType from homeassistant.util import slugify from .const import ( DOMAIN, EVENT_CLEANING_JOB, EVENT_CUSTOM_COMMAND, LAST_ERROR, REFRESH_MAP, REFRESH_STR_TO_EVENT_DTO, VACUUMSTATE_TO_STATE, ) from .entity import DeebotEntity from .hub import DeebotHub from .util import dataclass_to_dict, unsubscribe_listeners _LOGGER = logging.getLogger(__name__) SUPPORT_DEEBOT: int = ( SUPPORT_PAUSE | SUPPORT_STOP | SUPPORT_RETURN_HOME | SUPPORT_FAN_SPEED | SUPPORT_BATTERY | SUPPORT_SEND_COMMAND | SUPPORT_LOCATE | SUPPORT_MAP | SUPPORT_STATE | SUPPORT_START ) # Must be kept in sync with services.yaml SERVICE_REFRESH = "refresh" SERVICE_REFRESH_PART = "part" SERVICE_REFRESH_SCHEMA = { vol.Required(SERVICE_REFRESH_PART): vol.In( [*REFRESH_STR_TO_EVENT_DTO.keys(), REFRESH_MAP] ) } async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Add entities for passed config_entry in HA.""" hub: DeebotHub = hass.data[DOMAIN][config_entry.entry_id] new_devices = [] for vacbot in hub.vacuum_bots: new_devices.append(DeebotVacuum(vacbot)) if new_devices:
platform = entity_platform.async_get_current_platform() platform.async_register_entity_service( SERVICE_REFRESH, SERVICE_REFRESH_SCHEMA, "_service_refresh", ) class DeebotVacuum(DeebotEntity, StateVacuumEntity): # type: ignore """Deebot Vacuum.""" def __init__(self, vacuum_bot: VacuumBot): """Initialize the Deebot Vacuum.""" device_info = vacuum_bot.device_info if device_info.nick is not None: name: str = device_info.nick else: # In case there is no nickname defined, use the device id name = device_info.did super().__init__(vacuum_bot, StateVacuumEntityDescription(key="", name=name)) self._battery: Optional[int] = None self._fan_speed: Optional[str] = None self._state: Optional[VacuumState] = None self._rooms: list[Room] = [] self._last_error: Optional[ErrorEvent] = None async def async_added_to_hass(self) -> None: """Set up the event listeners now that hass is ready.""" await super().async_added_to_hass() async def on_battery(event: BatteryEvent) -> None: self._battery = event.value self.async_write_ha_state() async def on_custom_command(event: CustomCommandEvent) -> None: self.hass.bus.fire(EVENT_CUSTOM_COMMAND, dataclass_to_dict(event)) async def on_error(event: ErrorEvent) -> None: self._last_error = event self.async_write_ha_state() async def on_fan_speed(event: FanSpeedEvent) -> None: self._fan_speed = event.speed self.async_write_ha_state() async def on_report_stats(event: ReportStatsEvent) -> None: self.hass.bus.fire(EVENT_CLEANING_JOB, dataclass_to_dict(event)) async def on_rooms(event: RoomsEvent) -> None: self._rooms = event.rooms self.async_write_ha_state() async def on_status(event: StatusEvent) -> None: self._state = event.state self.async_write_ha_state() listeners: list[EventListener] = [ self._vacuum_bot.events.subscribe(BatteryEvent, on_battery), self._vacuum_bot.events.subscribe(CustomCommandEvent, on_custom_command), self._vacuum_bot.events.subscribe(ErrorEvent, on_error), self._vacuum_bot.events.subscribe(FanSpeedEvent, on_fan_speed), self._vacuum_bot.events.subscribe(ReportStatsEvent, on_report_stats), self._vacuum_bot.events.subscribe(RoomsEvent, on_rooms), self._vacuum_bot.events.subscribe(StatusEvent, on_status), ] self.async_on_remove(lambda: unsubscribe_listeners(listeners)) @property def supported_features(self) -> int: """Flag vacuum cleaner robot features that are supported.""" return SUPPORT_DEEBOT @property def state(self) -> StateType: """Return the state of the vacuum cleaner.""" if self._state is not None and self.available: return VACUUMSTATE_TO_STATE[self._state] @property def battery_level(self) -> Optional[int]: """Return the battery level of the vacuum cleaner.""" return self._battery @property def fan_speed(self) -> Optional[str]: """Return the fan speed of the vacuum cleaner.""" return self._fan_speed @property def fan_speed_list(self) -> list[str]: """Get the list of available fan speed steps of the vacuum cleaner.""" return [level.display_name for level in FanSpeedLevel] @property def extra_state_attributes(self) -> Optional[Mapping[str, Any]]: """Return entity specific state attributes. Implemented by platform classes. Convention for attribute names is lowercase snake_case. """ attributes: dict[str, Any] = {} rooms: dict[str, Any] = {} for room in self._rooms: # convert room name to snake_case to meet the convention room_name = slugify(room.subtype) room_values = rooms.get(room_name) if room_values is None: rooms[room_name] = room.id elif isinstance(room_values, list): room_values.append(room.id) else: # Convert from int to list rooms[room_name] = [room_values, room.id] if rooms: attributes["rooms"] = rooms if self._last_error: attributes[ LAST_ERROR ] = f"{self._last_error.description} ({self._last_error.code})" return attributes async def async_set_fan_speed(self, fan_speed: str, **kwargs: Any) -> None: """Set fan speed.""" await self._vacuum_bot.execute_command(SetFanSpeed(fan_speed)) async def async_return_to_base(self, **kwargs: Any) -> None: """Set the vacuum cleaner to return to the dock.""" await self._vacuum_bot.execute_command(Charge()) async def async_stop(self, **kwargs: Any) -> None: """Stop the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.STOP)) async def async_pause(self) -> None: """Pause the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.PAUSE)) async def async_start(self) -> None: """Start the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.START)) async def async_locate(self, **kwargs: Any) -> None: """Locate the vacuum cleaner.""" await self._vacuum_bot.execute_command(PlaySound()) async def async_send_command( self, command: str, params: Optional[dict[str, Any]] = None, **kwargs: Any ) -> None: """Send a command to a vacuum cleaner.""" _LOGGER.debug("async_send_command %s with %s", command, params) if command in ["relocate", SetRelocationState.name]: _LOGGER.warning("DEPRECATED! Please use relocate button entity instead.") await self._vacuum_bot.execute_command(SetRelocationState()) elif command == "auto_clean": clean_type = params.get("type", "auto") if params else "auto" if clean_type == "auto": _LOGGER.warning('DEPRECATED! Please use "vacuum.start" instead.') await self.async_start() elif command in ["spot_area", "custom_area", "set_water"]: if params is None: raise RuntimeError("Params are required!") if command in "spot_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.SPOT_AREA, area=str(params["rooms"]), cleanings=params.get("cleanings", 1), ) ) elif command == "custom_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.CUSTOM_AREA, area=str(params["coordinates"]), cleanings=params.get
async_add_entities(new_devices)
conditional_block
vacuum.py
.clean import CleanAction, CleanArea, CleanMode from deebot_client.commands.custom import CustomCommand from deebot_client.events import ( BatteryEvent, CustomCommandEvent, ErrorEvent, FanSpeedEvent, ReportStatsEvent, RoomsEvent, StatusEvent, ) from deebot_client.events.event_bus import EventListener from deebot_client.models import Room, VacuumState from deebot_client.vacuum_bot import VacuumBot from homeassistant.components.vacuum import ( SUPPORT_BATTERY, SUPPORT_FAN_SPEED, SUPPORT_LOCATE, SUPPORT_MAP, SUPPORT_PAUSE, SUPPORT_RETURN_HOME, SUPPORT_SEND_COMMAND, SUPPORT_START, SUPPORT_STATE, SUPPORT_STOP, StateVacuumEntity, StateVacuumEntityDescription, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_platform from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import StateType from homeassistant.util import slugify from .const import ( DOMAIN, EVENT_CLEANING_JOB, EVENT_CUSTOM_COMMAND, LAST_ERROR, REFRESH_MAP, REFRESH_STR_TO_EVENT_DTO, VACUUMSTATE_TO_STATE, ) from .entity import DeebotEntity from .hub import DeebotHub from .util import dataclass_to_dict, unsubscribe_listeners _LOGGER = logging.getLogger(__name__) SUPPORT_DEEBOT: int = ( SUPPORT_PAUSE | SUPPORT_STOP | SUPPORT_RETURN_HOME | SUPPORT_FAN_SPEED | SUPPORT_BATTERY | SUPPORT_SEND_COMMAND | SUPPORT_LOCATE | SUPPORT_MAP | SUPPORT_STATE | SUPPORT_START ) # Must be kept in sync with services.yaml SERVICE_REFRESH = "refresh" SERVICE_REFRESH_PART = "part" SERVICE_REFRESH_SCHEMA = { vol.Required(SERVICE_REFRESH_PART): vol.In( [*REFRESH_STR_TO_EVENT_DTO.keys(), REFRESH_MAP] ) } async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Add entities for passed config_entry in HA.""" hub: DeebotHub = hass.data[DOMAIN][config_entry.entry_id] new_devices = [] for vacbot in hub.vacuum_bots: new_devices.append(DeebotVacuum(vacbot)) if new_devices: async_add_entities(new_devices) platform = entity_platform.async_get_current_platform() platform.async_register_entity_service( SERVICE_REFRESH, SERVICE_REFRESH_SCHEMA, "_service_refresh", ) class DeebotVacuum(DeebotEntity, StateVacuumEntity): # type: ignore """Deebot Vacuum.""" def __init__(self, vacuum_bot: VacuumBot): """Initialize the Deebot Vacuum.""" device_info = vacuum_bot.device_info if device_info.nick is not None: name: str = device_info.nick else: # In case there is no nickname defined, use the device id name = device_info.did super().__init__(vacuum_bot, StateVacuumEntityDescription(key="", name=name)) self._battery: Optional[int] = None self._fan_speed: Optional[str] = None self._state: Optional[VacuumState] = None self._rooms: list[Room] = [] self._last_error: Optional[ErrorEvent] = None async def async_added_to_hass(self) -> None: """Set up the event listeners now that hass is ready.""" await super().async_added_to_hass() async def on_battery(event: BatteryEvent) -> None: self._battery = event.value self.async_write_ha_state() async def on_custom_command(event: CustomCommandEvent) -> None: self.hass.bus.fire(EVENT_CUSTOM_COMMAND, dataclass_to_dict(event)) async def on_error(event: ErrorEvent) -> None: self._last_error = event self.async_write_ha_state() async def
(event: FanSpeedEvent) -> None: self._fan_speed = event.speed self.async_write_ha_state() async def on_report_stats(event: ReportStatsEvent) -> None: self.hass.bus.fire(EVENT_CLEANING_JOB, dataclass_to_dict(event)) async def on_rooms(event: RoomsEvent) -> None: self._rooms = event.rooms self.async_write_ha_state() async def on_status(event: StatusEvent) -> None: self._state = event.state self.async_write_ha_state() listeners: list[EventListener] = [ self._vacuum_bot.events.subscribe(BatteryEvent, on_battery), self._vacuum_bot.events.subscribe(CustomCommandEvent, on_custom_command), self._vacuum_bot.events.subscribe(ErrorEvent, on_error), self._vacuum_bot.events.subscribe(FanSpeedEvent, on_fan_speed), self._vacuum_bot.events.subscribe(ReportStatsEvent, on_report_stats), self._vacuum_bot.events.subscribe(RoomsEvent, on_rooms), self._vacuum_bot.events.subscribe(StatusEvent, on_status), ] self.async_on_remove(lambda: unsubscribe_listeners(listeners)) @property def supported_features(self) -> int: """Flag vacuum cleaner robot features that are supported.""" return SUPPORT_DEEBOT @property def state(self) -> StateType: """Return the state of the vacuum cleaner.""" if self._state is not None and self.available: return VACUUMSTATE_TO_STATE[self._state] @property def battery_level(self) -> Optional[int]: """Return the battery level of the vacuum cleaner.""" return self._battery @property def fan_speed(self) -> Optional[str]: """Return the fan speed of the vacuum cleaner.""" return self._fan_speed @property def fan_speed_list(self) -> list[str]: """Get the list of available fan speed steps of the vacuum cleaner.""" return [level.display_name for level in FanSpeedLevel] @property def extra_state_attributes(self) -> Optional[Mapping[str, Any]]: """Return entity specific state attributes. Implemented by platform classes. Convention for attribute names is lowercase snake_case. """ attributes: dict[str, Any] = {} rooms: dict[str, Any] = {} for room in self._rooms: # convert room name to snake_case to meet the convention room_name = slugify(room.subtype) room_values = rooms.get(room_name) if room_values is None: rooms[room_name] = room.id elif isinstance(room_values, list): room_values.append(room.id) else: # Convert from int to list rooms[room_name] = [room_values, room.id] if rooms: attributes["rooms"] = rooms if self._last_error: attributes[ LAST_ERROR ] = f"{self._last_error.description} ({self._last_error.code})" return attributes async def async_set_fan_speed(self, fan_speed: str, **kwargs: Any) -> None: """Set fan speed.""" await self._vacuum_bot.execute_command(SetFanSpeed(fan_speed)) async def async_return_to_base(self, **kwargs: Any) -> None: """Set the vacuum cleaner to return to the dock.""" await self._vacuum_bot.execute_command(Charge()) async def async_stop(self, **kwargs: Any) -> None: """Stop the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.STOP)) async def async_pause(self) -> None: """Pause the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.PAUSE)) async def async_start(self) -> None: """Start the vacuum cleaner.""" await self._vacuum_bot.execute_command(Clean(CleanAction.START)) async def async_locate(self, **kwargs: Any) -> None: """Locate the vacuum cleaner.""" await self._vacuum_bot.execute_command(PlaySound()) async def async_send_command( self, command: str, params: Optional[dict[str, Any]] = None, **kwargs: Any ) -> None: """Send a command to a vacuum cleaner.""" _LOGGER.debug("async_send_command %s with %s", command, params) if command in ["relocate", SetRelocationState.name]: _LOGGER.warning("DEPRECATED! Please use relocate button entity instead.") await self._vacuum_bot.execute_command(SetRelocationState()) elif command == "auto_clean": clean_type = params.get("type", "auto") if params else "auto" if clean_type == "auto": _LOGGER.warning('DEPRECATED! Please use "vacuum.start" instead.') await self.async_start() elif command in ["spot_area", "custom_area", "set_water"]: if params is None: raise RuntimeError("Params are required!") if command in "spot_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.SPOT_AREA, area=str(params["rooms"]), cleanings=params.get("cleanings", 1), ) ) elif command == "custom_area": await self._vacuum_bot.execute_command( CleanArea( mode=CleanMode.CUSTOM_AREA, area=str(params["coordinates"]), cleanings=params.get
on_fan_speed
identifier_name
lib.rs
(error::Jose::WrongKeyType { expected: format!("{:?}", $expected), actual: format!("{:?}", $actual), } .into()) }; } impl Client { /// Constructs a client from an issuer url and client parameters via discovery pub fn discover(id: String, secret: String, redirect: Url, issuer: Url) -> Result<Self, Error> { discovery::secure(&redirect)?; let client = reqwest::Client::new(); let config = discovery::discover(&client, issuer)?; let jwks = discovery::jwks(&client, config.jwks_uri.clone())?; let provider = Discovered(config); Ok(Self::new(id, secret, redirect, provider, jwks)) } /// Constructs a client from a given provider, key set, and parameters. Unlike ::discover(..) /// this function does not perform any network operations. pub fn new( id: String, secret: String, redirect: Url, provider: Discovered, jwks: JWKSet<Empty>, ) -> Self { Client { oauth: inth_oauth2::Client::new(provider, id, secret, Some(redirect.into_string())), jwks, } } /// Passthrough to the redirect_url stored in inth_oauth2 as a str. pub fn redirect_url(&self) -> &str { self.oauth .redirect_uri .as_ref() .expect("We always require a redirect to construct client!") } /// Passthrough to the inth_oauth2::client's request token. pub fn request_token(&self, client: &reqwest::Client, auth_code: &str) -> Result<Token, Error> { self.oauth .request_token(client, auth_code) .map_err(Error::from) } /// A reference to the config document of the provider obtained via discovery pub fn config(&self) -> &Config { &self.oauth.provider.0 } /// Constructs the auth_url to redirect a client to the provider. Options are... optional. Use /// them as needed. Keep the Options struct around for authentication, or at least the nonce /// and max_age parameter - we need to verify they stay the same and validate if you used them. pub fn auth_url(&self, options: &Options) -> Url { let scope = match options.scope { Some(ref scope) => { if !scope.contains("openid") { String::from("openid ") + scope } else { scope.clone() } } // Default scope value None => String::from("openid"), }; let mut url = self .oauth .auth_uri(Some(&scope), options.state.as_ref().map(String::as_str)); { let mut query = url.query_pairs_mut(); if let Some(ref nonce) = options.nonce { query.append_pair("nonce", nonce.as_str()); } if let Some(ref display) = options.display { query.append_pair("display", display.as_str()); } if let Some(ref prompt) = options.prompt { let s = prompt .iter() .map(|s| s.as_str()) .collect::<Vec<_>>() .join(" "); query.append_pair("prompt", s.as_str()); } if let Some(max_age) = options.max_age { query.append_pair("max_age", max_age.num_seconds().to_string().as_str()); } if let Some(ref ui_locales) = options.ui_locales { query.append_pair("ui_locales", ui_locales.as_str()); } if let Some(ref claims_locales) = options.claims_locales { query.append_pair("claims_locales", claims_locales.as_str()); } if let Some(ref id_token_hint) = options.id_token_hint { query.append_pair("id_token_hint", id_token_hint.as_str()); } if let Some(ref login_hint) = options.login_hint { query.append_pair("login_hint", login_hint.as_str()); } if let Some(ref acr_values) = options.acr_values { query.append_pair("acr_values", acr_values.as_str()); } } url } /// Given an auth_code and auth options, request the token, decode, and validate it. pub fn authenticate( &self, auth_code: &str, nonce: Option<&str>, max_age: Option<&Duration>, ) -> Result<Token, Error> { let client = reqwest::Client::new(); let mut token = self.request_token(&client, auth_code)?; self.decode_token(&mut token.id_token)?; self.validate_token(&token.id_token, nonce, max_age)?; Ok(token) } /// Mutates a Compact::encoded Token to Compact::decoded. Errors are: /// /// - Decode::MissingKid if the keyset has multiple keys but the key id on the token is missing /// - Decode::MissingKey if the given key id is not in the key set /// - Decode::EmptySet if the keyset is empty /// - Jose::WrongKeyType if the alg of the key and the alg in the token header mismatch /// - Jose::WrongKeyType if the specified key alg isn't a signature algorithm /// - Jose error if decoding fails pub fn decode_token(&self, token: &mut IdToken) -> Result<(), Error> { // This is an early return if the token is already decoded if let Compact::Decoded { .. } = *token { return Ok(()); } let header = token.unverified_header()?; // If there is more than one key, the token MUST have a key id let key = if self.jwks.keys.len() > 1 { let token_kid = header.registered.key_id.ok_or(Decode::MissingKid)?; self.jwks .find(&token_kid) .ok_or(Decode::MissingKey(token_kid))? } else { // TODO We would want to verify the keyset is >1 in the constructor // rather than every decode call, but we can't return an error in new(). self.jwks.keys.first().as_ref().ok_or(Decode::EmptySet)? }; if let Some(alg) = key.common.algorithm.as_ref() { if let &jwa::Algorithm::Signature(sig) = alg { if header.registered.algorithm != sig { return wrong_key!(sig, header.registered.algorithm); } } else { return wrong_key!(SignatureAlgorithm::default(), alg); } } let alg = header.registered.algorithm; match key.algorithm { // HMAC AlgorithmParameters::OctectKey { ref value, .. } => match alg { SignatureAlgorithm::HS256 | SignatureAlgorithm::HS384 | SignatureAlgorithm::HS512 => { *token = token.decode(&Secret::Bytes(value.clone()), alg)?; Ok(()) } _ => wrong_key!("HS256 | HS384 | HS512", alg), }, AlgorithmParameters::RSA(ref params) => match alg { SignatureAlgorithm::RS256 | SignatureAlgorithm::RS384 | SignatureAlgorithm::RS512 => { let pkcs = Secret::RSAModulusExponent { n: params.n.clone(), e: params.e.clone(), }; *token = token.decode(&pkcs, alg)?; Ok(()) } _ => wrong_key!("RS256 | RS384 | RS512", alg), }, AlgorithmParameters::EllipticCurve(_) => unimplemented!("No support for EC keys yet"), } } /// Validate a decoded token. If you don't get an error, its valid! Nonce and max_age come from /// your auth_uri options. Errors are: /// /// - Jose Error if the Token isn't decoded /// - Validation::Mismatch::Issuer if the provider issuer and token issuer mismatch /// - Validation::Mismatch::Nonce if a given nonce and the token nonce mismatch /// - Validation::Missing::Nonce if either the token or args has a nonce and the other does not /// - Validation::Missing::Audience if the token aud doesn't contain the client id /// - Validation::Missing::AuthorizedParty if there are multiple audiences and azp is missing /// - Validation::Mismatch::AuthorizedParty if the azp is not the client_id /// - Validation::Expired::Expires if the current time is past the expiration time /// - Validation::Expired::MaxAge is the token is older than the provided max_age /// - Validation::Missing::Authtime if a max_age was given and the token has no auth time pub fn validate_token( &self, token: &IdToken, nonce: Option<&str>, max_age: Option<&Duration>, ) -> Result<(), Error> { let claims = token.payload()?; if claims.iss != self.config().issuer { let expected = self.config().issuer.as_str().to_string(); let actual = claims.iss.as_str().to_string(); return Err(Validation::Mismatch(Mismatch::Issuer { expected, actual }).into()); } match nonce { Some(expected) => match claims.nonce { Some(ref actual) => {
if expected != actual {
random_line_split
lib.rs
wrong_key { ($expected:expr, $actual:expr) => { Err(error::Jose::WrongKeyType { expected: format!("{:?}", $expected), actual: format!("{:?}", $actual), } .into()) }; } impl Client { /// Constructs a client from an issuer url and client parameters via discovery pub fn discover(id: String, secret: String, redirect: Url, issuer: Url) -> Result<Self, Error> { discovery::secure(&redirect)?; let client = reqwest::Client::new(); let config = discovery::discover(&client, issuer)?; let jwks = discovery::jwks(&client, config.jwks_uri.clone())?; let provider = Discovered(config); Ok(Self::new(id, secret, redirect, provider, jwks)) } /// Constructs a client from a given provider, key set, and parameters. Unlike ::discover(..) /// this function does not perform any network operations. pub fn new( id: String, secret: String, redirect: Url, provider: Discovered, jwks: JWKSet<Empty>, ) -> Self { Client { oauth: inth_oauth2::Client::new(provider, id, secret, Some(redirect.into_string())), jwks, } } /// Passthrough to the redirect_url stored in inth_oauth2 as a str. pub fn redirect_url(&self) -> &str { self.oauth .redirect_uri .as_ref() .expect("We always require a redirect to construct client!") } /// Passthrough to the inth_oauth2::client's request token. pub fn request_token(&self, client: &reqwest::Client, auth_code: &str) -> Result<Token, Error> { self.oauth .request_token(client, auth_code) .map_err(Error::from) } /// A reference to the config document of the provider obtained via discovery pub fn config(&self) -> &Config { &self.oauth.provider.0 } /// Constructs the auth_url to redirect a client to the provider. Options are... optional. Use /// them as needed. Keep the Options struct around for authentication, or at least the nonce /// and max_age parameter - we need to verify they stay the same and validate if you used them. pub fn auth_url(&self, options: &Options) -> Url { let scope = match options.scope { Some(ref scope) => { if !scope.contains("openid") { String::from("openid ") + scope } else { scope.clone() } } // Default scope value None => String::from("openid"), }; let mut url = self .oauth .auth_uri(Some(&scope), options.state.as_ref().map(String::as_str)); { let mut query = url.query_pairs_mut(); if let Some(ref nonce) = options.nonce { query.append_pair("nonce", nonce.as_str()); } if let Some(ref display) = options.display { query.append_pair("display", display.as_str()); } if let Some(ref prompt) = options.prompt { let s = prompt .iter() .map(|s| s.as_str()) .collect::<Vec<_>>() .join(" "); query.append_pair("prompt", s.as_str()); } if let Some(max_age) = options.max_age { query.append_pair("max_age", max_age.num_seconds().to_string().as_str()); } if let Some(ref ui_locales) = options.ui_locales { query.append_pair("ui_locales", ui_locales.as_str()); } if let Some(ref claims_locales) = options.claims_locales { query.append_pair("claims_locales", claims_locales.as_str()); } if let Some(ref id_token_hint) = options.id_token_hint { query.append_pair("id_token_hint", id_token_hint.as_str()); } if let Some(ref login_hint) = options.login_hint { query.append_pair("login_hint", login_hint.as_str()); } if let Some(ref acr_values) = options.acr_values { query.append_pair("acr_values", acr_values.as_str()); } } url } /// Given an auth_code and auth options, request the token, decode, and validate it. pub fn authenticate( &self, auth_code: &str, nonce: Option<&str>, max_age: Option<&Duration>, ) -> Result<Token, Error> { let client = reqwest::Client::new(); let mut token = self.request_token(&client, auth_code)?; self.decode_token(&mut token.id_token)?; self.validate_token(&token.id_token, nonce, max_age)?; Ok(token) } /// Mutates a Compact::encoded Token to Compact::decoded. Errors are: /// /// - Decode::MissingKid if the keyset has multiple keys but the key id on the token is missing /// - Decode::MissingKey if the given key id is not in the key set /// - Decode::EmptySet if the keyset is empty /// - Jose::WrongKeyType if the alg of the key and the alg in the token header mismatch /// - Jose::WrongKeyType if the specified key alg isn't a signature algorithm /// - Jose error if decoding fails pub fn
(&self, token: &mut IdToken) -> Result<(), Error> { // This is an early return if the token is already decoded if let Compact::Decoded { .. } = *token { return Ok(()); } let header = token.unverified_header()?; // If there is more than one key, the token MUST have a key id let key = if self.jwks.keys.len() > 1 { let token_kid = header.registered.key_id.ok_or(Decode::MissingKid)?; self.jwks .find(&token_kid) .ok_or(Decode::MissingKey(token_kid))? } else { // TODO We would want to verify the keyset is >1 in the constructor // rather than every decode call, but we can't return an error in new(). self.jwks.keys.first().as_ref().ok_or(Decode::EmptySet)? }; if let Some(alg) = key.common.algorithm.as_ref() { if let &jwa::Algorithm::Signature(sig) = alg { if header.registered.algorithm != sig { return wrong_key!(sig, header.registered.algorithm); } } else { return wrong_key!(SignatureAlgorithm::default(), alg); } } let alg = header.registered.algorithm; match key.algorithm { // HMAC AlgorithmParameters::OctectKey { ref value, .. } => match alg { SignatureAlgorithm::HS256 | SignatureAlgorithm::HS384 | SignatureAlgorithm::HS512 => { *token = token.decode(&Secret::Bytes(value.clone()), alg)?; Ok(()) } _ => wrong_key!("HS256 | HS384 | HS512", alg), }, AlgorithmParameters::RSA(ref params) => match alg { SignatureAlgorithm::RS256 | SignatureAlgorithm::RS384 | SignatureAlgorithm::RS512 => { let pkcs = Secret::RSAModulusExponent { n: params.n.clone(), e: params.e.clone(), }; *token = token.decode(&pkcs, alg)?; Ok(()) } _ => wrong_key!("RS256 | RS384 | RS512", alg), }, AlgorithmParameters::EllipticCurve(_) => unimplemented!("No support for EC keys yet"), } } /// Validate a decoded token. If you don't get an error, its valid! Nonce and max_age come from /// your auth_uri options. Errors are: /// /// - Jose Error if the Token isn't decoded /// - Validation::Mismatch::Issuer if the provider issuer and token issuer mismatch /// - Validation::Mismatch::Nonce if a given nonce and the token nonce mismatch /// - Validation::Missing::Nonce if either the token or args has a nonce and the other does not /// - Validation::Missing::Audience if the token aud doesn't contain the client id /// - Validation::Missing::AuthorizedParty if there are multiple audiences and azp is missing /// - Validation::Mismatch::AuthorizedParty if the azp is not the client_id /// - Validation::Expired::Expires if the current time is past the expiration time /// - Validation::Expired::MaxAge is the token is older than the provided max_age /// - Validation::Missing::Authtime if a max_age was given and the token has no auth time pub fn validate_token( &self, token: &IdToken, nonce: Option<&str>, max_age: Option<&Duration>, ) -> Result<(), Error> { let claims = token.payload()?; if claims.iss != self.config().issuer { let expected = self.config().issuer.as_str().to_string(); let actual = claims.iss.as_str().to_string(); return Err(Validation::Mismatch(Mismatch::Issuer { expected, actual }).into()); } match nonce { Some(expected) => match
decode_token
identifier_name
lib.rs
_token(client, auth_code) .map_err(Error::from) } /// A reference to the config document of the provider obtained via discovery pub fn config(&self) -> &Config { &self.oauth.provider.0 } /// Constructs the auth_url to redirect a client to the provider. Options are... optional. Use /// them as needed. Keep the Options struct around for authentication, or at least the nonce /// and max_age parameter - we need to verify they stay the same and validate if you used them. pub fn auth_url(&self, options: &Options) -> Url { let scope = match options.scope { Some(ref scope) => { if !scope.contains("openid") { String::from("openid ") + scope } else { scope.clone() } } // Default scope value None => String::from("openid"), }; let mut url = self .oauth .auth_uri(Some(&scope), options.state.as_ref().map(String::as_str)); { let mut query = url.query_pairs_mut(); if let Some(ref nonce) = options.nonce { query.append_pair("nonce", nonce.as_str()); } if let Some(ref display) = options.display { query.append_pair("display", display.as_str()); } if let Some(ref prompt) = options.prompt { let s = prompt .iter() .map(|s| s.as_str()) .collect::<Vec<_>>() .join(" "); query.append_pair("prompt", s.as_str()); } if let Some(max_age) = options.max_age { query.append_pair("max_age", max_age.num_seconds().to_string().as_str()); } if let Some(ref ui_locales) = options.ui_locales { query.append_pair("ui_locales", ui_locales.as_str()); } if let Some(ref claims_locales) = options.claims_locales { query.append_pair("claims_locales", claims_locales.as_str()); } if let Some(ref id_token_hint) = options.id_token_hint { query.append_pair("id_token_hint", id_token_hint.as_str()); } if let Some(ref login_hint) = options.login_hint { query.append_pair("login_hint", login_hint.as_str()); } if let Some(ref acr_values) = options.acr_values { query.append_pair("acr_values", acr_values.as_str()); } } url } /// Given an auth_code and auth options, request the token, decode, and validate it. pub fn authenticate( &self, auth_code: &str, nonce: Option<&str>, max_age: Option<&Duration>, ) -> Result<Token, Error> { let client = reqwest::Client::new(); let mut token = self.request_token(&client, auth_code)?; self.decode_token(&mut token.id_token)?; self.validate_token(&token.id_token, nonce, max_age)?; Ok(token) } /// Mutates a Compact::encoded Token to Compact::decoded. Errors are: /// /// - Decode::MissingKid if the keyset has multiple keys but the key id on the token is missing /// - Decode::MissingKey if the given key id is not in the key set /// - Decode::EmptySet if the keyset is empty /// - Jose::WrongKeyType if the alg of the key and the alg in the token header mismatch /// - Jose::WrongKeyType if the specified key alg isn't a signature algorithm /// - Jose error if decoding fails pub fn decode_token(&self, token: &mut IdToken) -> Result<(), Error> { // This is an early return if the token is already decoded if let Compact::Decoded { .. } = *token { return Ok(()); } let header = token.unverified_header()?; // If there is more than one key, the token MUST have a key id let key = if self.jwks.keys.len() > 1 { let token_kid = header.registered.key_id.ok_or(Decode::MissingKid)?; self.jwks .find(&token_kid) .ok_or(Decode::MissingKey(token_kid))? } else { // TODO We would want to verify the keyset is >1 in the constructor // rather than every decode call, but we can't return an error in new(). self.jwks.keys.first().as_ref().ok_or(Decode::EmptySet)? }; if let Some(alg) = key.common.algorithm.as_ref() { if let &jwa::Algorithm::Signature(sig) = alg { if header.registered.algorithm != sig { return wrong_key!(sig, header.registered.algorithm); } } else { return wrong_key!(SignatureAlgorithm::default(), alg); } } let alg = header.registered.algorithm; match key.algorithm { // HMAC AlgorithmParameters::OctectKey { ref value, .. } => match alg { SignatureAlgorithm::HS256 | SignatureAlgorithm::HS384 | SignatureAlgorithm::HS512 => { *token = token.decode(&Secret::Bytes(value.clone()), alg)?; Ok(()) } _ => wrong_key!("HS256 | HS384 | HS512", alg), }, AlgorithmParameters::RSA(ref params) => match alg { SignatureAlgorithm::RS256 | SignatureAlgorithm::RS384 | SignatureAlgorithm::RS512 => { let pkcs = Secret::RSAModulusExponent { n: params.n.clone(), e: params.e.clone(), }; *token = token.decode(&pkcs, alg)?; Ok(()) } _ => wrong_key!("RS256 | RS384 | RS512", alg), }, AlgorithmParameters::EllipticCurve(_) => unimplemented!("No support for EC keys yet"), } } /// Validate a decoded token. If you don't get an error, its valid! Nonce and max_age come from /// your auth_uri options. Errors are: /// /// - Jose Error if the Token isn't decoded /// - Validation::Mismatch::Issuer if the provider issuer and token issuer mismatch /// - Validation::Mismatch::Nonce if a given nonce and the token nonce mismatch /// - Validation::Missing::Nonce if either the token or args has a nonce and the other does not /// - Validation::Missing::Audience if the token aud doesn't contain the client id /// - Validation::Missing::AuthorizedParty if there are multiple audiences and azp is missing /// - Validation::Mismatch::AuthorizedParty if the azp is not the client_id /// - Validation::Expired::Expires if the current time is past the expiration time /// - Validation::Expired::MaxAge is the token is older than the provided max_age /// - Validation::Missing::Authtime if a max_age was given and the token has no auth time pub fn validate_token( &self, token: &IdToken, nonce: Option<&str>, max_age: Option<&Duration>, ) -> Result<(), Error> { let claims = token.payload()?; if claims.iss != self.config().issuer { let expected = self.config().issuer.as_str().to_string(); let actual = claims.iss.as_str().to_string(); return Err(Validation::Mismatch(Mismatch::Issuer { expected, actual }).into()); } match nonce { Some(expected) => match claims.nonce { Some(ref actual) => { if expected != actual { let expected = expected.to_string(); let actual = actual.to_string(); return Err( Validation::Mismatch(Mismatch::Nonce { expected, actual }).into() ); } } None => return Err(Validation::Missing(Missing::Nonce).into()), }, None => { if claims.nonce.is_some() { return Err(Validation::Missing(Missing::Nonce).into()); } } } if !claims.aud.contains(&self.oauth.client_id) { return Err(Validation::Missing(Missing::Audience).into()); } // By spec, if there are multiple auds, we must have an azp if let SingleOrMultiple::Multiple(_) = claims.aud { if let None = claims.azp { return Err(Validation::Missing(Missing::AuthorizedParty).into()); } } // If there is an authorized party, it must be our client_id if let Some(ref actual) = claims.azp { if actual != &self.oauth.client_id { let expected = self.oauth.client_id.to_string(); let actual = actual.to_string(); return Err( Validation::Mismatch(Mismatch::AuthorizedParty { expected, actual }).into(), ); } } let now = Utc::now(); // Now should never be less than the time this code was written! if now.timestamp() < 1504758600 { panic!("chrono::Utc::now() can never be before this was written!") } if claims.exp <= now.timestamp()
{ return Err(Validation::Expired(Expiry::Expires( chrono::naive::NaiveDateTime::from_timestamp(claims.exp, 0), )) .into()); }
conditional_block
machine.rs
{ // Store the error in self, then return a ref to it self.error = Some(WithSource::new( iter::once(SourceErrorWrapper::new( error, span, &self.source, )), self.source.clone(), )); Err(self.error.as_ref().unwrap()) } } } /// Executes this machine until termination (or error). All instructions are /// executed until [Self::terminated] returns true. Returns the value of /// [Self::successful] upon termination. pub fn execute_all(&mut self) -> Result<bool, &WithSource<RuntimeError>> { // We can't return the error directly from the loop because of a bug // in the borrow checker. Instead, we have to play lifetime tetris. while !self.terminated() { if self.execute_next().is_err() { break; } } // Check if an error occurred, and return it if so match &self.error { None => Ok(self.successful()), Some(error) => Err(error), } } /// Get the source code that this machine is built for. pub fn source_code(&self) -> &str { &self.source } /// Get a reference to the program being executed. pub fn program(&self) -> &Program<Span> { &self.program } /// Get the current input buffer. pub fn input(&self) -> &[LangValue] { self.input.as_slice() } /// Get the current output buffer. pub fn output(&self) -> &[LangValue] { self.output.as_slice() } /// Get all registers and their current values. pub fn registers(&self) -> HashMap<RegisterRef, LangValue> { self.hardware_spec .all_register_refs() .into_iter() .map(|reg_ref| (reg_ref, self.get_reg(reg_ref))) .collect() } /// Get all stacks and their current values. pub fn stacks(&self) -> HashMap<StackRef, &[LangValue]> { self.hardware_spec .all_stack_refs() .into_iter() .map(|stack_ref| (stack_ref, self.stacks[stack_ref.0].as_slice())) .collect() } /// Get the runtime error that halted execution of this machine. If no error /// has occurred, return `None`. pub fn error(&self) -> Option<&WithSource<RuntimeError>> { self.error.as_ref() } } // Functions that get exported to wasm #[cfg_attr(target_arch = "wasm32", wasm_bindgen)] impl Machine { /// Get the index of the next instruction to be executed. #[cfg_attr( target_arch = "wasm32", wasm_bindgen(getter, js_name = "programCounter") )] pub fn program_counter(&self) -> usize { self.program_counter } /// Get the number of cycles, i.e. the number of instructions that have /// been run, during the current program execution. #[cfg_attr( target_arch = "wasm32", wasm_bindgen(getter, js_name = "cycleCount") )] pub fn cycle_count(&self) -> usize { self.cycle_count } /// Checks if this machine has finished executing. This could be by normal /// completion or by runtime error. #[cfg_attr( target_arch = "wasm32", wasm_bindgen(getter, js_name = "terminated") )] pub fn terminated(&self) -> bool { // Check for normal complete self.program_counter >= self.program.instructions.len() // Check for a runtime error || self.error.is_some() } /// Checks if this machine has completed successfully. The criteria are: /// 1. Program is terminated (all instructions have been executed) /// 2. No failures occurred (see [FailureReason] for possible failures) #[cfg_attr( target_arch = "wasm32", wasm_bindgen(getter, js_name = "successful") )] pub fn successful(&self) -> bool { self.terminated() && self.failure_reason().is_none() } /// Determine why the executed program failed. **Only returns a value if /// the program actually failed.** Will return `None` if the program /// is still running or it succeeded. #[cfg_attr( target_arch = "wasm32", wasm_bindgen(getter, js_name = "failureReason") )] pub fn failure_reason(&self) -> Option<FailureReason> { if !self.terminated() { // Program is still running, so we haven't failed (yet) None } else if self.error.is_some() { Some(FailureReason::RuntimeError) } else if !self.input.is_empty() { Some(FailureReason::RemainingInput) } else if self.output != self.expected_output { Some(FailureReason::IncorrectOutput) } else { // No failure states were hit, so program was successful! None } } } // Wasm-ONLY functions #[cfg(target_arch = "wasm32")] #[wasm_bindgen] impl Machine { /// A wrapper for [Self::input], to be called from wasm. #[wasm_bindgen(getter, js_name = "input")] pub fn wasm_input(&self) -> Vec<LangValue> { self.input.clone() } /// A wrapper for [Self::input], to be called from wasm. #[wasm_bindgen(getter, js_name = "output")] pub fn wasm_output(&self) -> Vec<LangValue> { self.output.clone() } /// A wrapper for [Self::registers], to be called from wasm. We can't send /// maps through wasm, so this returns a [JsValue] which is an object /// mapping register names (strings) to their values (`LangValue`). #[wasm_bindgen(getter, js_name = "registers")] pub fn wasm_registers(&self) -> LangValueMap { // Convert the keys of the register map to strings let regs_by_name: HashMap<String, LangValue> = self .registers() .into_iter() .map(|(reg_ref, reg_value)| (reg_ref.to_string(), reg_value)) .collect(); // Convert the hashmap to a js object. Be careful here! JsValue::from_serde(&regs_by_name).unwrap().unchecked_into() } /// A wrapper for [Self::stacks], to be called from wasm. We can't send /// maps through wasm, so this returns a [JsValue] which is an object /// mapping stacks names (strings) to their values (`Vec<LangValue>`). #[wasm_bindgen(getter, js_name = "stacks")] pub fn wasm_stacks(&self) -> LangValueArrayMap { // Convert the keys of the stacks map to strings let stacks_by_name: HashMap<String, &[LangValue]> = self .stacks() .into_iter() .map(|(stack_ref, stack_value)| { (stack_ref.to_string(), stack_value) }) .collect(); // Convert the hashmap to a js object. Be careful here! JsValue::from_serde(&stacks_by_name) .unwrap() .unchecked_into() } /// A wrapper for [Self::error], to be called from wasm. We can't send /// maps through wasm, so this returns a simplified error as a /// [SourceElement]. #[wasm_bindgen(getter, js_name = "error")] pub fn wasm_error(&self) -> Option<SourceElement> { self.error.as_ref().map(|wrapped_error| { // If an error is present, there should always be exactly one match wrapped_error.errors() { [error] => error.into(), errors => panic!( "Expected exactly 1 runtime error, but got {:?}", errors ), } }) } /// A wrapper for [Self::execute_next], to be called from wasm. We throw /// away the error because it simplifies the logic on the TS side. That /// error is accessible via [Self::wasm_error] anyway. #[wasm_bindgen(js_name = "executeNext")] pub fn wasm_execute_next(&mut self) -> bool { // If an error occurred, that means something executed, so return true self.execute_next().unwrap_or(true) } /// A wrapper for [Self::execute_all], to be called from wasm. We throw /// away the error because it simplifies the logic on the TS side. That /// error is accessible via [Self::wasm_error] anyway. #[wasm_bindgen(js_name = "executeAll")] pub fn wasm_execute_all(&mut self) -> bool { // If an error occurred, that means something executed, so return true self.execute_all().unwrap_or(true) } } /// The reason why a program failed. **These reasons are only applicable for /// terminated, unsuccessful programs**. For a program that has yet to /// terminate, or did so successfully, none of these cases apply. #[cfg_attr(target_arch = "wasm32", wasm_bindgen)] #[derive(Copy, Clone, Debug)] pub enum
FailureReason
identifier_name
machine.rs
&mut self, stack_ref: &SpanNode<StackRef>, value: LangValue, ) -> Result<(), (RuntimeError, Span)> { // Have to access this first cause borrow checker let max_stack_length = self.hardware_spec.max_stack_length; let stack = &mut self.stacks[stack_ref.value().0]; // If the stack is capacity, make sure we're not over it if stack.len() >= max_stack_length { return Err((RuntimeError::StackOverflow, *stack_ref.metadata())); } stack.push(value); Ok(()) } /// Pops an element off the given stack. If the pop is successful, the /// popped value is returned. If the stack is empty, an error is returned. /// If the stack reference is invalid, will panic (should be validated at /// build time). fn pop_stack( &mut self, stack_ref: &SpanNode<StackRef>, ) -> Result<LangValue, (RuntimeError, Span)> { let stack = &mut self.stacks[stack_ref.value().0]; if let Some(val) = stack.pop() { Ok(val) } else { Err((RuntimeError::EmptyStack, *stack_ref.metadata())) } } /// Internal function to execute the next instruction. The return value /// is the same as [Self::execute_next], except the error needs to be /// wrapped before being handed to the user. fn execute_next_inner(&mut self) -> Result<bool, (RuntimeError, Span)> { // We've previously hit an error, prevent further execution if self.error.is_some() { return Ok(false); } let instr_node = match self.program.instructions.get(self.program_counter) { // Clone is necessary so we don't maintain a ref to self Some(instr_node) => instr_node.clone(), // out of instructions to execute, just give up None => return Ok(false), }; // Prevent infinite loops if self.cycle_count >= MAX_CYCLE_COUNT { // Include the instruction that triggered the error return Err((RuntimeError::TooManyCycles, *instr_node.metadata())); } // If we've reached this point, we know we're going to execute the // instruction. Increment the cycle count now so that if we exit with // an error, it still counts. self.cycle_count += 1; // Execute the instruction, and get a resulting optional label that we // should jump to. For most instructions there will be no label, only // when the instruction wants to trigger a jump. let instruction = instr_node.value(); let span = *instr_node.metadata(); let target_label: Option<&Label> = match instruction { Instruction::Read(reg) => { if self.input.is_empty() { return Err((RuntimeError::EmptyInput, span)); } else { // Remove the first element in the input let val = self.input.remove(0); self.set_reg(reg, val); } None } Instruction::Write(src) => { self.output.push(self.get_val_from_src(src)); None } Instruction::Set(dst, src) => { self.set_reg(dst, self.get_val_from_src(src)); None } Instruction::Add(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) + Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Sub(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) - Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Mul(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) * Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Div(dst, src) => { let divisor = self.get_val_from_src(src); let dividend = self.get_reg(*dst.value()); if divisor != 0 { // This does flooring division self.set_reg(dst, dividend / divisor); } else { return Err((RuntimeError::DivideByZero, span)); } None } Instruction::Cmp(dst, src_1, src_2) => { let val_1 = self.get_val_from_src(src_1); let val_2 = self.get_val_from_src(src_2); let cmp = match val_1.cmp(&val_2) { Ordering::Less => -1, Ordering::Equal => 0, Ordering::Greater => 1, }; self.set_reg(dst, cmp); None } Instruction::Push(src, stack_ref) => { self.push_stack(stack_ref, self.get_val_from_src(src))?; None } Instruction::Pop(stack_ref, dst) => { let popped = self.pop_stack(stack_ref)?; self.set_reg(dst, popped); None } // Jumps Instruction::Jmp(Node(label, _)) => Some(label), Instruction::Jez(src, Node(label, _)) => { if self.get_val_from_src(src) == 0 { Some(label) } else { None } } Instruction::Jnz(src, Node(label, _)) => { if self.get_val_from_src(src) != 0 { Some(label) } else { None } } Instruction::Jlz(src, Node(label, _)) => { if self.get_val_from_src(src) < 0 { Some(label) } else { None } } Instruction::Jgz(src, Node(label, _)) => { if self.get_val_from_src(src) > 0 { Some(label) } else { None } } }; // If the instruction wants to jump to a label, look up its // corresponding index and go there. Otherwise, just advance the PC one // instruction match target_label { Some(label) => { let destination = self .program .symbol_table .get(label) // If this panics, that means there's a bug in the // compiler pipeline .unwrap_or_else(|| panic!("unknown label: {}", label)); self.program_counter = *destination; } None => { self.program_counter += 1; } } debug!(println!("Executed {:?}\n\tState: {:?}", instruction, self)); Ok(true) } /// Executes the next instruction in the program. /// /// # Returns /// - `Ok(true)` if the instruction executed normally /// - `Ok(false)` if the instruction didn't execute because the program has /// already terminated /// - `Err(error)` if an error occurred. The error is returned, with the /// source information of the offending instruction pub fn execute_next(&mut self) -> Result<bool, &WithSource<RuntimeError>> { match self.execute_next_inner() { Ok(b) => Ok(b), Err((error, span)) => { // Store the error in self, then return a ref to it self.error = Some(WithSource::new( iter::once(SourceErrorWrapper::new( error, span, &self.source, )), self.source.clone(), )); Err(self.error.as_ref().unwrap()) } } } /// Executes this machine until termination (or error). All instructions are /// executed until [Self::terminated] returns true. Returns the value of /// [Self::successful] upon termination. pub fn execute_all(&mut self) -> Result<bool, &WithSource<RuntimeError>> { // We can't return the error directly from the loop because of a bug // in the borrow checker. Instead, we have to play lifetime tetris. while !self.terminated() { if self.execute_next().is_err() { break; } } // Check if an error occurred, and return it if so match &self.error { None => Ok(self.successful()), Some(error) => Err(error), } } /// Get the source code that this machine is built for. pub fn source_code(&self) -> &str { &self.source } /// Get a reference to the program being executed. pub fn program(&self) -> &Program<Span> { &self.program } /// Get the current input buffer. pub fn input(&self) -> &[LangValue] { self.input.as_slice() } /// Get the current output buffer. pub fn output(&self) -> &[LangValue] { self.output.as_slice() } /// Get all registers and their current values. pub fn registers(&self) -> HashMap<RegisterRef, LangValue> { self.hardware_spec .all_register_refs() .into_iter() .map(|reg_ref| (reg_ref, self.get_reg(reg_ref))) .collect() } /// Get all stacks and their current values.
pub fn stacks(&self) -> HashMap<StackRef, &[LangValue]> { self.hardware_spec .all_stack_refs()
random_line_split
machine.rs
is /// invalid (shouldn't be possible because of validation). fn get_val_from_src(&self, src: &SpanNode<ValueSource<Span>>) -> LangValue { match src.value() { ValueSource::Const(Node(val, _)) => *val, ValueSource::Register(reg_ref) => self.get_reg(*reg_ref.value()), } } /// Gets the value from the given register. The register reference is /// assumed to be valid (should be validated at build time). Will panic if /// it isn't valid. fn get_reg(&self, reg: RegisterRef) -> LangValue { match reg { RegisterRef::Null => 0, // These conversion unwraps are safe because we know that input // and stack lengths are bounded by validation rules to fit into an // i32 (max length is 256 at the time of writing this) RegisterRef::InputLength => self.input.len().try_into().unwrap(), RegisterRef::StackLength(stack_id) => { self.stacks[stack_id].len().try_into().unwrap() } RegisterRef::User(reg_id) => *self.registers.get(reg_id).unwrap(), } } /// Sets the register to the given value. The register reference is /// assumed to be valid and writable (should be validated at build time). /// Will panic if it isn't valid/writable. fn set_reg(&mut self, reg: &SpanNode<RegisterRef>, value: LangValue) { match reg.value() { RegisterRef::Null => {} // /dev/null behavior - trash any input RegisterRef::InputLength | RegisterRef::StackLength(_) => { panic!("Unwritable register {:?}", reg) } RegisterRef::User(reg_id) => { self.registers[*reg_id] = value; } } } /// Pushes the given value onto the given stack. If the stack reference is /// invalid or the stack is at capacity, an error is returned. If the stack /// reference is invalid, will panic (should be validated at build time). fn push_stack( &mut self, stack_ref: &SpanNode<StackRef>, value: LangValue, ) -> Result<(), (RuntimeError, Span)>
/// Pops an element off the given stack. If the pop is successful, the /// popped value is returned. If the stack is empty, an error is returned. /// If the stack reference is invalid, will panic (should be validated at /// build time). fn pop_stack( &mut self, stack_ref: &SpanNode<StackRef>, ) -> Result<LangValue, (RuntimeError, Span)> { let stack = &mut self.stacks[stack_ref.value().0]; if let Some(val) = stack.pop() { Ok(val) } else { Err((RuntimeError::EmptyStack, *stack_ref.metadata())) } } /// Internal function to execute the next instruction. The return value /// is the same as [Self::execute_next], except the error needs to be /// wrapped before being handed to the user. fn execute_next_inner(&mut self) -> Result<bool, (RuntimeError, Span)> { // We've previously hit an error, prevent further execution if self.error.is_some() { return Ok(false); } let instr_node = match self.program.instructions.get(self.program_counter) { // Clone is necessary so we don't maintain a ref to self Some(instr_node) => instr_node.clone(), // out of instructions to execute, just give up None => return Ok(false), }; // Prevent infinite loops if self.cycle_count >= MAX_CYCLE_COUNT { // Include the instruction that triggered the error return Err((RuntimeError::TooManyCycles, *instr_node.metadata())); } // If we've reached this point, we know we're going to execute the // instruction. Increment the cycle count now so that if we exit with // an error, it still counts. self.cycle_count += 1; // Execute the instruction, and get a resulting optional label that we // should jump to. For most instructions there will be no label, only // when the instruction wants to trigger a jump. let instruction = instr_node.value(); let span = *instr_node.metadata(); let target_label: Option<&Label> = match instruction { Instruction::Read(reg) => { if self.input.is_empty() { return Err((RuntimeError::EmptyInput, span)); } else { // Remove the first element in the input let val = self.input.remove(0); self.set_reg(reg, val); } None } Instruction::Write(src) => { self.output.push(self.get_val_from_src(src)); None } Instruction::Set(dst, src) => { self.set_reg(dst, self.get_val_from_src(src)); None } Instruction::Add(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) + Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Sub(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) - Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Mul(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) * Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Div(dst, src) => { let divisor = self.get_val_from_src(src); let dividend = self.get_reg(*dst.value()); if divisor != 0 { // This does flooring division self.set_reg(dst, dividend / divisor); } else { return Err((RuntimeError::DivideByZero, span)); } None } Instruction::Cmp(dst, src_1, src_2) => { let val_1 = self.get_val_from_src(src_1); let val_2 = self.get_val_from_src(src_2); let cmp = match val_1.cmp(&val_2) { Ordering::Less => -1, Ordering::Equal => 0, Ordering::Greater => 1, }; self.set_reg(dst, cmp); None } Instruction::Push(src, stack_ref) => { self.push_stack(stack_ref, self.get_val_from_src(src))?; None } Instruction::Pop(stack_ref, dst) => { let popped = self.pop_stack(stack_ref)?; self.set_reg(dst, popped); None } // Jumps Instruction::Jmp(Node(label, _)) => Some(label), Instruction::Jez(src, Node(label, _)) => { if self.get_val_from_src(src) == 0 { Some(label) } else { None } } Instruction::Jnz(src, Node(label, _)) => { if self.get_val_from_src(src) != 0 { Some(label) } else { None } } Instruction::Jlz(src, Node(label, _)) => { if self.get_val_from_src(src) < 0 { Some(label) } else { None } } Instruction::Jgz(src, Node(label, _)) => { if self.get_val_from_src(src) > 0 { Some(label) } else { None } } }; // If the instruction wants to jump to a label, look up its // corresponding index and go there. Otherwise, just advance the PC one // instruction match target_label { Some(label) => { let destination = self .program .symbol_table .get(label) // If this panics, that means there's a bug in the // compiler pipeline .unwrap_or_else(|| panic!("unknown label: {}", label)); self.program_counter = *destination; } None => { self.program_counter += 1; } } debug!(println!("Executed {:?}\n\tState: {:?}", instruction, self)); Ok(true) } /// Executes the next instruction in the program. /// /// # Returns /// - `Ok(true)` if the instruction executed normally /// - `Ok(false)` if the instruction didn't execute because the program has /// already terminated /// - `Err(error)` if an error occurred. The error is returned, with the /// source information of the offending instruction pub fn execute_next(&mut self) -> Result<bool, &WithSource<RuntimeError>> { match self.execute_next_inner() { Ok(b) => Ok(b),
{ // Have to access this first cause borrow checker let max_stack_length = self.hardware_spec.max_stack_length; let stack = &mut self.stacks[stack_ref.value().0]; // If the stack is capacity, make sure we're not over it if stack.len() >= max_stack_length { return Err((RuntimeError::StackOverflow, *stack_ref.metadata())); } stack.push(value); Ok(()) }
identifier_body
machine.rs
is /// invalid (shouldn't be possible because of validation). fn get_val_from_src(&self, src: &SpanNode<ValueSource<Span>>) -> LangValue { match src.value() { ValueSource::Const(Node(val, _)) => *val, ValueSource::Register(reg_ref) => self.get_reg(*reg_ref.value()), } } /// Gets the value from the given register. The register reference is /// assumed to be valid (should be validated at build time). Will panic if /// it isn't valid. fn get_reg(&self, reg: RegisterRef) -> LangValue { match reg { RegisterRef::Null => 0, // These conversion unwraps are safe because we know that input // and stack lengths are bounded by validation rules to fit into an // i32 (max length is 256 at the time of writing this) RegisterRef::InputLength => self.input.len().try_into().unwrap(), RegisterRef::StackLength(stack_id) => { self.stacks[stack_id].len().try_into().unwrap() } RegisterRef::User(reg_id) => *self.registers.get(reg_id).unwrap(), } } /// Sets the register to the given value. The register reference is /// assumed to be valid and writable (should be validated at build time). /// Will panic if it isn't valid/writable. fn set_reg(&mut self, reg: &SpanNode<RegisterRef>, value: LangValue) { match reg.value() { RegisterRef::Null => {} // /dev/null behavior - trash any input RegisterRef::InputLength | RegisterRef::StackLength(_) => { panic!("Unwritable register {:?}", reg) } RegisterRef::User(reg_id) => { self.registers[*reg_id] = value; } } } /// Pushes the given value onto the given stack. If the stack reference is /// invalid or the stack is at capacity, an error is returned. If the stack /// reference is invalid, will panic (should be validated at build time). fn push_stack( &mut self, stack_ref: &SpanNode<StackRef>, value: LangValue, ) -> Result<(), (RuntimeError, Span)> { // Have to access this first cause borrow checker let max_stack_length = self.hardware_spec.max_stack_length; let stack = &mut self.stacks[stack_ref.value().0]; // If the stack is capacity, make sure we're not over it if stack.len() >= max_stack_length { return Err((RuntimeError::StackOverflow, *stack_ref.metadata())); } stack.push(value); Ok(()) } /// Pops an element off the given stack. If the pop is successful, the /// popped value is returned. If the stack is empty, an error is returned. /// If the stack reference is invalid, will panic (should be validated at /// build time). fn pop_stack( &mut self, stack_ref: &SpanNode<StackRef>, ) -> Result<LangValue, (RuntimeError, Span)> { let stack = &mut self.stacks[stack_ref.value().0]; if let Some(val) = stack.pop() { Ok(val) } else
} /// Internal function to execute the next instruction. The return value /// is the same as [Self::execute_next], except the error needs to be /// wrapped before being handed to the user. fn execute_next_inner(&mut self) -> Result<bool, (RuntimeError, Span)> { // We've previously hit an error, prevent further execution if self.error.is_some() { return Ok(false); } let instr_node = match self.program.instructions.get(self.program_counter) { // Clone is necessary so we don't maintain a ref to self Some(instr_node) => instr_node.clone(), // out of instructions to execute, just give up None => return Ok(false), }; // Prevent infinite loops if self.cycle_count >= MAX_CYCLE_COUNT { // Include the instruction that triggered the error return Err((RuntimeError::TooManyCycles, *instr_node.metadata())); } // If we've reached this point, we know we're going to execute the // instruction. Increment the cycle count now so that if we exit with // an error, it still counts. self.cycle_count += 1; // Execute the instruction, and get a resulting optional label that we // should jump to. For most instructions there will be no label, only // when the instruction wants to trigger a jump. let instruction = instr_node.value(); let span = *instr_node.metadata(); let target_label: Option<&Label> = match instruction { Instruction::Read(reg) => { if self.input.is_empty() { return Err((RuntimeError::EmptyInput, span)); } else { // Remove the first element in the input let val = self.input.remove(0); self.set_reg(reg, val); } None } Instruction::Write(src) => { self.output.push(self.get_val_from_src(src)); None } Instruction::Set(dst, src) => { self.set_reg(dst, self.get_val_from_src(src)); None } Instruction::Add(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) + Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Sub(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) - Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Mul(dst, src) => { self.set_reg( dst, (Wrapping(self.get_reg(*dst.value())) * Wrapping(self.get_val_from_src(src))) .0, ); None } Instruction::Div(dst, src) => { let divisor = self.get_val_from_src(src); let dividend = self.get_reg(*dst.value()); if divisor != 0 { // This does flooring division self.set_reg(dst, dividend / divisor); } else { return Err((RuntimeError::DivideByZero, span)); } None } Instruction::Cmp(dst, src_1, src_2) => { let val_1 = self.get_val_from_src(src_1); let val_2 = self.get_val_from_src(src_2); let cmp = match val_1.cmp(&val_2) { Ordering::Less => -1, Ordering::Equal => 0, Ordering::Greater => 1, }; self.set_reg(dst, cmp); None } Instruction::Push(src, stack_ref) => { self.push_stack(stack_ref, self.get_val_from_src(src))?; None } Instruction::Pop(stack_ref, dst) => { let popped = self.pop_stack(stack_ref)?; self.set_reg(dst, popped); None } // Jumps Instruction::Jmp(Node(label, _)) => Some(label), Instruction::Jez(src, Node(label, _)) => { if self.get_val_from_src(src) == 0 { Some(label) } else { None } } Instruction::Jnz(src, Node(label, _)) => { if self.get_val_from_src(src) != 0 { Some(label) } else { None } } Instruction::Jlz(src, Node(label, _)) => { if self.get_val_from_src(src) < 0 { Some(label) } else { None } } Instruction::Jgz(src, Node(label, _)) => { if self.get_val_from_src(src) > 0 { Some(label) } else { None } } }; // If the instruction wants to jump to a label, look up its // corresponding index and go there. Otherwise, just advance the PC one // instruction match target_label { Some(label) => { let destination = self .program .symbol_table .get(label) // If this panics, that means there's a bug in the // compiler pipeline .unwrap_or_else(|| panic!("unknown label: {}", label)); self.program_counter = *destination; } None => { self.program_counter += 1; } } debug!(println!("Executed {:?}\n\tState: {:?}", instruction, self)); Ok(true) } /// Executes the next instruction in the program. /// /// # Returns /// - `Ok(true)` if the instruction executed normally /// - `Ok(false)` if the instruction didn't execute because the program has /// already terminated /// - `Err(error)` if an error occurred. The error is returned, with the /// source information of the offending instruction pub fn execute_next(&mut self) -> Result<bool, &WithSource<RuntimeError>> { match self.execute_next_inner() { Ok(b) => Ok(b),
{ Err((RuntimeError::EmptyStack, *stack_ref.metadata())) }
conditional_block
rgou.py
(event): print("clicked at", event.x, event.y) coords(event.x,event.y) # coordss(event.x,event.y) #frame = Frame(game, width=100, height=100) #game.mainloop() game = tk.Tk() game.title("Royal Game of Ur") ## BG image #fname = "RGOU.gif" #fname = "RGOU2.gif" fname = "RGOU4.gif" bg_image = tk.PhotoImage(file=fname) bg_image = bg_image.subsample(2,2) w = bg_image.width() h = bg_image.height() strs = "%dx%d+50+30" % (w,h) print(strs) game.geometry(strs) cv = tk.Canvas(width=w,height=h) cv.pack(side='top',fill='both',expand='yes') cv.create_image(0,0,image=bg_image,anchor='nw') cv.bind("<Button-1>", callback) cv.pack() print(dir(cv)) board_x_y = [ # x ,y ,xn,yn,[xycoordinates] [100,80,180,152,[0,0]], [100,170,180,231,[1,0]], [100,245,180,315,[2,0]], [100,325,180,394,[3,0]], [20,332,69,386,[4,0]], # white start [60,443,142,517,[5,0]], # roll white [100,578,180,635,[6,0]], [100,650,180,719,[7,0]], # w = cv.create_image(100,480,image=whiterollicon) # [270,489,338,560,[5,2]], # roll black # [287,428,338,560,[5,2]], # roll black # b = cv.create_image(330,480,image=blackrollicon) [189,80,257,152,[0,1]], [189,170,257,231,[1,1]], [189,239,257,315,[2,1]], [189,325,257,394,[3,1]], [189,403,257,478,[4,1]], [189,489,257,560,[5,1]], [189,578,257,635,[6,1]], [189,650,257,719,[7,1]], [270,80,338,152,[0,2]], [270,170,338,231,[1,2]], [270,245,338,315,[2,2]], [270,325,338,394,[3,2]], [365,319,445,396,[4,2]], # black start [293,446,368,517,[5,2]], # roll black [270,578,338,635,[6,2]], [270,650,338,719,[7,2]] ] def setup(): global white_pieces, black_pieces global pieces global white_track, black_track global tracks global turn , rolled_num, moved , rolled rolled = False moved = True # did we move after roll? turn = 0 # 0 = white , 2 = black rolled_num = 0 # number rolled white_pieces = [[4,0] for i in range(7)] # score white black_pieces = [[4,2] for i in range(7)] pieces = [white_pieces,None,black_pieces] white_track = [[4,0],[3,0],[2,0],[1,0],[0,0], [0,1],[1,1],[2,1],[3,1],[4,1],[5,1],[6,1],[7,1], [7,0],[6,0]] black_track = [[4,2],[3,2],[2,2],[1,2],[0,2], [0,1],[1,1],[2,1],[3,1],[4,1],[5,1],[6,1],[7,1], [7,2],[6,2]] # common_track = [[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7]] tracks = [white_track,None,black_track] def_cv_pieces() # roll icons checkroll() score() # forfeit "button" t = cv.create_text(90,770,text="forfeit move",font="Times 20 bold") r = cv.create_text(350,770,text="reset",font="Times 20 bold") rollicons = [] def rollicon(y): # 0 white , 2 black s = "" if turn == 2: dd = "-black" else: dd = "-white" if turn == y: s+=dd if not rolled: s+="roll" else: s+= str(rolled_num) # if not moved: # s+="-active" else: if rolled_num == 0: s = "0" else: s="wait" s+=".gif" pc = tk.PhotoImage(file=s) pc = pc.subsample(2,2) return pc def checkroll(): # 5,0 and 5,2 coords global rollicons global w ,b global cv global whiterollicon,blackrollicon whiterollicon = rollicon(0) blackrollicon = rollicon(2) if len(rollicons) == 3: cv.delete(rollicons[0]) cv.delete(rollicons[2]) # w = rollicons[0] # b = rollicons[2] # cv[w]["image"] = whiterollicon # cv[b]["image"] = blackrollicon print(f"rollicons = {rollicons}") # cv.delete(w) # cv.delete(b) # tk.Canvas.itemconfig(w,100,493,image=whiterollicon) # tk.Canvas.itemconfig(b,270,489,image=blackrollicon) # cv.itemcomfigure(w,image = whiterollicon) # cv.itemconfigure(b,image = blackrollicon) # if len(rollicons) == 0: # white # [100,493,152,526,[5,0]], # roll white # [73,433,152,526,[5,0]], # roll white w = cv.create_image(100,480,image=whiterollicon) # [270,489,338,560,[5,2]], # roll black # [287,428,338,560,[5,2]], # roll black b = cv.create_image(330,480,image=blackrollicon) # print(cv.itemconfig(b)) rollicons = [w,None,b] def def_cv_pieces(delete=False): global whitepic , blackpic global cv global white_cv global black_cv global pieces_cv if delete: for i in white_cv: cv.delete(i) # for i in black_cv: cv.delete(i) return white_cv= [] black_cv = [] pieces_cv = [] whitepic = tk.PhotoImage(file="-white.gif") whitepic = whitepic.subsample(2,2) blackpic = tk.PhotoImage(file="-black.gif") blackpic = blackpic.subsample(2,2) ## check if there are no more cv objects t = cv.create_image(-100,-100,image=whitepic) # for i in range(2,t+1): # cv.delete(i) for i in white_pieces: x,y = i[0],i[1] for c in board_x
callback
identifier_name
rgou.py
89,80,257,152,[0,1]], [189,170,257,231,[1,1]], [189,239,257,315,[2,1]], [189,325,257,394,[3,1]], [189,403,257,478,[4,1]], [189,489,257,560,[5,1]], [189,578,257,635,[6,1]], [189,650,257,719,[7,1]], [270,80,338,152,[0,2]], [270,170,338,231,[1,2]], [270,245,338,315,[2,2]], [270,325,338,394,[3,2]], [365,319,445,396,[4,2]], # black start [293,446,368,517,[5,2]], # roll black [270,578,338,635,[6,2]], [270,650,338,719,[7,2]] ] def setup(): global white_pieces, black_pieces global pieces global white_track, black_track global tracks global turn , rolled_num, moved , rolled rolled = False moved = True # did we move after roll? turn = 0 # 0 = white , 2 = black rolled_num = 0 # number rolled white_pieces = [[4,0] for i in range(7)] # score white black_pieces = [[4,2] for i in range(7)] pieces = [white_pieces,None,black_pieces] white_track = [[4,0],[3,0],[2,0],[1,0],[0,0], [0,1],[1,1],[2,1],[3,1],[4,1],[5,1],[6,1],[7,1], [7,0],[6,0]] black_track = [[4,2],[3,2],[2,2],[1,2],[0,2], [0,1],[1,1],[2,1],[3,1],[4,1],[5,1],[6,1],[7,1], [7,2],[6,2]] # common_track = [[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7]] tracks = [white_track,None,black_track] def_cv_pieces() # roll icons checkroll() score() # forfeit "button" t = cv.create_text(90,770,text="forfeit move",font="Times 20 bold") r = cv.create_text(350,770,text="reset",font="Times 20 bold") rollicons = [] def rollicon(y): # 0 white , 2 black s = "" if turn == 2: dd = "-black" else: dd = "-white" if turn == y: s+=dd if not rolled: s+="roll" else: s+= str(rolled_num) # if not moved: # s+="-active" else: if rolled_num == 0: s = "0" else: s="wait" s+=".gif" pc = tk.PhotoImage(file=s) pc = pc.subsample(2,2) return pc def checkroll(): # 5,0 and 5,2 coords global rollicons global w ,b global cv global whiterollicon,blackrollicon whiterollicon = rollicon(0) blackrollicon = rollicon(2) if len(rollicons) == 3: cv.delete(rollicons[0]) cv.delete(rollicons[2]) # w = rollicons[0] # b = rollicons[2] # cv[w]["image"] = whiterollicon # cv[b]["image"] = blackrollicon print(f"rollicons = {rollicons}") # cv.delete(w) # cv.delete(b) # tk.Canvas.itemconfig(w,100,493,image=whiterollicon) # tk.Canvas.itemconfig(b,270,489,image=blackrollicon) # cv.itemcomfigure(w,image = whiterollicon) # cv.itemconfigure(b,image = blackrollicon) # if len(rollicons) == 0: # white # [100,493,152,526,[5,0]], # roll white # [73,433,152,526,[5,0]], # roll white w = cv.create_image(100,480,image=whiterollicon) # [270,489,338,560,[5,2]], # roll black # [287,428,338,560,[5,2]], # roll black b = cv.create_image(330,480,image=blackrollicon) # print(cv.itemconfig(b)) rollicons = [w,None,b] def def_cv_pieces(delete=False): global whitepic , blackpic global cv global white_cv global black_cv global pieces_cv if delete: for i in white_cv: cv.delete(i) # for i in black_cv: cv.delete(i) return white_cv= [] black_cv = [] pieces_cv = [] whitepic = tk.PhotoImage(file="-white.gif") whitepic = whitepic.subsample(2,2) blackpic = tk.PhotoImage(file="-black.gif") blackpic = blackpic.subsample(2,2) ## check if there are no more cv objects t = cv.create_image(-100,-100,image=whitepic) # for i in range(2,t+1): # cv.delete(i) for i in white_pieces: x,y = i[0],i[1] for c in board_x_y: if c[4] == [x,y]: xx = int((c[2] + c[0]) /2) yy = int((c[3] + c[1]) / 2) s = cv.create_image(xx, yy, image=whitepic) white_cv.append(s) print("white") for i in black_pieces: x,y = i[0],i[1] for c in board_x_y: if c[-1] == [x,y]: xx = int((c[2] + c[0]) /2) yy = int((c[3] + c[1]) / 2) s = cv.create_image(xx, yy, image=blackpic) black_cv.append(s) print("black") pieces_cv = [white_cv,None,black_cv] print(pieces_cv) def roll(): score() global rolled_num global moved,rolled # check if game did not ended already for i in range(0,3,2): if not pieces[i]: game_ended(i) return if moved == False or rolled == True: return i = 0 for a in range(4): i+= random.randint(0,1) rolled_num = i moved = False rolled = True checkroll() def game_ended(turn): if turn == 0: s = "white" opp = 2 else: s = "black" opp = 0 t = f"{s} won 7 : {7 - len(pieces[opp])}" showinfo("Window",t) def reset():
# score() def endmove(playagain = False): # True == one more move global turn,rolled,moved if turn == 0: opponent = 2 else: opponent = 0 if not playagain: turn = opponent rolled = False moved = True if playagain: s = roll() if s == 0: endmove() checkroll() def coords(x,y): if 16 < x <
a = tk.messagebox.askokcancel("popup","reset?") if a: def_cv_pieces(True) setup()
identifier_body
rgou.py
189,80,257,152,[0,1]], [189,170,257,231,[1,1]], [189,239,257,315,[2,1]], [189,325,257,394,[3,1]], [189,403,257,478,[4,1]], [189,489,257,560,[5,1]], [189,578,257,635,[6,1]], [189,650,257,719,[7,1]], [270,80,338,152,[0,2]], [270,170,338,231,[1,2]], [270,245,338,315,[2,2]], [270,325,338,394,[3,2]], [365,319,445,396,[4,2]], # black start [293,446,368,517,[5,2]], # roll black [270,578,338,635,[6,2]], [270,650,338,719,[7,2]] ] def setup(): global white_pieces, black_pieces global pieces global white_track, black_track global tracks global turn , rolled_num, moved , rolled rolled = False moved = True # did we move after roll? turn = 0 # 0 = white , 2 = black rolled_num = 0 # number rolled white_pieces = [[4,0] for i in range(7)] # score white black_pieces = [[4,2] for i in range(7)] pieces = [white_pieces,None,black_pieces] white_track = [[4,0],[3,0],[2,0],[1,0],[0,0], [0,1],[1,1],[2,1],[3,1],[4,1],[5,1],[6,1],[7,1], [7,0],[6,0]] black_track = [[4,2],[3,2],[2,2],[1,2],[0,2], [0,1],[1,1],[2,1],[3,1],[4,1],[5,1],[6,1],[7,1], [7,2],[6,2]] # common_track = [[1,0],[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],[1,7]] tracks = [white_track,None,black_track] def_cv_pieces() # roll icons checkroll() score() # forfeit "button" t = cv.create_text(90,770,text="forfeit move",font="Times 20 bold") r = cv.create_text(350,770,text="reset",font="Times 20 bold") rollicons = [] def rollicon(y): # 0 white , 2 black s = "" if turn == 2: dd = "-black" else: dd = "-white" if turn == y: s+=dd if not rolled: s+="roll" else: s+= str(rolled_num) # if not moved: # s+="-active" else: if rolled_num == 0: s = "0" else: s="wait" s+=".gif" pc = tk.PhotoImage(file=s) pc = pc.subsample(2,2) return pc def checkroll(): # 5,0 and 5,2 coords global rollicons
global cv global whiterollicon,blackrollicon whiterollicon = rollicon(0) blackrollicon = rollicon(2) if len(rollicons) == 3: cv.delete(rollicons[0]) cv.delete(rollicons[2]) # w = rollicons[0] # b = rollicons[2] # cv[w]["image"] = whiterollicon # cv[b]["image"] = blackrollicon print(f"rollicons = {rollicons}") # cv.delete(w) # cv.delete(b) # tk.Canvas.itemconfig(w,100,493,image=whiterollicon) # tk.Canvas.itemconfig(b,270,489,image=blackrollicon) # cv.itemcomfigure(w,image = whiterollicon) # cv.itemconfigure(b,image = blackrollicon) # if len(rollicons) == 0: # white # [100,493,152,526,[5,0]], # roll white # [73,433,152,526,[5,0]], # roll white w = cv.create_image(100,480,image=whiterollicon) # [270,489,338,560,[5,2]], # roll black # [287,428,338,560,[5,2]], # roll black b = cv.create_image(330,480,image=blackrollicon) # print(cv.itemconfig(b)) rollicons = [w,None,b] def def_cv_pieces(delete=False): global whitepic , blackpic global cv global white_cv global black_cv global pieces_cv if delete: for i in white_cv: cv.delete(i) # for i in black_cv: cv.delete(i) return white_cv= [] black_cv = [] pieces_cv = [] whitepic = tk.PhotoImage(file="-white.gif") whitepic = whitepic.subsample(2,2) blackpic = tk.PhotoImage(file="-black.gif") blackpic = blackpic.subsample(2,2) ## check if there are no more cv objects t = cv.create_image(-100,-100,image=whitepic) # for i in range(2,t+1): # cv.delete(i) for i in white_pieces: x,y = i[0],i[1] for c in board_x_y: if c[4] == [x,y]: xx = int((c[2] + c[0]) /2) yy = int((c[3] + c[1]) / 2) s = cv.create_image(xx, yy, image=whitepic) white_cv.append(s) print("white") for i in black_pieces: x,y = i[0],i[1] for c in board_x_y: if c[-1] == [x,y]: xx = int((c[2] + c[0]) /2) yy = int((c[3] + c[1]) / 2) s = cv.create_image(xx, yy, image=blackpic) black_cv.append(s) print("black") pieces_cv = [white_cv,None,black_cv] print(pieces_cv) def roll(): score() global rolled_num global moved,rolled # check if game did not ended already for i in range(0,3,2): if not pieces[i]: game_ended(i) return if moved == False or rolled == True: return i = 0 for a in range(4): i+= random.randint(0,1) rolled_num = i moved = False rolled = True checkroll() def game_ended(turn): if turn == 0: s = "white" opp = 2 else: s = "black" opp = 0 t = f"{s} won 7 : {7 - len(pieces[opp])}" showinfo("Window",t) def reset(): a = tk.messagebox.askokcancel("popup","reset?") if a: def_cv_pieces(True) setup() # score() def endmove(playagain = False): # True == one more move global turn,rolled,moved if turn == 0: opponent = 2 else: opponent = 0 if not playagain: turn = opponent rolled = False moved = True if playagain: s = roll() if s == 0: endmove() checkroll() def coords(x,y): if 16 < x < 16
global w ,b
random_line_split
rgou.py
def def_cv_pieces(delete=False): global whitepic , blackpic global cv global white_cv global black_cv global pieces_cv if delete: for i in white_cv: cv.delete(i) # for i in black_cv: cv.delete(i) return white_cv= [] black_cv = [] pieces_cv = [] whitepic = tk.PhotoImage(file="-white.gif") whitepic = whitepic.subsample(2,2) blackpic = tk.PhotoImage(file="-black.gif") blackpic = blackpic.subsample(2,2) ## check if there are no more cv objects t = cv.create_image(-100,-100,image=whitepic) # for i in range(2,t+1): # cv.delete(i) for i in white_pieces: x,y = i[0],i[1] for c in board_x_y: if c[4] == [x,y]: xx = int((c[2] + c[0]) /2) yy = int((c[3] + c[1]) / 2) s = cv.create_image(xx, yy, image=whitepic) white_cv.append(s) print("white") for i in black_pieces: x,y = i[0],i[1] for c in board_x_y: if c[-1] == [x,y]: xx = int((c[2] + c[0]) /2) yy = int((c[3] + c[1]) / 2) s = cv.create_image(xx, yy, image=blackpic) black_cv.append(s) print("black") pieces_cv = [white_cv,None,black_cv] print(pieces_cv) def roll(): score() global rolled_num global moved,rolled # check if game did not ended already for i in range(0,3,2): if not pieces[i]: game_ended(i) return if moved == False or rolled == True: return i = 0 for a in range(4): i+= random.randint(0,1) rolled_num = i moved = False rolled = True checkroll() def game_ended(turn): if turn == 0: s = "white" opp = 2 else: s = "black" opp = 0 t = f"{s} won 7 : {7 - len(pieces[opp])}" showinfo("Window",t) def reset(): a = tk.messagebox.askokcancel("popup","reset?") if a: def_cv_pieces(True) setup() # score() def endmove(playagain = False): # True == one more move global turn,rolled,moved if turn == 0: opponent = 2 else: opponent = 0 if not playagain: turn = opponent rolled = False moved = True if playagain: s = roll() if s == 0: endmove() checkroll() def coords(x,y): if 16 < x < 164: if 753 < y < 776: forfeit() return if 315 < x < 390: if 757 < y < 779: reset() return for item in board_x_y: if item[0] <= x <= item[2]: if item[1] <= y <= item[3]: print(item[4]) play(item[4]) # movec(item[4]) return def getpossition(x,y): for i in board_x_y: if i[4] == [x,y]: return i[0],i[1] def play(coords): # global white_pieces # global black_pieces # global pieces, board_butts global rolled_num , turn, moved, rolled global tracks global pieces_cv global pieces print(f"rolled_num = {rolled_num}") print(f"turn = {turn}") print(f"moved = {moved}") print(f"rolled = {rolled}") print(pieces) checkroll() x = coords[0] y = coords[1] # if rollbutton ,rull if x == 5 and y == turn: if moved: roll() if rolled_num ==0: if turn == 0: turn = 2 else: turn = 0 moved = True rolled = False checkroll() return if coords in pieces[turn] and not moved: if turn == 0: opponent = 2 else: opponent = 0 trackindex = tracks[turn].index(coords) # position on board print(f"trackindex = {trackindex}") indpiece = pieces[turn].index(coords) # identify piece print(f"indpiece = {indpiece}") t = pieces_cv[turn][indpiece] # identify canvas of piece print(f"t = {t}") result = trackindex + rolled_num print(result) if len(tracks[turn]) < result: return if len(tracks[turn]) == result: pieces[turn].pop(indpiece) pieces_cv[turn].pop(indpiece) cv.delete(t) score() if len(pieces[turn]) == 0: game_ended(turn) endmove() # next turn return coords_new = tracks[turn][trackindex+rolled_num] newx = coords_new[0] newy = coords_new[1] print(f"coords_new = {coords_new}") # special case if [newx,newy] == [3,1] : # can't take piece there if [newx,newy] in pieces[opponent]: newx+=1 if [newx,newy] in pieces[turn]: # can't take own piece return newcoordx,newcoordy = getpossition(newx,newy) if [newx,newy] in pieces[opponent]: # take oppindex = pieces[opponent].index([newx,newy]) oppx,oppy = getpossition(4,opponent) difopx = oppx - newcoordx difopy = oppy - newcoordy taken = pieces_cv[opponent][oppindex] cv.move(taken,difopx,difopy) # move to start pieces[opponent][oppindex] = [4,opponent] # set coords print(f"{newcoordx},{newcoordy}") oldx,oldy = getpossition(x,y) difx = newcoordx - oldx dify = newcoordy - oldy cv.move(t,difx,dify) pieces[turn][indpiece] = [newx,newy] print("move!!") print(f"{t},{difx},{dify}") print(f"{pieces[turn][indpiece]}") print(f"{pieces[turn]}") # play again squares playagain = [ [0,0] , [0,2] , [3,1], [6,0] ,[6,2]] play =( [newx,newy] in playagain ) endmove(play) return def is_move_possible(): a = pieces[turn] # all pieces of player on move road = tracks[turn] if turn == 0: opponent = 2 else: opponent = 0 alreadychecked = [] for piece in a: if piece in alreadychecked: continue piece_position = road.index(piece) if rolled_num + piece_position <= len(road): newcoords = road[piece_position+rolled_num] if newcoords == [3,1] : # special square check if newcoords in pieces_coords[opponent]: newcoords = [4,1] if newcoords not in a: return True alreadychecked.append(piece) return False def forfeit(): global moved,rolled,turn # check if game did not ended already for i in range(0,3,2): if not pieces[i]: game_ended(i) return if not rolled: tk.messagebox.askokcancel("popup","ROLL!") return if rolled and is_move_possible(): tk.messagebox.askokcancel("popup","you can move!") return endmove() scoretext = [] def score(): global scoretext w = str(7 - len(pieces[0])) b = str(7 - len(pieces[2])) t = f"{w} : {b}" if len(scoretext) == 0: score = cv.create_text(220,780,font="Times 30 italic bold",text=t) scoretext.append(score) else:
cv.itemconfig(scoretext[0],font="Times 30 italic bold",text=t)
conditional_block
lib.rs
typically starts each line with `///`. //! //! In both cases all image paths are relative to the **crate root**. //! //! ## Embedding images in outer attribute documentation //! //! Outer attribute documentation is typically used for documenting functions, structs, traits, //! macros and so on. Let's consider documenting a function and embedding an image into its //! documentation: //! //! ```rust //! // Import the attribute macro //! use embed_doc_image::embed_doc_image; //! //! /// Foos the bar. //! /// //! /// Let's drop an image below this text. //! /// //! /// ![Alt text goes here][myimagelabel] //! /// //! /// And another one. //! /// //! /// ![A Foobaring][foobaring] //! /// //! /// We can include any number of images in the above fashion. The important part is that //! /// you match the label ("myimagelabel" or "foobaring" in this case) with the label in the //! /// below attribute macro. //! // Paths are always relative to the **crate root** //! #[embed_doc_image("myimagelabel", "images/foo.png")] //! #[embed_doc_image("foobaring", "assets/foobaring.jpg")] //! fn foobar() {} //! ``` //! //! And that's it! If you run `cargo doc`, you should hopefully be able to see your images //! in the documentation for `foobar`, and it should also work on `docs.rs` without trouble. //! //! ## Embedding images in inner attribute documentation //! //! The ability for macros to do *anything* with *inner attributes* is very limited. In fact, //! before Rust 1.54 (which at the time of writing has not yet been released), //! it is for all intents and purposes non-existent. This also means that we can not directly //! use our approach to embed images in documentation for Rust < 1.54. However, we can make our //! code compile with Rust < 1.54 and instead inject a prominent message that some images are //! missing. //! `docs.rs`, which always uses a nightly compiler, will be able to show the images. We'll //! also locally be able to properly embed the images as long as we're using Rust >= 1.54 //! (or nightly). Here's how you can embed images in crate-level or module-level documentation: //! //! ```rust //! //! My awesome crate for fast foobaring in latent space. //! //! //! // Important: note the blank line of documentation on each side of the image lookup table. //! // The "image lookup table" can be placed anywhere, but we place it here together with the //! // warning if the `doc-images` feature is not enabled. //! #![cfg_attr(feature = "doc-images", //! cfg_attr(all(), //! doc = ::embed_doc_image::embed_image!("myimagelabel", "images/foo.png"), //! doc = ::embed_doc_image::embed_image!("foobaring", "assets/foobaring.png")))] //! #![cfg_attr( //! not(feature = "doc-images"), //! doc = "**Doc images not enabled**. Compile with feature `doc-images` and Rust version >= 1.54 \ //! to enable." //! )] //! //! //! //! Let's use our images: //! //! ![Alt text goes here][myimagelabel] ![A Foobaring][foobaring] //! ``` //! //! Sadly there is currently no way to detect Rust versions in `cfg_attr`. Therefore we must //! rely on a feature flag for toggling proper image embedding. We'll need the following in our //! `Cargo.toml`: //! //! ```toml //! [features] //! doc-images = [] //! //! [package.metadata.docs.rs] //! # docs.rs uses a nightly compiler, so by instructing it to use our `doc-images` feature we //! # ensure that it will render any images that we may have in inner attribute documentation. //! features = ["doc-images"] //! ``` //! //! Let's summarize: //! //! - `docs.rs` will correctly render our documentation with images. //! - Locally: //! - for Rust >= 1.54 with `--features doc-images`, the local documentation will //! correctly render images. //! - for Rust < 1.54: the local documentation will be missing some images, and will //! contain a warning with instructions on how to enable proper image embedding. //! - we can also use e.g. `cargo +nightly doc --features doc-images` to produce correct //! documentation with a nightly compiler. //! //! //! # How it works //! //! The crux of the issue is that `rustdoc` does not have a mechanism for tracking locally stored //! images referenced by documentation and carry them over to the final documentation. Therefore //! currently images on `docs.rs` can only be included if you host the image somewhere on the //! internet and include the image with its URL. However, this has a number of issues: //! //! - You need to host the image, which incurs considerable additional effort on the part of //! crate authors. //! - The image is only available for as long as the image is hosted. //! - Images in local documentation will not work without internet access. //! - Images are not *versioned*, unless carefully done so manually by the crate author. That is, //! the author must carefully provide *all* versions of the image across all versions of the //! crate with a consistent naming convention in order to ensure that documentation of //! older versions of the crate display the image consistent with that particular version. //! //! The solution employed by this crate is based on a remark made in an old //! [reddit comment from 2017][reddit-comment]. In short, Rustdoc allows images to be provided //! inline in the Markdown as `base64` encoded binary blobs in the following way: //! //! ```rust //! ![Alt text][myimagelabel] //! //! [myimagelabel]:  //! ``` //! //! Basically we can use the "reference" feature of Markdown links/images to provide the URL //! of the image in a different location than the image itself, but instead of providing an URL //! we can directly provide the binary data of the image in the Markdown documentation. //! //! However, doing this manually with images would terribly clutter the documentation, which //! seems less than ideal. Instead, we do this programmatically. The macros available in this //! crate essentially follow this idea: //! //! - Take a label and image path relative to the crate root as input. //! - Determine the MIME type (based on extension) and `base64` encoding of the image. //! - Produce an appropriate doc string and inject it into the Markdown documentation for the //! crate/function/struct/etc. //! //! Clearly, this is still quite hacky, but it seems like a workable solution until proper support //! in `rustdoc` arrives, at which point we may rejoice and abandon this crate to the annals //! of history. //! //! # Acknowledgements //! //! As an inexperienced proc macro hacker, I would not have managed to arrive at this //! solution without the help of several individuals on the Rust Programming Language Community //! Discord server, most notably: //! //! - Yandros [(github.com/danielhenrymantilla)](https://github.com/danielhenrymantilla) //! - Nemo157 [(github.com/Nemo157)](https://github.com/Nemo157) //! //! [showcase]: https://crates.io/crates/embed-doc-image-showcase //! [showcase-docs]: https://docs.rs/embed-doc-image-showcase //! [showcase-source]: https://github.com/Andlon/embed-doc-image/tree/master/embed-doc-image-showcase //! [rustdoc-issue]: https://github.com/rust-lang/rust/issues/32104 //! [issue-tracker]: https://github.com/Andlon/embed-doc-image/issues //! [reddit-comment]: https://www.reddit.com/r/rust/comments/5ljshj/diagrams_in_documentation/dbwg96q?utm_source=share&utm_medium=web2x&context=3 //! //! use proc_macro::TokenStream; use quote::{quote, ToTokens}; use std::fs::read; use std::path::{Path, PathBuf}; use syn::parse; use syn::parse::{Parse, ParseStream}; use syn::{ Item, ItemConst, ItemEnum, ItemExternCrate, ItemFn, ItemForeignMod, ItemImpl, ItemMacro, ItemMacro2, ItemMod, ItemStatic, ItemStruct, ItemTrait, ItemTraitAlias, ItemType, ItemUnion, ItemUse, }; #[derive(Debug)] struct
{ label: String, path: PathBuf, } impl Parse for ImageDescription { fn parse(input: ParseStream) -> parse::Result<Self> { let label = input.parse::<syn::LitStr>()?; input.parse::<syn::Token![,]>()?; let path = input.parse::<syn::LitStr>()?; Ok(ImageDescription { label: label.value(), path: PathBuf::from(path.value()), }) } } fn encode_base64_image_from_path(path: &Path) -> String { let bytes = read(path).unwrap_or_else(|_| panic!("Failed to load image at {}", path.display())); base64::encode(bytes) } fn determine_mime_type(extension: &str) -> String { let extension = extension.to_ascii_lowercase(); // TODO: Consider
ImageDescription
identifier_name
lib.rs
//! around the current limitations of `rustdoc` and enables a practically workable approach to //! embedding images in a portable manner. //! //! # How to embed images in documentation //! //! First, you'll need to depend on this crate. In `cargo.toml`: //! //! ```toml //! [dependencies] //! // Replace x.x with the latest version //! embed-doc-image = "x.x" //! ``` //! //! What the next step is depends on whether you want to embed images into *inner attribute //! documentation* or *outer attribute documentation*. Inner attribute documentation is usually //! used to document crate-level or module-level documentation, and typically starts each line with //! `//!`. Outer attribute docs are used for most other forms of documentation, such as function //! and struct documentation. Outer attribute documentation typically starts each line with `///`. //! //! In both cases all image paths are relative to the **crate root**. //! //! ## Embedding images in outer attribute documentation //! //! Outer attribute documentation is typically used for documenting functions, structs, traits, //! macros and so on. Let's consider documenting a function and embedding an image into its //! documentation: //! //! ```rust //! // Import the attribute macro //! use embed_doc_image::embed_doc_image; //! //! /// Foos the bar. //! /// //! /// Let's drop an image below this text. //! /// //! /// ![Alt text goes here][myimagelabel] //! /// //! /// And another one. //! /// //! /// ![A Foobaring][foobaring] //! /// //! /// We can include any number of images in the above fashion. The important part is that //! /// you match the label ("myimagelabel" or "foobaring" in this case) with the label in the //! /// below attribute macro. //! // Paths are always relative to the **crate root** //! #[embed_doc_image("myimagelabel", "images/foo.png")] //! #[embed_doc_image("foobaring", "assets/foobaring.jpg")] //! fn foobar() {} //! ``` //! //! And that's it! If you run `cargo doc`, you should hopefully be able to see your images //! in the documentation for `foobar`, and it should also work on `docs.rs` without trouble. //! //! ## Embedding images in inner attribute documentation //! //! The ability for macros to do *anything* with *inner attributes* is very limited. In fact, //! before Rust 1.54 (which at the time of writing has not yet been released), //! it is for all intents and purposes non-existent. This also means that we can not directly //! use our approach to embed images in documentation for Rust < 1.54. However, we can make our //! code compile with Rust < 1.54 and instead inject a prominent message that some images are //! missing. //! `docs.rs`, which always uses a nightly compiler, will be able to show the images. We'll //! also locally be able to properly embed the images as long as we're using Rust >= 1.54 //! (or nightly). Here's how you can embed images in crate-level or module-level documentation: //! //! ```rust //! //! My awesome crate for fast foobaring in latent space. //! //! //! // Important: note the blank line of documentation on each side of the image lookup table. //! // The "image lookup table" can be placed anywhere, but we place it here together with the //! // warning if the `doc-images` feature is not enabled. //! #![cfg_attr(feature = "doc-images", //! cfg_attr(all(), //! doc = ::embed_doc_image::embed_image!("myimagelabel", "images/foo.png"), //! doc = ::embed_doc_image::embed_image!("foobaring", "assets/foobaring.png")))] //! #![cfg_attr( //! not(feature = "doc-images"), //! doc = "**Doc images not enabled**. Compile with feature `doc-images` and Rust version >= 1.54 \ //! to enable." //! )] //! //! //! //! Let's use our images: //! //! ![Alt text goes here][myimagelabel] ![A Foobaring][foobaring] //! ``` //! //! Sadly there is currently no way to detect Rust versions in `cfg_attr`. Therefore we must //! rely on a feature flag for toggling proper image embedding. We'll need the following in our //! `Cargo.toml`: //! //! ```toml //! [features] //! doc-images = [] //! //! [package.metadata.docs.rs] //! # docs.rs uses a nightly compiler, so by instructing it to use our `doc-images` feature we //! # ensure that it will render any images that we may have in inner attribute documentation. //! features = ["doc-images"] //! ``` //! //! Let's summarize: //! //! - `docs.rs` will correctly render our documentation with images. //! - Locally: //! - for Rust >= 1.54 with `--features doc-images`, the local documentation will //! correctly render images. //! - for Rust < 1.54: the local documentation will be missing some images, and will //! contain a warning with instructions on how to enable proper image embedding. //! - we can also use e.g. `cargo +nightly doc --features doc-images` to produce correct //! documentation with a nightly compiler. //! //! //! # How it works //! //! The crux of the issue is that `rustdoc` does not have a mechanism for tracking locally stored //! images referenced by documentation and carry them over to the final documentation. Therefore //! currently images on `docs.rs` can only be included if you host the image somewhere on the //! internet and include the image with its URL. However, this has a number of issues: //! //! - You need to host the image, which incurs considerable additional effort on the part of //! crate authors. //! - The image is only available for as long as the image is hosted. //! - Images in local documentation will not work without internet access. //! - Images are not *versioned*, unless carefully done so manually by the crate author. That is, //! the author must carefully provide *all* versions of the image across all versions of the //! crate with a consistent naming convention in order to ensure that documentation of //! older versions of the crate display the image consistent with that particular version. //! //! The solution employed by this crate is based on a remark made in an old //! [reddit comment from 2017][reddit-comment]. In short, Rustdoc allows images to be provided //! inline in the Markdown as `base64` encoded binary blobs in the following way: //! //! ```rust //! ![Alt text][myimagelabel] //! //! [myimagelabel]:  //! ``` //! //! Basically we can use the "reference" feature of Markdown links/images to provide the URL //! of the image in a different location than the image itself, but instead of providing an URL //! we can directly provide the binary data of the image in the Markdown documentation. //! //! However, doing this manually with images would terribly clutter the documentation, which //! seems less than ideal. Instead, we do this programmatically. The macros available in this //! crate essentially follow this idea: //! //! - Take a label and image path relative to the crate root as input. //! - Determine the MIME type (based on extension) and `base64` encoding of the image. //! - Produce an appropriate doc string and inject it into the Markdown documentation for the //! crate/function/struct/etc. //! //! Clearly, this is still quite hacky, but it seems like a workable solution until proper support //! in `rustdoc` arrives, at which point we may rejoice and abandon this crate to the annals //! of history. //! //! # Acknowledgements //! //! As an inexperienced proc macro hacker, I would not have managed to arrive at this //! solution without the help of several individuals on the Rust Programming Language Community //! Discord server, most notably: //! //! - Yandros [(github.com/danielhenrymantilla)](https://github.com/danielhenrymantilla) //! - Nemo157 [(github.com/Nemo157)](https://github.com/Nemo157) //! //! [showcase]: https://crates.io/crates/embed-doc-image-showcase //! [showcase-docs]: https://docs.rs/embed-doc-image-showcase //! [showcase-source]: https://github.com/Andlon/embed-doc-image/tree/master/embed-doc-image-showcase //! [rustdoc-issue]: https://github.com/rust-lang/rust/issues/32104 //! [issue-tracker]: https://github.com/Andlon/embed-doc-image/issues //! [reddit-comment]: https://www.reddit.com/r/rust/comments/5ljshj/diagrams_in_documentation/dbwg96q?utm_source=share&utm_medium=web2x&context=3 //! //! use proc_macro::TokenStream; use quote::{quote, ToTokens}; use std::fs::read; use std::path::{Path, PathBuf}; use syn::parse; use syn::parse::{Parse, ParseStream}; use syn::{ Item, ItemConst, ItemEnum, ItemExternCrate, ItemFn, ItemForeignMod, ItemImpl, ItemMacro, ItemMacro2, ItemMod, ItemStatic, ItemStruct, ItemTrait, ItemTraitAlias, ItemType, ItemUnion,
//! //! This crate represents a carefully crafted solution based on procedural macros that works
random_line_split
orders-alter.js
_id":parseSegment[1]}; order.doPost(parseSegment[0],data,function(result){ order.reloadCallBack(result,obj); }); }else if(obj.hasClass("alRefundDel") && confirm("确认删除订单吗?")){ // 实际上是隐藏订单组 order.doPost(parseSegment[0],data,function(result){ order.reloadCallBack(result,obj); }); }else if(obj.hasClass("delBtn") && confirm("确认删除吗?")){ data = {"chargeback_id":parseSegment[1]}; order.doPost(parseSegment[0],data,function(result){ order.reloadCallBack(result,obj); }); } } order.doPost = function(url,data,func){ $.ajax({ url:url, data:data, type:'post', dataType:'json', success:func }); } order.showOrderDetail = function(obj){ var groupId = obj.closest('.orderList').data('id'); var href = "order.php?act=groupDetail&group_id="+groupId+"&r="+Math.random(); $(".dialog-order").show().html("").load(href,function(){ $(".dialog-order").removeClass("fadeHide").addClass("play").addClass("fadeRight"); $(".orderDetail-wrap .orderList").css({ "height":($(window).height()-$(".orderDetai-BtnWrap").height()-30)+"px", "overflow":"auto" }) $(".dialog-mask").show(); }); } order.commonCallBack = function(result,obj){ var self=this; if(!result.status){ alert(result.message); return false; }else{ // 刷新页面 obj.closest('.orderList').slideUp(100,function(){ obj.closest('.orderList').remove(); self.myScroll.refresh(); }); return false; } } order.reloadCallBack = function(result,obj){ var self=this; if(!result.status){ alert(result.message); return false; }else{ // 刷新页面 window.location.reload(); return false; } } order.active = function(){ $(".order-head .tabs-line").width($(".tabs .swiper-slide").eq(0).width()); $('.tabBox').find('.swiper-slide').removeClass('active'); $('.tabBox').find('.'+type).addClass('active'); $(".tabBox .tabs-line").css({ "left":($(".tabs .swiper-slide").eq(0).width())*$('.tabBox').find('.'+type).index()+"px" }); } order.loadorderDetail = function (){ var self=this; $(document).on("click",'.j-loadetail',function(){ var href=$(this).data("href")+"?r="+Math.random(); $(".dialog-order").show().html("").load(href,function(){ $(".dialog-order").removeClass("fadeHide").addClass("play").addClass("fadeRight"); $(".orderDetail-wrap .orderList").css({ "height":($(window).height()-$(".orderDetai-BtnWrap").height()-30)+"px", "overflow":"auto" }) $(".dialog-mask").show(); }); }) //去评价 $('body').on("click",".btn-evalute",function(e){ var oparent=$(e.currentTarget).closest(".orderList").find(".j-loadetail"); oparent.trigger("click"); }) //收起操作 $(document).on("tap",'.dialog-mask',function(){ $(".dialog-order").removeClass("fadeRight").addClass("fadeHide"); self.myScroll.refresh(); setTimeout(function(){ $('.dialog-mask').hide(); },500) }) $(document).on("tap",".j-maskhide",function(e){ $(".dialog-order").removeClass("fadeRight").addClass("fadeHide"); self.myScroll.refresh(); setTimeout(function(){ $('.dialog-mask').hide(); },500) //$('.dialog-mask').trigger("click"); }) } order.imgBox= function (){ var oelis='<span class="order-elips"><img src="'+staticUrl+'/img/order/elips.png"><em>更多</em></span>',ohas=true; $(".orderList-pdmore").each(function(index,item){ var olinum=$(item).find(".order-imgBox").length,owidth=$(item).find(".order-imgBox").eq(0).width(),oheight=$(item).find(".order-imgBox").eq(0).height(); var obili=65/58,oelipswid=$(item).find(".order-imgBox").eq(0).width(),oelipsheight= oelipswid/obili,oelipslen=$(item).find(".order-elips").length; if(oelipslen<=0){ $(item).find(".order-imgBox").parent().append(oelis); $(".order-elips").width(oelipswid); $(".order-elips").height(oelipsheight); $(".order-elips").css({ "width": owidth+"px", "height":oheight+"px" }) if(olinum>=3){ $(item).find(".order-imgBox").hide(); for(var i=0;i<3;i++){ $(item).find(".order-imgBox").eq(i).show(); } } } }) } order.hideOrder = function(orderId,obj){ var self=this; $.confirm("确认删除吗?",function(flag){ if(flag){ $.ajax({ url:hideOrderUrl, type:'post', data:{'order_id':orderId}, dataType:'json', success:function(result){ if(result.status == 1){ obj.closest('.orderList').slideUp(100); obj.closest('.orderList').remove(); self.myScroll.refresh(); }else{ alert('删除失败'); } } }); } }); } order.getMoreOrder = function(self,func){ $.ajax({ 'url':getMoreOrderUrl, 'data':{'page':order.page,'type':order.orderType},
} order.createGroupLiHtml = function(nowGroup,buttonHtml){ var orderHtmls = ""; var imagesHtmls = ""; var disableHtmls = ""; for(q in nowGroup.orderGoodsImage.pics){ disableHtmls = ""; if(nowGroup.orderGoodsImage.pics[q].disable){ disableHtmls = '<i class="icon-failstate"></i>'; } imagesHtmls += '<span class="order-imgBox"><img src="'+order.picUrl + nowGroup.orderGoodsImage.pics[q].img+'" alt=""/>'+disableHtmls+'</span>'; } var html = '<div class="orderList" data-type="'+nowGroup.priority.type+'" data-id="'+nowGroup.group_id+'">\ <div class="orderListBox clearfix">\ <p class="orderList-status '+nowGroup.translate.pClass+' fl">\ <i class="ordericon '+nowGroup.translate.iClass+'"></i>'+nowGroup.translate.title+'\ </p>\ <p class="orderList-ordernum fr">\ '+nowGroup.createtime+'\ </p>\ </div>\ <ul class="orderList-pdmore orderList-product">\ <li>\ <a class="j-loadetail" href="javascript:void(0);" data-href="order.php?act=groupDetail&group_id='+nowGroup.group_id+'&tag=1">\ <!--多个产品-->\ '+imagesHtmls+'\ <!--多个产品end-->\ </a>\ </li>\ </ul>\ <div class="orderList-btnBox btborder clearfix">\ <span class="totalPrice fl">\ 总价:<em class="orange-icon">¥'+nowGroup.group_amount+'</em>\ </span>\ '+buttonHtml+'\ </div>\ </div>'; return html; } order.createNomalLiHtml = function(nowOrder,buttonHtml){ var disableHtml = ""; if(nowOrder.disable != undefined){ disableHtml = '<span class="failstate"></span>'; } var html = '<div class="orderList" data-type="orderRefund" data-id="'+nowOrder.orders[0].order_id+'">\ <div class="orderListBox clearfix">\ <p class="orderList-status '+nowOrder.translate.pClass+' fl">\ <i class="ordericon '+nowOrder.translate.iClass+'"></i>'+nowOrder.translate.title+'\ </p>\ <p class="orderList-ordernum fr">\ '+nowOrder.orders[0].createtime+'\ </p>\ </div>\ <ul class="orderList-pdmore orderList-product">\ <li>\ <a class="j-loadetail" href="javascript:void(0);" data-href="order.php?act=orderDetail&order_id='+nowOrder.orders[0].order_id+'&tag=1">\ <!--多个产品-->\ <span class="order-imgBox"><img src="'+order.picUrl + nowOrder.orders[0].goods_image+'" alt=""/></span>\ <!--多个产品end-->\ </a>\ </li>\ </ul>\ <div class="orderList-btnBox btborder clearfix">\ <span class="totalPrice fl">\ 总价:<em class="orange-icon">¥'+nowOrder
'type':'post', 'dataType':'json', success:func });
random_line_split
rs_handler_user.go
.Userid = userid rs.rolePid.Request(msg1, ctx.Self()) } else { //TODO 添加房间数据返回 rsp := handler.GetUserDataMsg(arg, rs.User) if rs.gamePid != nil { rsp.Game = true } if rs.BankPhone != "" { rsp.Bank = true } rs.Send(rsp) } case *pb.GotUserData: arg := msg.(*pb.GotUserData) glog.Debugf("GotUserData %#v", arg) rsp := handler.UserDataMsg(arg) rs.Send(rsp) default: //glog.Errorf("unknown message %v", msg) rs.handlerPay(msg, ctx) } } /* func (rs *RoleActor) addPrize(rtype, ltype, amount int32) { switch uint32(rtype) { case data.DIAMOND: rs.addCurrency(amount, 0, 0, 0, ltype) case data.COIN: rs.addCurrency(0, amount, 0, 0, ltype) case data.CARD: rs.addCurrency(0, 0, amount, 0, ltype) case data.CHIP: rs.addCurrency(0, 0, 0, amount, ltype) } } //消耗钻石 func (rs *RoleActor) expend(cost uint32, ltype int32) { diamond := -1 * int64(cost) rs.addCurrency(diamond, 0, 0, 0, ltype) } */ //奖励发放 func (rs *RoleActor) addCurrency(diamond, coin, card, chip int64, ltype int32) { if rs.User == nil { glog.Errorf("add currency user err: %d", ltype) return } //日志记录 if diamond < 0 && ((rs.User.GetDiamond() + diamond) < 0) { diamond = 0 - rs.User.GetDiamond() } if chip < 0 && ((rs.User.GetChip() + chip) < 0) { chip = 0 - rs.User.GetChip() } if coin < 0 && ((rs.User.GetCoin() + coin) < 0) { coin = 0 - rs.User.GetCoin() } if card < 0 && ((rs.User.GetCard() + card) < 0) { card = 0 - rs.User.GetCard() } rs.User.AddCurrency(diamond, coin, card, chip) //货币变更及时同步 msg2 := handler.ChangeCurrencyMsg(diamond, coin, card, chip, ltype, rs.User.GetUserid()) rs.rolePid.Tell(msg2) //消息 msg := handler.PushCurrencyMsg(diamond, coin, card, chip, ltype) rs.Send(msg) //TODO 机器人不写日志 //if rs.User.GetRobot() { // return //} //rs.status = true //日志 //TODO 日志放在dbms中统一写入 //if diamond != 0 { // msg1 := handler.LogDiamondMsg(diamond, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if coin != 0 { // msg1 := handler.LogCoinMsg(coin, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if card != 0 { // msg1 := handler.LogCardMsg(card, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if chip != 0 { // msg1 := handler.LogChipMsg(chip, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} } //同步数据 func (rs *RoleActor) syncUser() { if rs.User == nil { return } if rs.rolePid == nil { return } if !rs.status { //有变更才同步 return } rs.status = false msg := new(pb.SyncUser) msg.Userid = rs.User.GetUserid() glog.Debugf("syscUser %#v", rs.User) result, err := json.Marshal(rs.User) if err != nil { glog.Errorf("user %s Marshal err %v", rs.User.GetUserid(), err) return } msg.Data = result rs.rolePid.Tell(msg) } //'银行 //银行发放 func (rs *RoleActor) addBank(coin int64, ltype int32, from string) { if rs.User == nil { glog.Errorf("add addBank user err: %d", ltype) return } //日志记录 if coin < 0 && ((rs.User.GetBank() + coin) < 0) { coin = 0 - rs.User.GetBank() } rs.User.AddBank(coin) //银行变动及时同步 msg2 := handler.BankChangeMsg(coin, ltype, rs.User.GetUserid(), from) rs.rolePid.Tell(msg2) } //1存入,2取出,3赠送 func (rs *RoleActor) bank(arg *pb.CBank) { msg := new(pb.SBank) rtype := arg.GetRtype() amount := int64(arg.GetAmount()) userid := arg.GetUserid() coin := rs.User.GetCoin() switch rtype { case pb.BankDeposit: //存入 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if (coin - amount) < data.BANKRUPT { msg.Error = pb.NotEnoughCoin } else if amount <= 0 { msg.Error = pb.DepositNumberError } else { rs.addCurrency(0, -1*amount, 0, 0, int32(pb.LOG_TYPE12)) rs.addBank(amount, int32(pb.LOG_TYPE12), "") } case pb.BankDraw: //取出 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if arg.GetPassword() != rs.User.BankPassword { msg.Error = pb.PwdError } else if amount > rs.User.GetBank() { msg.Error = pb.NotEnoughCoin } else if amount < data.DRAW_MONEY_LOW { msg.Error = pb.DrawMoneyNumberError } else { rs.addCurrency(0, amount, 0, 0, int32(pb.LOG_TYPE13)) rs.addBank(-1*amount, int32(pb.LOG_TYPE13), "") } case pb.BankGift: //赠送 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if arg.GetPassword() != rs.User.BankPassword { msg.Error = pb.PwdError //} else if amount > rs.User.GetBank() { } else if amount > rs.User.GetCoin() { //修改成赠送bank外面的 msg.Error = pb.NotEnoughCoin } else if amount < data.DRAW_MONEY { msg.Error = pb.GiveNumberError } else if userid == "" { msg.Error = pb.GiveUseridError } else { msg1 := handler.GiveBankMsg(amount, int32(pb.LOG_TYPE15), userid, rs.User.GetUserid()) if rs.bank2give(msg1) { //rs.addBank(-1*amount, int32(pb.LOG_TYPE15), userid) rs.add
OG_TYPE15)) //充值消息提醒 record1, msg1 := handler.GiveNotice(amount, rs.User.GetUserid(), userid) if record1 != nil { rs.loggerPid.Tell(record1) } rs.Send(msg1) } else { msg.Error = pb.GiveUseridError } } case pb.BankSelect: //查询 msg.Phone = rs.User.BankPhone case pb.BankOpen: //开通 if rs.User.BankPhone != "" { msg.Error = pb.BankAlreadyOpen } else if !utils.PhoneValidate(arg.GetPhone()) { msg.Error = pb.PhoneNumberError } else if len(arg.GetPassword()) != 32 { msg.Error = pb.PwdError } else if len(arg.GetSmscode()) != 6 { msg.Error = pb.SmsCodeWrong } else { msg.Error = rs.bankCheck(arg) if msg.Error == pb.OK { //奖励发放 rs.addCurrency(0, 666, 0, 0, int32(pb.LOG_TYPE56)) //消息提醒 record, msg2 := handler.BankOpenNotice(666, rs.User.GetUserid()) if record != nil { rs.loggerPid.Tell(record) } if msg2 != nil { rs.Send(msg2) } } } case pb.BankResetPwd: //重置密码 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if rs.User.BankPhone != arg.Get
Currency(0, -1*amount, 0, 0, int32(pb.L
conditional_block
rs_handler_user.go
.Userid = userid rs.rolePid.Request(msg1, ctx.Self()) } else { //TODO 添加房间数据返回 rsp := handler.GetUserDataMsg(arg, rs.User) if rs.gamePid != nil { rsp.Game = true } if rs.BankPhone != "" { rsp.Bank = true } rs.Send(rsp) } case *pb.GotUserData: arg := msg.(*pb.GotUserData) glog.Debugf("GotUserData %#v", arg) rsp := handler.UserDataMsg(arg) rs.Send(rsp) default: //glog.Errorf("unknown message %v", msg) rs.handlerPay(msg, ctx) } } /* func (rs *RoleActor) addPrize(rtype, ltype, amount int32) { switch uint32(rtype) { case data.DIAMOND: rs.addCurrency(amount, 0, 0, 0, ltype) case data.COIN: rs.addCurrency(0, amount, 0, 0, ltype) case data.CARD: rs.addCurrency(0, 0, amount, 0, ltype) case data.CHIP: rs.addCurrency(0, 0, 0, amount, ltype) } } //消耗钻石 func (rs *RoleActor) expend(cost uint32, ltype int32) { diamond := -1 * int64(cost) rs.addCurrency(diamond, 0, 0, 0, ltype) } */ //奖励发放 func (rs *RoleActor) addCurrency(diamond, coin, card, chip int64, ltype int32) { if rs.User == nil { glog.Errorf("add currency user err: %d", ltype) return } //日志记录 if diamond < 0 && ((rs.User.GetDiamond() + diamond) < 0) { diamond = 0 - rs.User.GetDiamond() } if chip < 0 && ((rs.User.GetChip() + chip) < 0) { chip = 0 - rs.User.GetChip() } if coin < 0 && ((rs.User.GetCoin() + coin) < 0) { coin = 0 - rs.User.GetCoin() } if card < 0 && ((rs.User.GetCard() + card) < 0) { card = 0 - rs.User.GetCard() } rs.User.AddCurrency(diamond, coin, card, chip) //货币变更及时同步 msg2 := handler.ChangeCurrencyMsg(diamond, coin, card, chip, ltype, rs.User.GetUserid()) rs.rolePid.Tell(msg2) //消息 msg := handler.PushCurrencyMsg(diamond, coin, card, chip, ltype) rs.Send(msg) //TODO 机器人不写日志 //if rs.User.GetRobot() { // return //} //rs.status = true //日志 //TODO 日志放在dbms中统一写入 //if diamond != 0 { // msg1 := handler.LogDiamondMsg(diamond, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if coin != 0 { // msg1 := handler.LogCoinMsg(coin, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if card != 0 { // msg1 := handler.LogCardMsg(card, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if chip != 0 { // msg1 := handler.LogChipMsg(chip, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} } //同步数据 func (rs *RoleActor) syncUser() { if rs.User == nil { return } if rs.rolePid == nil { return } if !rs.status { //有变更才同步 return } rs.status = false msg := new(pb.SyncUser) msg.Userid = rs.User.GetUserid() glog.Debugf("syscUser %#v", rs.User) result, err := json.Marshal(rs.User) if err != nil { glog.Errorf("user %s Marshal err %v", rs.User.GetUserid(), err) return } msg.Data = result rs.rolePid.Tell(msg) } //'银行 //银行发放 func (rs *RoleActor) addBank(coin int64, ltype int32, from string) { if rs.User == nil { glog.Errorf("add addBank user err: %d", ltype) return } //日志记录 if coin < 0 && ((rs.User.GetBank() + coin) < 0) { coin = 0 - rs.User.GetBank() } rs.User.AddBank(coin) //银行变动及时同步 msg2 := handler.BankChangeMsg(coin, ltype, rs.User.GetUserid(), from) rs.rolePid.Tell(msg2) } //1存入,2取出,3赠送 func (rs *RoleActor) bank(arg *pb.CBank) { msg := new(pb.SBank) rtype := arg.GetRtype() amount := int64(arg.GetAmount()) userid := arg.GetUserid() coin := rs.User.GetCoin() switch rtype { case pb.BankDeposit: //存入 if
User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if (coin - amount) < data.BANKRUPT { msg.Error = pb.NotEnoughCoin } else if amount <= 0 { msg.Error = pb.DepositNumberError } else { rs.addCurrency(0, -1*amount, 0, 0, int32(pb.LOG_TYPE12)) rs.addBank(amount, int32(pb.LOG_TYPE12), "") } case pb.BankDraw: //取出 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if arg.GetPassword() != rs.User.BankPassword { msg.Error = pb.PwdError } else if amount > rs.User.GetBank() { msg.Error = pb.NotEnoughCoin } else if amount < data.DRAW_MONEY_LOW { msg.Error = pb.DrawMoneyNumberError } else { rs.addCurrency(0, amount, 0, 0, int32(pb.LOG_TYPE13)) rs.addBank(-1*amount, int32(pb.LOG_TYPE13), "") } case pb.BankGift: //赠送 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if arg.GetPassword() != rs.User.BankPassword { msg.Error = pb.PwdError //} else if amount > rs.User.GetBank() { } else if amount > rs.User.GetCoin() { //修改成赠送bank外面的 msg.Error = pb.NotEnoughCoin } else if amount < data.DRAW_MONEY { msg.Error = pb.GiveNumberError } else if userid == "" { msg.Error = pb.GiveUseridError } else { msg1 := handler.GiveBankMsg(amount, int32(pb.LOG_TYPE15), userid, rs.User.GetUserid()) if rs.bank2give(msg1) { //rs.addBank(-1*amount, int32(pb.LOG_TYPE15), userid) rs.addCurrency(0, -1*amount, 0, 0, int32(pb.LOG_TYPE15)) //充值消息提醒 record1, msg1 := handler.GiveNotice(amount, rs.User.GetUserid(), userid) if record1 != nil { rs.loggerPid.Tell(record1) } rs.Send(msg1) } else { msg.Error = pb.GiveUseridError } } case pb.BankSelect: //查询 msg.Phone = rs.User.BankPhone case pb.BankOpen: //开通 if rs.User.BankPhone != "" { msg.Error = pb.BankAlreadyOpen } else if !utils.PhoneValidate(arg.GetPhone()) { msg.Error = pb.PhoneNumberError } else if len(arg.GetPassword()) != 32 { msg.Error = pb.PwdError } else if len(arg.GetSmscode()) != 6 { msg.Error = pb.SmsCodeWrong } else { msg.Error = rs.bankCheck(arg) if msg.Error == pb.OK { //奖励发放 rs.addCurrency(0, 666, 0, 0, int32(pb.LOG_TYPE56)) //消息提醒 record, msg2 := handler.BankOpenNotice(666, rs.User.GetUserid()) if record != nil { rs.loggerPid.Tell(record) } if msg2 != nil { rs.Send(msg2) } } } case pb.BankResetPwd: //重置密码 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if rs.User.BankPhone != arg.Get
rs.
identifier_name
rs_handler_user.go
rsp := handler.GetCurrency(arg, rs.User) rs.Send(rsp) case *pb.CBuy: arg := msg.(*pb.CBuy) glog.Debugf("CBuy %#v", arg) //优化 rsp, diamond, coin := handler.Buy(arg, rs.User) //同步兑换 rs.addCurrency(diamond, coin, 0, 0, int32(pb.LOG_TYPE18)) //响应 rs.Send(rsp) record, msg2 := handler.BuyNotice(coin, rs.User.GetUserid()) if record != nil { rs.loggerPid.Tell(record) } if msg2 != nil { rs.Send(msg2) } case *pb.CShop: arg := msg.(*pb.CShop) glog.Debugf("CShop %#v", arg) //响应 rsp := handler.Shop(arg, rs.User) rs.Send(rsp) case *pb.BankGive: arg := msg.(*pb.BankGive) glog.Debugf("BankGive %#v", arg) //rs.addBank(arg.Coin, arg.Type, arg.From) rs.addCurrency(0, arg.GetCoin(), 0, 0, arg.GetType()) if rs.gamePid != nil { rs.gamePid.Tell(arg) } case *pb.CBank: arg := msg.(*pb.CBank) glog.Debugf("CBank %#v", arg) rs.bank(arg) case *pb.CRank: arg := msg.(*pb.CRank) glog.Debugf("CRank %#v", arg) rs.dbmsPid.Request(arg, ctx.Self()) case *pb.CBankLog: arg := msg.(*pb.CBankLog) glog.Debugf("CBankLog %#v", arg) arg.Userid = rs.User.GetUserid() rs.dbmsPid.Request(arg, ctx.Self()) case *pb.TaskUpdate: arg := msg.(*pb.TaskUpdate) glog.Debugf("TaskUpdate %#v", arg) rs.taskUpdate(arg) case *pb.CTask: arg := msg.(*pb.CTask) glog.Debugf("CTask %#v", arg) rs.task() case *pb.LuckyUpdate: arg := msg.(*pb.LuckyUpdate) glog.Debugf("LuckyUpdate %#v", arg) rs.luckyUpdate(arg) case *pb.CLucky: arg := msg.(*pb.CLucky) glog.Debugf("CLucky %#v", arg) rs.lucky() case *pb.CTaskPrize: arg := msg.(*pb.CTaskPrize) glog.Debugf("CTaskPrize %#v", arg) rs.taskPrize(arg.Type) case *pb.CLoginPrize: arg := msg.(*pb.CLoginPrize) glog.Debugf("CLoginPrize %#v", arg) rs.loginPrize(arg) case *pb.CSignature: arg := msg.(*pb.CSignature) glog.Debugf("CSignature %#v", arg) rs.setSign(arg) case *pb.CLatLng: arg := msg.(*pb.CLatLng) glog.Debugf("CLatLng %#v", arg) rs.setLatLng(arg) case *pb.CRoomRecord: arg := msg.(*pb.CRoomRecord) glog.Debugf("CRoomRecord %#v", arg) msg1 := &pb.GetRoomRecord{ Gtype: arg.Gtype, Page: arg.Page, Userid: rs.User.GetUserid(), } rs.dbmsPid.Request(msg1, ctx.Self()) case *pb.CUserData: arg := msg.(*pb.CUserData) glog.Debugf("CUserData %#v", arg) userid := arg.GetUserid() if userid == "" { userid = rs.User.GetUserid() } if userid != rs.User.GetUserid() { msg1 := new(pb.GetUserData) msg1.Userid = userid rs.rolePid.Request(msg1, ctx.Self()) } else { //TODO 添加房间数据返回 rsp := handler.GetUserDataMsg(arg, rs.User) if rs.gamePid != nil { rsp.Game = true } if rs.BankPhone != "" { rsp.Bank = true } rs.Send(rsp) } case *pb.GotUserData: arg := msg.(*pb.GotUserData) glog.Debugf("GotUserData %#v", arg) rsp := handler.UserDataMsg(arg) rs.Send(rsp) default: //glog.Errorf("unknown message %v", msg) rs.handlerPay(msg, ctx) } } /* func (rs *RoleActor) addPrize(rtype, ltype, amount int32) { switch uint32(rtype) { case data.DIAMOND: rs.addCurrency(amount, 0, 0, 0, ltype) case data.COIN: rs.addCurrency(0, amount, 0, 0, ltype) case data.CARD: rs.addCurrency(0, 0, amount, 0, ltype) case data.CHIP: rs.addCurrency(0, 0, 0, amount, ltype) } } //消耗钻石 func (rs *RoleActor) expend(cost uint32, ltype int32) { diamond := -1 * int64(cost) rs.addCurrency(diamond, 0, 0, 0, ltype) } */ //奖励发放 func (rs *RoleActor) addCurrency(diamond, coin, card, chip int64, ltype int32) { if rs.User == nil { glog.Errorf("add currency user err: %d", ltype) return } //日志记录 if diamond < 0 && ((rs.User.GetDiamond() + diamond) < 0) { diamond = 0 - rs.User.GetDiamond() } if chip < 0 && ((rs.User.GetChip() + chip) < 0) { chip = 0 - rs.User.GetChip() } if coin < 0 && ((rs.User.GetCoin() + coin) < 0) { coin = 0 - rs.User.GetCoin() } if card < 0 && ((rs.User.GetCard() + card) < 0) { card = 0 - rs.User.GetCard() } rs.User.AddCurrency(diamond, coin, card, chip) //货币变更及时同步 msg2 := handler.ChangeCurrencyMsg(diamond, coin, card, chip, ltype, rs.User.GetUserid()) rs.rolePid.Tell(msg2) //消息 msg := handler.PushCurrencyMsg(diamond, coin, card, chip, ltype) rs.Send(msg) //TODO 机器人不写日志 //if rs.User.GetRobot() { // return //} //rs.status = true //日志 //TODO 日志放在dbms中统一写入 //if diamond != 0 { // msg1 := handler.LogDiamondMsg(diamond, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if coin != 0 { // msg1 := handler.LogCoinMsg(coin, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if card != 0 { // msg1 := handler.LogCardMsg(card, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if chip != 0 { // msg1 := handler.LogChipMsg(chip, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} } //同步数据 func (rs *RoleActor) syncUser() { if rs.User == nil { return } if rs.rolePid == nil { return } if !rs.status { //有变更才同步 return } rs.status = false msg := new(pb.SyncUser) msg.Userid = rs.User.GetUserid() glog.Debugf("syscUser %#v", rs.User) result, err := json.Marshal(rs.User) if err != nil { glog.Errorf("user %s Marshal err %v", rs.User.GetUserid(), err) return } msg.Data = result rs.rolePid.Tell(msg) } //'银行 //银行发放 func (rs *RoleActor) addBank(coin int64, ltype int32, from string) { if rs.User == nil { glog.Errorf("add addBank user err: %d", ltype) return } //日志记录 if coin < 0 && ((rs.User.GetBank() + coin) < 0) { coin = 0 - rs.User.GetBank() } rs.User.AddBank(coin) //银行变动及时同步 msg2 := handler.BankChangeMsg(coin, ltype, rs.User.GetUserid(), from) rs.rolePid.Tell(msg2) } //1存入,2取出,3赠送 func (rs *RoleActor) bank(arg *pb.CBank) { msg := new(pb.SBank) rtype := arg.GetRtype() amount := int64(arg.GetAmount()) userid := arg.GetUserid() coin := rs.User.GetCoin
rs.joinActivity(arg, ctx) case *pb.CGetCurrency: arg := msg.(*pb.CGetCurrency) glog.Debugf("CGetCurrency %#v", arg) //响应
random_line_split
rs_handler_user.go
id = userid rs.rolePid.Request(msg1, ctx.Self()) } else { //TODO 添加房间数据返回 rsp := handler.GetUserDataMsg(arg, rs.User) if rs.gamePid != nil { rsp.Game = true } if rs.BankPhone != "" { rsp.Bank = true } rs.Send(rsp) } case *pb.GotUserData: arg := msg.(*pb.GotUserData) glog.Debugf("GotUserData %#v", arg) rsp := handler.UserDataMsg(arg) rs.Send(rsp) default: //glog.Errorf("unknown message %v", msg) rs.handlerPay(msg, ctx) } } /* func (rs *RoleActor) addPrize(rtype, ltype, amount int32) { switch uint32(rtype) { case data.DIAMOND: rs.addCurrency(amount, 0, 0, 0, ltype) case data.COIN: rs.addCurrency(0, amount, 0, 0, ltype) case data.CARD: rs.addCurrency(0, 0, amount, 0, ltype) case data.CHIP: rs.addCurrency(0, 0, 0, amount, ltype) } } //消耗钻石 func (rs *RoleActor) expend(cost uint32, ltype int32) { diamond := -1 * int64(cost) rs.addCurrency(diamond, 0, 0, 0, ltype) } */ //奖励发放 func (rs *RoleActor) addCurrency(diamond, coin, card, chip int64, ltype int32) { if rs.User == nil { glog.Errorf("add currency user err: %d", ltype) return } //日志记录 if diamond < 0 && ((rs.User.GetDiamond() + diamond) < 0) { diamond = 0 - rs.User.GetDiamond() } if chip < 0 && ((rs.User.GetChip() + chip) < 0) { chip = 0 - rs.User.GetChip() } if coin < 0 && ((rs.User.GetCoin() + coin) < 0) { coin = 0 - rs.User.GetCoin() } if card < 0 && ((rs.User.GetCard() + card) < 0) { card = 0 - rs.User.GetCard() } rs.User.AddCurrency(diamond, coin, card, chip) //货币变更及时同步 msg2 := handler.ChangeCurrencyMsg(diamond, coin, card, chip, ltype, rs.User.GetUserid()) rs.rolePid.Tell(msg2) //消息 msg := handler.PushCurrencyMsg(diamond, coin, card, chip, ltype) rs.Send(msg) //TODO 机器人不写日志 //if rs.User.GetRobot() { // return //} //rs.status = true //日志 //TODO 日志放在dbms中统一写入 //if diamond != 0 { // msg1 := handler.LogDiamondMsg(diamond, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if coin != 0 { // msg1 := handler.LogCoinMsg(coin, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if card != 0 { // msg1 := handler.LogCardMsg(card, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} //if chip != 0 { // msg1 := handler.LogChipMsg(chip, ltype, rs.User) // rs.loggerPid.Tell(msg1) //} } //同步数据 func (rs *RoleActor) syncUser() { if rs.User == nil { return } if rs.rolePid == nil { return } if !rs.status { //有变更才同步 return } rs.status = false msg := new(pb.SyncUser) msg.Userid = rs.User.GetUserid() glog.Debugf("syscUser %#v", rs.User) result, err := json.Marshal(rs.User) if err != nil { glog.Errorf("user %s Marshal err %v", rs.User.GetUserid(), err) return } msg.Data = result rs.rolePid.Tell(msg) } //'银行 //银行发放 func (rs *RoleActor) addBank(coin int64, ltype int32, from string) { if rs.User == nil { glog.Errorf("add addBank user err: %d", ltype) return } //日志记录 if coin < 0 && ((rs.User.GetBank() + coin) < 0) { coin = 0 - rs.User.GetBank() } rs.User.AddBank(coin) //银行变动及时同步 msg2 := handler.BankChangeMsg(coin, ltype, rs.User.GetUserid(), from) rs.rolePid.Tell(msg2) } //1存入,2取出,3赠送 func (rs *RoleActor) bank(arg *pb.CBank) { msg := new(pb.SBank) rtype := arg.GetRtype() amount := int64(arg.GetAmount()) userid := arg.GetUserid() coin := rs.User.GetCoin() switch rtype { case pb.BankDeposit: //存入 if rs.User.BankPhone =
rs.addCurrency(0, amount, 0, 0, int32(pb.LOG_TYPE13)) rs.addBank(-1*amount, int32(pb.LOG_TYPE13), "") } case pb.BankGift: //赠送 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if arg.GetPassword() != rs.User.BankPassword { msg.Error = pb.PwdError //} else if amount > rs.User.GetBank() { } else if amount > rs.User.GetCoin() { //修改成赠送bank外面的 msg.Error = pb.NotEnoughCoin } else if amount < data.DRAW_MONEY { msg.Error = pb.GiveNumberError } else if userid == "" { msg.Error = pb.GiveUseridError } else { msg1 := handler.GiveBankMsg(amount, int32(pb.LOG_TYPE15), userid, rs.User.GetUserid()) if rs.bank2give(msg1) { //rs.addBank(-1*amount, int32(pb.LOG_TYPE15), userid) rs.addCurrency(0, -1*amount, 0, 0, int32(pb.LOG_TYPE15)) //充值消息提醒 record1, msg1 := handler.GiveNotice(amount, rs.User.GetUserid(), userid) if record1 != nil { rs.loggerPid.Tell(record1) } rs.Send(msg1) } else { msg.Error = pb.GiveUseridError } } case pb.BankSelect: //查询 msg.Phone = rs.User.BankPhone case pb.BankOpen: //开通 if rs.User.BankPhone != "" { msg.Error = pb.BankAlreadyOpen } else if !utils.PhoneValidate(arg.GetPhone()) { msg.Error = pb.PhoneNumberError } else if len(arg.GetPassword()) != 32 { msg.Error = pb.PwdError } else if len(arg.GetSmscode()) != 6 { msg.Error = pb.SmsCodeWrong } else { msg.Error = rs.bankCheck(arg) if msg.Error == pb.OK { //奖励发放 rs.addCurrency(0, 666, 0, 0, int32(pb.LOG_TYPE56)) //消息提醒 record, msg2 := handler.BankOpenNotice(666, rs.User.GetUserid()) if record != nil { rs.loggerPid.Tell(record) } if msg2 != nil { rs.Send(msg2) } } } case pb.BankResetPwd: //重置密码 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if rs.User.BankPhone != arg.GetPhone
= "" { msg.Error = pb.BankNotOpen } else if (coin - amount) < data.BANKRUPT { msg.Error = pb.NotEnoughCoin } else if amount <= 0 { msg.Error = pb.DepositNumberError } else { rs.addCurrency(0, -1*amount, 0, 0, int32(pb.LOG_TYPE12)) rs.addBank(amount, int32(pb.LOG_TYPE12), "") } case pb.BankDraw: //取出 if rs.User.BankPhone == "" { msg.Error = pb.BankNotOpen } else if arg.GetPassword() != rs.User.BankPassword { msg.Error = pb.PwdError } else if amount > rs.User.GetBank() { msg.Error = pb.NotEnoughCoin } else if amount < data.DRAW_MONEY_LOW { msg.Error = pb.DrawMoneyNumberError } else {
identifier_body
ppo_trainer.py
po_cfg: config node with relevant params Returns: None """ logger.add_filehandler(self.config.LOG_FILE) if observation_space is None: observation_space = self.envs.observation_spaces[0] self.actor_critic = AudioNavBaselinePolicy( observation_space=observation_space, action_space=self.envs.action_spaces[0], hidden_size=ppo_cfg.hidden_size, goal_sensor_uuid=self.config.TASK_CONFIG.TASK.GOAL_SENSOR_UUID, extra_rgb=self.config.EXTRA_RGB ) self.agent = PPO( actor_critic=self.actor_critic, clip_param=ppo_cfg.clip_param, ppo_epoch=ppo_cfg.ppo_epoch, num_mini_batch=ppo_cfg.num_mini_batch, value_loss_coef=ppo_cfg.value_loss_coef, entropy_coef=ppo_cfg.entropy_coef, lr=ppo_cfg.lr, eps=ppo_cfg.eps, max_grad_norm=ppo_cfg.max_grad_norm, ) if self.config.RESUME: ckpt_dict = self.load_checkpoint('data/models/smt_with_pose/ckpt.400.pth', map_location="cpu") self.agent.actor_critic.net.visual_encoder.load_state_dict(self.search_dict(ckpt_dict, 'visual_encoder')) self.agent.actor_critic.net.goal_encoder.load_state_dict(self.search_dict(ckpt_dict, 'goal_encoder')) self.agent.actor_critic.net.action_encoder.load_state_dict(self.search_dict(ckpt_dict, 'action_encoder')) self.actor_critic.to(self.device) @staticmethod def search_dict(ckpt_dict, encoder_name): encoder_dict = {} for key, value in ckpt_dict['state_dict'].items(): if encoder_name in key: encoder_dict['.'.join(key.split('.')[3:])] = value return encoder_dict def save_checkpoint( self, file_name: str, extra_state=None ) -> None: checkpoint = { "state_dict": self.agent.state_dict(), "config": self.config, } if extra_state is not None: checkpoint["extra_state"] = extra_state torch.save( checkpoint, os.path.join(self.config.CHECKPOINT_FOLDER, file_name) ) def load_checkpoint(self, checkpoint_path: str, *args, **kwargs) -> Dict: r"""Load checkpoint of specified path as a dict. Args: checkpoint_path: path of target checkpoint *args: additional positional args **kwargs: additional keyword args Returns: dict containing checkpoint info """ return torch.load(checkpoint_path, *args, **kwargs) def try_to_resume_checkpoint(self):
METRICS_BLACKLIST = {"top_down_map", "collisions.is_collision"} @classmethod def _extract_scalars_from_info( cls, info: Dict[str, Any] ) -> Dict[str, float]: result = {} for k, v in info.items(): if k in cls.METRICS_BLACKLIST: continue if isinstance(v, dict): result.update( { k + "." + subk: subv for subk, subv in cls._extract_scalars_from_info( v ).items() if (k + "." + subk) not in cls.METRICS_BLACKLIST } ) # Things that are scalar-like will have an np.size of 1. # Strings also have an np.size of 1, so explicitly ban those elif np.size(v) == 1 and not isinstance(v, str): result[k] = float(v) return result @classmethod def _extract_scalars_from_infos( cls, infos: List[Dict[str, Any]] ) -> Dict[str, List[float]]: results = defaultdict(list) for i in range(len(infos)): for k, v in cls._extract_scalars_from_info(infos[i]).items(): results[k].append(v) return results def _collect_rollout_step( self, rollouts, current_episode_reward, running_episode_stats ): pth_time = 0.0 env_time = 0.0 t_sample_action = time.time() # sample actions with torch.no_grad(): step_observation = { k: v[rollouts.step] for k, v in rollouts.observations.items() } ( values, actions, actions_log_probs, recurrent_hidden_states ) = self.actor_critic.act( step_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step], ) pth_time += time.time() - t_sample_action t_step_env = time.time() outputs = self.envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] logging.debug('Reward: {}'.format(rewards[0])) env_time += time.time() - t_step_env t_update_stats = time.time() batch = batch_obs(observations, device=self.device) rewards = torch.tensor(rewards, dtype=torch.float, device=current_episode_reward.device) rewards = rewards.unsqueeze(1) masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=current_episode_reward.device ) current_episode_reward += rewards running_episode_stats["reward"] += (1 - masks) * current_episode_reward running_episode_stats["count"] += 1 - masks for k, v in self._extract_scalars_from_infos(infos).items(): v = torch.tensor( v, dtype=torch.float, device=current_episode_reward.device ).unsqueeze(1) if k not in running_episode_stats: running_episode_stats[k] = torch.zeros_like( running_episode_stats["count"] ) running_episode_stats[k] += (1 - masks) * v current_episode_reward *= masks rollouts.insert( batch, recurrent_hidden_states, actions, actions_log_probs, values, rewards.to(device=self.device), masks.to(device=self.device), ) pth_time += time.time() - t_update_stats return pth_time, env_time, self.envs.num_envs def _update_agent(self, ppo_cfg, rollouts): t_update_model = time.time() with torch.no_grad(): last_observation = { k: v[-1] for k, v in rollouts.observations.items() } next_value = self.actor_critic.get_value( last_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step] ).detach() rollouts.compute_returns( next_value, ppo_cfg.use_gae, ppo_cfg.gamma, ppo_cfg.tau ) value_loss, action_loss, dist_entropy = self.agent.update(rollouts) rollouts.after_update() return ( time.time() - t_update_model, value_loss, action_loss, dist_entropy, ) def train(self) -> None: r"""Main method for training PPO. Returns: None """ logger.info(f"config: {self.config}") random.seed(self.config.SEED) np.random.seed(self.config.SEED) torch.manual_seed(self.config.SEED) # add_signal_handlers() self.envs = construct_envs( self.config, get_env_class(self.config.ENV_NAME), workers_ignore_signals=True ) ppo_cfg = self.config.RL.PPO self.device = ( torch.device("cuda", self.config.TORCH_GPU_ID) if torch.cuda.is_available() else torch.device("cpu") ) if not os.path.isdir(self.config.CHECKPOINT_FOLDER): os.makedirs(self.config.CHECKPOINT_FOLDER) self._setup_actor_critic_agent(ppo_cfg) logger.info( "agent number of parameters: {}".format( sum(param.numel() for param in self.agent.parameters()) ) ) rollouts = RolloutStorage( ppo_cfg.num_steps, self.envs.num_envs, self.envs.observation_spaces[0], self.envs.action_spaces[0], ppo_cfg.hidden_size ) rollouts.to(self.device) observations = self.envs.reset() batch = batch
checkpoints = glob.glob(f"{self.config.CHECKPOINT_FOLDER}/*.pth") if len(checkpoints) == 0: count_steps = 0 count_checkpoints = 0 start_update = 0 else: last_ckpt = sorted(checkpoints, key=lambda x: int(x.split(".")[1]))[-1] checkpoint_path = last_ckpt # Restore checkpoints to models ckpt_dict = self.load_checkpoint(checkpoint_path) self.agent.load_state_dict(ckpt_dict["state_dict"]) ckpt_id = int(last_ckpt.split("/")[-1].split(".")[1]) count_steps = ckpt_dict["extra_state"]["step"] count_checkpoints = ckpt_id + 1 start_update = ckpt_dict["config"].CHECKPOINT_INTERVAL * ckpt_id + 1 print(f"Resuming checkpoint {last_ckpt} at {count_steps} frames") return count_steps, count_checkpoints, start_update
identifier_body
ppo_trainer.py
_rgb=self.config.EXTRA_RGB ) self.agent = PPO( actor_critic=self.actor_critic, clip_param=ppo_cfg.clip_param, ppo_epoch=ppo_cfg.ppo_epoch, num_mini_batch=ppo_cfg.num_mini_batch, value_loss_coef=ppo_cfg.value_loss_coef, entropy_coef=ppo_cfg.entropy_coef, lr=ppo_cfg.lr, eps=ppo_cfg.eps, max_grad_norm=ppo_cfg.max_grad_norm, ) if self.config.RESUME: ckpt_dict = self.load_checkpoint('data/models/smt_with_pose/ckpt.400.pth', map_location="cpu") self.agent.actor_critic.net.visual_encoder.load_state_dict(self.search_dict(ckpt_dict, 'visual_encoder')) self.agent.actor_critic.net.goal_encoder.load_state_dict(self.search_dict(ckpt_dict, 'goal_encoder')) self.agent.actor_critic.net.action_encoder.load_state_dict(self.search_dict(ckpt_dict, 'action_encoder')) self.actor_critic.to(self.device) @staticmethod def search_dict(ckpt_dict, encoder_name): encoder_dict = {} for key, value in ckpt_dict['state_dict'].items(): if encoder_name in key: encoder_dict['.'.join(key.split('.')[3:])] = value return encoder_dict def save_checkpoint( self, file_name: str, extra_state=None ) -> None: checkpoint = { "state_dict": self.agent.state_dict(), "config": self.config, } if extra_state is not None: checkpoint["extra_state"] = extra_state torch.save( checkpoint, os.path.join(self.config.CHECKPOINT_FOLDER, file_name) ) def load_checkpoint(self, checkpoint_path: str, *args, **kwargs) -> Dict: r"""Load checkpoint of specified path as a dict. Args: checkpoint_path: path of target checkpoint *args: additional positional args **kwargs: additional keyword args Returns: dict containing checkpoint info """ return torch.load(checkpoint_path, *args, **kwargs) def try_to_resume_checkpoint(self): checkpoints = glob.glob(f"{self.config.CHECKPOINT_FOLDER}/*.pth") if len(checkpoints) == 0: count_steps = 0 count_checkpoints = 0 start_update = 0 else: last_ckpt = sorted(checkpoints, key=lambda x: int(x.split(".")[1]))[-1] checkpoint_path = last_ckpt # Restore checkpoints to models ckpt_dict = self.load_checkpoint(checkpoint_path) self.agent.load_state_dict(ckpt_dict["state_dict"]) ckpt_id = int(last_ckpt.split("/")[-1].split(".")[1]) count_steps = ckpt_dict["extra_state"]["step"] count_checkpoints = ckpt_id + 1 start_update = ckpt_dict["config"].CHECKPOINT_INTERVAL * ckpt_id + 1 print(f"Resuming checkpoint {last_ckpt} at {count_steps} frames") return count_steps, count_checkpoints, start_update METRICS_BLACKLIST = {"top_down_map", "collisions.is_collision"} @classmethod def _extract_scalars_from_info( cls, info: Dict[str, Any] ) -> Dict[str, float]: result = {} for k, v in info.items(): if k in cls.METRICS_BLACKLIST: continue if isinstance(v, dict): result.update( { k + "." + subk: subv for subk, subv in cls._extract_scalars_from_info( v ).items() if (k + "." + subk) not in cls.METRICS_BLACKLIST } ) # Things that are scalar-like will have an np.size of 1. # Strings also have an np.size of 1, so explicitly ban those elif np.size(v) == 1 and not isinstance(v, str): result[k] = float(v) return result @classmethod def _extract_scalars_from_infos( cls, infos: List[Dict[str, Any]] ) -> Dict[str, List[float]]: results = defaultdict(list) for i in range(len(infos)): for k, v in cls._extract_scalars_from_info(infos[i]).items(): results[k].append(v) return results def _collect_rollout_step( self, rollouts, current_episode_reward, running_episode_stats ): pth_time = 0.0 env_time = 0.0 t_sample_action = time.time() # sample actions with torch.no_grad(): step_observation = { k: v[rollouts.step] for k, v in rollouts.observations.items() } ( values, actions, actions_log_probs, recurrent_hidden_states ) = self.actor_critic.act( step_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step], ) pth_time += time.time() - t_sample_action t_step_env = time.time() outputs = self.envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] logging.debug('Reward: {}'.format(rewards[0])) env_time += time.time() - t_step_env t_update_stats = time.time() batch = batch_obs(observations, device=self.device) rewards = torch.tensor(rewards, dtype=torch.float, device=current_episode_reward.device) rewards = rewards.unsqueeze(1) masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=current_episode_reward.device ) current_episode_reward += rewards running_episode_stats["reward"] += (1 - masks) * current_episode_reward running_episode_stats["count"] += 1 - masks for k, v in self._extract_scalars_from_infos(infos).items(): v = torch.tensor( v, dtype=torch.float, device=current_episode_reward.device ).unsqueeze(1) if k not in running_episode_stats: running_episode_stats[k] = torch.zeros_like( running_episode_stats["count"] ) running_episode_stats[k] += (1 - masks) * v current_episode_reward *= masks rollouts.insert( batch, recurrent_hidden_states, actions, actions_log_probs, values, rewards.to(device=self.device), masks.to(device=self.device), ) pth_time += time.time() - t_update_stats return pth_time, env_time, self.envs.num_envs def _update_agent(self, ppo_cfg, rollouts): t_update_model = time.time() with torch.no_grad(): last_observation = { k: v[-1] for k, v in rollouts.observations.items() } next_value = self.actor_critic.get_value( last_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step] ).detach() rollouts.compute_returns( next_value, ppo_cfg.use_gae, ppo_cfg.gamma, ppo_cfg.tau ) value_loss, action_loss, dist_entropy = self.agent.update(rollouts) rollouts.after_update() return ( time.time() - t_update_model, value_loss, action_loss, dist_entropy, ) def train(self) -> None: r"""Main method for training PPO. Returns: None """ logger.info(f"config: {self.config}") random.seed(self.config.SEED) np.random.seed(self.config.SEED) torch.manual_seed(self.config.SEED) # add_signal_handlers() self.envs = construct_envs( self.config, get_env_class(self.config.ENV_NAME), workers_ignore_signals=True ) ppo_cfg = self.config.RL.PPO self.device = ( torch.device("cuda", self.config.TORCH_GPU_ID) if torch.cuda.is_available() else torch.device("cpu") ) if not os.path.isdir(self.config.CHECKPOINT_FOLDER): os.makedirs(self.config.CHECKPOINT_FOLDER) self._setup_actor_critic_agent(ppo_cfg) logger.info( "agent number of parameters: {}".format( sum(param.numel() for param in self.agent.parameters()) ) ) rollouts = RolloutStorage( ppo_cfg.num_steps, self.envs.num_envs, self.envs.observation_spaces[0], self.envs.action_spaces[0], ppo_cfg.hidden_size ) rollouts.to(self.device) observations = self.envs.reset() batch = batch_obs(observations) for sensor in rollouts.observations: rollouts.observations[sensor][0].copy_(batch[sensor]) # batch and observations may contain shared PyTorch CUDA # tensors. We must explicitly clear them here otherwise # they will be kept in memory for the entire duration of training! batch = None observations = None current_episode_reward = torch.zeros(self.envs.num_envs, 1) running_episode_stats = dict(
random_line_split
ppo_trainer.py
po_cfg: config node with relevant params Returns: None """ logger.add_filehandler(self.config.LOG_FILE) if observation_space is None: observation_space = self.envs.observation_spaces[0] self.actor_critic = AudioNavBaselinePolicy( observation_space=observation_space, action_space=self.envs.action_spaces[0], hidden_size=ppo_cfg.hidden_size, goal_sensor_uuid=self.config.TASK_CONFIG.TASK.GOAL_SENSOR_UUID, extra_rgb=self.config.EXTRA_RGB ) self.agent = PPO( actor_critic=self.actor_critic, clip_param=ppo_cfg.clip_param, ppo_epoch=ppo_cfg.ppo_epoch, num_mini_batch=ppo_cfg.num_mini_batch, value_loss_coef=ppo_cfg.value_loss_coef, entropy_coef=ppo_cfg.entropy_coef, lr=ppo_cfg.lr, eps=ppo_cfg.eps, max_grad_norm=ppo_cfg.max_grad_norm, ) if self.config.RESUME: ckpt_dict = self.load_checkpoint('data/models/smt_with_pose/ckpt.400.pth', map_location="cpu") self.agent.actor_critic.net.visual_encoder.load_state_dict(self.search_dict(ckpt_dict, 'visual_encoder')) self.agent.actor_critic.net.goal_encoder.load_state_dict(self.search_dict(ckpt_dict, 'goal_encoder')) self.agent.actor_critic.net.action_encoder.load_state_dict(self.search_dict(ckpt_dict, 'action_encoder')) self.actor_critic.to(self.device) @staticmethod def search_dict(ckpt_dict, encoder_name): encoder_dict = {} for key, value in ckpt_dict['state_dict'].items(): if encoder_name in key: encoder_dict['.'.join(key.split('.')[3:])] = value return encoder_dict def save_checkpoint( self, file_name: str, extra_state=None ) -> None: checkpoint = { "state_dict": self.agent.state_dict(), "config": self.config, } if extra_state is not None: checkpoint["extra_state"] = extra_state torch.save( checkpoint, os.path.join(self.config.CHECKPOINT_FOLDER, file_name) ) def load_checkpoint(self, checkpoint_path: str, *args, **kwargs) -> Dict: r"""Load checkpoint of specified path as a dict. Args: checkpoint_path: path of target checkpoint *args: additional positional args **kwargs: additional keyword args Returns: dict containing checkpoint info """ return torch.load(checkpoint_path, *args, **kwargs) def try_to_resume_checkpoint(self): checkpoints = glob.glob(f"{self.config.CHECKPOINT_FOLDER}/*.pth") if len(checkpoints) == 0: count_steps = 0 count_checkpoints = 0 start_update = 0 else: last_ckpt = sorted(checkpoints, key=lambda x: int(x.split(".")[1]))[-1] checkpoint_path = last_ckpt # Restore checkpoints to models ckpt_dict = self.load_checkpoint(checkpoint_path) self.agent.load_state_dict(ckpt_dict["state_dict"]) ckpt_id = int(last_ckpt.split("/")[-1].split(".")[1]) count_steps = ckpt_dict["extra_state"]["step"] count_checkpoints = ckpt_id + 1 start_update = ckpt_dict["config"].CHECKPOINT_INTERVAL * ckpt_id + 1 print(f"Resuming checkpoint {last_ckpt} at {count_steps} frames") return count_steps, count_checkpoints, start_update METRICS_BLACKLIST = {"top_down_map", "collisions.is_collision"} @classmethod def _extract_scalars_from_info( cls, info: Dict[str, Any] ) -> Dict[str, float]: result = {} for k, v in info.items(): if k in cls.METRICS_BLACKLIST: continue if isinstance(v, dict): result.update( { k + "." + subk: subv for subk, subv in cls._extract_scalars_from_info( v ).items() if (k + "." + subk) not in cls.METRICS_BLACKLIST } ) # Things that are scalar-like will have an np.size of 1. # Strings also have an np.size of 1, so explicitly ban those elif np.size(v) == 1 and not isinstance(v, str): result[k] = float(v) return result @classmethod def
( cls, infos: List[Dict[str, Any]] ) -> Dict[str, List[float]]: results = defaultdict(list) for i in range(len(infos)): for k, v in cls._extract_scalars_from_info(infos[i]).items(): results[k].append(v) return results def _collect_rollout_step( self, rollouts, current_episode_reward, running_episode_stats ): pth_time = 0.0 env_time = 0.0 t_sample_action = time.time() # sample actions with torch.no_grad(): step_observation = { k: v[rollouts.step] for k, v in rollouts.observations.items() } ( values, actions, actions_log_probs, recurrent_hidden_states ) = self.actor_critic.act( step_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step], ) pth_time += time.time() - t_sample_action t_step_env = time.time() outputs = self.envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] logging.debug('Reward: {}'.format(rewards[0])) env_time += time.time() - t_step_env t_update_stats = time.time() batch = batch_obs(observations, device=self.device) rewards = torch.tensor(rewards, dtype=torch.float, device=current_episode_reward.device) rewards = rewards.unsqueeze(1) masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=current_episode_reward.device ) current_episode_reward += rewards running_episode_stats["reward"] += (1 - masks) * current_episode_reward running_episode_stats["count"] += 1 - masks for k, v in self._extract_scalars_from_infos(infos).items(): v = torch.tensor( v, dtype=torch.float, device=current_episode_reward.device ).unsqueeze(1) if k not in running_episode_stats: running_episode_stats[k] = torch.zeros_like( running_episode_stats["count"] ) running_episode_stats[k] += (1 - masks) * v current_episode_reward *= masks rollouts.insert( batch, recurrent_hidden_states, actions, actions_log_probs, values, rewards.to(device=self.device), masks.to(device=self.device), ) pth_time += time.time() - t_update_stats return pth_time, env_time, self.envs.num_envs def _update_agent(self, ppo_cfg, rollouts): t_update_model = time.time() with torch.no_grad(): last_observation = { k: v[-1] for k, v in rollouts.observations.items() } next_value = self.actor_critic.get_value( last_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step] ).detach() rollouts.compute_returns( next_value, ppo_cfg.use_gae, ppo_cfg.gamma, ppo_cfg.tau ) value_loss, action_loss, dist_entropy = self.agent.update(rollouts) rollouts.after_update() return ( time.time() - t_update_model, value_loss, action_loss, dist_entropy, ) def train(self) -> None: r"""Main method for training PPO. Returns: None """ logger.info(f"config: {self.config}") random.seed(self.config.SEED) np.random.seed(self.config.SEED) torch.manual_seed(self.config.SEED) # add_signal_handlers() self.envs = construct_envs( self.config, get_env_class(self.config.ENV_NAME), workers_ignore_signals=True ) ppo_cfg = self.config.RL.PPO self.device = ( torch.device("cuda", self.config.TORCH_GPU_ID) if torch.cuda.is_available() else torch.device("cpu") ) if not os.path.isdir(self.config.CHECKPOINT_FOLDER): os.makedirs(self.config.CHECKPOINT_FOLDER) self._setup_actor_critic_agent(ppo_cfg) logger.info( "agent number of parameters: {}".format( sum(param.numel() for param in self.agent.parameters()) ) ) rollouts = RolloutStorage( ppo_cfg.num_steps, self.envs.num_envs, self.envs.observation_spaces[0], self.envs.action_spaces[0], ppo_cfg.hidden_size ) rollouts.to(self.device) observations = self.envs.reset() batch = batch_obs
_extract_scalars_from_infos
identifier_name
ppo_trainer.py
have an np.size of 1, so explicitly ban those elif np.size(v) == 1 and not isinstance(v, str): result[k] = float(v) return result @classmethod def _extract_scalars_from_infos( cls, infos: List[Dict[str, Any]] ) -> Dict[str, List[float]]: results = defaultdict(list) for i in range(len(infos)): for k, v in cls._extract_scalars_from_info(infos[i]).items(): results[k].append(v) return results def _collect_rollout_step( self, rollouts, current_episode_reward, running_episode_stats ): pth_time = 0.0 env_time = 0.0 t_sample_action = time.time() # sample actions with torch.no_grad(): step_observation = { k: v[rollouts.step] for k, v in rollouts.observations.items() } ( values, actions, actions_log_probs, recurrent_hidden_states ) = self.actor_critic.act( step_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step], ) pth_time += time.time() - t_sample_action t_step_env = time.time() outputs = self.envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [list(x) for x in zip(*outputs)] logging.debug('Reward: {}'.format(rewards[0])) env_time += time.time() - t_step_env t_update_stats = time.time() batch = batch_obs(observations, device=self.device) rewards = torch.tensor(rewards, dtype=torch.float, device=current_episode_reward.device) rewards = rewards.unsqueeze(1) masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=current_episode_reward.device ) current_episode_reward += rewards running_episode_stats["reward"] += (1 - masks) * current_episode_reward running_episode_stats["count"] += 1 - masks for k, v in self._extract_scalars_from_infos(infos).items(): v = torch.tensor( v, dtype=torch.float, device=current_episode_reward.device ).unsqueeze(1) if k not in running_episode_stats: running_episode_stats[k] = torch.zeros_like( running_episode_stats["count"] ) running_episode_stats[k] += (1 - masks) * v current_episode_reward *= masks rollouts.insert( batch, recurrent_hidden_states, actions, actions_log_probs, values, rewards.to(device=self.device), masks.to(device=self.device), ) pth_time += time.time() - t_update_stats return pth_time, env_time, self.envs.num_envs def _update_agent(self, ppo_cfg, rollouts): t_update_model = time.time() with torch.no_grad(): last_observation = { k: v[-1] for k, v in rollouts.observations.items() } next_value = self.actor_critic.get_value( last_observation, rollouts.recurrent_hidden_states[rollouts.step], rollouts.prev_actions[rollouts.step], rollouts.masks[rollouts.step] ).detach() rollouts.compute_returns( next_value, ppo_cfg.use_gae, ppo_cfg.gamma, ppo_cfg.tau ) value_loss, action_loss, dist_entropy = self.agent.update(rollouts) rollouts.after_update() return ( time.time() - t_update_model, value_loss, action_loss, dist_entropy, ) def train(self) -> None: r"""Main method for training PPO. Returns: None """ logger.info(f"config: {self.config}") random.seed(self.config.SEED) np.random.seed(self.config.SEED) torch.manual_seed(self.config.SEED) # add_signal_handlers() self.envs = construct_envs( self.config, get_env_class(self.config.ENV_NAME), workers_ignore_signals=True ) ppo_cfg = self.config.RL.PPO self.device = ( torch.device("cuda", self.config.TORCH_GPU_ID) if torch.cuda.is_available() else torch.device("cpu") ) if not os.path.isdir(self.config.CHECKPOINT_FOLDER): os.makedirs(self.config.CHECKPOINT_FOLDER) self._setup_actor_critic_agent(ppo_cfg) logger.info( "agent number of parameters: {}".format( sum(param.numel() for param in self.agent.parameters()) ) ) rollouts = RolloutStorage( ppo_cfg.num_steps, self.envs.num_envs, self.envs.observation_spaces[0], self.envs.action_spaces[0], ppo_cfg.hidden_size ) rollouts.to(self.device) observations = self.envs.reset() batch = batch_obs(observations) for sensor in rollouts.observations: rollouts.observations[sensor][0].copy_(batch[sensor]) # batch and observations may contain shared PyTorch CUDA # tensors. We must explicitly clear them here otherwise # they will be kept in memory for the entire duration of training! batch = None observations = None current_episode_reward = torch.zeros(self.envs.num_envs, 1) running_episode_stats = dict( count=torch.zeros(self.envs.num_envs, 1), reward=torch.zeros(self.envs.num_envs, 1), ) window_episode_stats = defaultdict( lambda: deque(maxlen=ppo_cfg.reward_window_size) ) t_start = time.time() env_time = 0 pth_time = 0 count_steps = 0 count_checkpoints = 0 start_update = 0 prev_time = 0 lr_scheduler = LambdaLR( optimizer=self.agent.optimizer, lr_lambda=lambda x: linear_decay(x, self.config.NUM_UPDATES), ) interrupted_state = load_interrupted_state(model_dir=self.config.MODEL_DIR) if interrupted_state is not None: self.agent.load_state_dict(interrupted_state["state_dict"]) self.agent.optimizer.load_state_dict( interrupted_state["optimizer_state"] ) lr_scheduler.load_state_dict(interrupted_state["lr_scheduler_state"]) requeue_stats = interrupted_state["requeue_stats"] env_time = requeue_stats["env_time"] pth_time = requeue_stats["pth_time"] count_steps = requeue_stats["count_steps"] count_checkpoints = requeue_stats["count_checkpoints"] start_update = requeue_stats["start_update"] prev_time = requeue_stats["prev_time"] with TensorboardWriter( self.config.TENSORBOARD_DIR, flush_secs=self.flush_secs ) as writer: for update in range(start_update, self.config.NUM_UPDATES): if ppo_cfg.use_linear_lr_decay: lr_scheduler.step() if ppo_cfg.use_linear_clip_decay: self.agent.clip_param = ppo_cfg.clip_param * linear_decay( update, self.config.NUM_UPDATES ) if EXIT.is_set(): self.envs.close() if REQUEUE.is_set(): requeue_stats = dict( env_time=env_time, pth_time=pth_time, count_steps=count_steps, count_checkpoints=count_checkpoints, start_update=update, prev_time=(time.time() - t_start) + prev_time, ) save_interrupted_state( dict( state_dict=self.agent.state_dict(), optimizer_state=self.agent.optimizer.state_dict(), lr_scheduler_state=lr_scheduler.state_dict(), config=self.config, requeue_stats=requeue_stats, ), model_dir=self.config.MODEL_DIR ) requeue_job() return for step in range(ppo_cfg.num_steps): delta_pth_time, delta_env_time, delta_steps = self._collect_rollout_step( rollouts, current_episode_reward, running_episode_stats ) pth_time += delta_pth_time env_time += delta_env_time count_steps += delta_steps delta_pth_time, value_loss, action_loss, dist_entropy = self._update_agent( ppo_cfg, rollouts ) pth_time += delta_pth_time deltas = { k: ( (v[-1] - v[0]).sum().item() if len(v) > 1 else v[0].sum().item() ) for k, v in window_episode_stats.items() } deltas["count"] = max(deltas["count"], 1.0) writer.add_scalar( "Metrics/reward", deltas["reward"] / deltas["count"], count_steps ) # Check to see if there are any metrics # that haven't been logged yet metrics = { k: v / deltas["count"] for k, v in deltas.items() if k not in {"reward", "count"} } if len(metrics) > 0: # writer.add_scalars("metrics", metrics, count_steps)
for metric, value in metrics.items(): writer.add_scalar(f"Metrics/{metric}", value, count_steps)
conditional_block
imaging-multibeam.py
go to scratch space on the node. scratch = os.getenv("TMPDIR") if __name__ == "__main__": # Our single command line argument is a parset containing all # configuration information we'll need. input_parset = lofar.parameterset.parameterset(sys.argv[1]) # We require `sbs_per_beam` input MeasurementSets for each beam, including # the calibrator. sbs_per_beam = sum(input_parset.getIntVector("band_size")) print "Locating calibrator data and checking paths" ms_cal = {} ms_cal["datafiles"] = read_ms_list(input_parset.getString("cal_ms_list")) assert(len(ms_cal["datafiles"]) == sbs_per_beam) ms_cal["output_dir"] = os.path.join( input_parset.getString("output_dir"), "calibrator", input_parset.getString("cal_obsid") ) make_directory(ms_cal["output_dir"]) print "Copying calibrator subbands to output" ms_cal["datafiles"] = copy_to_work_area(ms_cal["datafiles"], ms_cal["output_dir"]) print "Locating target data and checking paths" # ms_target will be a dict that provides all the information we need to # process each independent element of the observation, where an "element" # is a combination of a beam (SAP) and a band (number of subbands) ms_target = {} target_mss = read_ms_list(input_parset.getString("target_ms_list")) assert(len(target_mss) == input_parset.getInt("n_beams") * sbs_per_beam) for beam, data in enumerate(zip(*[iter(target_mss)]*sbs_per_beam)): start_sb = 0 for band, band_size in enumerate(input_parset.getIntVector("band_size")): target_info = {} target_info['datafiles'] = target_mss[start_sb:start_sb+band_size] target_info['calfiles' ] = ms_cal["datafiles"][start_sb:start_sb+band_size] assert(len(target_info['datafiles']) == len(target_info['calfiles'])) target_info['output_dir'] = os.path.join( input_parset.getString("output_dir"), "target", input_parset.getString("target_obsid"), "SAP00%d" % (beam,) ) make_directory(target_info["output_dir"]) target_info["output_ms"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.MS" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_ms"])) target_info["output_im"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.img" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_im"])) pointing = map(math.degrees, table("%s::FIELD" % target_info["datafiles"][0]).getcol("REFERENCE_DIR")[0][0]) target_info["skymodel"] = os.path.join( input_parset.getString("skymodel_dir"), "%.2f_%.2f.skymodel" % (pointing[0], pointing[1]) ) assert(os.path.exists(target_info["skymodel"])) ms_target["SAP00%d_band%d" % (beam, band)] = target_info start_sb += band_size # Copy to working directories for name in ms_target.iterkeys(): print "Copying %s to scratch area" % (name,) ms_target[name]["datafiles"] = copy_to_work_area( ms_target[name]["datafiles"], scratch ) # We'll run as many simultaneous jobs as we have CPUs pool = ThreadPool(cpu_count()) # Calibration of each calibrator subband os.chdir(ms_cal['output_dir']) # Logs will get dumped here clear_calibrate_stand_alone_logs() calcal_parset = get_parset_subset(input_parset, "calcal.parset", scratch) def calibrate_calibrator(cal): source = table("%s::OBSERVATION" % (cal,)).getcol("LOFAR_TARGET")['array'][0].lower().replace(' ', '') skymodel = os.path.join( input_parset.getString("skymodel_dir"), "%s.skymodel" % (source,) ) print "Calibrating %s with skymodel %s" % (cal, skymodel) run_calibrate_standalone(calcal_parset, cal, skymodel, replace_parmdb=True, replace_sourcedb=True) with time_code("Calibration of calibrator"): pool.map(calibrate_calibrator, ms_cal["datafiles"]) # Clip calibrator parmdbs def clip_parmdb(sb): run_process( input_parset.getString("pdbclip.executable"), "--auto", "--sigma=%f" % (input_parset.getFloat("pdbclip.sigma"),), os.path.join(sb, "instrument") ) with time_code("Clip calibrator instrument databases"): pool.map(lambda sb: clip_parmdb(sb), ms_cal["datafiles"]) # Transfer calibration solutions to targets transfer_parset = get_parset_subset(input_parset, "transfer.parset", scratch) transfer_skymodel = input_parset.getString("transfer.skymodel") clear_calibrate_stand_alone_logs() def transfer_calibration(ms_pair): cal, target = ms_pair print "Transferring solution from %s to %s" % (cal, target) parmdb_name = mkdtemp(dir=scratch) run_process("parmexportcal", "in=%s/instrument/" % (cal,), "out=%s" % (parmdb_name,)) run_process("calibrate-stand-alone", "--parmdb", parmdb_name, target, transfer_parset, transfer_skymodel) with time_code("Transfer of calibration solutions"): for target in ms_target.itervalues(): pool.map(transfer_calibration, zip(target["calfiles"], target["datafiles"])) # Combine with NDPPP def combine_ms(target_info): output = os.path.join(mkdtemp(dir=scratch), "combined.MS") run_ndppp( get_parset_subset(input_parset, "combine.parset", scratch), { "msin": str(target_info["datafiles"]), "msout": output } ) target_info["combined_ms"] = output with time_code("Combining target subbands"): pool.map(combine_ms, ms_target.values()) # Phase only calibration of combined target subbands print "Running phase only calibration" def phaseonly(target_info): # We chdir to the scratch directory initially, so that logs get dumped # there, then we'll copy the logs to the output directory when we're # done. try: os.chdir(os.path.dirname(target_info["combined_ms"])) run_calibrate_standalone( get_parset_subset(input_parset, "phaseonly.parset", scratch), target_info["combined_ms"], target_info["skymodel"] ) for logfile in glob.glob( os.path.join( os.path.dirname(target_info["combined_ms"]), "*log" ) ): shutil.copy(logfile, target_info["output_dir"]) except Exception, e: print "Error in phaseonly with %s" % (target_info["combined_ms"]) print str(e) raise # Most Lisa nodes have 24 GB RAM -- we don't want to run out calpool = ThreadPool(6) with time_code("Phase-only calibration"): calpool.map(phaseonly, ms_target.values()) # Strip bad stations. # Note that the combined, calibrated, stripped MS is one of our output # data products, so we save that with the name specified in the parset. def strip_bad_stations(target_info): bad_stations = find_bad_stations(target_info["combined_ms"], scratch) strip_stations(target_info["combined_ms"], target_info["output_ms"], bad_stations) with time_code("Strip bad stations"): pool.map(strip_bad_stations, ms_target.values()) # Limit the length of the baselines we're using. # We'll image a reference table using only the short baselines. maxbl = input_parset.getFloat("limit.max_baseline") def limit_bl(target_info): target_info["bl_limit_ms"] = mkdtemp(dir=scratch)
# We source a special build for using the "new" awimager awim_init = input_parset.getString("awimager.initscript") # Calculate the threshold for cleaning based on the noise in a dirty map # We don't use our threadpool here, since awimager is parallelized noise_parset_name = get_parset_subset(input_parset, "noise.parset", scratch) with time_code("Calculating threshold for cleaning"): for target_info in ms_target.values(): print "Getting threshold for %s" % target_info["output_ms"] target_info["threshold"] = input_parset.getFloat("noise.multiplier") * estimate_noise( target_info["bl_limit_ms
limit_baselines(target_info["output_ms"], target_info["bl_limit_ms"], maxbl) with time_code("Limiting maximum baseline length"): pool.map(limit_bl, ms_target.values())
random_line_split
imaging-multibeam.py
go to scratch space on the node. scratch = os.getenv("TMPDIR") if __name__ == "__main__": # Our single command line argument is a parset containing all # configuration information we'll need. input_parset = lofar.parameterset.parameterset(sys.argv[1]) # We require `sbs_per_beam` input MeasurementSets for each beam, including # the calibrator. sbs_per_beam = sum(input_parset.getIntVector("band_size")) print "Locating calibrator data and checking paths" ms_cal = {} ms_cal["datafiles"] = read_ms_list(input_parset.getString("cal_ms_list")) assert(len(ms_cal["datafiles"]) == sbs_per_beam) ms_cal["output_dir"] = os.path.join( input_parset.getString("output_dir"), "calibrator", input_parset.getString("cal_obsid") ) make_directory(ms_cal["output_dir"]) print "Copying calibrator subbands to output" ms_cal["datafiles"] = copy_to_work_area(ms_cal["datafiles"], ms_cal["output_dir"]) print "Locating target data and checking paths" # ms_target will be a dict that provides all the information we need to # process each independent element of the observation, where an "element" # is a combination of a beam (SAP) and a band (number of subbands) ms_target = {} target_mss = read_ms_list(input_parset.getString("target_ms_list")) assert(len(target_mss) == input_parset.getInt("n_beams") * sbs_per_beam) for beam, data in enumerate(zip(*[iter(target_mss)]*sbs_per_beam)): start_sb = 0 for band, band_size in enumerate(input_parset.getIntVector("band_size")): target_info = {} target_info['datafiles'] = target_mss[start_sb:start_sb+band_size] target_info['calfiles' ] = ms_cal["datafiles"][start_sb:start_sb+band_size] assert(len(target_info['datafiles']) == len(target_info['calfiles'])) target_info['output_dir'] = os.path.join( input_parset.getString("output_dir"), "target", input_parset.getString("target_obsid"), "SAP00%d" % (beam,) ) make_directory(target_info["output_dir"]) target_info["output_ms"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.MS" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_ms"])) target_info["output_im"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.img" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_im"])) pointing = map(math.degrees, table("%s::FIELD" % target_info["datafiles"][0]).getcol("REFERENCE_DIR")[0][0]) target_info["skymodel"] = os.path.join( input_parset.getString("skymodel_dir"), "%.2f_%.2f.skymodel" % (pointing[0], pointing[1]) ) assert(os.path.exists(target_info["skymodel"])) ms_target["SAP00%d_band%d" % (beam, band)] = target_info start_sb += band_size # Copy to working directories for name in ms_target.iterkeys(): print "Copying %s to scratch area" % (name,) ms_target[name]["datafiles"] = copy_to_work_area( ms_target[name]["datafiles"], scratch ) # We'll run as many simultaneous jobs as we have CPUs pool = ThreadPool(cpu_count()) # Calibration of each calibrator subband os.chdir(ms_cal['output_dir']) # Logs will get dumped here clear_calibrate_stand_alone_logs() calcal_parset = get_parset_subset(input_parset, "calcal.parset", scratch) def calibrate_calibrator(cal): source = table("%s::OBSERVATION" % (cal,)).getcol("LOFAR_TARGET")['array'][0].lower().replace(' ', '') skymodel = os.path.join( input_parset.getString("skymodel_dir"), "%s.skymodel" % (source,) ) print "Calibrating %s with skymodel %s" % (cal, skymodel) run_calibrate_standalone(calcal_parset, cal, skymodel, replace_parmdb=True, replace_sourcedb=True) with time_code("Calibration of calibrator"): pool.map(calibrate_calibrator, ms_cal["datafiles"]) # Clip calibrator parmdbs def clip_parmdb(sb): run_process( input_parset.getString("pdbclip.executable"), "--auto", "--sigma=%f" % (input_parset.getFloat("pdbclip.sigma"),), os.path.join(sb, "instrument") ) with time_code("Clip calibrator instrument databases"): pool.map(lambda sb: clip_parmdb(sb), ms_cal["datafiles"]) # Transfer calibration solutions to targets transfer_parset = get_parset_subset(input_parset, "transfer.parset", scratch) transfer_skymodel = input_parset.getString("transfer.skymodel") clear_calibrate_stand_alone_logs() def transfer_calibration(ms_pair): cal, target = ms_pair print "Transferring solution from %s to %s" % (cal, target) parmdb_name = mkdtemp(dir=scratch) run_process("parmexportcal", "in=%s/instrument/" % (cal,), "out=%s" % (parmdb_name,)) run_process("calibrate-stand-alone", "--parmdb", parmdb_name, target, transfer_parset, transfer_skymodel) with time_code("Transfer of calibration solutions"): for target in ms_target.itervalues(): pool.map(transfer_calibration, zip(target["calfiles"], target["datafiles"])) # Combine with NDPPP def combine_ms(target_info): output = os.path.join(mkdtemp(dir=scratch), "combined.MS") run_ndppp( get_parset_subset(input_parset, "combine.parset", scratch), { "msin": str(target_info["datafiles"]), "msout": output } ) target_info["combined_ms"] = output with time_code("Combining target subbands"): pool.map(combine_ms, ms_target.values()) # Phase only calibration of combined target subbands print "Running phase only calibration" def phaseonly(target_info): # We chdir to the scratch directory initially, so that logs get dumped # there, then we'll copy the logs to the output directory when we're # done. try: os.chdir(os.path.dirname(target_info["combined_ms"])) run_calibrate_standalone( get_parset_subset(input_parset, "phaseonly.parset", scratch), target_info["combined_ms"], target_info["skymodel"] ) for logfile in glob.glob( os.path.join( os.path.dirname(target_info["combined_ms"]), "*log" ) ): shutil.copy(logfile, target_info["output_dir"]) except Exception, e: print "Error in phaseonly with %s" % (target_info["combined_ms"]) print str(e) raise # Most Lisa nodes have 24 GB RAM -- we don't want to run out calpool = ThreadPool(6) with time_code("Phase-only calibration"): calpool.map(phaseonly, ms_target.values()) # Strip bad stations. # Note that the combined, calibrated, stripped MS is one of our output # data products, so we save that with the name specified in the parset. def strip_bad_stations(target_info): bad_stations = find_bad_stations(target_info["combined_ms"], scratch) strip_stations(target_info["combined_ms"], target_info["output_ms"], bad_stations) with time_code("Strip bad stations"): pool.map(strip_bad_stations, ms_target.values()) # Limit the length of the baselines we're using. # We'll image a reference table using only the short baselines. maxbl = input_parset.getFloat("limit.max_baseline") def limit_bl(target_info):
with time_code("Limiting maximum baseline length"): pool.map(limit_bl, ms_target.values()) # We source a special build for using the "new" awimager awim_init = input_parset.getString("awimager.initscript") # Calculate the threshold for cleaning based on the noise in a dirty map # We don't use our threadpool here, since awimager is parallelized noise_parset_name = get_parset_subset(input_parset, "noise.parset", scratch) with time_code("Calculating threshold for cleaning"): for target_info in ms_target.values(): print "Getting threshold for %s" % target_info["output_ms"] target_info["threshold"] = input_parset.getFloat("noise.multiplier") * estimate_noise( target_info["bl_limit_ms
target_info["bl_limit_ms"] = mkdtemp(dir=scratch) limit_baselines(target_info["output_ms"], target_info["bl_limit_ms"], maxbl)
identifier_body
imaging-multibeam.py
go to scratch space on the node. scratch = os.getenv("TMPDIR") if __name__ == "__main__": # Our single command line argument is a parset containing all # configuration information we'll need. input_parset = lofar.parameterset.parameterset(sys.argv[1]) # We require `sbs_per_beam` input MeasurementSets for each beam, including # the calibrator. sbs_per_beam = sum(input_parset.getIntVector("band_size")) print "Locating calibrator data and checking paths" ms_cal = {} ms_cal["datafiles"] = read_ms_list(input_parset.getString("cal_ms_list")) assert(len(ms_cal["datafiles"]) == sbs_per_beam) ms_cal["output_dir"] = os.path.join( input_parset.getString("output_dir"), "calibrator", input_parset.getString("cal_obsid") ) make_directory(ms_cal["output_dir"]) print "Copying calibrator subbands to output" ms_cal["datafiles"] = copy_to_work_area(ms_cal["datafiles"], ms_cal["output_dir"]) print "Locating target data and checking paths" # ms_target will be a dict that provides all the information we need to # process each independent element of the observation, where an "element" # is a combination of a beam (SAP) and a band (number of subbands) ms_target = {} target_mss = read_ms_list(input_parset.getString("target_ms_list")) assert(len(target_mss) == input_parset.getInt("n_beams") * sbs_per_beam) for beam, data in enumerate(zip(*[iter(target_mss)]*sbs_per_beam)): start_sb = 0 for band, band_size in enumerate(input_parset.getIntVector("band_size")): target_info = {} target_info['datafiles'] = target_mss[start_sb:start_sb+band_size] target_info['calfiles' ] = ms_cal["datafiles"][start_sb:start_sb+band_size] assert(len(target_info['datafiles']) == len(target_info['calfiles'])) target_info['output_dir'] = os.path.join( input_parset.getString("output_dir"), "target", input_parset.getString("target_obsid"), "SAP00%d" % (beam,) ) make_directory(target_info["output_dir"]) target_info["output_ms"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.MS" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_ms"])) target_info["output_im"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.img" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_im"])) pointing = map(math.degrees, table("%s::FIELD" % target_info["datafiles"][0]).getcol("REFERENCE_DIR")[0][0]) target_info["skymodel"] = os.path.join( input_parset.getString("skymodel_dir"), "%.2f_%.2f.skymodel" % (pointing[0], pointing[1]) ) assert(os.path.exists(target_info["skymodel"])) ms_target["SAP00%d_band%d" % (beam, band)] = target_info start_sb += band_size # Copy to working directories for name in ms_target.iterkeys(): print "Copying %s to scratch area" % (name,) ms_target[name]["datafiles"] = copy_to_work_area( ms_target[name]["datafiles"], scratch ) # We'll run as many simultaneous jobs as we have CPUs pool = ThreadPool(cpu_count()) # Calibration of each calibrator subband os.chdir(ms_cal['output_dir']) # Logs will get dumped here clear_calibrate_stand_alone_logs() calcal_parset = get_parset_subset(input_parset, "calcal.parset", scratch) def calibrate_calibrator(cal): source = table("%s::OBSERVATION" % (cal,)).getcol("LOFAR_TARGET")['array'][0].lower().replace(' ', '') skymodel = os.path.join( input_parset.getString("skymodel_dir"), "%s.skymodel" % (source,) ) print "Calibrating %s with skymodel %s" % (cal, skymodel) run_calibrate_standalone(calcal_parset, cal, skymodel, replace_parmdb=True, replace_sourcedb=True) with time_code("Calibration of calibrator"): pool.map(calibrate_calibrator, ms_cal["datafiles"]) # Clip calibrator parmdbs def clip_parmdb(sb): run_process( input_parset.getString("pdbclip.executable"), "--auto", "--sigma=%f" % (input_parset.getFloat("pdbclip.sigma"),), os.path.join(sb, "instrument") ) with time_code("Clip calibrator instrument databases"): pool.map(lambda sb: clip_parmdb(sb), ms_cal["datafiles"]) # Transfer calibration solutions to targets transfer_parset = get_parset_subset(input_parset, "transfer.parset", scratch) transfer_skymodel = input_parset.getString("transfer.skymodel") clear_calibrate_stand_alone_logs() def transfer_calibration(ms_pair): cal, target = ms_pair print "Transferring solution from %s to %s" % (cal, target) parmdb_name = mkdtemp(dir=scratch) run_process("parmexportcal", "in=%s/instrument/" % (cal,), "out=%s" % (parmdb_name,)) run_process("calibrate-stand-alone", "--parmdb", parmdb_name, target, transfer_parset, transfer_skymodel) with time_code("Transfer of calibration solutions"): for target in ms_target.itervalues(): pool.map(transfer_calibration, zip(target["calfiles"], target["datafiles"])) # Combine with NDPPP def
(target_info): output = os.path.join(mkdtemp(dir=scratch), "combined.MS") run_ndppp( get_parset_subset(input_parset, "combine.parset", scratch), { "msin": str(target_info["datafiles"]), "msout": output } ) target_info["combined_ms"] = output with time_code("Combining target subbands"): pool.map(combine_ms, ms_target.values()) # Phase only calibration of combined target subbands print "Running phase only calibration" def phaseonly(target_info): # We chdir to the scratch directory initially, so that logs get dumped # there, then we'll copy the logs to the output directory when we're # done. try: os.chdir(os.path.dirname(target_info["combined_ms"])) run_calibrate_standalone( get_parset_subset(input_parset, "phaseonly.parset", scratch), target_info["combined_ms"], target_info["skymodel"] ) for logfile in glob.glob( os.path.join( os.path.dirname(target_info["combined_ms"]), "*log" ) ): shutil.copy(logfile, target_info["output_dir"]) except Exception, e: print "Error in phaseonly with %s" % (target_info["combined_ms"]) print str(e) raise # Most Lisa nodes have 24 GB RAM -- we don't want to run out calpool = ThreadPool(6) with time_code("Phase-only calibration"): calpool.map(phaseonly, ms_target.values()) # Strip bad stations. # Note that the combined, calibrated, stripped MS is one of our output # data products, so we save that with the name specified in the parset. def strip_bad_stations(target_info): bad_stations = find_bad_stations(target_info["combined_ms"], scratch) strip_stations(target_info["combined_ms"], target_info["output_ms"], bad_stations) with time_code("Strip bad stations"): pool.map(strip_bad_stations, ms_target.values()) # Limit the length of the baselines we're using. # We'll image a reference table using only the short baselines. maxbl = input_parset.getFloat("limit.max_baseline") def limit_bl(target_info): target_info["bl_limit_ms"] = mkdtemp(dir=scratch) limit_baselines(target_info["output_ms"], target_info["bl_limit_ms"], maxbl) with time_code("Limiting maximum baseline length"): pool.map(limit_bl, ms_target.values()) # We source a special build for using the "new" awimager awim_init = input_parset.getString("awimager.initscript") # Calculate the threshold for cleaning based on the noise in a dirty map # We don't use our threadpool here, since awimager is parallelized noise_parset_name = get_parset_subset(input_parset, "noise.parset", scratch) with time_code("Calculating threshold for cleaning"): for target_info in ms_target.values(): print "Getting threshold for %s" % target_info["output_ms"] target_info["threshold"] = input_parset.getFloat("noise.multiplier") * estimate_noise( target_info["bl_limit_ms
combine_ms
identifier_name
imaging-multibeam.py
to scratch space on the node. scratch = os.getenv("TMPDIR") if __name__ == "__main__": # Our single command line argument is a parset containing all # configuration information we'll need. input_parset = lofar.parameterset.parameterset(sys.argv[1]) # We require `sbs_per_beam` input MeasurementSets for each beam, including # the calibrator. sbs_per_beam = sum(input_parset.getIntVector("band_size")) print "Locating calibrator data and checking paths" ms_cal = {} ms_cal["datafiles"] = read_ms_list(input_parset.getString("cal_ms_list")) assert(len(ms_cal["datafiles"]) == sbs_per_beam) ms_cal["output_dir"] = os.path.join( input_parset.getString("output_dir"), "calibrator", input_parset.getString("cal_obsid") ) make_directory(ms_cal["output_dir"]) print "Copying calibrator subbands to output" ms_cal["datafiles"] = copy_to_work_area(ms_cal["datafiles"], ms_cal["output_dir"]) print "Locating target data and checking paths" # ms_target will be a dict that provides all the information we need to # process each independent element of the observation, where an "element" # is a combination of a beam (SAP) and a band (number of subbands) ms_target = {} target_mss = read_ms_list(input_parset.getString("target_ms_list")) assert(len(target_mss) == input_parset.getInt("n_beams") * sbs_per_beam) for beam, data in enumerate(zip(*[iter(target_mss)]*sbs_per_beam)): start_sb = 0 for band, band_size in enumerate(input_parset.getIntVector("band_size")): target_info = {} target_info['datafiles'] = target_mss[start_sb:start_sb+band_size] target_info['calfiles' ] = ms_cal["datafiles"][start_sb:start_sb+band_size] assert(len(target_info['datafiles']) == len(target_info['calfiles'])) target_info['output_dir'] = os.path.join( input_parset.getString("output_dir"), "target", input_parset.getString("target_obsid"), "SAP00%d" % (beam,) ) make_directory(target_info["output_dir"]) target_info["output_ms"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.MS" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_ms"])) target_info["output_im"] = os.path.join(target_info["output_dir"], "%s_SAP00%d_band%d.img" % (input_parset.getString("target_obsid"), beam, band)) assert(not os.path.exists(target_info["output_im"])) pointing = map(math.degrees, table("%s::FIELD" % target_info["datafiles"][0]).getcol("REFERENCE_DIR")[0][0]) target_info["skymodel"] = os.path.join( input_parset.getString("skymodel_dir"), "%.2f_%.2f.skymodel" % (pointing[0], pointing[1]) ) assert(os.path.exists(target_info["skymodel"])) ms_target["SAP00%d_band%d" % (beam, band)] = target_info start_sb += band_size # Copy to working directories for name in ms_target.iterkeys(): print "Copying %s to scratch area" % (name,) ms_target[name]["datafiles"] = copy_to_work_area( ms_target[name]["datafiles"], scratch ) # We'll run as many simultaneous jobs as we have CPUs pool = ThreadPool(cpu_count()) # Calibration of each calibrator subband os.chdir(ms_cal['output_dir']) # Logs will get dumped here clear_calibrate_stand_alone_logs() calcal_parset = get_parset_subset(input_parset, "calcal.parset", scratch) def calibrate_calibrator(cal): source = table("%s::OBSERVATION" % (cal,)).getcol("LOFAR_TARGET")['array'][0].lower().replace(' ', '') skymodel = os.path.join( input_parset.getString("skymodel_dir"), "%s.skymodel" % (source,) ) print "Calibrating %s with skymodel %s" % (cal, skymodel) run_calibrate_standalone(calcal_parset, cal, skymodel, replace_parmdb=True, replace_sourcedb=True) with time_code("Calibration of calibrator"): pool.map(calibrate_calibrator, ms_cal["datafiles"]) # Clip calibrator parmdbs def clip_parmdb(sb): run_process( input_parset.getString("pdbclip.executable"), "--auto", "--sigma=%f" % (input_parset.getFloat("pdbclip.sigma"),), os.path.join(sb, "instrument") ) with time_code("Clip calibrator instrument databases"): pool.map(lambda sb: clip_parmdb(sb), ms_cal["datafiles"]) # Transfer calibration solutions to targets transfer_parset = get_parset_subset(input_parset, "transfer.parset", scratch) transfer_skymodel = input_parset.getString("transfer.skymodel") clear_calibrate_stand_alone_logs() def transfer_calibration(ms_pair): cal, target = ms_pair print "Transferring solution from %s to %s" % (cal, target) parmdb_name = mkdtemp(dir=scratch) run_process("parmexportcal", "in=%s/instrument/" % (cal,), "out=%s" % (parmdb_name,)) run_process("calibrate-stand-alone", "--parmdb", parmdb_name, target, transfer_parset, transfer_skymodel) with time_code("Transfer of calibration solutions"): for target in ms_target.itervalues(): pool.map(transfer_calibration, zip(target["calfiles"], target["datafiles"])) # Combine with NDPPP def combine_ms(target_info): output = os.path.join(mkdtemp(dir=scratch), "combined.MS") run_ndppp( get_parset_subset(input_parset, "combine.parset", scratch), { "msin": str(target_info["datafiles"]), "msout": output } ) target_info["combined_ms"] = output with time_code("Combining target subbands"): pool.map(combine_ms, ms_target.values()) # Phase only calibration of combined target subbands print "Running phase only calibration" def phaseonly(target_info): # We chdir to the scratch directory initially, so that logs get dumped # there, then we'll copy the logs to the output directory when we're # done. try: os.chdir(os.path.dirname(target_info["combined_ms"])) run_calibrate_standalone( get_parset_subset(input_parset, "phaseonly.parset", scratch), target_info["combined_ms"], target_info["skymodel"] ) for logfile in glob.glob( os.path.join( os.path.dirname(target_info["combined_ms"]), "*log" ) ):
except Exception, e: print "Error in phaseonly with %s" % (target_info["combined_ms"]) print str(e) raise # Most Lisa nodes have 24 GB RAM -- we don't want to run out calpool = ThreadPool(6) with time_code("Phase-only calibration"): calpool.map(phaseonly, ms_target.values()) # Strip bad stations. # Note that the combined, calibrated, stripped MS is one of our output # data products, so we save that with the name specified in the parset. def strip_bad_stations(target_info): bad_stations = find_bad_stations(target_info["combined_ms"], scratch) strip_stations(target_info["combined_ms"], target_info["output_ms"], bad_stations) with time_code("Strip bad stations"): pool.map(strip_bad_stations, ms_target.values()) # Limit the length of the baselines we're using. # We'll image a reference table using only the short baselines. maxbl = input_parset.getFloat("limit.max_baseline") def limit_bl(target_info): target_info["bl_limit_ms"] = mkdtemp(dir=scratch) limit_baselines(target_info["output_ms"], target_info["bl_limit_ms"], maxbl) with time_code("Limiting maximum baseline length"): pool.map(limit_bl, ms_target.values()) # We source a special build for using the "new" awimager awim_init = input_parset.getString("awimager.initscript") # Calculate the threshold for cleaning based on the noise in a dirty map # We don't use our threadpool here, since awimager is parallelized noise_parset_name = get_parset_subset(input_parset, "noise.parset", scratch) with time_code("Calculating threshold for cleaning"): for target_info in ms_target.values(): print "Getting threshold for %s" % target_info["output_ms"] target_info["threshold"] = input_parset.getFloat("noise.multiplier") * estimate_noise( target_info["bl_limit_ms
shutil.copy(logfile, target_info["output_dir"])
conditional_block
bressan_computerscience.py
""" loans_lenders = loans_lenders_import.explode('lenders').drop_duplicates() loans_lenders.head(5) """####2. **For each loan, add a column duration corresponding to the number of days between the disburse time and the planned expiration time. If any of those two dates is missing, also the duration must be missing.** I calculate _duration_ on the _loans_ dataframe, converting needed columns to datetime. Please note: with _errors="coerce"_ option the system will set to NaN all values that cannot be converted. """ loans_import['planned_expiration_time']= pd.to_datetime(loans_import['planned_expiration_time'], format="%Y-%m-%d %H:%M:%S", errors="coerce") loans_import['disburse_time']= pd.to_datetime(loans_import['disburse_time'], format="%Y-%m-%d %H:%M:%S", errors="coerce") loans_import['duration'] = loans_import['planned_expiration_time'] - loans_import['disburse_time'] loans_import.head(5) """####3. **Find the lenders that have funded at least twice.**""" lender_foundings = loans_lenders.groupby('lenders').size().reset_index(name='foundings') lender_foundings[lender_foundings['foundings'] > 2] """####4. **For each country, compute how many loans have involved that country as borrowers.**""" country_loans = loans_import.groupby('country_code').size().reset_index(name='loans') country_loans.head(10) """####5. **For each country, compute the overall amount of money borrowed.**""" country_loans_amount = loans_import.groupby('country_code')['loan_amount'].agg('sum').reset_index(name='overall_founds') country_loans_amount.head(5) """####6. **Like the previous point, but expressed as a percentage of the overall amount lent.**""" country_loans_amount['overall_founds_perc'] = country_loans_amount.overall_founds / country_loans_amount.overall_founds.sum() country_loans_amount.head(5) """####7. **Like the three previous points, but split for each year (with respect to disburse time).**""" loans_import['disburse_year'] = pd.DatetimeIndex(loans_import['disburse_time']).year country_year_loans = loans_import.groupby(['country_code','disburse_year']).size().reset_index(name='loans') country_year_loans_amount = loans_import.groupby(['country_code','disburse_year'])['loan_amount'].agg('sum').reset_index(name='overall_founds') country_year_loans_amount['overall_founds_perc'] = country_year_loans_amount.overall_founds / country_year_loans_amount.overall_founds.sum() country_year_loans.head(5) country_year_loans_amount.head(5) """####8. **For each lender, compute the overall amount of money lent. For each loan that has more than one lender, you must assume that all lenders contributed the same amount.** First of all, I need to assing to each lender/loan, the corresponding loan's details. So, I need to join the 2 dataset. To avoid run out of RAM, I reduce the number of variables selected on _loans_import_ """ lender_loan_details = pd.merge( loans_lenders, loans_import[['loan_id','loan_amount']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_details.head(5) """Then, it's possible to group the dataset to obtain the overall amount of money lent""" lender_loan_details.groupby('lenders')['loan_amount'].agg('sum').reset_index(name='overall_money_lent') """####9. **For each country, compute the difference between the overall amount of money lent and the overall amount of money borrowed. Since the country of the lender is often unknown, you can assume that the true distribution among the countries is the same as the one computed from the rows where the country is known.** First of all, I join the _lenders_ and the _loans_lenders_ dataset by lender name, removing lenders without a country code associated """ lenders_import_filtered = lenders_import[lenders_import.country_code.notnull()] lender_loan_country = pd.merge( loans_lenders, lenders_import_filtered[['permanent_name','country_code']], left_on= ['lenders'], right_on= ['permanent_name'], how = 'inner') lender_loan_country['lender_country'] = lender_loan_country['country_code'] lender_loan_country = lender_loan_country[['loan_id', 'lender_country']] lender_loan_country.head(5) """Then, I join obtained dataset with the _loans_ dataset by loan ID""" lender_loan_country_full = pd.merge( lender_loan_country.drop_duplicates(), loans_import[['loan_id','loan_amount','country_code']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_country_full['borrowed_country'] = lender_loan_country_full['country_code'] lender_loan_country_group = lender_loan_country_full.groupby(['lender_country','borrowed_country'])['loan_amount'].agg('sum').reset_index(name='overall_founds') lender_loan_country_group.head(5) """Finally, I can group the obtained dataset by the 2 country columns to obtain requested information""" lender_loan_country_group_borrowers = lender_loan_country_group.groupby(['borrowed_country'])['overall_founds'].agg('sum').reset_index(name='amount_borrowed') lender_loan_country_group_lenders = lender_loan_country_group.groupby(['lender_country'])['overall_founds'].agg('sum').reset_index(name='amount_lent') lender_loan_country_group_join = pd.merge( lender_loan_country_group_borrowers, lender_loan_country_group_lenders, left_on= ['borrowed_country'], right_on= ['lender_country'], how = 'inner') lender_loan_country_group_join['country'] = lender_loan_country_group_join['borrowed_country'] lender_loan_country_group_join = lender_loan_country_group_join[['country','amount_borrowed','amount_lent']] lender_loan_country_group_join['lent_borrowed_ratio'] = lender_loan_country_group_join['amount_borrowed']/lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join['lent_borrowed_delta'] = lender_loan_country_group_join['amount_borrowed'] - lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join.head(5) """####10. **Which country has the highest ratio between the difference computed at the previous point and the population?** To evaluate this ratio, I've to join the previously created dataset with the _country_stats_ one """ lender_loan_country_group_stats = pd.merge( lender_loan_country_group_join, country_stats_import, left_on= ['country'], right_on= ['country_code'], how = 'inner') """Then, I can compute the requested KPI""" lender_loan_country_group_stats1 = lender_loan_country_group_stats lender_loan_country_group_stats1['population_ratio'] = lender_loan_country_group_stats1['lent_borrowed_delta']/lender_loan_country_group_stats1['population'] lender_loan_country_group_stats1 = lender_loan_country_group_stats1[['country','lent_borrowed_delta','population_ratio']] lender_loan_country_group_stats1.head(5) """####11. **Which country has the highest ratio between the difference computed at point 9 and the population that is not below the poverty line?** To evaluate it, we have to multiply the overall population number and the _population_below_poverty_line_ ratio information """ lender_loan_country_group_stats2 = lender_loan_country_group_stats lender_loan_country_group_stats2['population_weighed'] = lender_loan_country_group_stats2['population_below_poverty_line'] * lender_loan_country_group_stats2['population'] lender_loan_country_group_stats2['population_weighed_ratio'] = lender_loan_country_group_stats2['lent_borrowed_delta']/lender_loan_country_group_stats2['population_weighed'] lender_loan_country_group_stats2 = lender_loan_country_group_stats2[['country','lent_borrowed_delta','population_ratio', 'population_weighed_ratio']] lender_loan_country_group_stats2.head(5) """####12. **For each year, compute the total amount of loans. Each loan that has planned expiration time and disburse time in different years must have its amount distributed proportionally to the number of days in each year. For example, a loan with disburse time December 1st, 2016, planned expiration time January 30th 2018, and amount 5000USD has an amount of 5000USD * 31 / (31+365+30) = 363.85 for 2016, 5000USD * 365 / (31+365+30) = 4284.04 for 2017, and 5000USD * 30 / (31+365+30) = 352.11 for 2018.** Let's start defining a function that, given needed information (start date, end date and value) split it by years. """ def
divide_value_by_period
identifier_name
bressan_computerscience.py
(loans_import['disburse_time'], format="%Y-%m-%d %H:%M:%S", errors="coerce") loans_import['duration'] = loans_import['planned_expiration_time'] - loans_import['disburse_time'] loans_import.head(5) """####3. **Find the lenders that have funded at least twice.**""" lender_foundings = loans_lenders.groupby('lenders').size().reset_index(name='foundings') lender_foundings[lender_foundings['foundings'] > 2] """####4. **For each country, compute how many loans have involved that country as borrowers.**""" country_loans = loans_import.groupby('country_code').size().reset_index(name='loans') country_loans.head(10) """####5. **For each country, compute the overall amount of money borrowed.**""" country_loans_amount = loans_import.groupby('country_code')['loan_amount'].agg('sum').reset_index(name='overall_founds') country_loans_amount.head(5) """####6. **Like the previous point, but expressed as a percentage of the overall amount lent.**""" country_loans_amount['overall_founds_perc'] = country_loans_amount.overall_founds / country_loans_amount.overall_founds.sum() country_loans_amount.head(5) """####7. **Like the three previous points, but split for each year (with respect to disburse time).**""" loans_import['disburse_year'] = pd.DatetimeIndex(loans_import['disburse_time']).year country_year_loans = loans_import.groupby(['country_code','disburse_year']).size().reset_index(name='loans') country_year_loans_amount = loans_import.groupby(['country_code','disburse_year'])['loan_amount'].agg('sum').reset_index(name='overall_founds') country_year_loans_amount['overall_founds_perc'] = country_year_loans_amount.overall_founds / country_year_loans_amount.overall_founds.sum() country_year_loans.head(5) country_year_loans_amount.head(5) """####8. **For each lender, compute the overall amount of money lent. For each loan that has more than one lender, you must assume that all lenders contributed the same amount.** First of all, I need to assing to each lender/loan, the corresponding loan's details. So, I need to join the 2 dataset. To avoid run out of RAM, I reduce the number of variables selected on _loans_import_ """ lender_loan_details = pd.merge( loans_lenders, loans_import[['loan_id','loan_amount']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_details.head(5) """Then, it's possible to group the dataset to obtain the overall amount of money lent""" lender_loan_details.groupby('lenders')['loan_amount'].agg('sum').reset_index(name='overall_money_lent') """####9. **For each country, compute the difference between the overall amount of money lent and the overall amount of money borrowed. Since the country of the lender is often unknown, you can assume that the true distribution among the countries is the same as the one computed from the rows where the country is known.** First of all, I join the _lenders_ and the _loans_lenders_ dataset by lender name, removing lenders without a country code associated """ lenders_import_filtered = lenders_import[lenders_import.country_code.notnull()] lender_loan_country = pd.merge( loans_lenders, lenders_import_filtered[['permanent_name','country_code']], left_on= ['lenders'], right_on= ['permanent_name'], how = 'inner') lender_loan_country['lender_country'] = lender_loan_country['country_code'] lender_loan_country = lender_loan_country[['loan_id', 'lender_country']] lender_loan_country.head(5) """Then, I join obtained dataset with the _loans_ dataset by loan ID""" lender_loan_country_full = pd.merge( lender_loan_country.drop_duplicates(), loans_import[['loan_id','loan_amount','country_code']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_country_full['borrowed_country'] = lender_loan_country_full['country_code'] lender_loan_country_group = lender_loan_country_full.groupby(['lender_country','borrowed_country'])['loan_amount'].agg('sum').reset_index(name='overall_founds') lender_loan_country_group.head(5) """Finally, I can group the obtained dataset by the 2 country columns to obtain requested information""" lender_loan_country_group_borrowers = lender_loan_country_group.groupby(['borrowed_country'])['overall_founds'].agg('sum').reset_index(name='amount_borrowed') lender_loan_country_group_lenders = lender_loan_country_group.groupby(['lender_country'])['overall_founds'].agg('sum').reset_index(name='amount_lent') lender_loan_country_group_join = pd.merge( lender_loan_country_group_borrowers, lender_loan_country_group_lenders, left_on= ['borrowed_country'], right_on= ['lender_country'], how = 'inner') lender_loan_country_group_join['country'] = lender_loan_country_group_join['borrowed_country'] lender_loan_country_group_join = lender_loan_country_group_join[['country','amount_borrowed','amount_lent']] lender_loan_country_group_join['lent_borrowed_ratio'] = lender_loan_country_group_join['amount_borrowed']/lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join['lent_borrowed_delta'] = lender_loan_country_group_join['amount_borrowed'] - lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join.head(5) """####10. **Which country has the highest ratio between the difference computed at the previous point and the population?** To evaluate this ratio, I've to join the previously created dataset with the _country_stats_ one """ lender_loan_country_group_stats = pd.merge( lender_loan_country_group_join, country_stats_import, left_on= ['country'], right_on= ['country_code'], how = 'inner') """Then, I can compute the requested KPI""" lender_loan_country_group_stats1 = lender_loan_country_group_stats lender_loan_country_group_stats1['population_ratio'] = lender_loan_country_group_stats1['lent_borrowed_delta']/lender_loan_country_group_stats1['population'] lender_loan_country_group_stats1 = lender_loan_country_group_stats1[['country','lent_borrowed_delta','population_ratio']] lender_loan_country_group_stats1.head(5) """####11. **Which country has the highest ratio between the difference computed at point 9 and the population that is not below the poverty line?** To evaluate it, we have to multiply the overall population number and the _population_below_poverty_line_ ratio information """ lender_loan_country_group_stats2 = lender_loan_country_group_stats lender_loan_country_group_stats2['population_weighed'] = lender_loan_country_group_stats2['population_below_poverty_line'] * lender_loan_country_group_stats2['population'] lender_loan_country_group_stats2['population_weighed_ratio'] = lender_loan_country_group_stats2['lent_borrowed_delta']/lender_loan_country_group_stats2['population_weighed'] lender_loan_country_group_stats2 = lender_loan_country_group_stats2[['country','lent_borrowed_delta','population_ratio', 'population_weighed_ratio']] lender_loan_country_group_stats2.head(5) """####12. **For each year, compute the total amount of loans. Each loan that has planned expiration time and disburse time in different years must have its amount distributed proportionally to the number of days in each year. For example, a loan with disburse time December 1st, 2016, planned expiration time January 30th 2018, and amount 5000USD has an amount of 5000USD * 31 / (31+365+30) = 363.85 for 2016, 5000USD * 365 / (31+365+30) = 4284.04 for 2017, and 5000USD * 30 / (31+365+30) = 352.11 for 2018.** Let's start defining a function that, given needed information (start date, end date and value) split it by years. """ def divide_value_by_period(row):
start_date = row['disburse_time'].tz_localize(None) end_date = row['planned_expiration_time'].tz_localize(None) value = row['loan_amount'] # calculating the difference in years considewring leap years jumps = end_date.year - start_date.year if jumps != 0: dayss = [] starting_year = start_date.year for i in range(jumps): next_year = starting_year + 1 next_year_comp = datetime(next_year, 1, 1) # get the difference in days diff = (next_year_comp - start_date).days dayss.append(diff) # re-assigning start and end dates starting_year = next_year_comp.year start_date = next_year_comp
identifier_body
bressan_computerscience.py
.csv' loans_import = pd.read_csv(loans_url) loans_import.dtypes loans_import.head(2) lenders_url = '/content/drive/My Drive/additional-kiva-snapshot/lenders.csv' lenders_import = pd.read_csv(lenders_url) lenders_import.dtypes lenders_import.head(5) country_stats_url = '/content/drive/My Drive/additional-kiva-snapshot/country_stats.csv' country_stats_import = pd.read_csv(country_stats_url) country_stats_import.dtypes country_stats_import.head(5) """## Questions ####1. **Normalize the loan_lenders table. In the normalized table, each row must have one loan_id and one lender.** First of all, I cast the _lenders_ variable as an array """ loans_lenders_import['lenders'] = loans_lenders_import.lenders.apply(lambda x: x.split(',')) loans_lenders_import.head(2) """Then, I can explode _lenders_ variable. Please note: ".drop_duplicates()" is used to avoid duplicated lenders for load_in, if present in the original _lenders_ array """ loans_lenders = loans_lenders_import.explode('lenders').drop_duplicates() loans_lenders.head(5) """####2. **For each loan, add a column duration corresponding to the number of days between the disburse time and the planned expiration time. If any of those two dates is missing, also the duration must be missing.** I calculate _duration_ on the _loans_ dataframe, converting needed columns to datetime. Please note: with _errors="coerce"_ option the system will set to NaN all values that cannot be converted. """ loans_import['planned_expiration_time']= pd.to_datetime(loans_import['planned_expiration_time'], format="%Y-%m-%d %H:%M:%S", errors="coerce") loans_import['disburse_time']= pd.to_datetime(loans_import['disburse_time'], format="%Y-%m-%d %H:%M:%S", errors="coerce") loans_import['duration'] = loans_import['planned_expiration_time'] - loans_import['disburse_time'] loans_import.head(5) """####3. **Find the lenders that have funded at least twice.**""" lender_foundings = loans_lenders.groupby('lenders').size().reset_index(name='foundings') lender_foundings[lender_foundings['foundings'] > 2] """####4. **For each country, compute how many loans have involved that country as borrowers.**""" country_loans = loans_import.groupby('country_code').size().reset_index(name='loans') country_loans.head(10) """####5. **For each country, compute the overall amount of money borrowed.**""" country_loans_amount = loans_import.groupby('country_code')['loan_amount'].agg('sum').reset_index(name='overall_founds') country_loans_amount.head(5) """####6. **Like the previous point, but expressed as a percentage of the overall amount lent.**""" country_loans_amount['overall_founds_perc'] = country_loans_amount.overall_founds / country_loans_amount.overall_founds.sum() country_loans_amount.head(5) """####7. **Like the three previous points, but split for each year (with respect to disburse time).**""" loans_import['disburse_year'] = pd.DatetimeIndex(loans_import['disburse_time']).year country_year_loans = loans_import.groupby(['country_code','disburse_year']).size().reset_index(name='loans') country_year_loans_amount = loans_import.groupby(['country_code','disburse_year'])['loan_amount'].agg('sum').reset_index(name='overall_founds') country_year_loans_amount['overall_founds_perc'] = country_year_loans_amount.overall_founds / country_year_loans_amount.overall_founds.sum() country_year_loans.head(5) country_year_loans_amount.head(5) """####8. **For each lender, compute the overall amount of money lent. For each loan that has more than one lender, you must assume that all lenders contributed the same amount.** First of all, I need to assing to each lender/loan, the corresponding loan's details. So, I need to join the 2 dataset. To avoid run out of RAM, I reduce the number of variables selected on _loans_import_ """ lender_loan_details = pd.merge( loans_lenders, loans_import[['loan_id','loan_amount']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_details.head(5) """Then, it's possible to group the dataset to obtain the overall amount of money lent""" lender_loan_details.groupby('lenders')['loan_amount'].agg('sum').reset_index(name='overall_money_lent') """####9. **For each country, compute the difference between the overall amount of money lent and the overall amount of money borrowed. Since the country of the lender is often unknown, you can assume that the true distribution among the countries is the same as the one computed from the rows where the country is known.** First of all, I join the _lenders_ and the _loans_lenders_ dataset by lender name, removing lenders without a country code associated """ lenders_import_filtered = lenders_import[lenders_import.country_code.notnull()] lender_loan_country = pd.merge( loans_lenders, lenders_import_filtered[['permanent_name','country_code']], left_on= ['lenders'], right_on= ['permanent_name'], how = 'inner') lender_loan_country['lender_country'] = lender_loan_country['country_code']
"""Then, I join obtained dataset with the _loans_ dataset by loan ID""" lender_loan_country_full = pd.merge( lender_loan_country.drop_duplicates(), loans_import[['loan_id','loan_amount','country_code']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_country_full['borrowed_country'] = lender_loan_country_full['country_code'] lender_loan_country_group = lender_loan_country_full.groupby(['lender_country','borrowed_country'])['loan_amount'].agg('sum').reset_index(name='overall_founds') lender_loan_country_group.head(5) """Finally, I can group the obtained dataset by the 2 country columns to obtain requested information""" lender_loan_country_group_borrowers = lender_loan_country_group.groupby(['borrowed_country'])['overall_founds'].agg('sum').reset_index(name='amount_borrowed') lender_loan_country_group_lenders = lender_loan_country_group.groupby(['lender_country'])['overall_founds'].agg('sum').reset_index(name='amount_lent') lender_loan_country_group_join = pd.merge( lender_loan_country_group_borrowers, lender_loan_country_group_lenders, left_on= ['borrowed_country'], right_on= ['lender_country'], how = 'inner') lender_loan_country_group_join['country'] = lender_loan_country_group_join['borrowed_country'] lender_loan_country_group_join = lender_loan_country_group_join[['country','amount_borrowed','amount_lent']] lender_loan_country_group_join['lent_borrowed_ratio'] = lender_loan_country_group_join['amount_borrowed']/lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join['lent_borrowed_delta'] = lender_loan_country_group_join['amount_borrowed'] - lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join.head(5) """####10. **Which country has the highest ratio between the difference computed at the previous point and the population?** To evaluate this ratio, I've to join the previously created dataset with the _country_stats_ one """ lender_loan_country_group_stats = pd.merge( lender_loan_country_group_join, country_stats_import, left_on= ['country'], right_on= ['country_code'], how = 'inner') """Then, I can compute the requested KPI""" lender_loan_country_group_stats1 = lender_loan_country_group_stats lender_loan_country_group_stats1['population_ratio'] = lender_loan_country_group_stats1['lent_borrowed_delta']/lender_loan_country_group_stats1['population'] lender_loan_country_group_stats1 = lender_loan_country_group_stats1[['country','lent_borrowed_delta','population_ratio']] lender_loan_country_group_stats1.head(5) """####11. **Which country has the highest ratio between the difference computed at point 9 and the population that is not below the poverty line?** To evaluate it, we have to multiply the overall population number and the _population_below_poverty_line_ ratio information """ lender_loan_country_group_stats2 = lender_loan_country_group_stats lender_loan_country_group_stats2['population_weighed'] = lender_loan_country_group_stats2['population_below_poverty_line'] * lender_loan_country_group_stats2['population'] lender_loan_country_group_stats2['population_weighed_ratio'] = lender_loan_country_group_stats2['lent_borrowed_delta']/lender_loan_country_group_stats2['population_weighed'] lender_loan_country_group_stats2 = lender_loan_country_group_stats2[['country','lent_borrowed_delta','population_ratio', 'population_weighed_ratio']] lender_loan_country_group_stats2.head(5)
lender_loan_country = lender_loan_country[['loan_id', 'lender_country']] lender_loan_country.head(5)
random_line_split
bressan_computerscience.py
""" lender_foundings = loans_lenders.groupby('lenders').size().reset_index(name='foundings') lender_foundings[lender_foundings['foundings'] > 2] """####4. **For each country, compute how many loans have involved that country as borrowers.**""" country_loans = loans_import.groupby('country_code').size().reset_index(name='loans') country_loans.head(10) """####5. **For each country, compute the overall amount of money borrowed.**""" country_loans_amount = loans_import.groupby('country_code')['loan_amount'].agg('sum').reset_index(name='overall_founds') country_loans_amount.head(5) """####6. **Like the previous point, but expressed as a percentage of the overall amount lent.**""" country_loans_amount['overall_founds_perc'] = country_loans_amount.overall_founds / country_loans_amount.overall_founds.sum() country_loans_amount.head(5) """####7. **Like the three previous points, but split for each year (with respect to disburse time).**""" loans_import['disburse_year'] = pd.DatetimeIndex(loans_import['disburse_time']).year country_year_loans = loans_import.groupby(['country_code','disburse_year']).size().reset_index(name='loans') country_year_loans_amount = loans_import.groupby(['country_code','disburse_year'])['loan_amount'].agg('sum').reset_index(name='overall_founds') country_year_loans_amount['overall_founds_perc'] = country_year_loans_amount.overall_founds / country_year_loans_amount.overall_founds.sum() country_year_loans.head(5) country_year_loans_amount.head(5) """####8. **For each lender, compute the overall amount of money lent. For each loan that has more than one lender, you must assume that all lenders contributed the same amount.** First of all, I need to assing to each lender/loan, the corresponding loan's details. So, I need to join the 2 dataset. To avoid run out of RAM, I reduce the number of variables selected on _loans_import_ """ lender_loan_details = pd.merge( loans_lenders, loans_import[['loan_id','loan_amount']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_details.head(5) """Then, it's possible to group the dataset to obtain the overall amount of money lent""" lender_loan_details.groupby('lenders')['loan_amount'].agg('sum').reset_index(name='overall_money_lent') """####9. **For each country, compute the difference between the overall amount of money lent and the overall amount of money borrowed. Since the country of the lender is often unknown, you can assume that the true distribution among the countries is the same as the one computed from the rows where the country is known.** First of all, I join the _lenders_ and the _loans_lenders_ dataset by lender name, removing lenders without a country code associated """ lenders_import_filtered = lenders_import[lenders_import.country_code.notnull()] lender_loan_country = pd.merge( loans_lenders, lenders_import_filtered[['permanent_name','country_code']], left_on= ['lenders'], right_on= ['permanent_name'], how = 'inner') lender_loan_country['lender_country'] = lender_loan_country['country_code'] lender_loan_country = lender_loan_country[['loan_id', 'lender_country']] lender_loan_country.head(5) """Then, I join obtained dataset with the _loans_ dataset by loan ID""" lender_loan_country_full = pd.merge( lender_loan_country.drop_duplicates(), loans_import[['loan_id','loan_amount','country_code']], left_on= ['loan_id'], right_on= ['loan_id'], how = 'inner') lender_loan_country_full['borrowed_country'] = lender_loan_country_full['country_code'] lender_loan_country_group = lender_loan_country_full.groupby(['lender_country','borrowed_country'])['loan_amount'].agg('sum').reset_index(name='overall_founds') lender_loan_country_group.head(5) """Finally, I can group the obtained dataset by the 2 country columns to obtain requested information""" lender_loan_country_group_borrowers = lender_loan_country_group.groupby(['borrowed_country'])['overall_founds'].agg('sum').reset_index(name='amount_borrowed') lender_loan_country_group_lenders = lender_loan_country_group.groupby(['lender_country'])['overall_founds'].agg('sum').reset_index(name='amount_lent') lender_loan_country_group_join = pd.merge( lender_loan_country_group_borrowers, lender_loan_country_group_lenders, left_on= ['borrowed_country'], right_on= ['lender_country'], how = 'inner') lender_loan_country_group_join['country'] = lender_loan_country_group_join['borrowed_country'] lender_loan_country_group_join = lender_loan_country_group_join[['country','amount_borrowed','amount_lent']] lender_loan_country_group_join['lent_borrowed_ratio'] = lender_loan_country_group_join['amount_borrowed']/lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join['lent_borrowed_delta'] = lender_loan_country_group_join['amount_borrowed'] - lender_loan_country_group_join['amount_lent'] lender_loan_country_group_join.head(5) """####10. **Which country has the highest ratio between the difference computed at the previous point and the population?** To evaluate this ratio, I've to join the previously created dataset with the _country_stats_ one """ lender_loan_country_group_stats = pd.merge( lender_loan_country_group_join, country_stats_import, left_on= ['country'], right_on= ['country_code'], how = 'inner') """Then, I can compute the requested KPI""" lender_loan_country_group_stats1 = lender_loan_country_group_stats lender_loan_country_group_stats1['population_ratio'] = lender_loan_country_group_stats1['lent_borrowed_delta']/lender_loan_country_group_stats1['population'] lender_loan_country_group_stats1 = lender_loan_country_group_stats1[['country','lent_borrowed_delta','population_ratio']] lender_loan_country_group_stats1.head(5) """####11. **Which country has the highest ratio between the difference computed at point 9 and the population that is not below the poverty line?** To evaluate it, we have to multiply the overall population number and the _population_below_poverty_line_ ratio information """ lender_loan_country_group_stats2 = lender_loan_country_group_stats lender_loan_country_group_stats2['population_weighed'] = lender_loan_country_group_stats2['population_below_poverty_line'] * lender_loan_country_group_stats2['population'] lender_loan_country_group_stats2['population_weighed_ratio'] = lender_loan_country_group_stats2['lent_borrowed_delta']/lender_loan_country_group_stats2['population_weighed'] lender_loan_country_group_stats2 = lender_loan_country_group_stats2[['country','lent_borrowed_delta','population_ratio', 'population_weighed_ratio']] lender_loan_country_group_stats2.head(5) """####12. **For each year, compute the total amount of loans. Each loan that has planned expiration time and disburse time in different years must have its amount distributed proportionally to the number of days in each year. For example, a loan with disburse time December 1st, 2016, planned expiration time January 30th 2018, and amount 5000USD has an amount of 5000USD * 31 / (31+365+30) = 363.85 for 2016, 5000USD * 365 / (31+365+30) = 4284.04 for 2017, and 5000USD * 30 / (31+365+30) = 352.11 for 2018.** Let's start defining a function that, given needed information (start date, end date and value) split it by years. """ def divide_value_by_period(row): start_date = row['disburse_time'].tz_localize(None) end_date = row['planned_expiration_time'].tz_localize(None) value = row['loan_amount'] # calculating the difference in years considewring leap years jumps = end_date.year - start_date.year if jumps != 0:
dayss = [] starting_year = start_date.year for i in range(jumps): next_year = starting_year + 1 next_year_comp = datetime(next_year, 1, 1) # get the difference in days diff = (next_year_comp - start_date).days dayss.append(diff) # re-assigning start and end dates starting_year = next_year_comp.year start_date = next_year_comp # adding the days between the end date and the first day of the last year dayss.append(((end_date - start_date).days) + 1) # calculating the portion of value each period gets if sum(dayss) > 0: return [(x*value)/sum(dayss) for x in dayss]
conditional_block
titanic-alpha-attempt.py
Ages < 1 indicate age in months. # # # [1]: http://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/ # In[ ]: # count the number of passengers for first 25 ages train_df.groupby('Age').size().head(25) # another way to do the above #train_df['Age'].value_counts().sort_index().head(25) # In[ ]: # convert ages to ints age = train_df[['Age','Survived']].dropna() # returns a copy with blanks removed age['Age'] = age['Age'].astype(int) # floors floats # count passengers by age (smoothed via gaussian kernels) plt.subplots(figsize=(18,6)) plt.subplot(311) sns.kdeplot(age['Age'], shade=True, cut=0) # count passengers by age (no smoothing) plt.subplot(312) sns.countplot(x='Age', data=age, palette='GnBu_d') # survival rates by age plt.subplot(313) sns.barplot(x='Age', y='Survived', data=age, ci=None, palette='Oranges_d') # takes mean by default # Observations: # # - Under 16s tend to have the highest survival rates # - Very high survival rates at 53, 63 and 80 # - Survival of over 16s is fairly noisy. Possible that survival might increase with age. # ## Survival by age group and sex ## # # Now let's look at survival by age groups *and* sex to see if any patterns become clearer. # In[ ]: # bin age into groups train_df['AgeGroup'] = pd.cut(train_df['Age'],[0,4,15,25,35,45,65,100]) test_df['AgeGroup'] = pd.cut(test_df['Age'],[0,4,15,25,35,45,65,100]) # survival by age group train_df.groupby('AgeGroup')['Survived'].mean() # In[ ]: # survival by age group and sex train_df[['Survived','AgeGroup', 'Sex']].groupby(['Sex', 'AgeGroup']).mean() # In[ ]: # count passengers by age group and sex sns.factorplot(x='AgeGroup', col='Sex', data=train_df, kind='count') # survival by age group and sex sns.factorplot(x='AgeGroup', y='Survived', col='Sex', data=train_df, kind='bar') # The relationship between survival and age group looks very different for males and females: # # - Males: survival rates increase *inversely* with age for (0, 25] and (25, 100). That is, younger boys fare better than older boys and younger men survive more than older men. # - Females: no obvious relationship between surviving and age. In particular, girls and baby girls do not fare better than women; in fact, girls (4, 15] have the *lowest* survival rates of females. # # A feature space containing (child, man, woman) would do a decent job of representing this relationship to survivability. # # Non-linear classifiers (e.g. decision trees, multi-layer nn, nearest neighbour) applied to both sex and age group might do even better because of the noticeable relationship between survivability and age group for males. # ## Family Size## # # We create a new feature, FamilySize, that sums Parch and SibSp. This will enable us to drop Parch and SibSp from the datasets. # In[ ]: # calculate family size train_df['FamilySize'] = train_df['SibSp'] + train_df['Parch'] + 1 test_df['FamilySize'] = test_df['SibSp'] + test_df['Parch'] + 1 # count passengers by age group and sex plt.subplot(211) sns.countplot(x='FamilySize', data=train_df) # survival by age group and sex plt.subplot(212) sns.barplot(x='FamilySize', y='Survived', data=train_df) # Survival increases with family size, until families of size 4. Family sizes of 5 and above have reduced survival. # Deck # ---- # # Cabin might be conceivably be related to survival, but unfortunately most values are missing. Nevertheless, by way of an exercise, we will extract the feature, Deck, from cabin by taking the first character of the label and analyze survival rates by deck. # In[ ]: # deck is the first letter of cabin train_df['Deck'] = train_df['Cabin'].dropna().apply(lambda x: str(x)[0]) train_df[['PassengerId','Name', 'Cabin', 'Deck']].head(2).T # In[ ]: # count passengers by the deck their cabin is on plt.subplots(figsize=(8,6)) plt.subplot(211) sns.countplot(x='Deck', data=train_df) # survival rate by deck plt.subplot(212) sns.barplot(x='Deck', y='Survived', data=train_df) # ## Other attributes ## # For this first attempt, I am ignoring the attributes below as they seem unlikely to be related to survival: # # - PassengerId # - Name (however, extracting titles from names might be informative) # - Ticket # - Fare (could be related to socioeconomic status but we already have a class attribute) # - Embarked # # Data wrangling - Age group# # # Fill missing age group values. We don't want to drop them as this would lose many rows. Instead, we will randomly generate age groups according to the frequency that they occur in the data. We will calculate the frequency separately for males and females. # In[ ]: # number of males/females without an age def get_na(dataset): na_males = dataset[dataset.Sex == 'male'].loc[:,'AgeGroup'].isnull().sum() na_females = dataset[dataset.Sex == 'female'].loc[:,'AgeGroup'].isnull().sum() return {'male': na_males, 'female': na_females} # number of males and females by age group def get_counts(dataset): return dataset.groupby(['Sex', 'AgeGroup']).size() # randomly generate a list of age groups based on age group frequency (for each sex separately) def generate_age_groups(num, freq): age_groups = {} for sex in ['male','female']: relfreq = freq[sex] / freq[sex].sum() age_groups[sex] = np.random.choice(freq[sex].index, size=num[sex], replace=True, p=relfreq) return age_groups # insert the new age group values def
(dataset, age_groups): for sex in ['male','female']: tmp = pd.DataFrame(dataset[(dataset.Sex == sex) & dataset.Age.isnull()]) # filter on sex and null ages tmp['AgeGroup'] = age_groups[sex] # index age group values dataset = dataset.combine_first(tmp) # uses tmp to fill holes return dataset # fill holes for train_df na = get_na(train_df) counts = get_counts(train_df) counts['female'] age_groups = generate_age_groups(na, counts) age_groups['female'] train_df = insert_age_group_values(train_df, age_groups) train_df.info() # check all nulls have been filled print('-'*40) # repeat for test_df na = get_na(test_df) counts = get_counts(train_df) # reuse the frequencies taken over the training data as it is larger age_groups = generate_age_groups(na, counts) test_df = insert_age_group_values(test_df, age_groups) test_df.info() # check all nulls have been filled # # Feature engineering # # # Now that we've explored the data let's create some features: # # - **Sex:** Convert to a single binary feature, Female. No need to create a feature for Male, that would be redundant. # - **Pclass:** Convert to two binary features, PClass_1 and PClass_2. Similar to Male above, having a PClass_3 would be redundant. # - **Age group:** The age attribute binned using separators [0, 4, 15, 25, 35, 45, 65, 100]. Convert to a number of binary features, one for each age group. # - **Family size:** The sum of SibSp and Parch plus 1. # In[ ]: # Sex -> Female # training set dummy = pd.get_dummies(train_df['Sex']) dummy.columns = ['Female','Male'] train_df = train_df.join(dummy['Female']) # test set dummy = pd.get_dummies(test_df['Sex']) dummy.columns = ['Female','Male'] test_df = test_df.join(dummy['Female']) train_df[['Name', 'Sex', 'Female']].head(2).T #train_df.columns # In[ ]: # Pclass -> PClass_1, PClass_2 # training set dummy = pd.get_dummies(train_df['Pclass']) dummy.columns = ['PClass_1','PClass_2
insert_age_group_values
identifier_name
titanic-alpha-attempt.py
Ages < 1 indicate age in months. # # # [1]: http://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/ # In[ ]: # count the number of passengers for first 25 ages train_df.groupby('Age').size().head(25) # another way to do the above #train_df['Age'].value_counts().sort_index().head(25) # In[ ]: # convert ages to ints age = train_df[['Age','Survived']].dropna() # returns a copy with blanks removed age['Age'] = age['Age'].astype(int) # floors floats # count passengers by age (smoothed via gaussian kernels) plt.subplots(figsize=(18,6)) plt.subplot(311) sns.kdeplot(age['Age'], shade=True, cut=0) # count passengers by age (no smoothing) plt.subplot(312) sns.countplot(x='Age', data=age, palette='GnBu_d') # survival rates by age plt.subplot(313) sns.barplot(x='Age', y='Survived', data=age, ci=None, palette='Oranges_d') # takes mean by default # Observations: # # - Under 16s tend to have the highest survival rates # - Very high survival rates at 53, 63 and 80 # - Survival of over 16s is fairly noisy. Possible that survival might increase with age. # ## Survival by age group and sex ## # # Now let's look at survival by age groups *and* sex to see if any patterns become clearer. # In[ ]: # bin age into groups train_df['AgeGroup'] = pd.cut(train_df['Age'],[0,4,15,25,35,45,65,100]) test_df['AgeGroup'] = pd.cut(test_df['Age'],[0,4,15,25,35,45,65,100]) # survival by age group train_df.groupby('AgeGroup')['Survived'].mean() # In[ ]: # survival by age group and sex train_df[['Survived','AgeGroup', 'Sex']].groupby(['Sex', 'AgeGroup']).mean() # In[ ]: # count passengers by age group and sex sns.factorplot(x='AgeGroup', col='Sex', data=train_df, kind='count') # survival by age group and sex sns.factorplot(x='AgeGroup', y='Survived', col='Sex', data=train_df, kind='bar') # The relationship between survival and age group looks very different for males and females: # # - Males: survival rates increase *inversely* with age for (0, 25] and (25, 100). That is, younger boys fare better than older boys and younger men survive more than older men. # - Females: no obvious relationship between surviving and age. In particular, girls and baby girls do not fare better than women; in fact, girls (4, 15] have the *lowest* survival rates of females. # # A feature space containing (child, man, woman) would do a decent job of representing this relationship to survivability. # # Non-linear classifiers (e.g. decision trees, multi-layer nn, nearest neighbour) applied to both sex and age group might do even better because of the noticeable relationship between survivability and age group for males. # ## Family Size## # # We create a new feature, FamilySize, that sums Parch and SibSp. This will enable us to drop Parch and SibSp from the datasets. # In[ ]: # calculate family size train_df['FamilySize'] = train_df['SibSp'] + train_df['Parch'] + 1 test_df['FamilySize'] = test_df['SibSp'] + test_df['Parch'] + 1 # count passengers by age group and sex plt.subplot(211) sns.countplot(x='FamilySize', data=train_df) # survival by age group and sex plt.subplot(212) sns.barplot(x='FamilySize', y='Survived', data=train_df) # Survival increases with family size, until families of size 4. Family sizes of 5 and above have reduced survival. # Deck # ---- # # Cabin might be conceivably be related to survival, but unfortunately most values are missing. Nevertheless, by way of an exercise, we will extract the feature, Deck, from cabin by taking the first character of the label and analyze survival rates by deck. # In[ ]: # deck is the first letter of cabin train_df['Deck'] = train_df['Cabin'].dropna().apply(lambda x: str(x)[0]) train_df[['PassengerId','Name', 'Cabin', 'Deck']].head(2).T # In[ ]: # count passengers by the deck their cabin is on plt.subplots(figsize=(8,6)) plt.subplot(211) sns.countplot(x='Deck', data=train_df) # survival rate by deck plt.subplot(212) sns.barplot(x='Deck', y='Survived', data=train_df) # ## Other attributes ## # For this first attempt, I am ignoring the attributes below as they seem unlikely to be related to survival: # # - PassengerId # - Name (however, extracting titles from names might be informative) # - Ticket # - Fare (could be related to socioeconomic status but we already have a class attribute) # - Embarked # # Data wrangling - Age group# # # Fill missing age group values. We don't want to drop them as this would lose many rows. Instead, we will randomly generate age groups according to the frequency that they occur in the data. We will calculate the frequency separately for males and females. # In[ ]: # number of males/females without an age def get_na(dataset):
# number of males and females by age group def get_counts(dataset): return dataset.groupby(['Sex', 'AgeGroup']).size() # randomly generate a list of age groups based on age group frequency (for each sex separately) def generate_age_groups(num, freq): age_groups = {} for sex in ['male','female']: relfreq = freq[sex] / freq[sex].sum() age_groups[sex] = np.random.choice(freq[sex].index, size=num[sex], replace=True, p=relfreq) return age_groups # insert the new age group values def insert_age_group_values(dataset, age_groups): for sex in ['male','female']: tmp = pd.DataFrame(dataset[(dataset.Sex == sex) & dataset.Age.isnull()]) # filter on sex and null ages tmp['AgeGroup'] = age_groups[sex] # index age group values dataset = dataset.combine_first(tmp) # uses tmp to fill holes return dataset # fill holes for train_df na = get_na(train_df) counts = get_counts(train_df) counts['female'] age_groups = generate_age_groups(na, counts) age_groups['female'] train_df = insert_age_group_values(train_df, age_groups) train_df.info() # check all nulls have been filled print('-'*40) # repeat for test_df na = get_na(test_df) counts = get_counts(train_df) # reuse the frequencies taken over the training data as it is larger age_groups = generate_age_groups(na, counts) test_df = insert_age_group_values(test_df, age_groups) test_df.info() # check all nulls have been filled # # Feature engineering # # # Now that we've explored the data let's create some features: # # - **Sex:** Convert to a single binary feature, Female. No need to create a feature for Male, that would be redundant. # - **Pclass:** Convert to two binary features, PClass_1 and PClass_2. Similar to Male above, having a PClass_3 would be redundant. # - **Age group:** The age attribute binned using separators [0, 4, 15, 25, 35, 45, 65, 100]. Convert to a number of binary features, one for each age group. # - **Family size:** The sum of SibSp and Parch plus 1. # In[ ]: # Sex -> Female # training set dummy = pd.get_dummies(train_df['Sex']) dummy.columns = ['Female','Male'] train_df = train_df.join(dummy['Female']) # test set dummy = pd.get_dummies(test_df['Sex']) dummy.columns = ['Female','Male'] test_df = test_df.join(dummy['Female']) train_df[['Name', 'Sex', 'Female']].head(2).T #train_df.columns # In[ ]: # Pclass -> PClass_1, PClass_2 # training set dummy = pd.get_dummies(train_df['Pclass']) dummy.columns = ['PClass_1','PClass_2
na_males = dataset[dataset.Sex == 'male'].loc[:,'AgeGroup'].isnull().sum() na_females = dataset[dataset.Sex == 'female'].loc[:,'AgeGroup'].isnull().sum() return {'male': na_males, 'female': na_females}
identifier_body
titanic-alpha-attempt.py
Cabin might be conceivably be related to survival, but unfortunately most values are missing. Nevertheless, by way of an exercise, we will extract the feature, Deck, from cabin by taking the first character of the label and analyze survival rates by deck. # In[ ]: # deck is the first letter of cabin train_df['Deck'] = train_df['Cabin'].dropna().apply(lambda x: str(x)[0]) train_df[['PassengerId','Name', 'Cabin', 'Deck']].head(2).T # In[ ]: # count passengers by the deck their cabin is on plt.subplots(figsize=(8,6)) plt.subplot(211) sns.countplot(x='Deck', data=train_df) # survival rate by deck plt.subplot(212) sns.barplot(x='Deck', y='Survived', data=train_df) # ## Other attributes ## # For this first attempt, I am ignoring the attributes below as they seem unlikely to be related to survival: # # - PassengerId # - Name (however, extracting titles from names might be informative) # - Ticket # - Fare (could be related to socioeconomic status but we already have a class attribute) # - Embarked # # Data wrangling - Age group# # # Fill missing age group values. We don't want to drop them as this would lose many rows. Instead, we will randomly generate age groups according to the frequency that they occur in the data. We will calculate the frequency separately for males and females. # In[ ]: # number of males/females without an age def get_na(dataset): na_males = dataset[dataset.Sex == 'male'].loc[:,'AgeGroup'].isnull().sum() na_females = dataset[dataset.Sex == 'female'].loc[:,'AgeGroup'].isnull().sum() return {'male': na_males, 'female': na_females} # number of males and females by age group def get_counts(dataset): return dataset.groupby(['Sex', 'AgeGroup']).size() # randomly generate a list of age groups based on age group frequency (for each sex separately) def generate_age_groups(num, freq): age_groups = {} for sex in ['male','female']: relfreq = freq[sex] / freq[sex].sum() age_groups[sex] = np.random.choice(freq[sex].index, size=num[sex], replace=True, p=relfreq) return age_groups # insert the new age group values def insert_age_group_values(dataset, age_groups): for sex in ['male','female']: tmp = pd.DataFrame(dataset[(dataset.Sex == sex) & dataset.Age.isnull()]) # filter on sex and null ages tmp['AgeGroup'] = age_groups[sex] # index age group values dataset = dataset.combine_first(tmp) # uses tmp to fill holes return dataset # fill holes for train_df na = get_na(train_df) counts = get_counts(train_df) counts['female'] age_groups = generate_age_groups(na, counts) age_groups['female'] train_df = insert_age_group_values(train_df, age_groups) train_df.info() # check all nulls have been filled print('-'*40) # repeat for test_df na = get_na(test_df) counts = get_counts(train_df) # reuse the frequencies taken over the training data as it is larger age_groups = generate_age_groups(na, counts) test_df = insert_age_group_values(test_df, age_groups) test_df.info() # check all nulls have been filled # # Feature engineering # # # Now that we've explored the data let's create some features: # # - **Sex:** Convert to a single binary feature, Female. No need to create a feature for Male, that would be redundant. # - **Pclass:** Convert to two binary features, PClass_1 and PClass_2. Similar to Male above, having a PClass_3 would be redundant. # - **Age group:** The age attribute binned using separators [0, 4, 15, 25, 35, 45, 65, 100]. Convert to a number of binary features, one for each age group. # - **Family size:** The sum of SibSp and Parch plus 1. # In[ ]: # Sex -> Female # training set dummy = pd.get_dummies(train_df['Sex']) dummy.columns = ['Female','Male'] train_df = train_df.join(dummy['Female']) # test set dummy = pd.get_dummies(test_df['Sex']) dummy.columns = ['Female','Male'] test_df = test_df.join(dummy['Female']) train_df[['Name', 'Sex', 'Female']].head(2).T #train_df.columns # In[ ]: # Pclass -> PClass_1, PClass_2 # training set dummy = pd.get_dummies(train_df['Pclass']) dummy.columns = ['PClass_1','PClass_2','PClass_3'] train_df = train_df.join(dummy[['PClass_1', 'PClass_2']]) # test set dummy = pd.get_dummies(test_df['Pclass']) dummy.columns = ['PClass_1','PClass_2','PClass_3'] test_df = test_df.join(dummy[['PClass_1', 'PClass_2']]) train_df[['Name', 'Pclass', 'PClass_1', 'PClass_2']].head(2).T #train_df.columns # In[ ]: # AgeGroup -> binary features # training set dummy = pd.get_dummies(train_df['AgeGroup']) dummy.columns = ['Ages_4','Ages_15','Ages_25','Ages_35','Ages_45','Ages_65','Ages_100'] train_df = train_df.join(dummy) # test set dummy = pd.get_dummies(test_df['AgeGroup']) dummy.columns = ['Ages_4','Ages_15','Ages_25','Ages_35','Ages_45','Ages_65','Ages_100'] test_df = test_df.join(dummy) # ## Experimental features ## # Some additional features to explore. # In[ ]: # Fare # there is a single missing "Fare" value test_df['Fare'].fillna(test_df['Fare'].median(), inplace=True) # convert from float to int (floor) #train_df['Fare'] = train_df['Fare'].astype(int) #test_df['Fare'] = test_df['Fare'].astype(int) # In[ ]: # Embarked -> PortC, PortQ # Fill missing values with the most occurred value print(train_df.groupby('Embarked').size().sort_values()) train_df['Embarked'] = train_df['Embarked'].fillna('S') # training set dummy = pd.get_dummies(train_df['Embarked']) #dummy.columns dummy.columns = ['Port_C','Port_Q','Port_S'] #train_df = train_df.join(dummy[['Port_C','Port_Q']]) # test set dummy = pd.get_dummies(test_df['Embarked']) dummy.columns = ['Port_C','Port_Q','Port_S'] #test_df = test_df.join(dummy[['Port_C','Port_Q']]) # ## Dropping attributes ## # Drop unused attributes to avoid detecting spurious relationships. # In[ ]: # drop the attributes that will be unused train_df.drop(['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Cabin', 'Fare', 'Embarked', 'Deck', 'AgeGroup'], axis=1, inplace=True) test_df.drop(['Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Cabin', 'Fare', 'Embarked', 'AgeGroup'], axis=1, inplace=True) train_df.head(10).T # The sample above shows the features and their values for the first ten training examples. # # Modeling # # # Our task is a binary classification problem: we want to formulate a relationship that predicts an output (Survived or not) from engineered features (Sex, Age group, Family size...). This is type of learning is supervised learning, since a model will be trained on a dataset containing pairs of inputs and outputs. # # Suitable methods for performing classification include: # # - Logistic Regression* # - Perceptron* # - Support Vector Machines (SVMs)* # - Naive Bayes classifier* # - KNN or k-Nearest Neighbors # - Decision Tree # - Random Forrest # - Artificial neural network # - Relevance Vector Machine #
# The methods marked * either discover linear classification boundaries (logistic regression, perceptron, and SVMs if using linear kernels) or assume no relationship between features (naive bayes) and thus are not expected to perform as well (see the section above on the relationship between survival, age group and sex). # ## Training data ## # Let's use cross validation to perform the evaluation. This method will give a reasonable indication of predictive accuracy as evaluation will take place on data that is not seen during training. The package **`sklearn.model_selection`** includes support for cross validation.
random_line_split
titanic-alpha-attempt.py
Ages < 1 indicate age in months. # # # [1]: http://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/ # In[ ]: # count the number of passengers for first 25 ages train_df.groupby('Age').size().head(25) # another way to do the above #train_df['Age'].value_counts().sort_index().head(25) # In[ ]: # convert ages to ints age = train_df[['Age','Survived']].dropna() # returns a copy with blanks removed age['Age'] = age['Age'].astype(int) # floors floats # count passengers by age (smoothed via gaussian kernels) plt.subplots(figsize=(18,6)) plt.subplot(311) sns.kdeplot(age['Age'], shade=True, cut=0) # count passengers by age (no smoothing) plt.subplot(312) sns.countplot(x='Age', data=age, palette='GnBu_d') # survival rates by age plt.subplot(313) sns.barplot(x='Age', y='Survived', data=age, ci=None, palette='Oranges_d') # takes mean by default # Observations: # # - Under 16s tend to have the highest survival rates # - Very high survival rates at 53, 63 and 80 # - Survival of over 16s is fairly noisy. Possible that survival might increase with age. # ## Survival by age group and sex ## # # Now let's look at survival by age groups *and* sex to see if any patterns become clearer. # In[ ]: # bin age into groups train_df['AgeGroup'] = pd.cut(train_df['Age'],[0,4,15,25,35,45,65,100]) test_df['AgeGroup'] = pd.cut(test_df['Age'],[0,4,15,25,35,45,65,100]) # survival by age group train_df.groupby('AgeGroup')['Survived'].mean() # In[ ]: # survival by age group and sex train_df[['Survived','AgeGroup', 'Sex']].groupby(['Sex', 'AgeGroup']).mean() # In[ ]: # count passengers by age group and sex sns.factorplot(x='AgeGroup', col='Sex', data=train_df, kind='count') # survival by age group and sex sns.factorplot(x='AgeGroup', y='Survived', col='Sex', data=train_df, kind='bar') # The relationship between survival and age group looks very different for males and females: # # - Males: survival rates increase *inversely* with age for (0, 25] and (25, 100). That is, younger boys fare better than older boys and younger men survive more than older men. # - Females: no obvious relationship between surviving and age. In particular, girls and baby girls do not fare better than women; in fact, girls (4, 15] have the *lowest* survival rates of females. # # A feature space containing (child, man, woman) would do a decent job of representing this relationship to survivability. # # Non-linear classifiers (e.g. decision trees, multi-layer nn, nearest neighbour) applied to both sex and age group might do even better because of the noticeable relationship between survivability and age group for males. # ## Family Size## # # We create a new feature, FamilySize, that sums Parch and SibSp. This will enable us to drop Parch and SibSp from the datasets. # In[ ]: # calculate family size train_df['FamilySize'] = train_df['SibSp'] + train_df['Parch'] + 1 test_df['FamilySize'] = test_df['SibSp'] + test_df['Parch'] + 1 # count passengers by age group and sex plt.subplot(211) sns.countplot(x='FamilySize', data=train_df) # survival by age group and sex plt.subplot(212) sns.barplot(x='FamilySize', y='Survived', data=train_df) # Survival increases with family size, until families of size 4. Family sizes of 5 and above have reduced survival. # Deck # ---- # # Cabin might be conceivably be related to survival, but unfortunately most values are missing. Nevertheless, by way of an exercise, we will extract the feature, Deck, from cabin by taking the first character of the label and analyze survival rates by deck. # In[ ]: # deck is the first letter of cabin train_df['Deck'] = train_df['Cabin'].dropna().apply(lambda x: str(x)[0]) train_df[['PassengerId','Name', 'Cabin', 'Deck']].head(2).T # In[ ]: # count passengers by the deck their cabin is on plt.subplots(figsize=(8,6)) plt.subplot(211) sns.countplot(x='Deck', data=train_df) # survival rate by deck plt.subplot(212) sns.barplot(x='Deck', y='Survived', data=train_df) # ## Other attributes ## # For this first attempt, I am ignoring the attributes below as they seem unlikely to be related to survival: # # - PassengerId # - Name (however, extracting titles from names might be informative) # - Ticket # - Fare (could be related to socioeconomic status but we already have a class attribute) # - Embarked # # Data wrangling - Age group# # # Fill missing age group values. We don't want to drop them as this would lose many rows. Instead, we will randomly generate age groups according to the frequency that they occur in the data. We will calculate the frequency separately for males and females. # In[ ]: # number of males/females without an age def get_na(dataset): na_males = dataset[dataset.Sex == 'male'].loc[:,'AgeGroup'].isnull().sum() na_females = dataset[dataset.Sex == 'female'].loc[:,'AgeGroup'].isnull().sum() return {'male': na_males, 'female': na_females} # number of males and females by age group def get_counts(dataset): return dataset.groupby(['Sex', 'AgeGroup']).size() # randomly generate a list of age groups based on age group frequency (for each sex separately) def generate_age_groups(num, freq): age_groups = {} for sex in ['male','female']:
return age_groups # insert the new age group values def insert_age_group_values(dataset, age_groups): for sex in ['male','female']: tmp = pd.DataFrame(dataset[(dataset.Sex == sex) & dataset.Age.isnull()]) # filter on sex and null ages tmp['AgeGroup'] = age_groups[sex] # index age group values dataset = dataset.combine_first(tmp) # uses tmp to fill holes return dataset # fill holes for train_df na = get_na(train_df) counts = get_counts(train_df) counts['female'] age_groups = generate_age_groups(na, counts) age_groups['female'] train_df = insert_age_group_values(train_df, age_groups) train_df.info() # check all nulls have been filled print('-'*40) # repeat for test_df na = get_na(test_df) counts = get_counts(train_df) # reuse the frequencies taken over the training data as it is larger age_groups = generate_age_groups(na, counts) test_df = insert_age_group_values(test_df, age_groups) test_df.info() # check all nulls have been filled # # Feature engineering # # # Now that we've explored the data let's create some features: # # - **Sex:** Convert to a single binary feature, Female. No need to create a feature for Male, that would be redundant. # - **Pclass:** Convert to two binary features, PClass_1 and PClass_2. Similar to Male above, having a PClass_3 would be redundant. # - **Age group:** The age attribute binned using separators [0, 4, 15, 25, 35, 45, 65, 100]. Convert to a number of binary features, one for each age group. # - **Family size:** The sum of SibSp and Parch plus 1. # In[ ]: # Sex -> Female # training set dummy = pd.get_dummies(train_df['Sex']) dummy.columns = ['Female','Male'] train_df = train_df.join(dummy['Female']) # test set dummy = pd.get_dummies(test_df['Sex']) dummy.columns = ['Female','Male'] test_df = test_df.join(dummy['Female']) train_df[['Name', 'Sex', 'Female']].head(2).T #train_df.columns # In[ ]: # Pclass -> PClass_1, PClass_2 # training set dummy = pd.get_dummies(train_df['Pclass']) dummy.columns = ['PClass_1','PClass_2','
relfreq = freq[sex] / freq[sex].sum() age_groups[sex] = np.random.choice(freq[sex].index, size=num[sex], replace=True, p=relfreq)
conditional_block
contacts-details.component.ts
.log('run contacts') this.searchKin(this.user); } } doctorChangeEvent(data: any){ var doc = this.doctors.filter(x => x.name == data).shift(); if(!doc){ this.inputForm.patchValue({ address1: '', address2: '', phone1: '', phone2:'', email: '', mobile: '', fax: '', name: '' }) return; } this.inputForm.patchValue({ address1: doc.address1, address2: doc.address2, phone1: doc.phone1, phone2:doc.phone2, email: doc.email, mobile: doc.mobile, fax: doc.fax, name: doc.name }) } populate(){ this.listS.getdoctorinformation().subscribe(data => { console.log(data); this.doctors = data; }) } buildForm(): void { this.kindetailsGroup = this.formBuilder.group({ listOrder: [''], type: [''], name: [''], email: [''], address1: [''], address2: [''], suburbcode: [''], suburb: [''], postcode: [''], phone1: [''], phone2: [''], mobile: [''], fax: [''], notes: [''], oni1: false, oni2: false, ecode: [''], creator: [''], recordNumber: null, subType: '' }); this.inputForm = this.formBuilder.group({ group: [''], listOrder: [''], type: [''], name: [''], email: [''], address1: [''], address2: [''], suburbcode: [null], suburb: [''], state: [], postcode: [''], phone1: [''], phone2: [''], mobile: [''], fax: [''], notes: [''], oni1: false, oni2: false, ecode: [''], creator: [''], recordNumber: null }) this.inputForm.get('group').valueChanges.pipe( switchMap(x => { if(!x) return EMPTY; console.log(x); return this.listS.gettypeother(x) }) ).subscribe(data => { this.contactTypes = data; }); } ngAfterViewInit(): void{ } ngOnDestroy(): void{ this.unsubscribe.next(); this.unsubscribe.complete(); } searchKin(token: ProfileInterface){ this.loading = true; console.log(token) if (token.view == view.recipient) { this.timeS.getcontactskinrecipient(token.id) .subscribe(data => { this.kinsArray = data.list; if (this.kinsArray.length > 0) { this.selected = this.kinsArray[0]; this.showDetails(this.kinsArray[0]); } this.loading = false this.cd.markForCheck(); this.cd.detectChanges(); }); } if (token.view == view.staff) { this.timeS.getcontactskinstaff(token.code) .subscribe(data => { this.kinsArray = data; if (this.kinsArray.length > 0) { this.selected = this.kinsArray[0]; this.showDetails(this.kinsArray[0]); } this.loading = false this.cd.markForCheck(); this.cd.detectChanges(); }); } } showDetails(kin: any) { this.timeS.getcontactskinstaffdetails(kin.recordNumber) .subscribe(data => { this.kindetailsGroup.patchValue({ address1: data.address1, address2: data.address2, name: data.contactName, type: data.subType, email: data.email, fax: data.fax, mobile: data.mobile, notes: data.notes, phone1: data.phone1, phone2: data.phone2, suburbcode: (data.postcode != '') ? (data.postcode || '').trim() + ' ' + (data.suburb || '').trim() : '', suburb: data.suburb, postcode: data.postcode, listOrder: '', oni1: (data.equipmentCode || '').toUpperCase() == 'PERSON1', oni2: (data.equipmentCode || '').toUpperCase() == 'PERSON2', recordNumber: data.recordNumber, // subType: data.subType }) }) } //From ControlValueAccessor interface writeValue(value: any) { if (value != null) { console.log(value) this.innerValue = value; this.searchKin(this.innerValue); } } //From ControlValueAccessor interface registerOnChange(fn: any) { this.onChangeCallback = fn; } //From ControlValueAccessor interface registerOnTouched(fn: any) { this.onTouchedCallback = fn; } save() { if (this.user.view === view.staff) { var sub = this.kindetailsGroup.get('suburbcode').value; let address = sub ? this.getPostCodeAndSuburb(sub) : null; if (!this.globalS.isEmpty(address)) { this.kindetailsGroup.controls["postcode"].setValue(address.pcode); this.kindetailsGroup.controls["suburb"].setValue(address.suburb); } if (this.kindetailsGroup.get('oni1').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON1') } else if (this.kindetailsGroup.get('oni2').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON2') } const details = this.kindetailsGroup.value; this.timeS.updatecontactskinstaffdetails( details, details.recordNumber ).subscribe(data => { // this.searchKin(this.user); this.globalS.sToast('Success', 'Contact Updated'); }); } if (this.user.view === view.recipient) { console.log('recipient'); var sub = this.kindetailsGroup.get('suburbcode').value; let address = sub ? this.getPostCodeAndSuburb(sub) : null; if (!this.globalS.isEmpty(address)) { this.kindetailsGroup.controls["postcode"].setValue(address.pcode); this.kindetailsGroup.controls["suburb"].setValue(address.suburb); } if (this.kindetailsGroup.get('oni1').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON1') } else if (this.kindetailsGroup.get('oni2').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON2') } const details = this.kindetailsGroup.value; this.timeS.updatecontactskinrecipientdetails(details,details.recordNumber) .subscribe(data => { // this.searchKin(this.user); this.handleCancel(); this.globalS.sToast('Success', 'Contact Updated'); }); } } getPostCodeAndSuburb(address: any): any { const rs = address; let pcode = /(\d+)/g.test(rs) ? rs.match(/(\d+)/g)[0] : ""; let suburb = /(\D+)/g.test(rs) ? rs.match(/(\D+)/g)[0].split(',')[0] : ""; return { pcode: pcode.trim() || '', suburb: suburb.trim() || '' } } get nextRequired() { const { group, type, name } = this.inputForm.value; if (this.current == 0 && this.globalS.isEmpty(group)) { return false; } if (this.current == 1 && (this.globalS.isEmpty(type) || this.globalS.isEmpty(name)) ) { return false; } return true; } add() { if (this.inputForm.controls['suburbcode'].dirty) { var rs = this.inputForm.get('suburbcode').value; let pcode = /(\d+)/g.test(rs) ? rs.match(/(\d+)/g)[0].trim() : ""; let suburb = /(\D+)/g.test(rs) ? rs.match(/(\D+)/g)[0].trim() : ""; let state = /(\D+)/g.test(rs) ? rs.match(/(\D+)/g)[1].replace(/,/g, '').trim() : ""; if (pcode !== "") { this.inputForm.controls["postcode"].setValue(pcode); this.inputForm.controls["suburb"].setValue(suburb); this.inputForm.controls["state"].setValue(state); } } if (this.inputForm.get('oni1').value) { this.inputForm.controls['ecode'].setValue('PERSON1') } else if (this.inputForm.get('oni2').value) { this.inputForm.controls['ecode'].setValue('PERSON2') } this.timeS.postcontactskinstaffdetails( this.inputForm.value, this.user.id ).pipe(takeUntil(this.unsubscribe)).subscribe(data => { this.globalS.sToast('Success', 'Contact Inserted'); this.handleCancel(); this.searchKin(this.user); this.handleCancel(); }); } delete() { this.timeS.deletecontactskin(this.kindetailsGroup.value.recordNumber).subscribe(data => {
this.globalS.sToast('Success', 'Contact Deleted'); this.searchKin(this.user); }); }
random_line_split
contacts-details.component.ts
=> { }; @Component({ selector: 'app-contacts-details', templateUrl: './contacts-details.component.html', styleUrls: ['./contacts-details.component.css'], providers: [ { provide: NG_VALUE_ACCESSOR, multi: true, useExisting: forwardRef(() => ContactsDetailsComponent), } ], changeDetection: ChangeDetectionStrategy.OnPush }) export class ContactsDetailsComponent implements OnInit, OnDestroy, OnChanges,ControlValueAccessor { private unsubscribe: Subject<void> = new Subject(); selectedCompany; doctor: any; @Input() user: any; private onTouchedCallback: () => void = noop; private onChangeCallback: (_: any) => void = noop; innerValue: ProfileInterface; kinsArray: Array<any> = []; kindetailsGroup: FormGroup; inputForm: FormGroup; contactGroups: Array<string> = contactGroups; contactTypes : Array<string>; modalOpen: boolean = false; postLoading: boolean = false; selected: any; current: number = 0; loading: boolean; tocken: any; doctors: Array<any> = []; constructor( private globalS: GlobalService, private clientS: ClientService, private staffS: StaffService, private timeS: TimeSheetService, private sharedS: ShareService, private listS: ListService, private formBuilder: FormBuilder, private cd: ChangeDetectorRef, private http: HttpClient, private titleCase: TitleCasePipe ) { } ngOnInit(): void { this.user = this.sharedS.getPicked(); this.buildForm(); } ngOnChanges(changes: SimpleChanges) { for (let property in changes) { console.log('run contacts') this.searchKin(this.user); } } doctorChangeEvent(data: any){ var doc = this.doctors.filter(x => x.name == data).shift(); if(!doc){ this.inputForm.patchValue({ address1: '', address2: '', phone1: '', phone2:'', email: '', mobile: '', fax: '', name: '' }) return; } this.inputForm.patchValue({ address1: doc.address1, address2: doc.address2, phone1: doc.phone1, phone2:doc.phone2, email: doc.email, mobile: doc.mobile, fax: doc.fax, name: doc.name }) } populate()
buildForm(): void { this.kindetailsGroup = this.formBuilder.group({ listOrder: [''], type: [''], name: [''], email: [''], address1: [''], address2: [''], suburbcode: [''], suburb: [''], postcode: [''], phone1: [''], phone2: [''], mobile: [''], fax: [''], notes: [''], oni1: false, oni2: false, ecode: [''], creator: [''], recordNumber: null, subType: '' }); this.inputForm = this.formBuilder.group({ group: [''], listOrder: [''], type: [''], name: [''], email: [''], address1: [''], address2: [''], suburbcode: [null], suburb: [''], state: [], postcode: [''], phone1: [''], phone2: [''], mobile: [''], fax: [''], notes: [''], oni1: false, oni2: false, ecode: [''], creator: [''], recordNumber: null }) this.inputForm.get('group').valueChanges.pipe( switchMap(x => { if(!x) return EMPTY; console.log(x); return this.listS.gettypeother(x) }) ).subscribe(data => { this.contactTypes = data; }); } ngAfterViewInit(): void{ } ngOnDestroy(): void{ this.unsubscribe.next(); this.unsubscribe.complete(); } searchKin(token: ProfileInterface){ this.loading = true; console.log(token) if (token.view == view.recipient) { this.timeS.getcontactskinrecipient(token.id) .subscribe(data => { this.kinsArray = data.list; if (this.kinsArray.length > 0) { this.selected = this.kinsArray[0]; this.showDetails(this.kinsArray[0]); } this.loading = false this.cd.markForCheck(); this.cd.detectChanges(); }); } if (token.view == view.staff) { this.timeS.getcontactskinstaff(token.code) .subscribe(data => { this.kinsArray = data; if (this.kinsArray.length > 0) { this.selected = this.kinsArray[0]; this.showDetails(this.kinsArray[0]); } this.loading = false this.cd.markForCheck(); this.cd.detectChanges(); }); } } showDetails(kin: any) { this.timeS.getcontactskinstaffdetails(kin.recordNumber) .subscribe(data => { this.kindetailsGroup.patchValue({ address1: data.address1, address2: data.address2, name: data.contactName, type: data.subType, email: data.email, fax: data.fax, mobile: data.mobile, notes: data.notes, phone1: data.phone1, phone2: data.phone2, suburbcode: (data.postcode != '') ? (data.postcode || '').trim() + ' ' + (data.suburb || '').trim() : '', suburb: data.suburb, postcode: data.postcode, listOrder: '', oni1: (data.equipmentCode || '').toUpperCase() == 'PERSON1', oni2: (data.equipmentCode || '').toUpperCase() == 'PERSON2', recordNumber: data.recordNumber, // subType: data.subType }) }) } //From ControlValueAccessor interface writeValue(value: any) { if (value != null) { console.log(value) this.innerValue = value; this.searchKin(this.innerValue); } } //From ControlValueAccessor interface registerOnChange(fn: any) { this.onChangeCallback = fn; } //From ControlValueAccessor interface registerOnTouched(fn: any) { this.onTouchedCallback = fn; } save() { if (this.user.view === view.staff) { var sub = this.kindetailsGroup.get('suburbcode').value; let address = sub ? this.getPostCodeAndSuburb(sub) : null; if (!this.globalS.isEmpty(address)) { this.kindetailsGroup.controls["postcode"].setValue(address.pcode); this.kindetailsGroup.controls["suburb"].setValue(address.suburb); } if (this.kindetailsGroup.get('oni1').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON1') } else if (this.kindetailsGroup.get('oni2').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON2') } const details = this.kindetailsGroup.value; this.timeS.updatecontactskinstaffdetails( details, details.recordNumber ).subscribe(data => { // this.searchKin(this.user); this.globalS.sToast('Success', 'Contact Updated'); }); } if (this.user.view === view.recipient) { console.log('recipient'); var sub = this.kindetailsGroup.get('suburbcode').value; let address = sub ? this.getPostCodeAndSuburb(sub) : null; if (!this.globalS.isEmpty(address)) { this.kindetailsGroup.controls["postcode"].setValue(address.pcode); this.kindetailsGroup.controls["suburb"].setValue(address.suburb); } if (this.kindetailsGroup.get('oni1').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON1') } else if (this.kindetailsGroup.get('oni2').value) { this.kindetailsGroup.controls['ecode'].setValue('PERSON2') } const details = this.kindetailsGroup.value; this.timeS.updatecontactskinrecipientdetails(details,details.recordNumber) .subscribe(data => { // this.searchKin(this.user); this.handleCancel(); this.globalS.sToast('Success', 'Contact Updated'); }); } } getPostCodeAndSuburb(address: any): any { const rs = address; let pcode = /(\d+)/g.test(rs) ? rs.match(/(\d+)/g)[0] : ""; let suburb = /(\D+)/g.test(rs) ? rs.match(/(\D+)/g)[0].split(',')[0] : ""; return { pcode: pcode.trim() || '', suburb: suburb.trim() || '' } } get nextRequired() { const { group, type, name } = this.inputForm.value; if (this.current == 0 && this.globalS.isEmpty(group)) { return false; } if (this.current ==
{ this.listS.getdoctorinformation().subscribe(data => { console.log(data); this.doctors = data; }) }
identifier_body