file_name
large_stringlengths
4
140
prefix
large_stringlengths
0
12.1k
suffix
large_stringlengths
0
12k
middle
large_stringlengths
0
7.51k
fim_type
large_stringclasses
4 values
nmap.py
except FileNotFoundError: pass def import_nmap(result, tag, check_function=all_hosts, import_services=False): """ Imports the given nmap result. """ host_search = HostSearch(arguments=False) service_search = ServiceSearch()
parser = NmapParser() report = parser.parse_fromstring(result) imported_hosts = 0 imported_services = 0 for nmap_host in report.hosts: if check_function(nmap_host): imported_hosts += 1 host = host_search.id_to_object(nmap_host.address) host.status = nmap_host.status host.add_tag(tag) if nmap_host.os_fingerprinted: host.os = nmap_host.os_fingerprint if nmap_host.hostnames: host.hostname.extend(nmap_host.hostnames) if import_services: for service in nmap_host.services: imported_services += 1 serv = Service(**service.get_dict()) serv.address = nmap_host.address service_id = service_search.object_to_id(serv) if service_id: # Existing object, save the banner and script results. serv_old = Service.get(service_id) if service.banner: serv_old.banner = service.banner # TODO implement # if service.script_results: # serv_old.script_results.extend(service.script_results) serv_old.save() else: # New object serv.address = nmap_host.address serv.save() if service.state == 'open': host.open_ports.append(service.port) if service.state == 'closed': host.closed_ports.append(service.port) if service.state == 'filtered': host.filtered_ports.append(service.port) host.save() if imported_hosts: print_success("Imported {} hosts, with tag {}".format(imported_hosts, tag)) else: print_error("No hosts found") return {'hosts': imported_hosts, 'services': imported_services} def include_hostnames(nmap_host): """ Function to filter out hosts with hostnames """ if nmap_host.hostnames: return True return False def include_up_hosts(nmap_host): """ Includes only hosts that have the status 'up' """ if nmap_host.status == 'up': return True return False def nmap(nmap_args, ips): """ Start an nmap process with the given args on the given ips. """ config = Config() arguments = ['nmap', '-Pn'] arguments.extend(ips) arguments.extend(nmap_args) output_file = '' now = datetime.datetime.now() if not '-oA' in nmap_args: output_name = 'nmap_jackal_{}'.format(now.strftime("%Y-%m-%d %H:%M")) path_name = os.path.join(config.get('nmap', 'directory'), output_name) print_notification("Writing output of nmap to {}".format(path_name)) if not os.path.exists(config.get('nmap', 'directory')): os.makedirs(config.get('nmap', 'directory')) output_file = path_name + '.xml' arguments.extend(['-oA', path_name]) else: output_file = nmap_args[nmap_args.index('-oA') + 1] + '.xml' print_notification("Starting nmap") subprocess.call(arguments) with open(output_file, 'r') as f: return f.read() def nmap_discover(): """ This function retrieves ranges from jackal Uses two functions of nmap to find hosts: ping: icmp / arp pinging of targets lookup: reverse dns lookup """ rs = RangeSearch() rs_parser = rs.argparser arg = argparse.ArgumentParser(parents=[rs_parser], conflict_handler='resolve') arg.add_argument('type', metavar='type', \ help='The type of nmap scan to do, choose from ping or lookup', \ type=str, choices=['ping', 'lookup']) arguments, nmap_args = arg.parse_known_args() tag = None if arguments.type == 'ping': tag = 'nmap_ping' nmap_args.append('-sn') nmap_args.append('-n') check_function = include_up_hosts elif arguments.type == 'lookup': tag = 'nmap_lookup' nmap_args.append('-sL') check_function = include_hostnames ranges = rs.get_ranges(tags=['!{}'.format(tag)]) ranges = [r for r in ranges] ips = [] for r in ranges: ips.append(r.range) print_notification("Running nmap with args: {} on {} range(s)".format(nmap_args, len(ips))) result = nmap(nmap_args, ips) stats = import_nmap(result, tag, check_function) stats['scanned_ranges'] = len(ips) Logger().log('nmap_discover', "Nmap discover with args: {} on {} range(s)".format(nmap_args, len(ips)), stats) for r in ranges: r.add_tag(tag) r.save() def nmap_scan(): """ Scans the given hosts with nmap. """ # Create the search and config objects hs = HostSearch() config = Config() # Static options to be able to figure out what options to use depending on the input the user gives. nmap_types = ['top10', 'top100', 'custom', 'top1000', 'all'] options = {'top10':'--top-ports 10', 'top100':'--top-ports 100', 'custom': config.get('nmap', 'options'), 'top1000': '--top-ports 1000', 'all': '-p-'} # Create an argument parser hs_parser = hs.argparser argparser = argparse.ArgumentParser(parents=[hs_parser], conflict_handler='resolve', \ description="Scans hosts from the database using nmap, any arguments that are not in the help are passed to nmap") argparser.add_argument('type', metavar='type', \ help='The number of ports to scan: top10, top100, custom, top1000 (default) or all', \ type=str, choices=nmap_types, default='top1000', const='top1000', nargs='?') arguments, extra_nmap_args = argparser.parse_known_args() # Fix the tags for the search tags = nmap_types[nmap_types.index(arguments.type):] tags = ["!nmap_" + tag for tag in tags] hosts = hs.get_hosts(tags=tags) hosts = [host for host in hosts] # Create the nmap arguments nmap_args = [] nmap_args.extend(extra_nmap_args) nmap_args.extend(options[arguments.type].split(' ')) # Run nmap print_notification("Running nmap with args: {} on {} hosts(s)".format(nmap_args, len(hosts))) if len(hosts): result = nmap(nmap_args, [str(h.address) for h in hosts]) # Import the nmap result for host in hosts: host.add_tag("nmap_{}".format(arguments.type)) host.save() print_notification("Nmap done, importing results") stats = import_nmap(result, "nmap_{}".format(arguments.type), check_function=all_hosts, import_services=True) stats['scanned_hosts'] = len(hosts) stats['type'] = arguments.type Logger().log('nmap_scan', "Performed nmap {} scan on {} hosts".format(arguments.type, len(hosts)), stats) else: print_notification("No hosts found") def nmap_smb_vulnscan(): """ Scans available smb services in the database for smb signing and ms17-010. """ service_search = ServiceSearch() services = service_search.get_services(ports=['445'], tags=['!smb_vulnscan'], up=True) services = [service for service in services] service_dict = {} for service in services: service.add_tag('smb_vulnscan') service_dict[str(service.address)] = service nmap_args = "-Pn -n --disable-arp-ping --script smb-security-mode.nse,smb-vuln-ms17-010.nse -p 445".split(" ") if services: result = nmap(nmap_args, [str(s.address) for s in services]) parser = NmapParser() report = parser.parse_fromstring(result) smb_signing = 0 ms17 = 0 for nmap_host in report.hosts: for script_result in nmap_host.scripts_results: script_result = script_result.get('elements', {}) service = service_dict[str(nmap_host.address)] if script_result.get('message_signing', '') == 'disabled': print_success("({}) SMB Signing disabled".format(nmap_host.address)) service.add_tag('smb_signing_disabled') smb_signing += 1 if script_result.get('CVE-2017-0143', {}).get('state', '') == 'VULNERABLE': print_success("({}) Vulnerable for MS17-010".format(nmap_host.address))
random_line_split
nmap.py
except FileNotFoundError: pass def import_nmap(result, tag, check_function=all_hosts, import_services=False): """ Imports the given nmap result. """ host_search = HostSearch(arguments=False) service_search = ServiceSearch() parser = NmapParser() report = parser.parse_fromstring(result) imported_hosts = 0 imported_services = 0 for nmap_host in report.hosts: if check_function(nmap_host): imported_hosts += 1 host = host_search.id_to_object(nmap_host.address) host.status = nmap_host.status host.add_tag(tag) if nmap_host.os_fingerprinted: host.os = nmap_host.os_fingerprint if nmap_host.hostnames: host.hostname.extend(nmap_host.hostnames) if import_services: for service in nmap_host.services: imported_services += 1 serv = Service(**service.get_dict()) serv.address = nmap_host.address service_id = service_search.object_to_id(serv) if service_id: # Existing object, save the banner and script results. serv_old = Service.get(service_id) if service.banner: serv_old.banner = service.banner # TODO implement # if service.script_results: # serv_old.script_results.extend(service.script_results) serv_old.save() else: # New object serv.address = nmap_host.address serv.save() if service.state == 'open': host.open_ports.append(service.port) if service.state == 'closed': host.closed_ports.append(service.port) if service.state == 'filtered': host.filtered_ports.append(service.port) host.save() if imported_hosts: print_success("Imported {} hosts, with tag {}".format(imported_hosts, tag)) else: print_error("No hosts found") return {'hosts': imported_hosts, 'services': imported_services} def include_hostnames(nmap_host): """ Function to filter out hosts with hostnames """ if nmap_host.hostnames: return True return False def include_up_hosts(nmap_host): """ Includes only hosts that have the status 'up' """ if nmap_host.status == 'up': return True return False def nmap(nmap_args, ips): """ Start an nmap process with the given args on the given ips. """ config = Config() arguments = ['nmap', '-Pn'] arguments.extend(ips) arguments.extend(nmap_args) output_file = '' now = datetime.datetime.now() if not '-oA' in nmap_args: output_name = 'nmap_jackal_{}'.format(now.strftime("%Y-%m-%d %H:%M")) path_name = os.path.join(config.get('nmap', 'directory'), output_name) print_notification("Writing output of nmap to {}".format(path_name)) if not os.path.exists(config.get('nmap', 'directory')): os.makedirs(config.get('nmap', 'directory')) output_file = path_name + '.xml' arguments.extend(['-oA', path_name]) else: output_file = nmap_args[nmap_args.index('-oA') + 1] + '.xml' print_notification("Starting nmap") subprocess.call(arguments) with open(output_file, 'r') as f: return f.read() def nmap_discover(): """ This function retrieves ranges from jackal Uses two functions of nmap to find hosts: ping: icmp / arp pinging of targets lookup: reverse dns lookup """ rs = RangeSearch() rs_parser = rs.argparser arg = argparse.ArgumentParser(parents=[rs_parser], conflict_handler='resolve') arg.add_argument('type', metavar='type', \ help='The type of nmap scan to do, choose from ping or lookup', \ type=str, choices=['ping', 'lookup']) arguments, nmap_args = arg.parse_known_args() tag = None if arguments.type == 'ping': tag = 'nmap_ping' nmap_args.append('-sn') nmap_args.append('-n') check_function = include_up_hosts elif arguments.type == 'lookup': tag = 'nmap_lookup' nmap_args.append('-sL') check_function = include_hostnames ranges = rs.get_ranges(tags=['!{}'.format(tag)]) ranges = [r for r in ranges] ips = [] for r in ranges: ips.append(r.range) print_notification("Running nmap with args: {} on {} range(s)".format(nmap_args, len(ips))) result = nmap(nmap_args, ips) stats = import_nmap(result, tag, check_function) stats['scanned_ranges'] = len(ips) Logger().log('nmap_discover', "Nmap discover with args: {} on {} range(s)".format(nmap_args, len(ips)), stats) for r in ranges: r.add_tag(tag) r.save() def nmap_scan(): """ Scans the given hosts with nmap. """ # Create the search and config objects hs = HostSearch() config = Config() # Static options to be able to figure out what options to use depending on the input the user gives. nmap_types = ['top10', 'top100', 'custom', 'top1000', 'all'] options = {'top10':'--top-ports 10', 'top100':'--top-ports 100', 'custom': config.get('nmap', 'options'), 'top1000': '--top-ports 1000', 'all': '-p-'} # Create an argument parser hs_parser = hs.argparser argparser = argparse.ArgumentParser(parents=[hs_parser], conflict_handler='resolve', \ description="Scans hosts from the database using nmap, any arguments that are not in the help are passed to nmap") argparser.add_argument('type', metavar='type', \ help='The number of ports to scan: top10, top100, custom, top1000 (default) or all', \ type=str, choices=nmap_types, default='top1000', const='top1000', nargs='?') arguments, extra_nmap_args = argparser.parse_known_args() # Fix the tags for the search tags = nmap_types[nmap_types.index(arguments.type):] tags = ["!nmap_" + tag for tag in tags] hosts = hs.get_hosts(tags=tags) hosts = [host for host in hosts] # Create the nmap arguments nmap_args = [] nmap_args.extend(extra_nmap_args) nmap_args.extend(options[arguments.type].split(' ')) # Run nmap print_notification("Running nmap with args: {} on {} hosts(s)".format(nmap_args, len(hosts))) if len(hosts): result = nmap(nmap_args, [str(h.address) for h in hosts]) # Import the nmap result for host in hosts: host.add_tag("nmap_{}".format(arguments.type)) host.save() print_notification("Nmap done, importing results") stats = import_nmap(result, "nmap_{}".format(arguments.type), check_function=all_hosts, import_services=True) stats['scanned_hosts'] = len(hosts) stats['type'] = arguments.type Logger().log('nmap_scan', "Performed nmap {} scan on {} hosts".format(arguments.type, len(hosts)), stats) else: print_notification("No hosts found") def
(): """ Scans available smb services in the database for smb signing and ms17-010. """ service_search = ServiceSearch() services = service_search.get_services(ports=['445'], tags=['!smb_vulnscan'], up=True) services = [service for service in services] service_dict = {} for service in services: service.add_tag('smb_vulnscan') service_dict[str(service.address)] = service nmap_args = "-Pn -n --disable-arp-ping --script smb-security-mode.nse,smb-vuln-ms17-010.nse -p 445".split(" ") if services: result = nmap(nmap_args, [str(s.address) for s in services]) parser = NmapParser() report = parser.parse_fromstring(result) smb_signing = 0 ms17 = 0 for nmap_host in report.hosts: for script_result in nmap_host.scripts_results: script_result = script_result.get('elements', {}) service = service_dict[str(nmap_host.address)] if script_result.get('message_signing', '') == 'disabled': print_success("({}) SMB Signing disabled".format(nmap_host.address)) service.add_tag('smb_signing_disabled') smb_signing += 1 if script_result.get('CVE-2017-0143', {}).get('state', '') == 'VULNERABLE': print_success("({}) Vulnerable for MS17-010".format(nmap_host.address))
nmap_smb_vulnscan
identifier_name
nmap.py
map_host.hostnames: return True return False def include_up_hosts(nmap_host): """ Includes only hosts that have the status 'up' """ if nmap_host.status == 'up': return True return False def nmap(nmap_args, ips): """ Start an nmap process with the given args on the given ips. """ config = Config() arguments = ['nmap', '-Pn'] arguments.extend(ips) arguments.extend(nmap_args) output_file = '' now = datetime.datetime.now() if not '-oA' in nmap_args: output_name = 'nmap_jackal_{}'.format(now.strftime("%Y-%m-%d %H:%M")) path_name = os.path.join(config.get('nmap', 'directory'), output_name) print_notification("Writing output of nmap to {}".format(path_name)) if not os.path.exists(config.get('nmap', 'directory')): os.makedirs(config.get('nmap', 'directory')) output_file = path_name + '.xml' arguments.extend(['-oA', path_name]) else: output_file = nmap_args[nmap_args.index('-oA') + 1] + '.xml' print_notification("Starting nmap") subprocess.call(arguments) with open(output_file, 'r') as f: return f.read() def nmap_discover(): """ This function retrieves ranges from jackal Uses two functions of nmap to find hosts: ping: icmp / arp pinging of targets lookup: reverse dns lookup """ rs = RangeSearch() rs_parser = rs.argparser arg = argparse.ArgumentParser(parents=[rs_parser], conflict_handler='resolve') arg.add_argument('type', metavar='type', \ help='The type of nmap scan to do, choose from ping or lookup', \ type=str, choices=['ping', 'lookup']) arguments, nmap_args = arg.parse_known_args() tag = None if arguments.type == 'ping': tag = 'nmap_ping' nmap_args.append('-sn') nmap_args.append('-n') check_function = include_up_hosts elif arguments.type == 'lookup': tag = 'nmap_lookup' nmap_args.append('-sL') check_function = include_hostnames ranges = rs.get_ranges(tags=['!{}'.format(tag)]) ranges = [r for r in ranges] ips = [] for r in ranges: ips.append(r.range) print_notification("Running nmap with args: {} on {} range(s)".format(nmap_args, len(ips))) result = nmap(nmap_args, ips) stats = import_nmap(result, tag, check_function) stats['scanned_ranges'] = len(ips) Logger().log('nmap_discover', "Nmap discover with args: {} on {} range(s)".format(nmap_args, len(ips)), stats) for r in ranges: r.add_tag(tag) r.save() def nmap_scan(): """ Scans the given hosts with nmap. """ # Create the search and config objects hs = HostSearch() config = Config() # Static options to be able to figure out what options to use depending on the input the user gives. nmap_types = ['top10', 'top100', 'custom', 'top1000', 'all'] options = {'top10':'--top-ports 10', 'top100':'--top-ports 100', 'custom': config.get('nmap', 'options'), 'top1000': '--top-ports 1000', 'all': '-p-'} # Create an argument parser hs_parser = hs.argparser argparser = argparse.ArgumentParser(parents=[hs_parser], conflict_handler='resolve', \ description="Scans hosts from the database using nmap, any arguments that are not in the help are passed to nmap") argparser.add_argument('type', metavar='type', \ help='The number of ports to scan: top10, top100, custom, top1000 (default) or all', \ type=str, choices=nmap_types, default='top1000', const='top1000', nargs='?') arguments, extra_nmap_args = argparser.parse_known_args() # Fix the tags for the search tags = nmap_types[nmap_types.index(arguments.type):] tags = ["!nmap_" + tag for tag in tags] hosts = hs.get_hosts(tags=tags) hosts = [host for host in hosts] # Create the nmap arguments nmap_args = [] nmap_args.extend(extra_nmap_args) nmap_args.extend(options[arguments.type].split(' ')) # Run nmap print_notification("Running nmap with args: {} on {} hosts(s)".format(nmap_args, len(hosts))) if len(hosts): result = nmap(nmap_args, [str(h.address) for h in hosts]) # Import the nmap result for host in hosts: host.add_tag("nmap_{}".format(arguments.type)) host.save() print_notification("Nmap done, importing results") stats = import_nmap(result, "nmap_{}".format(arguments.type), check_function=all_hosts, import_services=True) stats['scanned_hosts'] = len(hosts) stats['type'] = arguments.type Logger().log('nmap_scan', "Performed nmap {} scan on {} hosts".format(arguments.type, len(hosts)), stats) else: print_notification("No hosts found") def nmap_smb_vulnscan(): """ Scans available smb services in the database for smb signing and ms17-010. """ service_search = ServiceSearch() services = service_search.get_services(ports=['445'], tags=['!smb_vulnscan'], up=True) services = [service for service in services] service_dict = {} for service in services: service.add_tag('smb_vulnscan') service_dict[str(service.address)] = service nmap_args = "-Pn -n --disable-arp-ping --script smb-security-mode.nse,smb-vuln-ms17-010.nse -p 445".split(" ") if services: result = nmap(nmap_args, [str(s.address) for s in services]) parser = NmapParser() report = parser.parse_fromstring(result) smb_signing = 0 ms17 = 0 for nmap_host in report.hosts: for script_result in nmap_host.scripts_results: script_result = script_result.get('elements', {}) service = service_dict[str(nmap_host.address)] if script_result.get('message_signing', '') == 'disabled': print_success("({}) SMB Signing disabled".format(nmap_host.address)) service.add_tag('smb_signing_disabled') smb_signing += 1 if script_result.get('CVE-2017-0143', {}).get('state', '') == 'VULNERABLE': print_success("({}) Vulnerable for MS17-010".format(nmap_host.address)) service.add_tag('MS17-010') ms17 += 1 service.update(tags=service.tags) print_notification("Completed, 'smb_signing_disabled' tag added to systems with smb signing disabled, 'MS17-010' tag added to systems that did not apply MS17-010.") stats = {'smb_signing': smb_signing, 'MS17_010': ms17, 'scanned_services': len(services)} Logger().log('smb_vulnscan', 'Scanned {} smb services for vulnerabilities'.format(len(services)), stats) else: print_notification("No services found to scan.") def os_discovery(): """ Performs os (and domain) discovery of smb hosts. """ hs = HostSearch() hosts = hs.get_hosts(ports=[445], tags=['!nmap_os']) # TODO fix filter for emtpy fields. hosts = [host for host in hosts if not host.os] host_dict = {} for host in hosts: host_dict[str(host.address)] = host arguments = "--script smb-os-discovery.nse -p 445 -Pn -n --disable-arp-ping".split(' ') if len(hosts): count = 0 print_notification("Checking OS of {} systems".format(len(hosts))) result = nmap(arguments, [str(h.address) for h in hosts]) parser = NmapParser() report = parser.parse_fromstring(result) for nmap_host in report.hosts:
for script_result in nmap_host.scripts_results: script_result = script_result.get('elements', {}) host = host_dict[str(nmap_host.address)] if 'fqdn' in script_result: host.hostname.append(script_result['fqdn']) if 'os' in script_result: count += 1 host.os = script_result['os'] host_dict[str(nmap_host.address)] = host
conditional_block
nmap.py
except FileNotFoundError: pass def import_nmap(result, tag, check_function=all_hosts, import_services=False): """ Imports the given nmap result. """ host_search = HostSearch(arguments=False) service_search = ServiceSearch() parser = NmapParser() report = parser.parse_fromstring(result) imported_hosts = 0 imported_services = 0 for nmap_host in report.hosts: if check_function(nmap_host): imported_hosts += 1 host = host_search.id_to_object(nmap_host.address) host.status = nmap_host.status host.add_tag(tag) if nmap_host.os_fingerprinted: host.os = nmap_host.os_fingerprint if nmap_host.hostnames: host.hostname.extend(nmap_host.hostnames) if import_services: for service in nmap_host.services: imported_services += 1 serv = Service(**service.get_dict()) serv.address = nmap_host.address service_id = service_search.object_to_id(serv) if service_id: # Existing object, save the banner and script results. serv_old = Service.get(service_id) if service.banner: serv_old.banner = service.banner # TODO implement # if service.script_results: # serv_old.script_results.extend(service.script_results) serv_old.save() else: # New object serv.address = nmap_host.address serv.save() if service.state == 'open': host.open_ports.append(service.port) if service.state == 'closed': host.closed_ports.append(service.port) if service.state == 'filtered': host.filtered_ports.append(service.port) host.save() if imported_hosts: print_success("Imported {} hosts, with tag {}".format(imported_hosts, tag)) else: print_error("No hosts found") return {'hosts': imported_hosts, 'services': imported_services} def include_hostnames(nmap_host):
def include_up_hosts(nmap_host): """ Includes only hosts that have the status 'up' """ if nmap_host.status == 'up': return True return False def nmap(nmap_args, ips): """ Start an nmap process with the given args on the given ips. """ config = Config() arguments = ['nmap', '-Pn'] arguments.extend(ips) arguments.extend(nmap_args) output_file = '' now = datetime.datetime.now() if not '-oA' in nmap_args: output_name = 'nmap_jackal_{}'.format(now.strftime("%Y-%m-%d %H:%M")) path_name = os.path.join(config.get('nmap', 'directory'), output_name) print_notification("Writing output of nmap to {}".format(path_name)) if not os.path.exists(config.get('nmap', 'directory')): os.makedirs(config.get('nmap', 'directory')) output_file = path_name + '.xml' arguments.extend(['-oA', path_name]) else: output_file = nmap_args[nmap_args.index('-oA') + 1] + '.xml' print_notification("Starting nmap") subprocess.call(arguments) with open(output_file, 'r') as f: return f.read() def nmap_discover(): """ This function retrieves ranges from jackal Uses two functions of nmap to find hosts: ping: icmp / arp pinging of targets lookup: reverse dns lookup """ rs = RangeSearch() rs_parser = rs.argparser arg = argparse.ArgumentParser(parents=[rs_parser], conflict_handler='resolve') arg.add_argument('type', metavar='type', \ help='The type of nmap scan to do, choose from ping or lookup', \ type=str, choices=['ping', 'lookup']) arguments, nmap_args = arg.parse_known_args() tag = None if arguments.type == 'ping': tag = 'nmap_ping' nmap_args.append('-sn') nmap_args.append('-n') check_function = include_up_hosts elif arguments.type == 'lookup': tag = 'nmap_lookup' nmap_args.append('-sL') check_function = include_hostnames ranges = rs.get_ranges(tags=['!{}'.format(tag)]) ranges = [r for r in ranges] ips = [] for r in ranges: ips.append(r.range) print_notification("Running nmap with args: {} on {} range(s)".format(nmap_args, len(ips))) result = nmap(nmap_args, ips) stats = import_nmap(result, tag, check_function) stats['scanned_ranges'] = len(ips) Logger().log('nmap_discover', "Nmap discover with args: {} on {} range(s)".format(nmap_args, len(ips)), stats) for r in ranges: r.add_tag(tag) r.save() def nmap_scan(): """ Scans the given hosts with nmap. """ # Create the search and config objects hs = HostSearch() config = Config() # Static options to be able to figure out what options to use depending on the input the user gives. nmap_types = ['top10', 'top100', 'custom', 'top1000', 'all'] options = {'top10':'--top-ports 10', 'top100':'--top-ports 100', 'custom': config.get('nmap', 'options'), 'top1000': '--top-ports 1000', 'all': '-p-'} # Create an argument parser hs_parser = hs.argparser argparser = argparse.ArgumentParser(parents=[hs_parser], conflict_handler='resolve', \ description="Scans hosts from the database using nmap, any arguments that are not in the help are passed to nmap") argparser.add_argument('type', metavar='type', \ help='The number of ports to scan: top10, top100, custom, top1000 (default) or all', \ type=str, choices=nmap_types, default='top1000', const='top1000', nargs='?') arguments, extra_nmap_args = argparser.parse_known_args() # Fix the tags for the search tags = nmap_types[nmap_types.index(arguments.type):] tags = ["!nmap_" + tag for tag in tags] hosts = hs.get_hosts(tags=tags) hosts = [host for host in hosts] # Create the nmap arguments nmap_args = [] nmap_args.extend(extra_nmap_args) nmap_args.extend(options[arguments.type].split(' ')) # Run nmap print_notification("Running nmap with args: {} on {} hosts(s)".format(nmap_args, len(hosts))) if len(hosts): result = nmap(nmap_args, [str(h.address) for h in hosts]) # Import the nmap result for host in hosts: host.add_tag("nmap_{}".format(arguments.type)) host.save() print_notification("Nmap done, importing results") stats = import_nmap(result, "nmap_{}".format(arguments.type), check_function=all_hosts, import_services=True) stats['scanned_hosts'] = len(hosts) stats['type'] = arguments.type Logger().log('nmap_scan', "Performed nmap {} scan on {} hosts".format(arguments.type, len(hosts)), stats) else: print_notification("No hosts found") def nmap_smb_vulnscan(): """ Scans available smb services in the database for smb signing and ms17-010. """ service_search = ServiceSearch() services = service_search.get_services(ports=['445'], tags=['!smb_vulnscan'], up=True) services = [service for service in services] service_dict = {} for service in services: service.add_tag('smb_vulnscan') service_dict[str(service.address)] = service nmap_args = "-Pn -n --disable-arp-ping --script smb-security-mode.nse,smb-vuln-ms17-010.nse -p 445".split(" ") if services: result = nmap(nmap_args, [str(s.address) for s in services]) parser = NmapParser() report = parser.parse_fromstring(result) smb_signing = 0 ms17 = 0 for nmap_host in report.hosts: for script_result in nmap_host.scripts_results: script_result = script_result.get('elements', {}) service = service_dict[str(nmap_host.address)] if script_result.get('message_signing', '') == 'disabled': print_success("({}) SMB Signing disabled".format(nmap_host.address)) service.add_tag('smb_signing_disabled') smb_signing += 1 if script_result.get('CVE-2017-0143', {}).get('state', '') == 'VULNERABLE': print_success("({}) Vulnerable for MS17-010".format(nmap_host.address))
""" Function to filter out hosts with hostnames """ if nmap_host.hostnames: return True return False
identifier_body
tool.py
else: sec = str(se) yymmdd = yy+mm+dd hhmmss = hour+mini+sec return yymmdd, hhmmss #------------------------------------------------------------ def detection(name, ra, dec, time, location): import numpy as np import os, glob, sys from astropy import units as u from astropy.time import Time from astropy.coordinates import SkyCoord, EarthLocation, AltAz from astropy.coordinates import get_sun, get_moon from astropy.io import ascii from astropy.table import Table, Column target = SkyCoord(ra, dec, unit='deg') # defaults to ICRS frame site = location del_midnight= np.linspace(-12, +12, 720) * u.hour time_night = time+del_midnight frame_night = AltAz(obstime=time_night, location=site) targetaltaz_night = target.transform_to(frame_night) sunaltaz_night = get_sun(time_night).transform_to(frame_night) # indx_set = np.where( sunaltaz_night.alt > -18 * u.deg ) indx_rise = np.where( sunaltaz_night.alt < -18 * u.deg ) sunset = del_midnight[np.min(indx_rise)] sunrise = del_midnight[np.max(indx_rise)] del_midnight= np.linspace(sunset.value, sunrise.value, 100) * u.hour time_night = time+del_midnight frame_night = AltAz(obstime=time_night, location=site) targetaltaz_night = target.transform_to(frame_night) return targetaltaz_night #------------------------------------------------------------ def sendmail(filename, subject, sendID, sendPW, reciver): ''' Security reference https://cpuu.postype.com/post/23066 Code reference https://kimdoky.github.io/python/2017/07/21/smtplib_email.html File attach https://brunch.co.kr/@jk-lab/31 ''' import smtplib from email.mime.text import MIMEText import codecs email_text = codecs.open(filename, 'rb', 'utf-8') msg = MIMEText(email_text.read()) email_text.close() msg['Subject'] = subject msg['From'] = sendID smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(sendID, sendPW) smtp_gmail.sendmail(sendID, reciver, msg.as_string()) smtp_gmail.quit() comment = 'Send '+filename+'\n'+'From '+sendID+' To '+reciver; print(comment) #------------------------------------------------------------ def send_gmail(subject, contents, fromID, fromPW, toIDs, ccIDs=None, path=None): ''' SEND GMAIL Security reference https://cpuu.postype.com/post/23066 Code reference https://kimdoky.github.io/python/2017/07/21/smtplib_email.html File attach https://brunch.co.kr/@jk-lab/31 ''' import os import smtplib from email.mime.base import MIMEBase from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.header import Header #msg = MIMEBase('mixed') #msg = MIMEText(contents, 'plain', 'utf-8') msg = MIMEMultipart() msg['Subject'] = Header(s=subject, charset="utf-8") msg['From'] = fromID msg['To'] = toIDs if ccIDs != None: msg['Cc'] = ccIDs msg.attach(MIMEText(contents, 'plain', 'utf-8')) # ATTACH TEXT FILE ON MAIL if path != None: if type(path) != list: filelist = [] filelist.append(path) else: filelist = path for file in filelist: part = MIMEBase("application", "octet-stream") part.set_payload(open(file, 'rb').read()) part.add_header( 'Content-Disposition', 'attachment; filename="%s"'% os.path.basename(file)) msg.attach(part) # ACCESS TO GMAIL & SEND MAIL smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(fromID, fromPW) smtp_gmail.sendmail(msg["From"], msg["To"].split(",") + msg["Cc"].split(","), msg.as_string()) smtp_gmail.quit() comment = 'Send '+str(path)+'\nFrom\t'+fromID+'\nTo'; print(comment); print(toIDs) #------------------------------------------------------------ def abs2app(mag, magerr, gwdist, gwdiststd): import numpy as np app = 5*np.log10(gwdist)-5+mag apperr = 5*gwdiststd/(gwdist*np.log(10)) return app, apperr #------------------------------------------------------------ def GW170817_like(gwdist, gwdiststd): import numpy as np m0 = 17.476 # [AB] in i-band (t0+10h) m0err = 0.018 dist0 = 38.4 # [MPC] Im et al. 2017 dist0err= 8.9 m = m0+5.*np.log10(gwdist/dist0) merr = np.sqrt( (m0err)**2 + ((5.*gwdiststd)/(gwdist*np.log(10)))**2 + ((5.*dist0err)/(dist0*np.log(10)))**2 ) return m, merr #------------------------------------------------------------ def func_linear(a, x, scaling=[0, 0]): xpt, ypt= scaling[0], scaling[1] ydel = ypt - (-1*a*xpt) return -1*a*x + ydel #------------------------------------------------------------ def calc_app(mag, magerr, gwdist0, gwdiststd0, gwdist1, gwdiststd1): import numpy as np app = mag+5*np.log10(gwdist1/gwdist0) apperr = np.sqrt( (magerr)**2 + ((5*gwdiststd1)/(np.log(5)*gwdist1))**2 + ((5*gwdiststd0)/(np.log(5)*gwdist0))**2 ) return app, apperr #------------------------------------------------------------ def ds9regmaker(filename, name, ra, dec): import os,sys import string from astropy.io import ascii import numpy as np import math ''' racol = 'ALPHA_J2000' deccol = 'DELTA_J2000' name = 'NUMBER' intbl = ascii.read(filename) ''' radius = """ 5" """ color = "green" f = open(filename, 'w') head1 = "# Region file format: DS9 version 4.1\n" head2 = """global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\n""" head3 = "fk5\n" f.write(head1) f.write(head2) f.write(head3) for n in range(len(ra)): body="circle("+str(ra[n])+","+str(dec[n])+","+radius+") # color="+color+" text={"+str(name[n])+"}\n" f.write(body) f.close() #------------------------------------------------------------ def rtsmaker(observatory, headname, save_path, obspath, catpath, start, end, altlimit=30., moonseperation=40., sunlimit='-18', numlimit=100): import pytz import jdcal import ephem #from numpy import * import numpy as np import os, sys import string import datetime import astropy.units as u from astropy.io import ascii import mskpy.observing as obs import astropy.coordinates as coord from astropy import units as u from astropy.coordinates import SkyCoord #------------------------------------------------------------# # INPUT SAMPLE #------------------------------------------------------------# ''' observatory = 'SAO' save_path = './' obspath = "/home/gw/Research/observatory.txt" catpath = 'MS181101ab_Preliminary-all_candidates.txt' start = '2019/04/17' end = '2019/04/19' #altitute limit and moon seperation, moon serperation is a little bit close (2~3 deg) numlimit = 100
sec = '0'+str(se)
conditional_block
tool.py
ERROR: type should be large_string, got "\thttps://cpuu.postype.com/post/23066\n\tCode reference\n\thttps://kimdoky.github.io/python/2017/07/21/smtplib_email.html\n\tFile attach\n\thttps://brunch.co.kr/@jk-lab/31\n\t'''\n\timport smtplib\n\tfrom email.mime.text import MIMEText\n\timport codecs\n\temail_text = codecs.open(filename, 'rb', 'utf-8')\n\tmsg = MIMEText(email_text.read())\n\temail_text.close()\n\tmsg['Subject']\t= subject\n\tmsg['From']\t\t= sendID\n\tsmtp_gmail\t\t= smtplib.SMTP_SSL('smtp.gmail.com', 465)\n\tsmtp_gmail.login(sendID, sendPW)\n\tsmtp_gmail.sendmail(sendID, reciver, msg.as_string())\n\tsmtp_gmail.quit()\n\tcomment\t= 'Send '+filename+'\\n'+'From '+sendID+' To '+reciver; print(comment)\n#------------------------------------------------------------\ndef send_gmail(subject, contents, fromID, fromPW, toIDs, ccIDs=None, path=None):\n\t'''\n\tSEND GMAIL\n\tSecurity reference\n\thttps://cpuu.postype.com/post/23066\n\tCode reference\n\thttps://kimdoky.github.io/python/2017/07/21/smtplib_email.html\n\tFile attach\n\thttps://brunch.co.kr/@jk-lab/31\n\t'''\n\timport os\n\timport smtplib\n\tfrom email.mime.base import MIMEBase\n\tfrom email.mime.text import MIMEText\n\tfrom email.mime.multipart import MIMEMultipart\n\tfrom email.header import Header \n\t#msg\t\t= MIMEBase('mixed')\n\t#msg\t\t= MIMEText(contents, 'plain', 'utf-8')\n\tmsg\t\t= MIMEMultipart()\n\tmsg['Subject']\t= Header(s=subject, charset=\"utf-8\")\n\tmsg['From']\t\t= fromID\n\tmsg['To']\t\t= toIDs\n\tif ccIDs != None:\n\t\tmsg['Cc']\t\t= ccIDs\n\tmsg.attach(MIMEText(contents, 'plain', 'utf-8'))\n\t#\tATTACH TEXT FILE ON MAIL\n\tif path != None:\n\t\tif type(path) != list:\n\t\t\tfilelist\t= []\n\t\t\tfilelist.append(path)\n\t\telse:\n\t\t\tfilelist\t= path\n\n\t\tfor file in filelist:\n\t\t\tpart\t= MIMEBase(\"application\", \"octet-stream\")\n\t\t\tpart.set_payload(open(file, 'rb').read())\n\t\t\tpart.add_header(\t'Content-Disposition',\n\t\t\t\t\t\t\t\t'attachment; filename=\"%s\"'% os.path.basename(file))\n\t\t\tmsg.attach(part)\n\t\n\n\n\t#\tACCESS TO GMAIL & SEND MAIL\n\tsmtp_gmail\t\t= smtplib.SMTP_SSL('smtp.gmail.com', 465)\n\tsmtp_gmail.login(fromID, fromPW)\n\tsmtp_gmail.sendmail(msg[\"From\"], msg[\"To\"].split(\",\") + msg[\"Cc\"].split(\",\"), msg.as_string())\n\tsmtp_gmail.quit()\n\tcomment\t= 'Send '+str(path)+'\\nFrom\\t'+fromID+'\\nTo'; print(comment); print(toIDs)\n#------------------------------------------------------------\ndef abs2app(mag, magerr, gwdist, gwdiststd):\n\timport numpy as np\n\tapp\t\t= 5*np.log10(gwdist)-5+mag\n\tapperr\t= 5*gwdiststd/(gwdist*np.log(10))\n\treturn app, apperr\n#------------------------------------------------------------\ndef GW170817_like(gwdist, gwdiststd):\n\timport numpy as np\n\tm0\t\t= 17.476\t#\t[AB] in i-band (t0+10h)\n\tm0err\t= 0.018\t\n\tdist0\t= 38.4\t\t#\t[MPC]\tIm et al. 2017\n\tdist0err= 8.9\n\tm\t\t= m0+5.*np.log10(gwdist/dist0)\n\tmerr\t= np.sqrt( (m0err)**2 + ((5.*gwdiststd)/(gwdist*np.log(10)))**2 + ((5.*dist0err)/(dist0*np.log(10)))**2 )\n\treturn m, merr\n#------------------------------------------------------------\ndef func_linear(a, x, scaling=[0, 0]):\n\txpt, ypt= scaling[0], scaling[1]\n\tydel\t= ypt - (-1*a*xpt)\n\treturn -1*a*x + ydel\n#------------------------------------------------------------\ndef calc_app(mag, magerr, gwdist0, gwdiststd0, gwdist1, gwdiststd1):\n\timport numpy as np\n\tapp\t\t= mag+5*np.log10(gwdist1/gwdist0)\n\tapperr\t= np.sqrt( (magerr)**2 + ((5*gwdiststd1)/(np.log(5)*gwdist1))**2 + ((5*gwdiststd0)/(np.log(5)*gwdist0))**2 )\n\treturn app, apperr\n#------------------------------------------------------------\ndef ds9regmaker(filename, name, ra, dec):\n\timport os,sys\n\timport string\n\tfrom astropy.io import ascii \n\timport numpy as np\n\timport math\n\t'''\n\tracol\t\t= 'ALPHA_J2000'\n\tdeccol\t\t= 'DELTA_J2000'\n\tname\t\t= 'NUMBER'\n\tintbl\t\t= ascii.read(filename)\n\t'''\n\tradius\t= \"\"\" 5\" \"\"\"\n\tcolor\t= \"green\"\n\tf\t\t= open(filename, 'w')\n\n\thead1\t= \"# Region file format: DS9 version 4.1\\n\"\n\thead2\t= \"\"\"global color=green dashlist=8 3 width=1 font=\"helvetica 10 normal roman\" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\\n\"\"\"\n\thead3\t= \"fk5\\n\"\n\n\tf.write(head1)\n\tf.write(head2)\n\tf.write(head3)\n\n\tfor n in range(len(ra)):\n\t\tbody=\"circle(\"+str(ra[n])+\",\"+str(dec[n])+\",\"+radius+\") # color=\"+color+\" text={\"+str(name[n])+\"}\\n\"\t\n\t\tf.write(body)\n\tf.close()\n#------------------------------------------------------------\ndef rtsmaker(observatory, headname, save_path, obspath, catpath, start, end, altlimit=30., moonseperation=40., sunlimit='-18', numlimit=100):\n\timport pytz\n\timport jdcal\n\timport ephem\n\t#from numpy import *\n\timport numpy as np\n\timport os, sys\n\timport string\n\timport datetime\n\timport astropy.units as u\n\tfrom astropy.io import ascii\n\timport mskpy.observing as obs\n\timport astropy.coordinates as coord\n\tfrom astropy import units as u\n\tfrom astropy.coordinates import SkyCoord\n\n\t#------------------------------------------------------------#\n\t#\tINPUT SAMPLE\n\t#------------------------------------------------------------#\n\t'''\n\tobservatory\t\t= 'SAO'\n\tsave_path\t\t= './'\n\tobspath\t\t\t= \"/home/gw/Research/observatory.txt\"\n\tcatpath\t\t\t= 'MS181101ab_Preliminary-all_candidates.txt'\n\tstart\t\t\t= '2019/04/17'\n\tend\t\t\t\t= '2019/04/19'\n\t#altitute limit and moon seperation, moon serperation is a little bit close (2~3 deg)\n\tnumlimit\t\t= 100\n\taltlimit\t\t= 30.\n\tmoonseperation\t= 40.\n\tsunlimit\t\t= '-18'\n\t'''\n\t#------------------------------------------------------------#\n\t#\tOBSERVATORY INFO.\n\t#------------------------------------------------------------#\n\tobsinfo\t\t\t= ascii.read(obspath)\n\tobsname \t= np.copy(obsinfo['name'])\n\tobsindex\t\t= np.where(obsname == observatory)[0]\n\tobslat\t\t\t= (np.copy(obsinfo['latitude(N+)'])[obsindex])[0]\n\tobslon\t\t\t= (np.copy(obsinfo['longitude(E+)'])[obsindex])[0]\n\tobsalt\t\t\t= (np.copy(obsinfo['altitude'])[obsindex])[0]\n\tobstz\t\t\t= (np.copy(obsinfo['timezone'])[obsindex])[0]\n\ttz\t\t\t\t= pytz.timezone(obstz)\n\t#------------------------------------------------------------#\n\tobserv\t\t\t= ephem.Observer()\n\tobserv.lat\t\t= str(obslat)\n\tobserv.lon\t\t= str(obslon)\n\tobserv.elevation= obsalt\n\tobserv.horizon\t= sunlimit\n\t#------------------------------------------------------------#\n\t#objects from catalog file\n\ttdata\t\t\t= ascii.read(catpath)\n\tobjname\t\t\t= tdata['name']\n\tra\t\t\t\t= tdata['ra']\n\tdec\t\t\t\t= tdata['dec']\n\tprior\t\t\t= tdata['sort']\n\trank\t\t\t= tdata['rank']\t\t\t\n\tdist\t\t\t= tdata['dist']\n\n\tRA\t\t\t\t= coord.Angle(ra, unit = u.deg)\n\tDec\t\t\t\t= coord.Angle(dec, unit = u.deg)\n\n\tradd\t\t\t= RA.value\n\trad\t\t\t\t= RA.hour\n\tdecd\t\t\t= Dec.value\n\tdecdd\t\t\t= Dec.degree\n\n\t#angular distance calculation\n\tdef angsep(ra1deg, dec1deg, ra2deg,"
#------------------------------------------------------------ def sendmail(filename, subject, sendID, sendPW, reciver): ''' Security reference
random_line_split
tool.py
(): ''' CONVERT 'TIME' TO YYMMDD, HHMMSS FORM. INPUT : NONE OUTPUT : STRIG FORM OF 'YYMMDD', 'HHMMSS' ''' import numpy as np import time now = time.gmtime(time.time()) y, m, d = now.tm_year, now.tm_mon, now.tm_mday ho, mi, se = now.tm_hour, now.tm_min, now.tm_sec yy = str(y)[2:] if len(str(m)) < 2: mm = '0'+str(m) else: mm = str(m) if len(str(d)) < 2: dd = '0'+str(d) else: dd = str(d) if len(str(ho)) < 2: hour = '0'+str(ho) else: hour = str(ho) if len(str(mi)) < 2: mini = '0'+str(mi) else: mini = str(mi) if len(str(se)) < 2: sec = '0'+str(se) else: sec = str(se) yymmdd = yy+mm+dd hhmmss = hour+mini+sec return yymmdd, hhmmss #------------------------------------------------------------ def detection(name, ra, dec, time, location): import numpy as np import os, glob, sys from astropy import units as u from astropy.time import Time from astropy.coordinates import SkyCoord, EarthLocation, AltAz from astropy.coordinates import get_sun, get_moon from astropy.io import ascii from astropy.table import Table, Column target = SkyCoord(ra, dec, unit='deg') # defaults to ICRS frame site = location del_midnight= np.linspace(-12, +12, 720) * u.hour time_night = time+del_midnight frame_night = AltAz(obstime=time_night, location=site) targetaltaz_night = target.transform_to(frame_night) sunaltaz_night = get_sun(time_night).transform_to(frame_night) # indx_set = np.where( sunaltaz_night.alt > -18 * u.deg ) indx_rise = np.where( sunaltaz_night.alt < -18 * u.deg ) sunset = del_midnight[np.min(indx_rise)] sunrise = del_midnight[np.max(indx_rise)] del_midnight= np.linspace(sunset.value, sunrise.value, 100) * u.hour time_night = time+del_midnight frame_night = AltAz(obstime=time_night, location=site) targetaltaz_night = target.transform_to(frame_night) return targetaltaz_night #------------------------------------------------------------ def sendmail(filename, subject, sendID, sendPW, reciver): ''' Security reference https://cpuu.postype.com/post/23066 Code reference https://kimdoky.github.io/python/2017/07/21/smtplib_email.html File attach https://brunch.co.kr/@jk-lab/31 ''' import smtplib from email.mime.text import MIMEText import codecs email_text = codecs.open(filename, 'rb', 'utf-8') msg = MIMEText(email_text.read()) email_text.close() msg['Subject'] = subject msg['From'] = sendID smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(sendID, sendPW) smtp_gmail.sendmail(sendID, reciver, msg.as_string()) smtp_gmail.quit() comment = 'Send '+filename+'\n'+'From '+sendID+' To '+reciver; print(comment) #------------------------------------------------------------ def send_gmail(subject, contents, fromID, fromPW, toIDs, ccIDs=None, path=None): ''' SEND GMAIL Security reference https://cpuu.postype.com/post/23066 Code reference https://kimdoky.github.io/python/2017/07/21/smtplib_email.html File attach https://brunch.co.kr/@jk-lab/31 ''' import os import smtplib from email.mime.base import MIMEBase from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.header import Header #msg = MIMEBase('mixed') #msg = MIMEText(contents, 'plain', 'utf-8') msg = MIMEMultipart() msg['Subject'] = Header(s=subject, charset="utf-8") msg['From'] = fromID msg['To'] = toIDs if ccIDs != None: msg['Cc'] = ccIDs msg.attach(MIMEText(contents, 'plain', 'utf-8')) # ATTACH TEXT FILE ON MAIL if path != None: if type(path) != list: filelist = [] filelist.append(path) else: filelist = path for file in filelist: part = MIMEBase("application", "octet-stream") part.set_payload(open(file, 'rb').read()) part.add_header( 'Content-Disposition', 'attachment; filename="%s"'% os.path.basename(file)) msg.attach(part) # ACCESS TO GMAIL & SEND MAIL smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(fromID, fromPW) smtp_gmail.sendmail(msg["From"], msg["To"].split(",") + msg["Cc"].split(","), msg.as_string()) smtp_gmail.quit() comment = 'Send '+str(path)+'\nFrom\t'+fromID+'\nTo'; print(comment); print(toIDs) #------------------------------------------------------------ def abs2app(mag, magerr, gwdist, gwdiststd): import numpy as np app = 5*np.log10(gwdist)-5+mag apperr = 5*gwdiststd/(gwdist*np.log(10)) return app, apperr #------------------------------------------------------------ def GW170817_like(gwdist, gwdiststd): import numpy as np m0 = 17.476 # [AB] in i-band (t0+10h) m0err = 0.018 dist0 = 38.4 # [MPC] Im et al. 2017 dist0err= 8.9 m = m0+5.*np.log10(gwdist/dist0) merr = np.sqrt( (m0err)**2 + ((5.*gwdiststd)/(gwdist*np.log(10)))**2 + ((5.*dist0err)/(dist0*np.log(10)))**2 ) return m, merr #------------------------------------------------------------ def func_linear(a, x, scaling=[0, 0]): xpt, ypt= scaling[0], scaling[1] ydel = ypt - (-1*a*xpt) return -1*a*x + ydel #------------------------------------------------------------ def calc_app(mag, magerr, gwdist0, gwdiststd0, gwdist1, gwdiststd1): import numpy as np app = mag+5*np.log10(gwdist1/gwdist0) apperr = np.sqrt( (magerr)**2 + ((5*gwdiststd1)/(np.log(5)*gwdist1))**2 + ((5*gwdiststd0)/(np.log(5)*gwdist0))**2 ) return app, apperr #------------------------------------------------------------ def ds9regmaker(filename, name, ra, dec): import os,sys import string from astropy.io import ascii import numpy as np import math ''' racol = 'ALPHA_J2000' deccol = 'DELTA_J2000' name = 'NUMBER' intbl = ascii.read(filename) ''' radius = """ 5" """ color = "green" f = open(filename, 'w') head1 = "# Region file format: DS9 version 4.1\n" head2 = """global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\n""" head3 = "fk5\n" f.write(head1) f.write(head2) f.write(head3) for n in range(len(ra)): body="circle("+str(ra[n])+","+str(dec[n])+","+radius+") # color="+color+" text={"+str(name[n])+"}\n" f.write(body) f.close() #------------------------------------------------------------ def rtsmaker(observatory, headname
timename
identifier_name
tool.py
') msg = MIMEText(email_text.read()) email_text.close() msg['Subject'] = subject msg['From'] = sendID smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(sendID, sendPW) smtp_gmail.sendmail(sendID, reciver, msg.as_string()) smtp_gmail.quit() comment = 'Send '+filename+'\n'+'From '+sendID+' To '+reciver; print(comment) #------------------------------------------------------------ def send_gmail(subject, contents, fromID, fromPW, toIDs, ccIDs=None, path=None): ''' SEND GMAIL Security reference https://cpuu.postype.com/post/23066 Code reference https://kimdoky.github.io/python/2017/07/21/smtplib_email.html File attach https://brunch.co.kr/@jk-lab/31 ''' import os import smtplib from email.mime.base import MIMEBase from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.header import Header #msg = MIMEBase('mixed') #msg = MIMEText(contents, 'plain', 'utf-8') msg = MIMEMultipart() msg['Subject'] = Header(s=subject, charset="utf-8") msg['From'] = fromID msg['To'] = toIDs if ccIDs != None: msg['Cc'] = ccIDs msg.attach(MIMEText(contents, 'plain', 'utf-8')) # ATTACH TEXT FILE ON MAIL if path != None: if type(path) != list: filelist = [] filelist.append(path) else: filelist = path for file in filelist: part = MIMEBase("application", "octet-stream") part.set_payload(open(file, 'rb').read()) part.add_header( 'Content-Disposition', 'attachment; filename="%s"'% os.path.basename(file)) msg.attach(part) # ACCESS TO GMAIL & SEND MAIL smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(fromID, fromPW) smtp_gmail.sendmail(msg["From"], msg["To"].split(",") + msg["Cc"].split(","), msg.as_string()) smtp_gmail.quit() comment = 'Send '+str(path)+'\nFrom\t'+fromID+'\nTo'; print(comment); print(toIDs) #------------------------------------------------------------ def abs2app(mag, magerr, gwdist, gwdiststd): import numpy as np app = 5*np.log10(gwdist)-5+mag apperr = 5*gwdiststd/(gwdist*np.log(10)) return app, apperr #------------------------------------------------------------ def GW170817_like(gwdist, gwdiststd): import numpy as np m0 = 17.476 # [AB] in i-band (t0+10h) m0err = 0.018 dist0 = 38.4 # [MPC] Im et al. 2017 dist0err= 8.9 m = m0+5.*np.log10(gwdist/dist0) merr = np.sqrt( (m0err)**2 + ((5.*gwdiststd)/(gwdist*np.log(10)))**2 + ((5.*dist0err)/(dist0*np.log(10)))**2 ) return m, merr #------------------------------------------------------------ def func_linear(a, x, scaling=[0, 0]): xpt, ypt= scaling[0], scaling[1] ydel = ypt - (-1*a*xpt) return -1*a*x + ydel #------------------------------------------------------------ def calc_app(mag, magerr, gwdist0, gwdiststd0, gwdist1, gwdiststd1): import numpy as np app = mag+5*np.log10(gwdist1/gwdist0) apperr = np.sqrt( (magerr)**2 + ((5*gwdiststd1)/(np.log(5)*gwdist1))**2 + ((5*gwdiststd0)/(np.log(5)*gwdist0))**2 ) return app, apperr #------------------------------------------------------------ def ds9regmaker(filename, name, ra, dec): import os,sys import string from astropy.io import ascii import numpy as np import math ''' racol = 'ALPHA_J2000' deccol = 'DELTA_J2000' name = 'NUMBER' intbl = ascii.read(filename) ''' radius = """ 5" """ color = "green" f = open(filename, 'w') head1 = "# Region file format: DS9 version 4.1\n" head2 = """global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\n""" head3 = "fk5\n" f.write(head1) f.write(head2) f.write(head3) for n in range(len(ra)): body="circle("+str(ra[n])+","+str(dec[n])+","+radius+") # color="+color+" text={"+str(name[n])+"}\n" f.write(body) f.close() #------------------------------------------------------------ def rtsmaker(observatory, headname, save_path, obspath, catpath, start, end, altlimit=30., moonseperation=40., sunlimit='-18', numlimit=100):
save_path = './' obspath = "/home/gw/Research/observatory.txt" catpath = 'MS181101ab_Preliminary-all_candidates.txt' start = '2019/04/17' end = '2019/04/19' #altitute limit and moon seperation, moon serperation is a little bit close (2~3 deg) numlimit = 100 altlimit = 30. moonseperation = 40. sunlimit = '-18' ''' #------------------------------------------------------------# # OBSERVATORY INFO. #------------------------------------------------------------# obsinfo = ascii.read(obspath) obsname = np.copy(obsinfo['name']) obsindex = np.where(obsname == observatory)[0] obslat = (np.copy(obsinfo['latitude(N+)'])[obsindex])[0] obslon = (np.copy(obsinfo['longitude(E+)'])[obsindex])[0] obsalt = (np.copy(obsinfo['altitude'])[obsindex])[0] obstz = (np.copy(obsinfo['timezone'])[obsindex])[0] tz = pytz.timezone(obstz) #------------------------------------------------------------# observ = ephem.Observer() observ.lat = str(obslat) observ.lon = str(obslon) observ.elevation= obsalt observ.horizon = sunlimit #------------------------------------------------------------# #objects from catalog file tdata = ascii.read(catpath) objname = tdata['name'] ra = tdata['ra'] dec = tdata['dec'] prior = tdata['sort'] rank = tdata['rank'] dist = tdata['dist'] RA = coord.Angle(ra, unit = u.deg) Dec = coord.Angle(dec, unit = u.deg) radd = RA.value rad = RA.hour decd = Dec.value decdd = Dec.degree #angular distance calculation def angsep(ra1deg, dec1deg, ra2deg, dec2deg) : ra1rad = ra1deg*np.pi/180 dec1rad = dec1deg*np.pi/180 ra2rad = ra2deg*np.pi/180 dec2rad = dec2deg*np.pi/180 cos_a = np.sin(dec1rad)*np.sin(dec2rad)+(np.cos(dec1rad)*np.cos(dec2rad)*np.cos(ra1rad-ra2rad
import pytz import jdcal import ephem #from numpy import * import numpy as np import os, sys import string import datetime import astropy.units as u from astropy.io import ascii import mskpy.observing as obs import astropy.coordinates as coord from astropy import units as u from astropy.coordinates import SkyCoord #------------------------------------------------------------# # INPUT SAMPLE #------------------------------------------------------------# ''' observatory = 'SAO'
identifier_body
retina_loss.py
(image_shape,stride): ''' transfor one fmap coords to orig coords Args featurn [batch_size,h,w,c] stride int Returns coords [n,2] ''' h,w= image_shape shifts_x = torch.arange(0, w * stride, stride, dtype=torch.float32) shifts_y = torch.arange(0, h * stride, stride, dtype=torch.float32) shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) shift_x = torch.reshape(shift_x, [-1]) shift_y = torch.reshape(shift_y, [-1]) coords = torch.stack([shift_x, shift_y, shift_x, shift_y], -1) + stride // 2 return coords class GenAnchors(nn.Module): def __init__(self, config = None): super().__init__() if config is None: self.config = DefaultConfig else: self.config = config self.pyramid_levels = self.config.pyramid_levels self.ratios = np.array(self.config.ratios) self.scales = np.array(self.config.scales) self.size = self.config.sizes self.strides = self.config.strides def forward(self, image): H, W = image.size(2), image.size(3) #(ori_H, ori_W) feature_size = [(H / stride, W / stride) for stride in self.strides] all_anchors = [] for i in range(len(feature_size)): anchors = self.generate_anchors(self.size[i], self.ratios, self.scales) shift_anchors = self.shift(anchors, feature_size[i], self.strides[i]) #(H*W, A, 4) all_anchors.append(shift_anchors) all_anchors = torch.cat(all_anchors, dim = 0) return all_anchors def generate_anchors(self, base_size=16, ratios=None, scales=None): if ratios is None: ratios = np.array([0.5, 1, 2]) if scales is None: scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]) num_anchors = len(ratios) * len(scales) # 9 anchors = np.zeros((num_anchors, 4)) anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T # compute areas of anchors areas = anchors[:, 2] * anchors[:, 3] # (9,) # fix the ratios of w, h anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales))) # (9,) anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales)) # (9,) # transfrom from(0 ,0, w, h ) to ( x1, y1, x2, y2) anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T anchors = torch.from_numpy(anchors).float().cuda() if torch.cuda.is_available() else torch.from_numpy(anchors).float() return anchors def shift(self, anchors, image_shape, stride): """ anchors : Tensor(num, 4) image_shape : (H, W) return shift_anchor: (H*W*num,4) """ ori_coords = coords_fmap2orig(image_shape, stride) # (H*W, 4) 4:(x,y,x,y) ori_coords = ori_coords.to(device=anchors.device) shift_anchor = ori_coords[:, None, :] + anchors[None, :, :] return shift_anchor.reshape(-1, 4) def calc_iou(box1, box2): """ box1:(M,4) box2:(N,4) """ lt = torch.max(box1[:,None,:2], box2[:, :2]) #(M,N,2) rb = torch.min(box1[:,None,2:], box2[:, 2:]) #(M,N,2) wh = torch.clamp(rb - lt , min=0.0) #(M, N, 2) inter_area = wh[..., 0] * wh[..., 1] #(M, N) area_box1 = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]) #(M,) area_box2 = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1]) #(N,) iou = inter_area / (area_box1[:,None] + area_box2 - inter_area + 1e-16) #(M,N) return iou def focal_loss(preds, targets, alpha=0.25, gamma = 2.0): preds = preds.sigmoid() preds = torch.clamp(preds, min=1e-4,max = 1. - 1e-4) if torch.cuda.is_available(): alpha_factor = torch.ones(targets.shape).cuda() * alpha else: alpha_factor = torch.ones(targets.shape) * alpha alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, (1. - alpha_factor)) focal_weights = torch.where(torch.eq(targets, 1.), 1 - preds, preds) focal_weights = alpha_factor * torch.pow(focal_weights, gamma) bce = - (targets * torch.log(preds) + (1. - targets) * torch.log(1. - preds)) cls_loss = focal_weights * bce if torch.cuda.is_available(): cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss).cuda()) else: cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss)) return cls_loss.sum() def smooth_l1(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds,:] #(num_pos, 4) gt_widths = boxes[pos_inds][:, 2] - boxes[pos_inds][:, 0] gt_heights = boxes[pos_inds][:, 3] - boxes[pos_inds][:, 1] gt_ctr_x = boxes[pos_inds][:, 0] + gt_widths * 0.5 gt_ctr_y = boxes[pos_inds][:, 1] + gt_heights * 0.5 pos_anchor_widths = anchor_widths[pos_inds] pos_anchor_heights = anchor_heights[pos_inds] pos_anchor_ctr_x = anchor_ctr_x[pos_inds] pos_anchor_ctr_y = anchor_ctr_y[pos_inds] gt_widths = torch.clamp(gt_widths, min=1.0) gt_heights = torch.clamp(gt_heights, min=1.0) target_dx = (gt_ctr_x - pos_anchor_ctr_x) / pos_anchor_widths target_dy = (gt_ctr_y - pos_anchor_ctr_y) / pos_anchor_heights target_dw = torch.log(gt_widths / pos_anchor_widths) target_dh = torch.log(gt_heights / pos_anchor_heights) targets = torch.stack([target_dx,target_dy,target_dw,target_dh], dim=0).t() #(num_pos,4) if torch.cuda.is_available(): targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]).cuda() else: targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]) reg_diff = torch.abs(targets - pos_reg_pred) #(num_pos,4) reg_loss = torch.where( torch.le(reg_diff, 1.0/9.0), 0.5 * 9.0 * torch.pow(reg_diff, 2), reg_diff - 0.5 /9.0 ) return reg_loss.mean() else: if torch.cuda.is_available(): reg_loss = torch.tensor(0).float().cuda() else: reg_loss = torch.tensor(0).float() return reg_loss def giou(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds
coords_fmap2orig
identifier_name
retina_loss.py
W) return shift_anchor: (H*W*num,4) """ ori_coords = coords_fmap2orig(image_shape, stride) # (H*W, 4) 4:(x,y,x,y) ori_coords = ori_coords.to(device=anchors.device) shift_anchor = ori_coords[:, None, :] + anchors[None, :, :] return shift_anchor.reshape(-1, 4) def calc_iou(box1, box2): """ box1:(M,4) box2:(N,4) """ lt = torch.max(box1[:,None,:2], box2[:, :2]) #(M,N,2) rb = torch.min(box1[:,None,2:], box2[:, 2:]) #(M,N,2) wh = torch.clamp(rb - lt , min=0.0) #(M, N, 2) inter_area = wh[..., 0] * wh[..., 1] #(M, N) area_box1 = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]) #(M,) area_box2 = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1]) #(N,) iou = inter_area / (area_box1[:,None] + area_box2 - inter_area + 1e-16) #(M,N) return iou def focal_loss(preds, targets, alpha=0.25, gamma = 2.0): preds = preds.sigmoid() preds = torch.clamp(preds, min=1e-4,max = 1. - 1e-4) if torch.cuda.is_available(): alpha_factor = torch.ones(targets.shape).cuda() * alpha else: alpha_factor = torch.ones(targets.shape) * alpha alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, (1. - alpha_factor)) focal_weights = torch.where(torch.eq(targets, 1.), 1 - preds, preds) focal_weights = alpha_factor * torch.pow(focal_weights, gamma) bce = - (targets * torch.log(preds) + (1. - targets) * torch.log(1. - preds)) cls_loss = focal_weights * bce if torch.cuda.is_available(): cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss).cuda()) else: cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss)) return cls_loss.sum() def smooth_l1(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds,:] #(num_pos, 4) gt_widths = boxes[pos_inds][:, 2] - boxes[pos_inds][:, 0] gt_heights = boxes[pos_inds][:, 3] - boxes[pos_inds][:, 1] gt_ctr_x = boxes[pos_inds][:, 0] + gt_widths * 0.5 gt_ctr_y = boxes[pos_inds][:, 1] + gt_heights * 0.5 pos_anchor_widths = anchor_widths[pos_inds] pos_anchor_heights = anchor_heights[pos_inds] pos_anchor_ctr_x = anchor_ctr_x[pos_inds] pos_anchor_ctr_y = anchor_ctr_y[pos_inds] gt_widths = torch.clamp(gt_widths, min=1.0) gt_heights = torch.clamp(gt_heights, min=1.0) target_dx = (gt_ctr_x - pos_anchor_ctr_x) / pos_anchor_widths target_dy = (gt_ctr_y - pos_anchor_ctr_y) / pos_anchor_heights target_dw = torch.log(gt_widths / pos_anchor_widths) target_dh = torch.log(gt_heights / pos_anchor_heights) targets = torch.stack([target_dx,target_dy,target_dw,target_dh], dim=0).t() #(num_pos,4) if torch.cuda.is_available(): targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]).cuda() else: targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]) reg_diff = torch.abs(targets - pos_reg_pred) #(num_pos,4) reg_loss = torch.where( torch.le(reg_diff, 1.0/9.0), 0.5 * 9.0 * torch.pow(reg_diff, 2), reg_diff - 0.5 /9.0 ) return reg_loss.mean() else: if torch.cuda.is_available(): reg_loss = torch.tensor(0).float().cuda() else: reg_loss = torch.tensor(0).float() return reg_loss def giou(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds,:] #(num_pos, 4) gt_boxes = boxes[pos_inds,:] #(num_pos, 4) pos_anchor_widths = anchor_widths[pos_inds] #(num_pos,) pos_anchor_heights = anchor_heights[pos_inds] #(num_pos,) pos_anchor_ctr_x = anchor_ctr_x[pos_inds] #(num_pos,) pos_anchor_ctr_y = anchor_ctr_y[pos_inds] #(num_pos,) dx = pos_reg_pred[:, 0] * 0.1 #(num_pos,) dy = pos_reg_pred[:, 1] * 0.1 #(num_pos,) dw = pos_reg_pred[:, 2] * 0.2 #(num_pos,) dh = pos_reg_pred[:, 3] * 0.2 #(num_pos,) pred_ctr_x = dx * pos_anchor_widths + pos_anchor_ctr_x #(num_pos,) pred_ctr_y = dy * pos_anchor_heights + pos_anchor_ctr_y #(num_pos,) pred_w = torch.exp(dw) * pos_anchor_widths #(num_pos,) pred_h = torch.exp(dh) * pos_anchor_heights #(num_pos,) pred_x1 = pred_ctr_x - pred_w * 0.5 #(num_pos,) pred_y1 = pred_ctr_y - pred_h * 0.5 #(num_pos,) pred_x2 = pred_ctr_x + pred_w * 0.5 #(num_pos,) pred_y2 = pred_ctr_y + pred_h * 0.5 #(num_pos,) preds_boxes = torch.stack([pred_x1,pred_y1,pred_x2,pred_y2], dim=0).t() #(num_pos,4) reg_loss = compute_giou_loss(gt_boxes, preds_boxes) else: if torch.cuda.is_available(): reg_loss = torch.tensor(0).float().cuda() else: reg_loss = torch.tensor(0).float() return reg_loss def compute_giou_loss(boxes1, boxes2): """ boxes1 :(N,4) (x1,y1,x2,y2) boxes2: (N,4) (x1,y1,x2,y2) """ x1y1 = torch.max(boxes1[:, :2], boxes2[:, :2]) x2y2 = torch.min(boxes1[:, 2:], boxes2[:, 2:]) wh = torch.clamp(x2y2 - x1y1, min=0.) area_inter = wh[:, 0] * wh[:, 1] area_b1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) area_b2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) union = area_b1 + area_b2 - area_inter iou = area_inter / (union + 1e-16) x1y1_max = torch.min(boxes1[:, :2], boxes2[:, :2]) x2y2_max = torch.max(boxes1[:, 2:], boxes2[:, 2:]) g_wh = torch.clamp(x2y2_max - x1y1_max, min=0.) g_area = g_wh[:, 0] * g_wh[:, 1] giou = iou - (g_area - union) / g_area.clamp(1e-10) loss = 1. - giou return loss.mean() class LOSS(nn.Module): def __init__(self,reg_mode = 'giou'):
super(LOSS, self).__init__() self.reg_mode = reg_mode
identifier_body
retina_loss.py
areas = anchors[:, 2] * anchors[:, 3] # (9,) # fix the ratios of w, h anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales))) # (9,) anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales)) # (9,) # transfrom from(0 ,0, w, h ) to ( x1, y1, x2, y2) anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T anchors = torch.from_numpy(anchors).float().cuda() if torch.cuda.is_available() else torch.from_numpy(anchors).float() return anchors def shift(self, anchors, image_shape, stride): """ anchors : Tensor(num, 4) image_shape : (H, W) return shift_anchor: (H*W*num,4) """ ori_coords = coords_fmap2orig(image_shape, stride) # (H*W, 4) 4:(x,y,x,y) ori_coords = ori_coords.to(device=anchors.device) shift_anchor = ori_coords[:, None, :] + anchors[None, :, :] return shift_anchor.reshape(-1, 4) def calc_iou(box1, box2): """ box1:(M,4) box2:(N,4) """ lt = torch.max(box1[:,None,:2], box2[:, :2]) #(M,N,2) rb = torch.min(box1[:,None,2:], box2[:, 2:]) #(M,N,2) wh = torch.clamp(rb - lt , min=0.0) #(M, N, 2) inter_area = wh[..., 0] * wh[..., 1] #(M, N) area_box1 = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]) #(M,) area_box2 = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1]) #(N,) iou = inter_area / (area_box1[:,None] + area_box2 - inter_area + 1e-16) #(M,N) return iou def focal_loss(preds, targets, alpha=0.25, gamma = 2.0): preds = preds.sigmoid() preds = torch.clamp(preds, min=1e-4,max = 1. - 1e-4) if torch.cuda.is_available(): alpha_factor = torch.ones(targets.shape).cuda() * alpha else: alpha_factor = torch.ones(targets.shape) * alpha alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, (1. - alpha_factor)) focal_weights = torch.where(torch.eq(targets, 1.), 1 - preds, preds) focal_weights = alpha_factor * torch.pow(focal_weights, gamma) bce = - (targets * torch.log(preds) + (1. - targets) * torch.log(1. - preds)) cls_loss = focal_weights * bce if torch.cuda.is_available(): cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss).cuda()) else: cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss)) return cls_loss.sum() def smooth_l1(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds,:] #(num_pos, 4) gt_widths = boxes[pos_inds][:, 2] - boxes[pos_inds][:, 0] gt_heights = boxes[pos_inds][:, 3] - boxes[pos_inds][:, 1] gt_ctr_x = boxes[pos_inds][:, 0] + gt_widths * 0.5 gt_ctr_y = boxes[pos_inds][:, 1] + gt_heights * 0.5 pos_anchor_widths = anchor_widths[pos_inds] pos_anchor_heights = anchor_heights[pos_inds] pos_anchor_ctr_x = anchor_ctr_x[pos_inds] pos_anchor_ctr_y = anchor_ctr_y[pos_inds] gt_widths = torch.clamp(gt_widths, min=1.0) gt_heights = torch.clamp(gt_heights, min=1.0) target_dx = (gt_ctr_x - pos_anchor_ctr_x) / pos_anchor_widths target_dy = (gt_ctr_y - pos_anchor_ctr_y) / pos_anchor_heights target_dw = torch.log(gt_widths / pos_anchor_widths) target_dh = torch.log(gt_heights / pos_anchor_heights) targets = torch.stack([target_dx,target_dy,target_dw,target_dh], dim=0).t() #(num_pos,4) if torch.cuda.is_available(): targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]).cuda() else: targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]) reg_diff = torch.abs(targets - pos_reg_pred) #(num_pos,4) reg_loss = torch.where( torch.le(reg_diff, 1.0/9.0), 0.5 * 9.0 * torch.pow(reg_diff, 2), reg_diff - 0.5 /9.0 ) return reg_loss.mean() else: if torch.cuda.is_available(): reg_loss = torch.tensor(0).float().cuda() else: reg_loss = torch.tensor(0).float() return reg_loss def giou(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds,:] #(num_pos, 4) gt_boxes = boxes[pos_inds,:] #(num_pos, 4) pos_anchor_widths = anchor_widths[pos_inds] #(num_pos,) pos_anchor_heights = anchor_heights[pos_inds] #(num_pos,) pos_anchor_ctr_x = anchor_ctr_x[pos_inds] #(num_pos,) pos_anchor_ctr_y = anchor_ctr_y[pos_inds] #(num_pos,) dx = pos_reg_pred[:, 0] * 0.1 #(num_pos,) dy = pos_reg_pred[:, 1] * 0.1 #(num_pos,) dw = pos_reg_pred[:, 2] * 0.2 #(num_pos,) dh = pos_reg_pred[:, 3] * 0.2 #(num_pos,) pred_ctr_x = dx * pos_anchor_widths + pos_anchor_ctr_x #(num_pos,) pred_ctr_y = dy * pos_anchor_heights + pos_anchor_ctr_y #(num_pos,) pred_w = torch.exp(dw) * pos_anchor_widths #(num_pos,) pred_h = torch.exp(dh) * pos_anchor_heights #(num_pos,) pred_x1 = pred_ctr_x - pred_w * 0.5 #(num_pos,) pred_y1 = pred_ctr_y - pred_h * 0.5 #(num_pos,) pred_x2 = pred_ctr_x + pred_w * 0.5 #(num_pos,) pred_y2 = pred_ctr_y + pred_h * 0.5 #(num_pos,)
reg_loss = torch.tensor(0).float().cuda() else: reg_loss = torch.tensor(0).float() return reg_loss def compute_giou_loss(boxes1, boxes2): """ boxes1 :(N,4) (x1,y1,x2,y2) boxes2: (N,4) (x1,y1,x2,y2) """ x1y1 = torch.max(boxes1[:, :2], boxes2[:, :2]) x2y2 = torch.min(boxes1[:, 2:], boxes2[:, 2:]) wh = torch.clamp(x2y2 - x1y1, min=0.) area_inter = wh[:, 0] * wh[:, 1] area_b1 = (boxes1[:, 2] - boxes1[:, 0]) * (
preds_boxes = torch.stack([pred_x1,pred_y1,pred_x2,pred_y2], dim=0).t() #(num_pos,4) reg_loss = compute_giou_loss(gt_boxes, preds_boxes) else: if torch.cuda.is_available():
random_line_split
retina_loss.py
areas = anchors[:, 2] * anchors[:, 3] # (9,) # fix the ratios of w, h anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales))) # (9,) anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales)) # (9,) # transfrom from(0 ,0, w, h ) to ( x1, y1, x2, y2) anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T anchors = torch.from_numpy(anchors).float().cuda() if torch.cuda.is_available() else torch.from_numpy(anchors).float() return anchors def shift(self, anchors, image_shape, stride): """ anchors : Tensor(num, 4) image_shape : (H, W) return shift_anchor: (H*W*num,4) """ ori_coords = coords_fmap2orig(image_shape, stride) # (H*W, 4) 4:(x,y,x,y) ori_coords = ori_coords.to(device=anchors.device) shift_anchor = ori_coords[:, None, :] + anchors[None, :, :] return shift_anchor.reshape(-1, 4) def calc_iou(box1, box2): """ box1:(M,4) box2:(N,4) """ lt = torch.max(box1[:,None,:2], box2[:, :2]) #(M,N,2) rb = torch.min(box1[:,None,2:], box2[:, 2:]) #(M,N,2) wh = torch.clamp(rb - lt , min=0.0) #(M, N, 2) inter_area = wh[..., 0] * wh[..., 1] #(M, N) area_box1 = (box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]) #(M,) area_box2 = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1]) #(N,) iou = inter_area / (area_box1[:,None] + area_box2 - inter_area + 1e-16) #(M,N) return iou def focal_loss(preds, targets, alpha=0.25, gamma = 2.0): preds = preds.sigmoid() preds = torch.clamp(preds, min=1e-4,max = 1. - 1e-4) if torch.cuda.is_available(): alpha_factor = torch.ones(targets.shape).cuda() * alpha else: alpha_factor = torch.ones(targets.shape) * alpha alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, (1. - alpha_factor)) focal_weights = torch.where(torch.eq(targets, 1.), 1 - preds, preds) focal_weights = alpha_factor * torch.pow(focal_weights, gamma) bce = - (targets * torch.log(preds) + (1. - targets) * torch.log(1. - preds)) cls_loss = focal_weights * bce if torch.cuda.is_available(): cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss).cuda()) else: cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros_like(cls_loss)) return cls_loss.sum() def smooth_l1(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds,:] #(num_pos, 4) gt_widths = boxes[pos_inds][:, 2] - boxes[pos_inds][:, 0] gt_heights = boxes[pos_inds][:, 3] - boxes[pos_inds][:, 1] gt_ctr_x = boxes[pos_inds][:, 0] + gt_widths * 0.5 gt_ctr_y = boxes[pos_inds][:, 1] + gt_heights * 0.5 pos_anchor_widths = anchor_widths[pos_inds] pos_anchor_heights = anchor_heights[pos_inds] pos_anchor_ctr_x = anchor_ctr_x[pos_inds] pos_anchor_ctr_y = anchor_ctr_y[pos_inds] gt_widths = torch.clamp(gt_widths, min=1.0) gt_heights = torch.clamp(gt_heights, min=1.0) target_dx = (gt_ctr_x - pos_anchor_ctr_x) / pos_anchor_widths target_dy = (gt_ctr_y - pos_anchor_ctr_y) / pos_anchor_heights target_dw = torch.log(gt_widths / pos_anchor_widths) target_dh = torch.log(gt_heights / pos_anchor_heights) targets = torch.stack([target_dx,target_dy,target_dw,target_dh], dim=0).t() #(num_pos,4) if torch.cuda.is_available(): targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]).cuda() else: targets = targets / torch.FloatTensor([0.1,0.1,0.2,0.2]) reg_diff = torch.abs(targets - pos_reg_pred) #(num_pos,4) reg_loss = torch.where( torch.le(reg_diff, 1.0/9.0), 0.5 * 9.0 * torch.pow(reg_diff, 2), reg_diff - 0.5 /9.0 ) return reg_loss.mean() else: if torch.cuda.is_available(): reg_loss = torch.tensor(0).float().cuda() else: reg_loss = torch.tensor(0).float() return reg_loss def giou(pos_inds,anchor_infos, boxes,reg_pred): """ pos_inds : (num_pos,) boxes:(sum(H*W)*A, 4) reg_pred: (sum(H*W)*A, 4) """ anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y = anchor_infos #(sum(H*W)*A,) if pos_inds.sum() > 0: pos_reg_pred = reg_pred[pos_inds,:] #(num_pos, 4) gt_boxes = boxes[pos_inds,:] #(num_pos, 4) pos_anchor_widths = anchor_widths[pos_inds] #(num_pos,) pos_anchor_heights = anchor_heights[pos_inds] #(num_pos,) pos_anchor_ctr_x = anchor_ctr_x[pos_inds] #(num_pos,) pos_anchor_ctr_y = anchor_ctr_y[pos_inds] #(num_pos,) dx = pos_reg_pred[:, 0] * 0.1 #(num_pos,) dy = pos_reg_pred[:, 1] * 0.1 #(num_pos,) dw = pos_reg_pred[:, 2] * 0.2 #(num_pos,) dh = pos_reg_pred[:, 3] * 0.2 #(num_pos,) pred_ctr_x = dx * pos_anchor_widths + pos_anchor_ctr_x #(num_pos,) pred_ctr_y = dy * pos_anchor_heights + pos_anchor_ctr_y #(num_pos,) pred_w = torch.exp(dw) * pos_anchor_widths #(num_pos,) pred_h = torch.exp(dh) * pos_anchor_heights #(num_pos,) pred_x1 = pred_ctr_x - pred_w * 0.5 #(num_pos,) pred_y1 = pred_ctr_y - pred_h * 0.5 #(num_pos,) pred_x2 = pred_ctr_x + pred_w * 0.5 #(num_pos,) pred_y2 = pred_ctr_y + pred_h * 0.5 #(num_pos,) preds_boxes = torch.stack([pred_x1,pred_y1,pred_x2,pred_y2], dim=0).t() #(num_pos,4) reg_loss = compute_giou_loss(gt_boxes, preds_boxes) else: if torch.cuda.is_available():
else: reg_loss = torch.tensor(0).float() return reg_loss def compute_giou_loss(boxes1, boxes2): """ boxes1 :(N,4) (x1,y1,x2,y2) boxes2: (N,4) (x1,y1,x2,y2) """ x1y1 = torch.max(boxes1[:, :2], boxes2[:, :2]) x2y2 = torch.min(boxes1[:, 2:], boxes2[:, 2:]) wh = torch.clamp(x2y2 - x1y1, min=0.) area_inter = wh[:, 0] * wh[:, 1] area_b1 = (boxes1[:, 2] - boxes1[:, 0]) *
reg_loss = torch.tensor(0).float().cuda()
conditional_block
preprocess_lidc1.py
() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g def plot(vol,x,y,z): corner1 = np.array([x,y,z])-np.array(CROP_SHAPE)/2 corner2 = corner1+np.array(CROP_SHAPE) plt.subplot(311) plt.imshow(vol[x,corner1[1]:corner2[1],corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(312) plt.imshow(vol[corner1[0]:corner2[0],y,corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(313) plt.imshow(vol[corner1[0]:corner2[0],corner1[1]:corner2[1],z],cmap=plt.cm.gray) plt.show() def process_scan(scan): uid = scan.series_instance_uid volume,spacing,orientation,z0 = scan.to_volume() volume = volume.transpose([1,0,2]) if orientation[0]<0: volume=volume[::-1,::-1,:] resize_factor = np.array(spacing)/np.array(NEW_SPACING) resampled = scipy.ndimage.interpolation.zoom(volume,resize_factor) resampled = normalize(resampled) shape = resampled.shape clusters = scan.annotations_with_matching_overlap() clusters_data=[]
cluster_group=[] for ann in cluster: diameter = ann.estimate_diameter() features = ann.feature_vals() c = ann.centroid() c[:2]=c[:2]*np.array(spacing[:2]) c[2] = c[2]-z0 c = c/np.array(NEW_SPACING) b = ann.bbox() b[:2,:] = b[:2,:]*np.expand_dims(np.array(spacing[:2]),axis=1) b[2,:] = b[2,:]-z0 b = b / np.expand_dims(np.array(NEW_SPACING),axis=1) if orientation[0]<0: c[:2] = np.array(resampled.shape)[:2] - c[:2] b[:2,:] = np.expand_dims(np.array(resampled.shape)[:2],axis=1)-b[:2,:] #plot(resampled,int(c[0]),int(c[1]),int(c[2])) annotation= {'diameter': diameter,'features':features, 'centroid':c,'bbox':b} cluster_group.append(annotation) if c[2]<0 or b[2,0]<0 or b[2,1]<0: print "Error",uid,orientation,c,b,ann.centroid(),ann.bbox() clusters_data.append(cluster_group) np.save(PROCESSED_DIR+uid+'.npy',resampled) with open(PROCESSED_DIR+uid+'annotation.txt', 'w') as outfile: pickle.dump(clusters_data, outfile) def normalize(image): MIN_BOUND = -1000.0 MAX_BOUND = 400.0 image = PIXEL_RANGE*(image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>PIXEL_RANGE] = PIXEL_RANGE image[image<0] = 0. image = np.round(image).astype(np.uint16) return image def load_lidc(): filenames = glob.glob(PROCESSED_DIR+'*.npy') data = [] annotations = [] for name in tqdm(filenames): data.append(np.load(name)) annotation_file_name = '.'.join(name.split('.')[:-1])+'annotation.txt' with open(annotation_file_name,'r') as pickle_file: annotations.append(pickle.load(pickle_file)) perm = range(len(annotations)) random.shuffle(perm) data = [data[i] for i in perm] annotations= [annotations[i] for i in perm] data=np.asarray(data) return data,annotations def soft_focus(pos,centroid): Focus_radius = 30 # mm dist = np.linalg.norm( (np.array(pos)-np.array(centroid))*np.array(NEW_SPACING))/Focus_radius return max(1-dist,0) def shift_radius(shift): r = 100 while r > shift: v = np.random.uniform(-shift,high=shift,size=(3,)) r = np.linalg.norm(v) vox_shift = (v/np.array(NEW_SPACING)).astype(int) return vox_shift def find_nodule(annotation,min_agreement): good_clusters = [cluster for cluster in annotation if len(cluster)>=min_agreement] marks = [mark for cluster in good_clusters for mark in cluster] mark = marks[random.randint(0,len(marks)-1)] centroid = np.array(mark['centroid']).astype(int) shift = 12.0 # mm , shold be within soft noudle detection threshold pos = centroid + shift_radius(shift) #print "diameter",mark['diameter'] """ feature_names = \ ('subtlety', 'internalStructure', 'calcification', 'sphericity', 'margin', 'lobulation', 'spiculation', 'texture', 'malignancy') """ soft = soft_focus(pos,centroid) if (soft < NODULE_THRESHOLD) : print 'Error: nodule shifted too much' malig = mark['features'][8] diameter = mark['diameter'] return pos,np.array([soft,malig/5.0,diameter]) def plot_patch(image): c = np.array(image.shape)/2 plt.subplot(311) plt.imshow(np.squeeze(image[c[0],:,:]),cmap=plt.cm.gray) plt.subplot(312) plt.imshow(np.squeeze(image[:,c[1],:]),cmap=plt.cm.gray) plt.subplot(313) plt.imshow(np.squeeze(image[:,:,c[2]]),cmap=plt.cm.gray) plt.show() def crop(image,position): corner1 = np.array(position)-np.array(CROP_SHAPE)/2 corner1 = np.maximum(corner1, np.array([0,0,0])) corner2 = corner1+np.array(CROP_SHAPE) corner2 = np.minimum(corner2,np.array(image.shape)) corner1 = corner2-np.array(CROP_SHAPE) patch = image[corner1[0]:corner2[0],corner1[1]:corner2[1],corner1[2]:corner2[2]] return patch def bbox_in_patch(bbox,pos): corner1 = np.array(pos) - np.array(CROP_SHAPE)/2 corner2 = corner1 + np.array(CROP_SHAPE)/2 if np.all(bbox[:,0] > corner1) and np.all(bbox[:,1] < corner2): nodule = True else: nodule = False return nodule def check_centroid(centroid,pos): check = False diff = np.abs(np.array(centroid)-np.array(pos)) if np.all(diff < np.array(CROP_SHAPE)/4): #print "check_centroid",diff, CROP_SHAPE check = True return check def find_label(pos,annotation,min_agreement): nodule = 0 malig = 0 biggest_diameter = 0 c = 0 for cluster in annotation: if len(cluster) >= min_agreement: # choose randomly one mark from each cluster mark = cluster[random.randint(0,len(cluster)-1)] #bbox = mark['bbox'] #if bbox_in_patch(bbox,pos): centroid = mark['centroid'] soft = soft_focus(centroid,pos) if soft > NODULE_THRESHOLD: diameter = mark['diameter'] if diameter > biggest_diameter: biggest_diameter = diameter malig = mark['features'][8] nodule = soft c = np.array(centroid).astype(int) #if nodule: #print "find_label",biggest_diameter,pos,c return np.array([nodule,malig/5.0,biggest_diameter]),c def augment(patch): if random.random() < 0.5: patch = patch[::-1,:,:] if random.random() < 0.5: patch = patch[:,::-1,:] if random.random() < 0.5: patch = patch[:,:,::-1] perm = [0,1] random.shuffle(perm) patch = np.transpose(patch,perm+[2]) return patch def check_agreement(annotation,minimum): n = 0 if len(annotation)>0: n = [ len(x) for x in annotation] ok = np.max(n) >= minimum else: ok = False #print "check agreement",minimum,np.max(n),ok return ok @threadsafe_generator def generate_lidc(data,annotations): neg_fraction = 0.5 total = 1. neg = 0. min_agreement = 3 PLOT = False skip = 0 while True: for i in range(len(annotations)): random_sample =
for cluster in clusters:
random_line_split
preprocess_lidc1.py
() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g def plot(vol,x,y,z): corner1 = np.array([x,y,z])-np.array(CROP_SHAPE)/2 corner2 = corner1+np.array(CROP_SHAPE) plt.subplot(311) plt.imshow(vol[x,corner1[1]:corner2[1],corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(312) plt.imshow(vol[corner1[0]:corner2[0],y,corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(313) plt.imshow(vol[corner1[0]:corner2[0],corner1[1]:corner2[1],z],cmap=plt.cm.gray) plt.show() def process_scan(scan): uid = scan.series_instance_uid volume,spacing,orientation,z0 = scan.to_volume() volume = volume.transpose([1,0,2]) if orientation[0]<0: volume=volume[::-1,::-1,:] resize_factor = np.array(spacing)/np.array(NEW_SPACING) resampled = scipy.ndimage.interpolation.zoom(volume,resize_factor) resampled = normalize(resampled) shape = resampled.shape clusters = scan.annotations_with_matching_overlap() clusters_data=[] for cluster in clusters: cluster_group=[] for ann in cluster: diameter = ann.estimate_diameter() features = ann.feature_vals() c = ann.centroid() c[:2]=c[:2]*np.array(spacing[:2]) c[2] = c[2]-z0 c = c/np.array(NEW_SPACING) b = ann.bbox() b[:2,:] = b[:2,:]*np.expand_dims(np.array(spacing[:2]),axis=1) b[2,:] = b[2,:]-z0 b = b / np.expand_dims(np.array(NEW_SPACING),axis=1) if orientation[0]<0: c[:2] = np.array(resampled.shape)[:2] - c[:2] b[:2,:] = np.expand_dims(np.array(resampled.shape)[:2],axis=1)-b[:2,:] #plot(resampled,int(c[0]),int(c[1]),int(c[2])) annotation= {'diameter': diameter,'features':features, 'centroid':c,'bbox':b} cluster_group.append(annotation) if c[2]<0 or b[2,0]<0 or b[2,1]<0: print "Error",uid,orientation,c,b,ann.centroid(),ann.bbox() clusters_data.append(cluster_group) np.save(PROCESSED_DIR+uid+'.npy',resampled) with open(PROCESSED_DIR+uid+'annotation.txt', 'w') as outfile: pickle.dump(clusters_data, outfile) def normalize(image): MIN_BOUND = -1000.0 MAX_BOUND = 400.0 image = PIXEL_RANGE*(image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>PIXEL_RANGE] = PIXEL_RANGE image[image<0] = 0. image = np.round(image).astype(np.uint16) return image def load_lidc(): filenames = glob.glob(PROCESSED_DIR+'*.npy') data = [] annotations = [] for name in tqdm(filenames): data.append(np.load(name)) annotation_file_name = '.'.join(name.split('.')[:-1])+'annotation.txt' with open(annotation_file_name,'r') as pickle_file: annotations.append(pickle.load(pickle_file)) perm = range(len(annotations)) random.shuffle(perm) data = [data[i] for i in perm] annotations= [annotations[i] for i in perm] data=np.asarray(data) return data,annotations def soft_focus(pos,centroid):
def shift_radius(shift): r = 100 while r > shift: v = np.random.uniform(-shift,high=shift,size=(3,)) r = np.linalg.norm(v) vox_shift = (v/np.array(NEW_SPACING)).astype(int) return vox_shift def find_nodule(annotation,min_agreement): good_clusters = [cluster for cluster in annotation if len(cluster)>=min_agreement] marks = [mark for cluster in good_clusters for mark in cluster] mark = marks[random.randint(0,len(marks)-1)] centroid = np.array(mark['centroid']).astype(int) shift = 12.0 # mm , shold be within soft noudle detection threshold pos = centroid + shift_radius(shift) #print "diameter",mark['diameter'] """ feature_names = \ ('subtlety', 'internalStructure', 'calcification', 'sphericity', 'margin', 'lobulation', 'spiculation', 'texture', 'malignancy') """ soft = soft_focus(pos,centroid) if (soft < NODULE_THRESHOLD) : print 'Error: nodule shifted too much' malig = mark['features'][8] diameter = mark['diameter'] return pos,np.array([soft,malig/5.0,diameter]) def plot_patch(image): c = np.array(image.shape)/2 plt.subplot(311) plt.imshow(np.squeeze(image[c[0],:,:]),cmap=plt.cm.gray) plt.subplot(312) plt.imshow(np.squeeze(image[:,c[1],:]),cmap=plt.cm.gray) plt.subplot(313) plt.imshow(np.squeeze(image[:,:,c[2]]),cmap=plt.cm.gray) plt.show() def crop(image,position): corner1 = np.array(position)-np.array(CROP_SHAPE)/2 corner1 = np.maximum(corner1, np.array([0,0,0])) corner2 = corner1+np.array(CROP_SHAPE) corner2 = np.minimum(corner2,np.array(image.shape)) corner1 = corner2-np.array(CROP_SHAPE) patch = image[corner1[0]:corner2[0],corner1[1]:corner2[1],corner1[2]:corner2[2]] return patch def bbox_in_patch(bbox,pos): corner1 = np.array(pos) - np.array(CROP_SHAPE)/2 corner2 = corner1 + np.array(CROP_SHAPE)/2 if np.all(bbox[:,0] > corner1) and np.all(bbox[:,1] < corner2): nodule = True else: nodule = False return nodule def check_centroid(centroid,pos): check = False diff = np.abs(np.array(centroid)-np.array(pos)) if np.all(diff < np.array(CROP_SHAPE)/4): #print "check_centroid",diff, CROP_SHAPE check = True return check def find_label(pos,annotation,min_agreement): nodule = 0 malig = 0 biggest_diameter = 0 c = 0 for cluster in annotation: if len(cluster) >= min_agreement: # choose randomly one mark from each cluster mark = cluster[random.randint(0,len(cluster)-1)] #bbox = mark['bbox'] #if bbox_in_patch(bbox,pos): centroid = mark['centroid'] soft = soft_focus(centroid,pos) if soft > NODULE_THRESHOLD: diameter = mark['diameter'] if diameter > biggest_diameter: biggest_diameter = diameter malig = mark['features'][8] nodule = soft c = np.array(centroid).astype(int) #if nodule: #print "find_label",biggest_diameter,pos,c return np.array([nodule,malig/5.0,biggest_diameter]),c def augment(patch): if random.random() < 0.5: patch = patch[::-1,:,:] if random.random() < 0.5: patch = patch[:,::-1,:] if random.random() < 0.5: patch = patch[:,:,::-1] perm = [0,1] random.shuffle(perm) patch = np.transpose(patch,perm+[2]) return patch def check_agreement(annotation,minimum): n = 0 if len(annotation)>0: n = [ len(x) for x in annotation] ok = np.max(n) >= minimum else: ok = False #print "check agreement",minimum,np.max(n),ok return ok @threadsafe_generator def generate_lidc(data,annotations): neg_fraction = 0.5 total = 1. neg = 0. min_agreement = 3 PLOT = False skip = 0 while True: for i in range(len(annotations)): random_sample
Focus_radius = 30 # mm dist = np.linalg.norm( (np.array(pos)-np.array(centroid))*np.array(NEW_SPACING))/Focus_radius return max(1-dist,0)
identifier_body
preprocess_lidc1.py
() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g def plot(vol,x,y,z): corner1 = np.array([x,y,z])-np.array(CROP_SHAPE)/2 corner2 = corner1+np.array(CROP_SHAPE) plt.subplot(311) plt.imshow(vol[x,corner1[1]:corner2[1],corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(312) plt.imshow(vol[corner1[0]:corner2[0],y,corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(313) plt.imshow(vol[corner1[0]:corner2[0],corner1[1]:corner2[1],z],cmap=plt.cm.gray) plt.show() def process_scan(scan): uid = scan.series_instance_uid volume,spacing,orientation,z0 = scan.to_volume() volume = volume.transpose([1,0,2]) if orientation[0]<0: volume=volume[::-1,::-1,:] resize_factor = np.array(spacing)/np.array(NEW_SPACING) resampled = scipy.ndimage.interpolation.zoom(volume,resize_factor) resampled = normalize(resampled) shape = resampled.shape clusters = scan.annotations_with_matching_overlap() clusters_data=[] for cluster in clusters: cluster_group=[] for ann in cluster: diameter = ann.estimate_diameter() features = ann.feature_vals() c = ann.centroid() c[:2]=c[:2]*np.array(spacing[:2]) c[2] = c[2]-z0 c = c/np.array(NEW_SPACING) b = ann.bbox() b[:2,:] = b[:2,:]*np.expand_dims(np.array(spacing[:2]),axis=1) b[2,:] = b[2,:]-z0 b = b / np.expand_dims(np.array(NEW_SPACING),axis=1) if orientation[0]<0: c[:2] = np.array(resampled.shape)[:2] - c[:2] b[:2,:] = np.expand_dims(np.array(resampled.shape)[:2],axis=1)-b[:2,:] #plot(resampled,int(c[0]),int(c[1]),int(c[2])) annotation= {'diameter': diameter,'features':features, 'centroid':c,'bbox':b} cluster_group.append(annotation) if c[2]<0 or b[2,0]<0 or b[2,1]<0: print "Error",uid,orientation,c,b,ann.centroid(),ann.bbox() clusters_data.append(cluster_group) np.save(PROCESSED_DIR+uid+'.npy',resampled) with open(PROCESSED_DIR+uid+'annotation.txt', 'w') as outfile: pickle.dump(clusters_data, outfile) def normalize(image): MIN_BOUND = -1000.0 MAX_BOUND = 400.0 image = PIXEL_RANGE*(image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>PIXEL_RANGE] = PIXEL_RANGE image[image<0] = 0. image = np.round(image).astype(np.uint16) return image def load_lidc(): filenames = glob.glob(PROCESSED_DIR+'*.npy') data = [] annotations = [] for name in tqdm(filenames):
perm = range(len(annotations)) random.shuffle(perm) data = [data[i] for i in perm] annotations= [annotations[i] for i in perm] data=np.asarray(data) return data,annotations def soft_focus(pos,centroid): Focus_radius = 30 # mm dist = np.linalg.norm( (np.array(pos)-np.array(centroid))*np.array(NEW_SPACING))/Focus_radius return max(1-dist,0) def shift_radius(shift): r = 100 while r > shift: v = np.random.uniform(-shift,high=shift,size=(3,)) r = np.linalg.norm(v) vox_shift = (v/np.array(NEW_SPACING)).astype(int) return vox_shift def find_nodule(annotation,min_agreement): good_clusters = [cluster for cluster in annotation if len(cluster)>=min_agreement] marks = [mark for cluster in good_clusters for mark in cluster] mark = marks[random.randint(0,len(marks)-1)] centroid = np.array(mark['centroid']).astype(int) shift = 12.0 # mm , shold be within soft noudle detection threshold pos = centroid + shift_radius(shift) #print "diameter",mark['diameter'] """ feature_names = \ ('subtlety', 'internalStructure', 'calcification', 'sphericity', 'margin', 'lobulation', 'spiculation', 'texture', 'malignancy') """ soft = soft_focus(pos,centroid) if (soft < NODULE_THRESHOLD) : print 'Error: nodule shifted too much' malig = mark['features'][8] diameter = mark['diameter'] return pos,np.array([soft,malig/5.0,diameter]) def plot_patch(image): c = np.array(image.shape)/2 plt.subplot(311) plt.imshow(np.squeeze(image[c[0],:,:]),cmap=plt.cm.gray) plt.subplot(312) plt.imshow(np.squeeze(image[:,c[1],:]),cmap=plt.cm.gray) plt.subplot(313) plt.imshow(np.squeeze(image[:,:,c[2]]),cmap=plt.cm.gray) plt.show() def crop(image,position): corner1 = np.array(position)-np.array(CROP_SHAPE)/2 corner1 = np.maximum(corner1, np.array([0,0,0])) corner2 = corner1+np.array(CROP_SHAPE) corner2 = np.minimum(corner2,np.array(image.shape)) corner1 = corner2-np.array(CROP_SHAPE) patch = image[corner1[0]:corner2[0],corner1[1]:corner2[1],corner1[2]:corner2[2]] return patch def bbox_in_patch(bbox,pos): corner1 = np.array(pos) - np.array(CROP_SHAPE)/2 corner2 = corner1 + np.array(CROP_SHAPE)/2 if np.all(bbox[:,0] > corner1) and np.all(bbox[:,1] < corner2): nodule = True else: nodule = False return nodule def check_centroid(centroid,pos): check = False diff = np.abs(np.array(centroid)-np.array(pos)) if np.all(diff < np.array(CROP_SHAPE)/4): #print "check_centroid",diff, CROP_SHAPE check = True return check def find_label(pos,annotation,min_agreement): nodule = 0 malig = 0 biggest_diameter = 0 c = 0 for cluster in annotation: if len(cluster) >= min_agreement: # choose randomly one mark from each cluster mark = cluster[random.randint(0,len(cluster)-1)] #bbox = mark['bbox'] #if bbox_in_patch(bbox,pos): centroid = mark['centroid'] soft = soft_focus(centroid,pos) if soft > NODULE_THRESHOLD: diameter = mark['diameter'] if diameter > biggest_diameter: biggest_diameter = diameter malig = mark['features'][8] nodule = soft c = np.array(centroid).astype(int) #if nodule: #print "find_label",biggest_diameter,pos,c return np.array([nodule,malig/5.0,biggest_diameter]),c def augment(patch): if random.random() < 0.5: patch = patch[::-1,:,:] if random.random() < 0.5: patch = patch[:,::-1,:] if random.random() < 0.5: patch = patch[:,:,::-1] perm = [0,1] random.shuffle(perm) patch = np.transpose(patch,perm+[2]) return patch def check_agreement(annotation,minimum): n = 0 if len(annotation)>0: n = [ len(x) for x in annotation] ok = np.max(n) >= minimum else: ok = False #print "check agreement",minimum,np.max(n),ok return ok @threadsafe_generator def generate_lidc(data,annotations): neg_fraction = 0.5 total = 1. neg = 0. min_agreement = 3 PLOT = False skip = 0 while True: for i in range(len(annotations)): random_sample
data.append(np.load(name)) annotation_file_name = '.'.join(name.split('.')[:-1])+'annotation.txt' with open(annotation_file_name,'r') as pickle_file: annotations.append(pickle.load(pickle_file))
conditional_block
preprocess_lidc1.py
() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g def plot(vol,x,y,z): corner1 = np.array([x,y,z])-np.array(CROP_SHAPE)/2 corner2 = corner1+np.array(CROP_SHAPE) plt.subplot(311) plt.imshow(vol[x,corner1[1]:corner2[1],corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(312) plt.imshow(vol[corner1[0]:corner2[0],y,corner1[2]:corner2[2]],cmap=plt.cm.gray) plt.subplot(313) plt.imshow(vol[corner1[0]:corner2[0],corner1[1]:corner2[1],z],cmap=plt.cm.gray) plt.show() def process_scan(scan): uid = scan.series_instance_uid volume,spacing,orientation,z0 = scan.to_volume() volume = volume.transpose([1,0,2]) if orientation[0]<0: volume=volume[::-1,::-1,:] resize_factor = np.array(spacing)/np.array(NEW_SPACING) resampled = scipy.ndimage.interpolation.zoom(volume,resize_factor) resampled = normalize(resampled) shape = resampled.shape clusters = scan.annotations_with_matching_overlap() clusters_data=[] for cluster in clusters: cluster_group=[] for ann in cluster: diameter = ann.estimate_diameter() features = ann.feature_vals() c = ann.centroid() c[:2]=c[:2]*np.array(spacing[:2]) c[2] = c[2]-z0 c = c/np.array(NEW_SPACING) b = ann.bbox() b[:2,:] = b[:2,:]*np.expand_dims(np.array(spacing[:2]),axis=1) b[2,:] = b[2,:]-z0 b = b / np.expand_dims(np.array(NEW_SPACING),axis=1) if orientation[0]<0: c[:2] = np.array(resampled.shape)[:2] - c[:2] b[:2,:] = np.expand_dims(np.array(resampled.shape)[:2],axis=1)-b[:2,:] #plot(resampled,int(c[0]),int(c[1]),int(c[2])) annotation= {'diameter': diameter,'features':features, 'centroid':c,'bbox':b} cluster_group.append(annotation) if c[2]<0 or b[2,0]<0 or b[2,1]<0: print "Error",uid,orientation,c,b,ann.centroid(),ann.bbox() clusters_data.append(cluster_group) np.save(PROCESSED_DIR+uid+'.npy',resampled) with open(PROCESSED_DIR+uid+'annotation.txt', 'w') as outfile: pickle.dump(clusters_data, outfile) def normalize(image): MIN_BOUND = -1000.0 MAX_BOUND = 400.0 image = PIXEL_RANGE*(image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>PIXEL_RANGE] = PIXEL_RANGE image[image<0] = 0. image = np.round(image).astype(np.uint16) return image def load_lidc(): filenames = glob.glob(PROCESSED_DIR+'*.npy') data = [] annotations = [] for name in tqdm(filenames): data.append(np.load(name)) annotation_file_name = '.'.join(name.split('.')[:-1])+'annotation.txt' with open(annotation_file_name,'r') as pickle_file: annotations.append(pickle.load(pickle_file)) perm = range(len(annotations)) random.shuffle(perm) data = [data[i] for i in perm] annotations= [annotations[i] for i in perm] data=np.asarray(data) return data,annotations def soft_focus(pos,centroid): Focus_radius = 30 # mm dist = np.linalg.norm( (np.array(pos)-np.array(centroid))*np.array(NEW_SPACING))/Focus_radius return max(1-dist,0) def
(shift): r = 100 while r > shift: v = np.random.uniform(-shift,high=shift,size=(3,)) r = np.linalg.norm(v) vox_shift = (v/np.array(NEW_SPACING)).astype(int) return vox_shift def find_nodule(annotation,min_agreement): good_clusters = [cluster for cluster in annotation if len(cluster)>=min_agreement] marks = [mark for cluster in good_clusters for mark in cluster] mark = marks[random.randint(0,len(marks)-1)] centroid = np.array(mark['centroid']).astype(int) shift = 12.0 # mm , shold be within soft noudle detection threshold pos = centroid + shift_radius(shift) #print "diameter",mark['diameter'] """ feature_names = \ ('subtlety', 'internalStructure', 'calcification', 'sphericity', 'margin', 'lobulation', 'spiculation', 'texture', 'malignancy') """ soft = soft_focus(pos,centroid) if (soft < NODULE_THRESHOLD) : print 'Error: nodule shifted too much' malig = mark['features'][8] diameter = mark['diameter'] return pos,np.array([soft,malig/5.0,diameter]) def plot_patch(image): c = np.array(image.shape)/2 plt.subplot(311) plt.imshow(np.squeeze(image[c[0],:,:]),cmap=plt.cm.gray) plt.subplot(312) plt.imshow(np.squeeze(image[:,c[1],:]),cmap=plt.cm.gray) plt.subplot(313) plt.imshow(np.squeeze(image[:,:,c[2]]),cmap=plt.cm.gray) plt.show() def crop(image,position): corner1 = np.array(position)-np.array(CROP_SHAPE)/2 corner1 = np.maximum(corner1, np.array([0,0,0])) corner2 = corner1+np.array(CROP_SHAPE) corner2 = np.minimum(corner2,np.array(image.shape)) corner1 = corner2-np.array(CROP_SHAPE) patch = image[corner1[0]:corner2[0],corner1[1]:corner2[1],corner1[2]:corner2[2]] return patch def bbox_in_patch(bbox,pos): corner1 = np.array(pos) - np.array(CROP_SHAPE)/2 corner2 = corner1 + np.array(CROP_SHAPE)/2 if np.all(bbox[:,0] > corner1) and np.all(bbox[:,1] < corner2): nodule = True else: nodule = False return nodule def check_centroid(centroid,pos): check = False diff = np.abs(np.array(centroid)-np.array(pos)) if np.all(diff < np.array(CROP_SHAPE)/4): #print "check_centroid",diff, CROP_SHAPE check = True return check def find_label(pos,annotation,min_agreement): nodule = 0 malig = 0 biggest_diameter = 0 c = 0 for cluster in annotation: if len(cluster) >= min_agreement: # choose randomly one mark from each cluster mark = cluster[random.randint(0,len(cluster)-1)] #bbox = mark['bbox'] #if bbox_in_patch(bbox,pos): centroid = mark['centroid'] soft = soft_focus(centroid,pos) if soft > NODULE_THRESHOLD: diameter = mark['diameter'] if diameter > biggest_diameter: biggest_diameter = diameter malig = mark['features'][8] nodule = soft c = np.array(centroid).astype(int) #if nodule: #print "find_label",biggest_diameter,pos,c return np.array([nodule,malig/5.0,biggest_diameter]),c def augment(patch): if random.random() < 0.5: patch = patch[::-1,:,:] if random.random() < 0.5: patch = patch[:,::-1,:] if random.random() < 0.5: patch = patch[:,:,::-1] perm = [0,1] random.shuffle(perm) patch = np.transpose(patch,perm+[2]) return patch def check_agreement(annotation,minimum): n = 0 if len(annotation)>0: n = [ len(x) for x in annotation] ok = np.max(n) >= minimum else: ok = False #print "check agreement",minimum,np.max(n),ok return ok @threadsafe_generator def generate_lidc(data,annotations): neg_fraction = 0.5 total = 1. neg = 0. min_agreement = 3 PLOT = False skip = 0 while True: for i in range(len(annotations)): random_sample
shift_radius
identifier_name
kinematics.py
def tableread(filelist, start, frames, onlyinclude=''): """ Read a list of lists, from a Nexus CSV export, to extract vector data. Output is a dictionary of lists. Inputs:- filelist = the data start = the row number where data to be read starts frames = dict of Start and End frames for strides onlyinclude = optional argument, only columns where title includes this will be included """ filewidth = len(filelist[start-2])-1 output = {} startframe = start - int(filelist[start][0]) + 1 for col in range(2,filewidth): # Name the datatype in each column if filelist[start-3][col]: tmp = filelist[start-3][col]+filelist[start-2][col] elif filelist[start-3][col-1]: tmp = filelist[start-3][col-1]+filelist[start-2][col] elif filelist[start-3][col-2]: tmp = filelist[start-3][col-2]+filelist[start-2][col] name = tmp[tmp.rfind(":")+1:] if onlyinclude in name or not onlyinclude: output[name] = [] side = ('Right') if name[0]=='R' else ('Left') # Make a list of values within the marked stride frames for row in range(startframe+frames[side+'Start'], startframe+frames[side+'End']): if filelist[row][col] == '': output[name].append('NA') else: output[name].append(float(filelist[row][col])) #import pdb; pdb.set_trace() return output def readtrajectories(filelist, frames): """ Read a numpy array object in Vicon export format with marker trajectories. Requires frame dictionary with initial contact, foot off, and end of swing. Values that cannot be calculated from inputs will output 'NA'. Output is a dictionary with the following parts:- LeftToeZ/RightToeZ = vector of toe marker Z coord throughout trial LeftStepTime/RightStepTime = time taken for marked step, in seconds LeftFoffFraction/RightFoffFraction = footoff as fraction of total step time LeftStepLen/RightStepLen = length of marked step length in metres LeftSpeedCalc/RightSpeedCalc = walking speed calculated from these values """ filelen = len(filelist) - 2 trajstart = filelen output = {} LtoeZ = [] RtoeZ = [] LeftToeCol = 29 RightToeCol = 47 for row in range(filelen): try: # Assign gait parameters to dictionary if filelist[row][0] == 'Trajectories': trajstart = row + 5 except IndexError: continue output.update(tableread(filelist,trajstart,frames)) sides = ['Left', 'Right'] for side in sides: output[side+'StepTime'] = (frames[side+'End']-frames[side+'Start'])/100 output[side+'FoffFraction'] = (frames[side+'Foff']-frames[side+'Start']) / output[side+'StepTime'] try: output[side+'StepLen'] = abs(float(filelist[frames[side+'End']+trajstart][locals()[side+'ToeCol']+1]) - float(filelist[frames[side+'Start']+trajstart][locals()[side+'ToeCol']+1]))/1000 except ValueError: output[side+'StepLen'] = 'NA' output[side+'SpeedCalc'] = output[side+'StepLen'] / output[side+'StepTime'] #import pdb; pdb.set_trace() return output def readangles(filelist): """ Read a numpy array object in Vicon export format with model outputs. Output is a dictionary with the following parts:- LeftStartFrame/RightStartFrame = frame of initial footstrikes in marked stride LeftEndFrame/RightEndFrame = frame of final footstrikes in marked stride LeftAnkleAngle/RightAnkleAngle = list of absolute ankle angles throughout trial LeftSpeed/RightSpeed = walking speed LeftFoffFrame/RightFoffFrame = frame of foot off in marked stride StrideLen = stride length in marked stride """ filelen = len(filelist) - 2 output = {'RightAnkleAngle': [], 'LeftAnkleAngle': [], 'Frames': {}} anglestart = filelen LeftStrike = [] RightStrike = [] events = 0 for n in range(filelen): try: if filelist[n][0] == 'Model Outputs': anglestart = n + 5 elif filelist[n][0] == 'Events': events = 1 elif filelist[n][2] == 'Walking Speed': output[filelist[n][1]+'Speed'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Off' and events == 1: # Footoff frame in events output['Frames'].update({filelist[n][1]+'Foff' : int(float(filelist[n][3]) * 100)}) elif filelist[n][2] == 'Stride Length': output[filelist[n][1]+'StrideLen'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Strike': # Convert seconds to frames at 100Hz. if filelist[n][1] == 'Left': LeftStrike.append(int(float(filelist[n][3]) * 100)) elif filelist[n][1] == 'Right': RightStrike.append(int(float(filelist[n][3]) * 100)) elif n >= anglestart: # List ankle abs angles, convert to float if possible try: output['LeftAnkleAngle'].append(float(filelist[n][2])) except ValueError: output['LeftAnkleAngle'].append(filelist[n][2]) try: output['RightAnkleAngle'].append(float(filelist[n][101])) except ValueError: output['RightAnkleAngle'].append(filelist[n][101]) except IndexError: continue sides = ['Left', 'Right'] for side in sides: output['Frames'].update({side+'Start' : min(locals()[side+'Strike'])}) output['Frames'].update({side+'End' : max(locals()[side+'Strike'])}) output.update(tableread(filelist,anglestart,output['Frames'],'Angle')) if anglestart == filelen: raise NameError('No angles in angle file!') for side in sides: mintoe = min(output[side[0]+'AnkleAnglesX']) midswingframe = int(output['Frames'][side+'Foff']/2 + output['Frames'][side+'End']/2 - output['Frames'][side+'Start']) output[side+'Clearance'] = output[side[0]+'AnkleAnglesX'][midswingframe] - mintoe #import pdb; pdb.set_trace() return output def onetrial(trialnum): """ Read in files for a single trial, extract useful information. Data must be in CSV files in subdirectories Angles and Trajectories. Gives an empty dictionary if no stride data present in angles file. """ eventsexist = False anglelist = csvread("Angles/%s.csv" % (trialnum, )) for n in range(len(anglelist)): for m in range(len(anglelist[n])): if anglelist[n][m] == 'Events': eventsexist = True if eventsexist == False: print("WARNING: no events in angles file, aborting with empty output.") return {} angles = readangles(anglelist) trajlist = csvread("Trajectories/%s.csv" % (trialnum, )) trajectories = readtrajectories(trajlist, angles['Frames']) output = {**trajectories, **angles} output['TrialUsed'] = trialnum #import pdb; pdb.set_trace() return output def minclearance(ToeZ, StartFrame, FootOff, EndFrame, MidSwingStart, MidSwingEnd): """ Returns the minimum foot clearance in middle of swing in marked stride. Inputs: Toe marker Z (list), Start frame, foot off frame, end frame, start fraction of mid swing, end fraction of mid swing. Output: minimum clearance, frame it occurs at. """ swing = ToeZ[FootOff:EndFrame] ground = min(ToeZ[StartFrame:EndFrame]) middleframes = [(FootOff+int(MidSwingStart*len(swing))),(EndFrame-int(MidSwingEnd*len(swing)))] MinZ = min(ToeZ[middleframes[0]:middleframes[1]]) clearance = MinZ - ground return clearance def arraycleaner(array): """
""" thisfile = open(file) thisreader = csv.reader(thisfile) filelist = np.array(list(thisreader)) return filelist
random_line_split
kinematics.py
filewidth = len(filelist[start-2])-1 output = {} startframe = start - int(filelist[start][0]) + 1 for col in range(2,filewidth): # Name the datatype in each column if filelist[start-3][col]: tmp = filelist[start-3][col]+filelist[start-2][col] elif filelist[start-3][col-1]: tmp = filelist[start-3][col-1]+filelist[start-2][col] elif filelist[start-3][col-2]: tmp = filelist[start-3][col-2]+filelist[start-2][col] name = tmp[tmp.rfind(":")+1:] if onlyinclude in name or not onlyinclude: output[name] = [] side = ('Right') if name[0]=='R' else ('Left') # Make a list of values within the marked stride frames for row in range(startframe+frames[side+'Start'], startframe+frames[side+'End']): if filelist[row][col] == '': output[name].append('NA') else: output[name].append(float(filelist[row][col])) #import pdb; pdb.set_trace() return output def readtrajectories(filelist, frames): """ Read a numpy array object in Vicon export format with marker trajectories. Requires frame dictionary with initial contact, foot off, and end of swing. Values that cannot be calculated from inputs will output 'NA'. Output is a dictionary with the following parts:- LeftToeZ/RightToeZ = vector of toe marker Z coord throughout trial LeftStepTime/RightStepTime = time taken for marked step, in seconds LeftFoffFraction/RightFoffFraction = footoff as fraction of total step time LeftStepLen/RightStepLen = length of marked step length in metres LeftSpeedCalc/RightSpeedCalc = walking speed calculated from these values """ filelen = len(filelist) - 2 trajstart = filelen output = {} LtoeZ = [] RtoeZ = [] LeftToeCol = 29 RightToeCol = 47 for row in range(filelen): try: # Assign gait parameters to dictionary if filelist[row][0] == 'Trajectories': trajstart = row + 5 except IndexError: continue output.update(tableread(filelist,trajstart,frames)) sides = ['Left', 'Right'] for side in sides: output[side+'StepTime'] = (frames[side+'End']-frames[side+'Start'])/100 output[side+'FoffFraction'] = (frames[side+'Foff']-frames[side+'Start']) / output[side+'StepTime'] try: output[side+'StepLen'] = abs(float(filelist[frames[side+'End']+trajstart][locals()[side+'ToeCol']+1]) - float(filelist[frames[side+'Start']+trajstart][locals()[side+'ToeCol']+1]))/1000 except ValueError: output[side+'StepLen'] = 'NA' output[side+'SpeedCalc'] = output[side+'StepLen'] / output[side+'StepTime'] #import pdb; pdb.set_trace() return output def readangles(filelist): """ Read a numpy array object in Vicon export format with model outputs. Output is a dictionary with the following parts:- LeftStartFrame/RightStartFrame = frame of initial footstrikes in marked stride LeftEndFrame/RightEndFrame = frame of final footstrikes in marked stride LeftAnkleAngle/RightAnkleAngle = list of absolute ankle angles throughout trial LeftSpeed/RightSpeed = walking speed LeftFoffFrame/RightFoffFrame = frame of foot off in marked stride StrideLen = stride length in marked stride """ filelen = len(filelist) - 2 output = {'RightAnkleAngle': [], 'LeftAnkleAngle': [], 'Frames': {}} anglestart = filelen LeftStrike = [] RightStrike = [] events = 0 for n in range(filelen): try: if filelist[n][0] == 'Model Outputs': anglestart = n + 5 elif filelist[n][0] == 'Events': events = 1 elif filelist[n][2] == 'Walking Speed': output[filelist[n][1]+'Speed'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Off' and events == 1: # Footoff frame in events output['Frames'].update({filelist[n][1]+'Foff' : int(float(filelist[n][3]) * 100)}) elif filelist[n][2] == 'Stride Length': output[filelist[n][1]+'StrideLen'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Strike': # Convert seconds to frames at 100Hz. if filelist[n][1] == 'Left': LeftStrike.append(int(float(filelist[n][3]) * 100)) elif filelist[n][1] == 'Right': RightStrike.append(int(float(filelist[n][3]) * 100)) elif n >= anglestart: # List ankle abs angles, convert to float if possible try: output['LeftAnkleAngle'].append(float(filelist[n][2])) except ValueError: output['LeftAnkleAngle'].append(filelist[n][2]) try: output['RightAnkleAngle'].append(float(filelist[n][101])) except ValueError: output['RightAnkleAngle'].append(filelist[n][101]) except IndexError: continue sides = ['Left', 'Right'] for side in sides: output['Frames'].update({side+'Start' : min(locals()[side+'Strike'])}) output['Frames'].update({side+'End' : max(locals()[side+'Strike'])}) output.update(tableread(filelist,anglestart,output['Frames'],'Angle')) if anglestart == filelen: raise NameError('No angles in angle file!') for side in sides: mintoe = min(output[side[0]+'AnkleAnglesX']) midswingframe = int(output['Frames'][side+'Foff']/2 + output['Frames'][side+'End']/2 - output['Frames'][side+'Start']) output[side+'Clearance'] = output[side[0]+'AnkleAnglesX'][midswingframe] - mintoe #import pdb; pdb.set_trace() return output def onetrial(trialnum): """ Read in files for a single trial, extract useful information. Data must be in CSV files in subdirectories Angles and Trajectories. Gives an empty dictionary if no stride data present in angles file. """ eventsexist = False anglelist = csvread("Angles/%s.csv" % (trialnum, )) for n in range(len(anglelist)): for m in range(len(anglelist[n])): if anglelist[n][m] == 'Events': eventsexist = True if eventsexist == False: print("WARNING: no events in angles file, aborting with empty output.") return {} angles = readangles(anglelist) trajlist = csvread("Trajectories/%s.csv" % (trialnum, )) trajectories = readtrajectories(trajlist, angles['Frames']) output = {**trajectories, **angles} output['TrialUsed'] = trialnum #import pdb; pdb.set_trace() return output def minclearance(ToeZ, StartFrame, FootOff, EndFrame, MidSwingStart, MidSwingEnd): """ Returns the minimum foot clearance in middle of swing in marked stride. Inputs: Toe marker Z (list), Start frame, foot off frame, end frame, start fraction of mid swing, end fraction of mid swing. Output: minimum clearance, frame it occurs at. """ swing = ToeZ[FootOff:EndFrame] ground = min(ToeZ[StartFrame:EndFrame]) middleframes = [(FootOff+int(MidSwingStart*len(swing))),(EndFrame-int(MidSwingEnd*len(swing)))] MinZ = min(ToeZ[middleframes[0]:middleframes[1]]) clearance = MinZ - ground return clearance def arraycleaner(array): """ Make numpy array rows the same length by shortening long ones. """ lengths = [len(x) for x in array] #shortindex = lengths.index(min(lengths)) shortest = min(lengths) for n in range(len(array)): line = array[n] if len(array[n]) != shortest: this = len(line) cut = np.ceil(1/((this/shortest) - 1)) #import pdb; pdb.set_trace() for m in range(len(array[n])):
if m % cut == 0 and m != 0: line[m] = 'del'
conditional_block
kinematics.py
frames = dict of Start and End frames for strides onlyinclude = optional argument, only columns where title includes this will be included """ filewidth = len(filelist[start-2])-1 output = {} startframe = start - int(filelist[start][0]) + 1 for col in range(2,filewidth): # Name the datatype in each column if filelist[start-3][col]: tmp = filelist[start-3][col]+filelist[start-2][col] elif filelist[start-3][col-1]: tmp = filelist[start-3][col-1]+filelist[start-2][col] elif filelist[start-3][col-2]: tmp = filelist[start-3][col-2]+filelist[start-2][col] name = tmp[tmp.rfind(":")+1:] if onlyinclude in name or not onlyinclude: output[name] = [] side = ('Right') if name[0]=='R' else ('Left') # Make a list of values within the marked stride frames for row in range(startframe+frames[side+'Start'], startframe+frames[side+'End']): if filelist[row][col] == '': output[name].append('NA') else: output[name].append(float(filelist[row][col])) #import pdb; pdb.set_trace() return output def readtrajectories(filelist, frames): """ Read a numpy array object in Vicon export format with marker trajectories. Requires frame dictionary with initial contact, foot off, and end of swing. Values that cannot be calculated from inputs will output 'NA'. Output is a dictionary with the following parts:- LeftToeZ/RightToeZ = vector of toe marker Z coord throughout trial LeftStepTime/RightStepTime = time taken for marked step, in seconds LeftFoffFraction/RightFoffFraction = footoff as fraction of total step time LeftStepLen/RightStepLen = length of marked step length in metres LeftSpeedCalc/RightSpeedCalc = walking speed calculated from these values """ filelen = len(filelist) - 2 trajstart = filelen output = {} LtoeZ = [] RtoeZ = [] LeftToeCol = 29 RightToeCol = 47 for row in range(filelen): try: # Assign gait parameters to dictionary if filelist[row][0] == 'Trajectories': trajstart = row + 5 except IndexError: continue output.update(tableread(filelist,trajstart,frames)) sides = ['Left', 'Right'] for side in sides: output[side+'StepTime'] = (frames[side+'End']-frames[side+'Start'])/100 output[side+'FoffFraction'] = (frames[side+'Foff']-frames[side+'Start']) / output[side+'StepTime'] try: output[side+'StepLen'] = abs(float(filelist[frames[side+'End']+trajstart][locals()[side+'ToeCol']+1]) - float(filelist[frames[side+'Start']+trajstart][locals()[side+'ToeCol']+1]))/1000 except ValueError: output[side+'StepLen'] = 'NA' output[side+'SpeedCalc'] = output[side+'StepLen'] / output[side+'StepTime'] #import pdb; pdb.set_trace() return output def readangles(filelist): """ Read a numpy array object in Vicon export format with model outputs. Output is a dictionary with the following parts:- LeftStartFrame/RightStartFrame = frame of initial footstrikes in marked stride LeftEndFrame/RightEndFrame = frame of final footstrikes in marked stride LeftAnkleAngle/RightAnkleAngle = list of absolute ankle angles throughout trial LeftSpeed/RightSpeed = walking speed LeftFoffFrame/RightFoffFrame = frame of foot off in marked stride StrideLen = stride length in marked stride """ filelen = len(filelist) - 2 output = {'RightAnkleAngle': [], 'LeftAnkleAngle': [], 'Frames': {}} anglestart = filelen LeftStrike = [] RightStrike = [] events = 0 for n in range(filelen): try: if filelist[n][0] == 'Model Outputs': anglestart = n + 5 elif filelist[n][0] == 'Events': events = 1 elif filelist[n][2] == 'Walking Speed': output[filelist[n][1]+'Speed'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Off' and events == 1: # Footoff frame in events output['Frames'].update({filelist[n][1]+'Foff' : int(float(filelist[n][3]) * 100)}) elif filelist[n][2] == 'Stride Length': output[filelist[n][1]+'StrideLen'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Strike': # Convert seconds to frames at 100Hz. if filelist[n][1] == 'Left': LeftStrike.append(int(float(filelist[n][3]) * 100)) elif filelist[n][1] == 'Right': RightStrike.append(int(float(filelist[n][3]) * 100)) elif n >= anglestart: # List ankle abs angles, convert to float if possible try: output['LeftAnkleAngle'].append(float(filelist[n][2])) except ValueError: output['LeftAnkleAngle'].append(filelist[n][2]) try: output['RightAnkleAngle'].append(float(filelist[n][101])) except ValueError: output['RightAnkleAngle'].append(filelist[n][101]) except IndexError: continue sides = ['Left', 'Right'] for side in sides: output['Frames'].update({side+'Start' : min(locals()[side+'Strike'])}) output['Frames'].update({side+'End' : max(locals()[side+'Strike'])}) output.update(tableread(filelist,anglestart,output['Frames'],'Angle')) if anglestart == filelen: raise NameError('No angles in angle file!') for side in sides: mintoe = min(output[side[0]+'AnkleAnglesX']) midswingframe = int(output['Frames'][side+'Foff']/2 + output['Frames'][side+'End']/2 - output['Frames'][side+'Start']) output[side+'Clearance'] = output[side[0]+'AnkleAnglesX'][midswingframe] - mintoe #import pdb; pdb.set_trace() return output def onetrial(trialnum): """ Read in files for a single trial, extract useful information. Data must be in CSV files in subdirectories Angles and Trajectories. Gives an empty dictionary if no stride data present in angles file. """ eventsexist = False anglelist = csvread("Angles/%s.csv" % (trialnum, )) for n in range(len(anglelist)): for m in range(len(anglelist[n])): if anglelist[n][m] == 'Events': eventsexist = True if eventsexist == False: print("WARNING: no events in angles file, aborting with empty output.") return {} angles = readangles(anglelist) trajlist = csvread("Trajectories/%s.csv" % (trialnum, )) trajectories = readtrajectories(trajlist, angles['Frames']) output = {**trajectories, **angles} output['TrialUsed'] = trialnum #import pdb; pdb.set_trace() return output def minclearance(ToeZ, StartFrame, FootOff, EndFrame, MidSwingStart, MidSwingEnd): """ Returns the minimum foot clearance in middle of swing in marked stride. Inputs: Toe marker Z (list), Start frame, foot off frame, end frame, start fraction of mid swing, end fraction of mid swing. Output: minimum clearance, frame it occurs at. """ swing = ToeZ[FootOff:EndFrame] ground = min(ToeZ[StartFrame:EndFrame]) middleframes = [(FootOff+int(MidSwingStart*len(swing))),(EndFrame-int(MidSwingEnd*len(swing)))] MinZ = min(ToeZ[middleframes[0]:middleframes[1]]) clearance = MinZ - ground return clearance def
(array): """ Make numpy array rows the same length by shortening long ones. """ lengths = [len(x) for x in array] #shortindex = lengths.index(min(lengths)) shortest = min(lengths) for n in range(len(array)): line = array[n] if len(array[n]) != shortest: this = len(line) cut = np.ceil(1/((this/shortest) - 1)) #import pdb; pdb.set_trace()
arraycleaner
identifier_name
kinematics.py
frames = dict of Start and End frames for strides onlyinclude = optional argument, only columns where title includes this will be included """ filewidth = len(filelist[start-2])-1 output = {} startframe = start - int(filelist[start][0]) + 1 for col in range(2,filewidth): # Name the datatype in each column if filelist[start-3][col]: tmp = filelist[start-3][col]+filelist[start-2][col] elif filelist[start-3][col-1]: tmp = filelist[start-3][col-1]+filelist[start-2][col] elif filelist[start-3][col-2]: tmp = filelist[start-3][col-2]+filelist[start-2][col] name = tmp[tmp.rfind(":")+1:] if onlyinclude in name or not onlyinclude: output[name] = [] side = ('Right') if name[0]=='R' else ('Left') # Make a list of values within the marked stride frames for row in range(startframe+frames[side+'Start'], startframe+frames[side+'End']): if filelist[row][col] == '': output[name].append('NA') else: output[name].append(float(filelist[row][col])) #import pdb; pdb.set_trace() return output def readtrajectories(filelist, frames): """ Read a numpy array object in Vicon export format with marker trajectories. Requires frame dictionary with initial contact, foot off, and end of swing. Values that cannot be calculated from inputs will output 'NA'. Output is a dictionary with the following parts:- LeftToeZ/RightToeZ = vector of toe marker Z coord throughout trial LeftStepTime/RightStepTime = time taken for marked step, in seconds LeftFoffFraction/RightFoffFraction = footoff as fraction of total step time LeftStepLen/RightStepLen = length of marked step length in metres LeftSpeedCalc/RightSpeedCalc = walking speed calculated from these values """ filelen = len(filelist) - 2 trajstart = filelen output = {} LtoeZ = [] RtoeZ = [] LeftToeCol = 29 RightToeCol = 47 for row in range(filelen): try: # Assign gait parameters to dictionary if filelist[row][0] == 'Trajectories': trajstart = row + 5 except IndexError: continue output.update(tableread(filelist,trajstart,frames)) sides = ['Left', 'Right'] for side in sides: output[side+'StepTime'] = (frames[side+'End']-frames[side+'Start'])/100 output[side+'FoffFraction'] = (frames[side+'Foff']-frames[side+'Start']) / output[side+'StepTime'] try: output[side+'StepLen'] = abs(float(filelist[frames[side+'End']+trajstart][locals()[side+'ToeCol']+1]) - float(filelist[frames[side+'Start']+trajstart][locals()[side+'ToeCol']+1]))/1000 except ValueError: output[side+'StepLen'] = 'NA' output[side+'SpeedCalc'] = output[side+'StepLen'] / output[side+'StepTime'] #import pdb; pdb.set_trace() return output def readangles(filelist): """ Read a numpy array object in Vicon export format with model outputs. Output is a dictionary with the following parts:- LeftStartFrame/RightStartFrame = frame of initial footstrikes in marked stride LeftEndFrame/RightEndFrame = frame of final footstrikes in marked stride LeftAnkleAngle/RightAnkleAngle = list of absolute ankle angles throughout trial LeftSpeed/RightSpeed = walking speed LeftFoffFrame/RightFoffFrame = frame of foot off in marked stride StrideLen = stride length in marked stride """ filelen = len(filelist) - 2 output = {'RightAnkleAngle': [], 'LeftAnkleAngle': [], 'Frames': {}} anglestart = filelen LeftStrike = [] RightStrike = [] events = 0 for n in range(filelen): try: if filelist[n][0] == 'Model Outputs': anglestart = n + 5 elif filelist[n][0] == 'Events': events = 1 elif filelist[n][2] == 'Walking Speed': output[filelist[n][1]+'Speed'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Off' and events == 1: # Footoff frame in events output['Frames'].update({filelist[n][1]+'Foff' : int(float(filelist[n][3]) * 100)}) elif filelist[n][2] == 'Stride Length': output[filelist[n][1]+'StrideLen'] = float(filelist[n][3]) elif filelist[n][2] == 'Foot Strike': # Convert seconds to frames at 100Hz. if filelist[n][1] == 'Left': LeftStrike.append(int(float(filelist[n][3]) * 100)) elif filelist[n][1] == 'Right': RightStrike.append(int(float(filelist[n][3]) * 100)) elif n >= anglestart: # List ankle abs angles, convert to float if possible try: output['LeftAnkleAngle'].append(float(filelist[n][2])) except ValueError: output['LeftAnkleAngle'].append(filelist[n][2]) try: output['RightAnkleAngle'].append(float(filelist[n][101])) except ValueError: output['RightAnkleAngle'].append(filelist[n][101]) except IndexError: continue sides = ['Left', 'Right'] for side in sides: output['Frames'].update({side+'Start' : min(locals()[side+'Strike'])}) output['Frames'].update({side+'End' : max(locals()[side+'Strike'])}) output.update(tableread(filelist,anglestart,output['Frames'],'Angle')) if anglestart == filelen: raise NameError('No angles in angle file!') for side in sides: mintoe = min(output[side[0]+'AnkleAnglesX']) midswingframe = int(output['Frames'][side+'Foff']/2 + output['Frames'][side+'End']/2 - output['Frames'][side+'Start']) output[side+'Clearance'] = output[side[0]+'AnkleAnglesX'][midswingframe] - mintoe #import pdb; pdb.set_trace() return output def onetrial(trialnum): """ Read in files for a single trial, extract useful information. Data must be in CSV files in subdirectories Angles and Trajectories. Gives an empty dictionary if no stride data present in angles file. """ eventsexist = False anglelist = csvread("Angles/%s.csv" % (trialnum, )) for n in range(len(anglelist)): for m in range(len(anglelist[n])): if anglelist[n][m] == 'Events': eventsexist = True if eventsexist == False: print("WARNING: no events in angles file, aborting with empty output.") return {} angles = readangles(anglelist) trajlist = csvread("Trajectories/%s.csv" % (trialnum, )) trajectories = readtrajectories(trajlist, angles['Frames']) output = {**trajectories, **angles} output['TrialUsed'] = trialnum #import pdb; pdb.set_trace() return output def minclearance(ToeZ, StartFrame, FootOff, EndFrame, MidSwingStart, MidSwingEnd):
def arraycleaner(array): """ Make numpy array rows the same length by shortening long ones. """ lengths = [len(x) for x in array] #shortindex = lengths.index(min(lengths)) shortest = min(lengths) for n in range(len(array)): line = array[n] if len(array[n]) != shortest: this = len(line) cut = np.ceil(1/((this/shortest) - 1)) #import pdb; pdb.set_trace() for
""" Returns the minimum foot clearance in middle of swing in marked stride. Inputs: Toe marker Z (list), Start frame, foot off frame, end frame, start fraction of mid swing, end fraction of mid swing. Output: minimum clearance, frame it occurs at. """ swing = ToeZ[FootOff:EndFrame] ground = min(ToeZ[StartFrame:EndFrame]) middleframes = [(FootOff+int(MidSwingStart*len(swing))),(EndFrame-int(MidSwingEnd*len(swing)))] MinZ = min(ToeZ[middleframes[0]:middleframes[1]]) clearance = MinZ - ground return clearance
identifier_body
client.py
PILToWX(self, pil_image): #"convert a PIL imageto a wxImage" if pil_image.mode != 'RGB': # SetData() requires an RGB image pil_image = pil_image.convert('RGB') imageData = pil_image.tostring('raw', 'RGB') imageWx = wx.EmptyImage(pil_image.size[0], pil_image.size[1]) imageWx.SetData(imageData) return imageWx #bitmap = wx.BitmapFromImage(image) def OnIconfiy(self, event): wx.MessageBox('好好学习,天天向上!', '*送你一句良言*') event.Skip() def OnClear(self,event): self.urlText.Clear() def OnHelp(self,event): wx.MessageBox('1.复制粘帖网址到输入框,点击获取即可,内容会保存到云端\n2.您可以对获取到的内容进行编辑并重新保存至服务端\n3.您还可以导入导出文本文件', '*使用帮助*') def OnQuit(self, event): self.Destroy() #or close() def OnSave2server(self, event): text=self.richText.GetValue() catalog=self.catalogText.GetValue().strip() if text==None or catalog==None: wx.MessageBox('不能为空', '上传失败') return boundary='---------%s'%hex(int(time.time()*1000)) data=[] #a list # data.append('\r\n') data.append('--%s'%boundary) data.append('uid=%s'%self.user)#username uid data.append('dir=%s'%catalog)#= not : in my server # print 'append data name:',self.filename data.append('filename=%s'%self.filename) data.append('\n')#因为是自己写的服务端,所以构造的这些数据比较随意了,按服务端的要求来写 data.append('%s'%(time.asctime()))#列表在转换为字符串后会在每一项后面加换行 #ignore the first line:filename # body=''.join(data) # body=body.join('%s'%content) # body=body.join('\n--%s--\n'%boundary) data.append(text.encode('utf-8')) data.append('--%s--\n'%boundary) body='\r\n'.join(data) #text in textCtrl is unicode try: conn=httplib.HTTPConnection(self.host) conn.request(method="POST",url="/modify",body=body); response=conn.getresponse(); if response.status==200: #302 etc #self.richText.SetValue(response) print '发布成功!^_^!'; wx.MessageBox('修改已保存至云端!', '恭喜') else: wx.MessageBox('请检查您的网络', '上传失败') print "发布失败\^0^/" conn.close() except Exception,e: wx.MessageBox('请检查您的网络', '网络连接出错') print 'http error:',e #self.Hide() def OnCancel(self,event): pass def readConfigure(self): try: fh=open('server.conf') size=len(fh.read()) fh.seek(0) while(fh.tell()!=size): data=fh.readline() if(data[:4] == 'addr'): self.host=data[5:].strip()#ip or domain,include port elif(data[:7]=='catalog'): self.catalogText.SetValue(data[8:].strip()) elif(data[:2]=='id'): self.user=data[3:].strip() elif(data[:2]=='pw'): self.pw=data[3:].strip() fh.close() except: self.host='configuration not found!' def ReadFile(self,filepath): if filepath: try: fh = open(filepath, 'r') data = fh.read() fh.close() self.richText.SetValue(data) except : wx.MessageBox("%s is not a expected file." % filepath, "error tip", style = wx.OK | wx.ICON_EXCLAMATION) def OnOpenFile(self,event): file_wildcard="All files(*.*)|*.*" dlg = wx.FileDialog(self,"Open file...", style = wx.OPEN,wildcard = file_wildcard) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetPath() self.ReadFile(filename) dlg.Destroy() def SaveFile(self,filepath): text=self.richText.GetValue() fh=open(filepath,'w') fh.write(text) fh.close() def OnSaveAs(self, event): # 弹出文件保存对话框 file_wildcard="txt files(*.txt)|*.txt|All files(*.*)|*.*" dlg = wx.FileDialog(self,"Save file as ...", style = wx.SAVE | wx.OVERWRITE_PROMPT,wildcard = file_wildcard) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetPath().encode('utf-8') #if not os.path.splitext(filename)[1]: #如果没有文件名后缀 # filename = filename + '.txt' self.SaveFile(filename) #self.SetTitle(self.title + '--' + self.savefilename) dlg.Destroy() def OnSet(self,event): set_win = Setting(size=(476, 280)) #640,480 #1.618:1 set_win.Centre() set_win.Show() def OnEnterWin(self, evt): #print 'on enter win' text_obj = wx.TextDataObject() if self.clip.IsOpened() or self.clip.Open(): if self.clip.GetData(text_obj): text_str=text_obj.GetText() #print 'get text from clipboard',text_str #check if the text is formal URL if text_str !='' and re.match(r'^https?:/{2}\w.+$', text_str): #OK #compare with the URL in input old_url=self.urlText.GetValue().strip() if text_str !=old_url : self.urlText.SetValue(text_str) # dlg = MsgDialog('URL已粘贴到输入框', '提示', ttl=2) # dlg.ShowModal() self.clip.Close() def showUp(self): #app = wx.PySimpleApp() self.Centre() self.Show() #可以让它设置是否在程序启动时一起显示出来 #app.MainLoop() class Setting(wx.Frame): def __init__( self, parent=None, id=wx.ID_ANY, title='设置', pos=wx.DefaultPosition, size=wx.DEFAULT, style=wx.DEFAULT_FRAME_STYLE): wx.Frame.__init__(self, parent, id, title, pos, size, style) panel = wx.Panel(self, wx.ID_ANY) ipLabel = wx.StaticText(panel, -1, "服务器:") ipLabel.SetForegroundColour('blue') self.ipText = wx.TextCtrl(panel, -1, "192.168.1.5",size=(250, 38)) #文本控件 portLabel = wx.StaticText(panel, -1, "端口 号:") portLabel.SetForegroundColour('blue') self.portText = wx.TextCtrl(panel, -1, "1366",size=(200, 30)) self.portText.SetInsertionPoint(0) self.ipText.SetInsertionPoint(0)#设置插入点 catalogLabel = wx.StaticText(panel, -1, "归档目录:") catalogLabel.SetForegroundColour('blue') self.catalogText = wx.TextCtrl(panel, -1, "default",size=(200, 30)) button1 = wx.Button(panel, wx.ID_ANY, '保存') button2 = wx.Button(panel, wx.ID_ANY, '取消') button1.SetBackgroundColour("gray") button1.SetForegroundColour("Navy") self.Bind(wx.EVT_BUTTON, self.
OnSaveConf, button1) self.Bind(wx.EVT_BUTTON, self.OnCancel, button2) vbox = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) hbox2 = wx.BoxSizer(wx.HORIZONTAL) hbox3 = wx.BoxSizer(wx.HORIZONTAL) hbox4 = wx.BoxSizer(wx.HORIZONTAL) hbox1.Add(ipLabel,flag=wx.LEFT,border=8) hbox1.Add(self.ipText,proportion=1) vbox.Add(hbox1,flag=wx.EXPAND|wx.LEFT|wx.RIGHT|wx.TOP,border=10) vbox.Add((-1, 10)) hbox2.Add(portLabel,flag=wx.LEFT,border=8) hbox2.Add(self.portText,proportion=1) vbox.Add(hbox2,flag=wx.EXPAND|wx.LEFT|wx.RIGHT,border=10) vbox.Add((-1, 10)) hbox3.Add(catalogLabel,flag=wx.LEFT,border=8) hbox3.Add(self.catalogText,proportion=1) vbox.Add(hbox3,flag=wx.EXPAND|wx.LEFT|wx.RIGHT,border=10) vbox.Add((-1, 50))
identifier_body
client.py
.RIGHT|wx.EXPAND, border=10) vbox.Add((-1, 10)) hbox4.Add(button3,flag=wx.ALIGN_RIGHT|wx.RIGHT,border=10) #save hbox4.Add(button2,wx.RIGHT,border=10) #exit vbox.Add(hbox4,flag=wx.ALIGN_RIGHT|wx.RIGHT|wx.BOTTOM,border=10) #sizer.Add(button1, 0) #0表示比例 #sizer.Add(button2, 3) #sizer.Add(button3, 5,wx.BOTTOM|wx.LEFT,wx.ALIGN_BOTTOM) #sizer.Add(button4, 5,wx.RIGHT|wx.BOTTOM,wx.ALIGN_BOTTOM) #panel.SetSizer(sizer) #sizer.AddMany([urlLabel, self.urlText,button1,titleLabel,self.titleText,-1 ,richTextLabel,self.richText,-1]) panel.SetSizer(vbox) self.clip = wx.TheClipboard #系统剪贴板,但是用wx.Clipboard()却不正确,很奇怪 #http://www.wxpython.org/docs/api/wx.Clipboard-class.html #当左键点击窗口上任意普通位置时查看系统剪贴板是否有新网址,或在重绘时wx.EVT_PAINT #panel.Bind(wx.EVT_LEFT_DOWN, self.OnClickCheck)#对panel有效,但不知为什么对frame无效,改成: self.Bind(wx.EVT_ENTER_WINDOW,self.OnEnterWin) self.host='' self.filename='' self.user='' self.pw='' self.readConfigure() def OnHide(self, event): self.Hide() def OnGet(self, event): url=self.urlText.GetValue().strip() catalog=self.catalogText.GetValue().strip() #the dir and name indicate where to save in the server if(url==''): wx.MessageBox('您还没输入网址','^0^') return try: src=urllib.urlopen('http://'+self.host+'/doslim?url='+url+'&dir='+catalog+'&name=default'+'&uid='+self.user) #so strange that the urllib2.urlopen not work properly at times,is it beacause the server i write has problem of sending packet headers? text=src.read() src.close() #print 'text:',text[0:40] # flist=re.findall(r'^filename:(.*?)\n',text) nm=re.search(r'(?<=filename:).+?(?=$)',text,re.M) if nm!=None: self.filename=nm.group(0) # print 'filename(0):%s<<<'%self.filename[0] self.filename=self.filename.strip() print 'read size:',len(text) print 'get filename:',self.filename #逗号变成空格 # text=re.sub('^filename:%s'%self.filename,'',text) text=text.replace('filename:%s'%self.filename,'') self.titleText.SetValue(self.filename) self.showContent(text.strip()) #content text has some format such as URL except Exception,e: print e wx.MessageBox('请检查您的网络', '网络连接出错') def showContent(self,content):#解析文本内容中的特殊部分,如图片地址,显示到富文本框 #[[<img src="/image/imgFilename">]],服务器地址因该是/uid/catagrory/image/filename #self.richText.WriteText(content) #self.richText.WriteText('-------------------\n') self.richText.SetValue('') lines=content.split('\n') for ln in lines: if ln.find('##<img src=') >=0: print ln pat=re.compile(r'##<img src="(.*?)"/>##') try: img_src=pat.findall(ln)[0] print 'find img_src:',img_src catalog=self.catalogText.GetValue().strip() url='http://'+self.host+'/dl?'+self.user+'/'+catalog+img_src img_str=urllib2.urlopen(url).read() #type str print 'size:',len(img_str) image_i = cStringIO.StringIO(img_str) # print 'type of image_file:',type(image_file) pil_image=Image.open(image_i) wx_img=self.PILToWX(pil_image) self.richText.WriteImage(wx_img) # self.richText.AddImage(image) except Exception,e: print e else : self.richText.WriteText(ln)#AppendText(ln) self.richText.Newline() #self.richText.SetValue(content) #self.richText.WriteImage(wx.Image('../core/image/UF3ui2.jpg',wx.BITMAP_TYPE_ANY)) def PILToWX(self, pil_image): #"convert a PIL imageto a wxImage" if pil_image.mode != 'RGB': # SetData() requires an RGB image pil_image = pil_image.convert('RGB') imageData = pil_image.tostring('raw', 'RGB') imageWx = wx.EmptyImage(pil_image.size[0], pil_image.size[1]) imageWx.SetData(imageData) return imageWx #bitmap = wx.BitmapFromImage(image) def OnIconfiy(self, event): wx.MessageBox('好好学习,天天向上!', '*送你一句良言*') event.Skip() def OnClear(self,event): self.urlText.Clear() def OnHelp(self,event): wx.MessageBox('1.复制粘帖网址到输入框,点击获取即可,内容会保存到云端\n2.您可以对获取到的内容进行编辑并重新保存至服务端\n3.您还可以导入导出文本文件', '*使用帮助*') def OnQuit(self, event): self.Destroy() #or close() def OnSave2server(self, event): text=self.richText.GetValue() catalog=self.catalogText.GetValue().strip() if text==None or catalog==None: wx.MessageBox('不能为空', '上传失败') return boundary='---------%s'%hex(int(time.time()*1000)) data=[] #a list # data.append('\r\n') data.append('--%s'%boundary) data.append('uid=%s'%self.user)#username uid data.append('dir=%s'%catalog)#= not : in my server # print 'append data name:',self.filename data.append('filename=%s'%self.filename) data.append('\n')#因为是自己写的服务端,所以构造的这些数据比较随意了,按服务端的要求来写 data.append('%s'%(time.asctime()))#列表在转换为字符串后会在每一项后面加换行 #ignore the first line:filename # body=''.join(data) # body=body.join('%s'%content) # body=body.join('\n--%s--\n'%boundary) data.append(text.encode('utf-8')) data.append('--%s--\n'%boundary) body='\r\n'.join(data) #text in textCtrl is unicode try: conn=httplib.HTTPConnection(self.host) conn.request(method="POST",url="/modify",body=body); response=conn.getresponse(); if response.status==200: #302 etc #self.richText.SetValue(response) print '发布成功!^_^!'; wx.MessageBox('修改已保存至云端!', '恭喜') else: wx.MessageBox('请检查您的网络', '上传失败') print "发布失败\^0^/" conn.close() except Exception,e: wx.MessageBox('请检查您的网络', '网络连接出错') print 'http error:',e #self.Hide() def OnCancel(self,event): pass def readConfigure(self): try: fh=open('server.conf') size=len(fh.read()) fh.seek(0) while(fh.tell()!=size): data=fh.readline() if(data[:4] == 'addr'): self.host=data[5:].strip()#ip or domain,include port elif(data[:7]=='catalog'): self.catalogText.SetValue(data[8:].strip()) elif(data[:2]=='id'): self.user=data[3:].strip() elif(data[:2]=='pw'): self.pw=data[3:].strip() fh.close() except: self.host='configuration not found!' def ReadFile(self,filepath): if filepath: try: fh = open(filepath, 'r') data = fh.read() fh.close() self.richText.SetValue(data) except : wx.MessageBox("%s is not a expected file." % filepath, "error tip", style = wx.OK | wx.ICON_EXCLAMATION) def OnOpenFile(self,event): file_wildcard="All files(*.*)|*.*" dlg = wx.FileDialog(self,"Open file...", style = wx.OPEN,wildcard = file_wildcard) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetPath() self.ReadFile(filename) dlg.Destroy() def SaveFile(self,filepath): text=self.richText.GetValue() fh=open(filepath,'w') fh.write(
text) fh.close() def On
conditional_block
client.py
a wxImage" if pil_image.mode != 'RGB': # SetData() requires an RGB image pil_image = pil_image.convert('RGB') imageData = pil_image.tostring('raw', 'RGB') imageWx = wx.EmptyImage(pil_image.size[0], pil_image.size[1]) imageWx.SetData(imageData) return imageWx #bitmap = wx.BitmapFromImage(image) def OnIconfiy(self, event): wx.MessageBox('好好学习,天天向上!', '*送你一句良言*') event.Skip() def OnClear(self,event): self.urlText.Clear() def OnHelp(self,event): wx.MessageBox('1.复制粘帖网址到输入框,点击获取即可,内容会保存到云端\n2.您可以对获取到的内容进行编辑并重新保存至服务端\n3.您还可以导入导出文本文件', '*使用帮助*') def OnQuit(self, event): self.Destroy() #or close() def OnSave2server(self, event): text=self.richText.GetValue() catalog=self.catalogText.GetValue().strip() if text==None or catalog==None: wx.MessageBox('不能为空', '上传失败') return boundary='---------%s'%hex(int(time.time()*1000)) data=[] #a list # data.append('\r\n') data.append('--%s'%boundary) data.append('uid=%s'%self.user)#username uid data.append('dir=%s'%catalog)#= not : in my server # print 'append data name:',self.filename data.append('filename=%s'%self.filename) data.append('\n')#因为是自己写的服务端,所以构造的这些数据比较随意了,按服务端的要求来写 data.append('%s'%(time.asctime()))#列表在转换为字符串后会在每一项后面加换行 #ignore the first line:filename # body=''.join(data) # body=body.join('%s'%content) # body=body.join('\n--%s--\n'%boundary) data.append(text.encode('utf-8')) data.append('--%s--\n'%boundary) body='\r\n'.join(data) #text in textCtrl is unicode try: conn=httplib.HTTPConnection(self.host) conn.request(method="POST",url="/modify",body=body); response=conn.getresponse(); if response.status==200: #302 etc #self.richText.SetValue(response) print '发布成功!^_^!'; wx.MessageBox('修改已保存至云端!', '恭喜') else: wx.MessageBox('请检查您的网络', '上传失败') print "发布失败\^0^/" conn.close() except Exception,e: wx.MessageBox('请检查您的网络', '网络连接出错') print 'http error:',e #self.Hide() def OnCancel(self,event): pass def readConfigure(self): try: fh=open('server.conf') size=len(fh.read()) fh.seek(0) while(fh.tell()!=size): data=fh.readline() if(data[:4] == 'addr'): self.host=data[5:].strip()#ip or domain,include port elif(data[:7]=='catalog'): self.catalogText.SetValue(data[8:].strip()) elif(data[:2]=='id'): self.user=data[3:].strip() elif(data[:2]=='pw'): self.pw=data[3:].strip() fh.close() except: self.host='configuration not found!' def ReadFile(self,filepath): if filepath: try: fh = open(filepath, 'r') data = fh.read() fh.close() self.richText.SetValue(data) except : wx.MessageBox("%s is not a expected file." % filepath, "error tip", style = wx.OK | wx.ICON_EXCLAMATION) def OnOpenFile(self,event): file_wildcard="All files(*.*)|*.*" dlg = wx.FileDialog(self,"Open file...", style = wx.OPEN,wildcard = file_wildcard) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetPath() self.ReadFile(filename) dlg.Destroy() def SaveFile(self,filepath): text=self.richText.GetValue() fh=open(filepath,'w') fh.write(text) fh.close() def OnSaveAs(self, event): # 弹出文件保存对话框 file_wildcard="txt files(*.txt)|*.txt|All files(*.*)|*.*" dlg = wx.FileDialog(self,"Save file as ...", style = wx.SAVE | wx.OVERWRITE_PROMPT,wildcard = file_wildcard) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetPath().encode('utf-8') #if not os.path.splitext(filename)[1]: #如果没有文件名后缀 # filename = filename + '.txt' self.SaveFile(filename) #self.SetTitle(self.title + '--' + self.savefilename) dlg.Destroy() def OnSet(self,event): set_win = Setting(size=(476, 280)) #640,480 #1.618:1 set_win.Centre() set_win.Show() def OnEnterWin(self, evt): #print 'on enter win' text_obj = wx.TextDataObject() if self.clip.IsOpened() or self.clip.Open(): if self.clip.GetData(text_obj): text_str=text_obj.GetText() #print 'get text from clipboard',text_str #check if the text is formal URL if text_str !='' and re.match(r'^https?:/{2}\w.+$', text_str): #OK #compare with the URL in input old_url=self.urlText.GetValue().strip() if text_str !=old_url : self.urlText.SetValue(text_str) # dlg = MsgDialog('URL已粘贴到输入框', '提示', ttl=2) # dlg.ShowModal() self.clip.Close() def showUp(self): #app = wx.PySimpleApp() self.Centre() self.Show() #可以让它设置是否在程序启动时一起显示出来 #app.MainLoop() class Setting(wx.Frame): def __init__( self, parent=None, id=wx.ID_ANY, title='设置', pos=wx.DefaultPosition, size=wx.DEFAULT, style=wx.DEFAULT_FRAME_STYLE): wx.Frame.__init__(self, parent, id, title, pos, size, style) panel = wx.Panel(self, wx.ID_ANY) ipLabel = wx.StaticText(panel, -1, "服务器:") ipLabel.SetForegroundColour('blue') self.ipText = wx.TextCtrl(panel, -1, "192.168.1.5",size=(250, 38)) #文本控件 portLabel = wx.StaticText(panel, -1, "端口 号:") portLabel.SetForegroundColour('blue') self.portText = wx.TextCtrl(panel, -1, "1366",size=(200, 30)) self.portText.SetInsertionPoint(0) self.ipText.SetInsertionPoint(0)#设置插入点 catalogLabel = wx.StaticText(panel, -1, "归档目录:") catalogLabel.SetForegroundColour('blue') self.catalogText = wx.TextCtrl(panel, -1, "default",size=(200, 30)) button1 = wx.Button(panel, wx.ID_ANY, '保存') button2 = wx.Button(panel, wx.ID_ANY, '取消') button1.SetBackgroundColour("gray") button1.SetForegroundColour("Navy") self.Bind(wx.EVT_BUTTON, self.OnSaveConf, button1) self.Bind(wx.EVT_BUTTON, self.OnCancel, button2) vbox = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) hbox2 = wx.BoxSizer(wx.HORIZONTAL) hbox3 = wx.BoxSizer(wx.HORIZONTAL) hbox4 = wx.BoxSizer(wx.HORIZONTAL) hbox1.Add(ipLabel,flag=wx.LEFT,border=8) hbox1.Add(self.ipText,proportion=1) vbox.Add(hbox1,flag=wx.EXPAND|wx.LEFT|wx.RIGHT|wx.TOP,border=10) vbox.Add((-1, 10)) hbox2.Add(portLabel,flag=wx.LEFT,border=8) hbox2.Add(self.portText,proportion=1) vbox.Add(hbox2,flag=wx.EXPAND|wx.LEFT|wx.RIGHT,border=10) vbox.Add((-1, 10)) hbox3.Add(catalogLabel,flag=wx.LEFT,border=8) hbox3.Add(self.catalogText,proportion=1) vbox.Add(hbox3,flag=wx.EXPAND|wx.LEFT|wx.RIGHT,border=10)
vbox.Add((-1, 50)) hbox4.Add(button1,flag=wx.LEFT,border=18)
random_line_split
client.py
=content.split('\n') for ln in lines: if ln.find('##<img src=') >=0: print ln pat=re.compile(r'##<img src="(.*?)"/>##') try: img_src=pat.findall(ln)[0] print 'find img_src:',img_src catalog=self.catalogText.GetValue().strip() url='http://'+self.host+'/dl?'+self.user+'/'+catalog+img_src img_str=urllib2.urlopen(url).read() #type str print 'size:',len(img_str) image_i = cStringIO.StringIO(img_str) # print 'type of image_file:',type(image_file) pil_image=Image.open(image_i) wx_img=self.PILToWX(pil_image) self.richText.WriteImage(wx_img) # self.richText.AddImage(image) except Exception,e: print e else : self.richText.WriteText(ln)#AppendText(ln) self.richText.Newline() #self.richText.SetValue(content) #self.richText.WriteImage(wx.Image('../core/image/UF3ui2.jpg',wx.BITMAP_TYPE_ANY)) def PILToWX(self, pil_image): #"convert a PIL imageto a wxImage" if pil_image.mode != 'RGB': # SetData() requires an RGB image pil_image = pil_image.convert('RGB') imageData = pil_image.tostring('raw', 'RGB') imageWx = wx.EmptyImage(pil_image.size[0], pil_image.size[1]) imageWx.SetData(imageData) return imageWx #bitmap = wx.BitmapFromImage(image) def OnIconfiy(self, event): wx.MessageBox('好好学习,天天向上!', '*送你一句良言*') event.Skip() def OnClear(self,event): self.urlText.Clear() def OnHelp(self,event): wx.MessageBox('1.复制粘帖网址到输入框,点击获取即可,内容会保存到云端\n2.您可以对获取到的内容进行编辑并重新保存至服务端\n3.您还可以导入导出文本文件', '*使用帮助*') def OnQuit(self, event): self.Destroy() #or close() def OnSave2server(self, event): text=self.richText.GetValue() catalog=self.catalogText.GetValue().strip() if text==None or catalog==None: wx.MessageBox('不能为空', '上传失败') return boundary='---------%s'%hex(int(time.time()*1000)) data=[] #a list # data.append('\r\n') data.append('--%s'%boundary) data.append('uid=%s'%self.user)#username uid data.append('dir=%s'%catalog)#= not : in my server # print 'append data name:',self.filename data.append('filename=%s'%self.filename) data.append('\n')#因为是自己写的服务端,所以构造的这些数据比较随意了,按服务端的要求来写 data.append('%s'%(time.asctime()))#列表在转换为字符串后会在每一项后面加换行 #ignore the first line:filename # body=''.join(data) # body=body.join('%s'%content) # body=body.join('\n--%s--\n'%boundary) data.append(text.encode('utf-8')) data.append('--%s--\n'%boundary) body='\r\n'.join(data) #text in textCtrl is unicode try: conn=httplib.HTTPConnection(self.host) conn.request(method="POST",url="/modify",body=body); response=conn.getresponse(); if response.status==200: #302 etc #self.richText.SetValue(response) print '发布成功!^_^!'; wx.MessageBox('修改已保存至云端!', '恭喜') else: wx.MessageBox('请检查您的网络', '上传失败') print "发布失败\^0^/" conn.close() except Exception,e: wx.MessageBox('请检查您的网络', '网络连接出错') print 'http error:',e #self.Hide() def OnCancel(self,event): pass def readConfigure(self): try: fh=open('server.conf') size=len(fh.read()) fh.seek(0) while(fh.tell()!=size): data=fh.readline() if(data[:4] == 'addr'): self.host=data[5:].strip()#ip or domain,include port elif(data[:7]=='catalog'): self.catalogText.SetValue(data[8:].strip()) elif(data[:2]=='id'): self.user=data[3:].strip() elif(data[:2]=='pw'): self.pw=data[3:].strip() fh.close() except: self.host='configuration not found!' def ReadFile(self,filepath): if filepath: try: fh = open(filepath, 'r') data = fh.read() fh.close() self.richText.SetValue(data) except : wx.MessageBox("%s is not a expected file." % filepath, "error tip", style = wx.OK | wx.ICON_EXCLAMATION) def OnOpenFile(self,event): file_wildcard="All files(*.*)|*.*" dlg = wx.FileDialog(self,"Open file...", style = wx.OPEN,wildcard = file_wildcard) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetPath() self.ReadFile(filename) dlg.Destroy() def SaveFile(self,filepath): text=self.richText.GetValue() fh=open(filepath,'w') fh.write(text) fh.close() def OnSaveAs(self, event): # 弹出文件保存对话框 file_wildcard="txt files(*.txt)|*.txt|All files(*.*)|*.*" dlg = wx.FileDialog(self,"Save file as ...", style = wx.SAVE | wx.OVERWRITE_PROMPT,wildcard = file_wildcard) if dlg.ShowModal() == wx.ID_OK: filename = dlg.GetPath().encode('utf-8') #if not os.path.splitext(filename)[1]: #如果没有文件名后缀 # filename = filename + '.txt' self.SaveFile(filename) #self.SetTitle(self.title + '--' + self.savefilename) dlg.Destroy() def OnSet(self,event): set_win = Setting(size=(476, 280)) #640,480 #1.618:1 set_win.Centre() set_win.Show() def OnEnterWin(self, evt): #print 'on enter win' text_obj = wx.TextDataObject() if self.clip.IsOpened() or self.clip.Open(): if self.clip.GetData(text_obj): text_str=text_obj.GetText() #print 'get text from clipboard',text_str #check if the text is formal URL if text_str !='' and re.match(r'^https?:/{2}\w.+$', text_str): #OK #compare with the URL in input old_url=self.urlText.GetValue().strip() if text_str !=old_url : self.urlText.SetValue(text_str) # dlg = MsgDialog('URL已粘贴到输入框', '提示', ttl=2) # dlg.ShowModal() self.clip.Close() def showUp(self): #app = wx.PySimpleApp() self.Centre() self.Show() #可以让它设置是否在程序启动时一起显示出来 #app.MainLoop() class Setting(wx.Frame): def __init__( self, parent=None, id=wx.ID_ANY, title='设置', pos=wx.DefaultPosition, size=wx.DEFAULT, style=wx.DEFAULT_FRAME_STYLE): wx.Frame.__init__(self, parent, id, title, pos, size, style) panel = wx.Panel(self, wx.ID_ANY) ipLabel = wx.StaticText(panel, -1, "服务器:") ipLabel.SetForegroundColour('blue') self.ipText = wx.TextCtrl(panel, -1, "192.168.1.5",size=(250, 38)) #文本控件 portLabel = wx.StaticText(panel, -1, "端口 号:") portLabel.SetForegroundColour('blue') self.portText = wx.TextCtrl(panel, -1, "1366",size=(200, 30)) self.portText.SetInsertionPoint(0) self.ipText.SetInsertionPoint(0)#设置插入点 catalogLabel = wx.StaticText(panel, -1, "归档目录:") catalogLabel.SetForegroundColour('blue') self.catalogText = wx.TextCtrl(panel, -1, "default",size=(200, 30)) button1 = wx.Button(panel, wx.ID_ANY, '保存') button2 = wx.Button(panel, wx.ID_ANY, '取消') button1.SetBackgroundColour("gray") button1.SetForegroundColour("Navy") self.Bind(wx.EVT_BUTTON, self.OnSa
veConf,
identifier_name
ftp_manage.py
# print(request) msg = "当前路径:%s" % self.current_path # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def mkdir(self, request): print(request) new_dir = request.split()[1] abs_path = os.path.join(settings.BaseDir, self.current_path) if new_dir in os.listdir(abs_path): msg = "该目录名已经被占用!" else: os.makedirs(os.path.join(abs_path, new_dir)) msg = "目录【%s】创建成功" % new_dir # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def df(self, request): print(self.user_info.__dict__) space_info = self.user_info.space_info print(space_info) print("空间限额:【%s】MB 已使用空间:【%s】MB 剩余空间: 【%s】 MB" %(space_info[0], space_info[1], space_info[2])) msg = {} msg['quota'] = space_info[0] msg['used_space'] = space_info[1] msg['aviable_space'] = space_info[2] return pickle.dumps(msg) # 切换目录 def cd(self, request): print(request) if request == "cd": self.current_path = '%s/%s' %(settings.Ftp_Base_Dir, self.name) msg = "切换成功,当前目录:%s" % self.current_path else: to_path = request.split()[1] current_path_list = self.current_path.split('\\') if '/' in to_path: new_path_list = to_path.split('/') # print(new_path_list) flag = True while flag: for path in new_path_list: if path == '..': tmp_path = current_path_list.pop() # print(tmp_path) # print(self.name) if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" flag = False break else: current_path_list.append(path) new_path = "\\".join(current_path_list) break if flag == True: if os.path.isdir(os.path.join(settings.BaseDir, new_path)): self.current_path = new_path msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path else: pass elif to_path == '..': tmp_path = current_path_list.pop() # if tmp_path == self.name: if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" else: self.current_path = "\\".join(current_path_list) msg = "切换成功,当前目录:%s" % self.current_path else: abs_path = os.path.join(settings.BaseDir, self.current_path) # if to_path in os.listdir(abs_path): if os.path.isdir(os.path.join(abs_path, to_path)): self.current_path = os.path.join(self.current_path, to_path) msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path # self.conn.send(msg.encode('utf-8')) self.user_info.current_path = self.current_path return msg.encode('utf-8') # 查看目录下文件 def ls(self, request): print(request) # print(settings.BaseDir) # print(self.current_path) abs_path = os.path.join(settings.BaseDir, self.current_path) # print(abs_path) files = os.listdir(abs_path) if files: print(files) msg = "当前目录的文件情况如下:\n文件名 文件大小 创建时间 修改时间 类型:\n" for file_name in files: file = os.path.join(abs_path, file_name) print(file) file_size = os.path.getsize(file) import time create_time = time.strftime("%x %X", time.localtime(os.path.getctime(file))) modify_time = time.strftime("%x %X", time.localtime(os.path.getmtime(file))) file_type = "文件夹" if os.path.isdir(file) else "文件" file_info = "【%s】 【%s】 【%s】 【%s】 【%s】 \n" % (file_name, file_size, create_time, modify_time, file_type) print(file_info) msg += file_info else: msg = "当前目录没有文件!" print(msg) # send_data = {} # send_data['action'] = 'pwd' # send_data['is_certified'] = self.is_certified # send_data['response'] = {} # send_data['response']['msg'] = msg # print(send_data) # self.conn.send(pickle.dumps(send_data)) # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') #上传 def put(self, request): """ 2.收到客户端上传文件的请求,判断该文件是否在服务器端存在,直接查看文件md5值 2.1 如果md5值相同,则文件存在 2.2 如果md5值不同,则告知客户端文件大小,如果md5值为None,则文件不存在 2.3 校验服务器空间是否充足,如果不足,则在1.2中同时告知客户端文件不足的信息 send {"filename":'1.jpg', "server_file_md5":'123333', "filesize": 1111, "space_aviable": 2334556 } 4 服务端收到客户端数据,ruguo seek_size = -1则不上传 4.1 如果seek_size = 0 ,则 wb 模式打开文件 4.2 如果seek_size > 0 ,则ab 模式打开文件 4.3 开始接收客户端数据 6. 当数据接收完成时,返回接收到的数据md5校验结果 """ print(request) filename = request.split()[-1] recv_data = pickle.loads(self.conn.recv(8192)) if recv_data['status']: abs_file_path = os.path.join(settings.BaseDir, self.current_path, filename) server_file_md5 = get_md5(abs_file_path, "file") if server_file_md5 == recv_data['file_md5']: print("服务器已经有相同文件!") send_msg = {"filename": filename, "server_file_md5": server_file_md5 } self.conn.send(pickle.dumps(send_msg)) else: if server_file_md5: filesize = os.path.getsize(abs_file_path) else: filesize = 0 space_aviable = pickle.loads(self.df(""))['aviable_space'] * 1024 * 1024 + filesize - recv_data['filesize'] send_msg = {"filename": filename, "server_file_md5": server_file_md5, "filesize": filesize, "space_aviable": space_aviable } self.conn.send(pickle.dumps(send_msg)) if space_aviable <= 0: print("服务器空间不够") else: #等待客户端响应 recv_data = pickle.loads(self.conn.recv(8192)) # print(recv_data) if recv_data['seek_size'] == 0: f = open(abs_file_path, 'wb') else: f = open(abs_file_path, 'ab') # 开始接收数据 flag = True while flag: data = self.conn.recv(8192) # print(data) time.sleep(0.000001) f.write(data) if len(data)< 8192: flag = False f.close() server_file_md5 = get_md5(abs_file_path, "file") if recv_data['file_md5'] == server_file_md5: print("传输完成,md5校验通过!") send_msg['status'] = 1 else: print("传输完成,md5校验失败!") send_msg['status'] = 0 self.user_info.change_space_size(recv_data['filesize'] - filesize) save_info(self.user_info, self.name ) self.conn.send(pickle.dumps(send_msg)) else: # 客户端没有对应的文件,则不做任何操作 pass msg = '' return msg.encode('utf-8') #下载 def get(self, request): # print(request) filename = request.split()[-1] abs_file = os.path.join(settings.BaseDir, self.current_path, filename) if os.path.isfile(abs_file): file_md5 = get_md5(abs_file, type='file') file_size = os.path.getsize(abs_file) # 判断文件是否存在 res = {"status":1, "msg":"准备就绪", "md5":file_md5, "file_si
ze": file_size } self.conn.send(pickle.dumps(res)) # 接收客户端开始传输的指令
conditional_block
ftp_manage.py
pickle.dump(user_info, user_obj) # pickle.dump() class FtpManage(): def __init__(self, conn): # 读取数据库 # self.name = None self.conn = conn self.is_certified = False # 是否已经认证 self.current_path = None # 当前路径 # self.db_file = os.path.join(settings.db, name) self.db_file = None self.user_info = None # 用户登陆 def login(self, request): request = eval(request) self.name = request['name'] password = request['password'] send_data = {} send_data['action'] = 'login' send_data['response'] = {} if self.name in os.listdir(settings.db):
self.user_info = get_info(self.name) # print(self.user_info.__dict__) if self.user_info.password == password: self.is_certified = True self.current_path = self.user_info.current_path send_data['response']['msg'] = "认证成功!" else: send_data['response']['msg'] = "认证失败!用户名密码错误!" else: send_data['response']['msg'] = "认证失败!无此用户!" send_data['is_certified'] = self.is_certified print(send_data) # self.conn.send(pickle.dumps(send_data)) return pickle.dumps(send_data) def pwd(self, request): # print(request) msg = "当前路径:%s" % self.current_path # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def mkdir(self, request): print(request) new_dir = request.split()[1] abs_path = os.path.join(settings.BaseDir, self.current_path) if new_dir in os.listdir(abs_path): msg = "该目录名已经被占用!" else: os.makedirs(os.path.join(abs_path, new_dir)) msg = "目录【%s】创建成功" % new_dir # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def df(self, request): print(self.user_info.__dict__) space_info = self.user_info.space_info print(space_info) print("空间限额:【%s】MB 已使用空间:【%s】MB 剩余空间: 【%s】 MB" %(space_info[0], space_info[1], space_info[2])) msg = {} msg['quota'] = space_info[0] msg['used_space'] = space_info[1] msg['aviable_space'] = space_info[2] return pickle.dumps(msg) # 切换目录 def cd(self, request): print(request) if request == "cd": self.current_path = '%s/%s' %(settings.Ftp_Base_Dir, self.name) msg = "切换成功,当前目录:%s" % self.current_path else: to_path = request.split()[1] current_path_list = self.current_path.split('\\') if '/' in to_path: new_path_list = to_path.split('/') # print(new_path_list) flag = True while flag: for path in new_path_list: if path == '..': tmp_path = current_path_list.pop() # print(tmp_path) # print(self.name) if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" flag = False break else: current_path_list.append(path) new_path = "\\".join(current_path_list) break if flag == True: if os.path.isdir(os.path.join(settings.BaseDir, new_path)): self.current_path = new_path msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path else: pass elif to_path == '..': tmp_path = current_path_list.pop() # if tmp_path == self.name: if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" else: self.current_path = "\\".join(current_path_list) msg = "切换成功,当前目录:%s" % self.current_path else: abs_path = os.path.join(settings.BaseDir, self.current_path) # if to_path in os.listdir(abs_path): if os.path.isdir(os.path.join(abs_path, to_path)): self.current_path = os.path.join(self.current_path, to_path) msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path # self.conn.send(msg.encode('utf-8')) self.user_info.current_path = self.current_path return msg.encode('utf-8') # 查看目录下文件 def ls(self, request): print(request) # print(settings.BaseDir) # print(self.current_path) abs_path = os.path.join(settings.BaseDir, self.current_path) # print(abs_path) files = os.listdir(abs_path) if files: print(files) msg = "当前目录的文件情况如下:\n文件名 文件大小 创建时间 修改时间 类型:\n" for file_name in files: file = os.path.join(abs_path, file_name) print(file) file_size = os.path.getsize(file) import time create_time = time.strftime("%x %X", time.localtime(os.path.getctime(file))) modify_time = time.strftime("%x %X", time.localtime(os.path.getmtime(file))) file_type = "文件夹" if os.path.isdir(file) else "文件" file_info = "【%s】 【%s】 【%s】 【%s】 【%s】 \n" % (file_name, file_size, create_time, modify_time, file_type) print(file_info) msg += file_info else: msg = "当前目录没有文件!" print(msg) # send_data = {} # send_data['action'] = 'pwd' # send_data['is_certified'] = self.is_certified # send_data['response'] = {} # send_data['response']['msg'] = msg # print(send_data) # self.conn.send(pickle.dumps(send_data)) # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') #上传 def put(self, request): """ 2.收到客户端上传文件的请求,判断该文件是否在服务器端存在,直接查看文件md5值 2.1 如果md5值相同,则文件存在 2.2 如果md5值不同,则告知客户端文件大小,如果md5值为None,则文件不存在 2.3 校验服务器空间是否充足,如果不足,则在1.2中同时告知客户端文件不足的信息 send {"filename":'1.jpg', "server_file_md5":'123333', "filesize": 1111, "space_aviable": 2334556 } 4 服务端收到客户端数据,ruguo seek_size = -1则不上传 4.1 如果seek_size = 0 ,则 wb 模式打开文件 4.2 如果seek_size > 0 ,则ab 模式打开文件 4.3 开始接收客户端数据 6. 当数据接收完成时,返回接收到的数据md5校验结果 """ print(request) filename = request.split()[-1] recv_data = pickle.loads(self.conn.recv(8192)) if recv_data['status']: abs_file_path = os.path.join(settings.BaseDir, self.current_path, filename) server_file_md5 = get_md5(abs_file_path, "file") if server_file_md5 == recv_data['file_md5']: print("服务器已经有相同文件!") send_msg = {"filename": filename, "server_file_md5": server_file_md5 } self.conn.send(pickle.dumps(send_msg)) else: if server_file_md5: filesize = os.path.getsize(abs_file_path) else: filesize = 0 space_aviable = pickle.loads(self.df(""))['aviable_space'] * 1024 * 1024 + filesize - recv_data['filesize'] send_msg = {"filename": filename, "server_file_md5": server_file_md5, "filesize": filesize, "space_aviable": space_aviable } self.conn.send(pickle.dumps(send_msg)) if space_aviable <= 0: print("服务器空间不够") else: #等待客户端响应 recv_data = pickle.loads(self.conn.recv(8192)) # print(recv_data) if recv_data['seek_size'] == 0: f = open(abs_file_path, 'wb') else: f = open(abs_file_path, 'ab') # 开始接收数据 flag = True while flag: data = self.conn.recv(8192) # print(data) time.sleep
random_line_split
ftp_manage.py
pickle.dump(user_info, user_obj) # pickle.dump() class FtpManage(): def __init__(self, conn): # 读取数据库 # self.name = None self.conn = conn self.is_certified = False # 是否已经认证 self.current_path = None # 当前路径 # self.db_file = os.path.join(settings.db, name) self.db_file = None self.user_info = None # 用户登陆 def login(self, request): request = eval(request) self.n
def pwd(self, request): # print(request) msg = "当前路径:%s" % self.current_p ath # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def mkdir(self, request): print(request) new_dir = request.split()[1] abs_path = os.path.join(settings.BaseDir, self.current_path) if new_dir in os.listdir(abs_path): msg = "该目录名已经被占用!" else: os.makedirs(os.path.join(abs_path, new_dir)) msg = "目录【%s】创建成功" % new_dir # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def df(self, request): print(self.user_info.__dict__) space_info = self.user_info.space_info print(space_info) print("空间限额:【%s】MB 已使用空间:【%s】MB 剩余空间: 【%s】 MB" %(space_info[0], space_info[1], space_info[2])) msg = {} msg['quota'] = space_info[0] msg['used_space'] = space_info[1] msg['aviable_space'] = space_info[2] return pickle.dumps(msg) # 切换目录 def cd(self, request): print(request) if request == "cd": self.current_path = '%s/%s' %(settings.Ftp_Base_Dir, self.name) msg = "切换成功,当前目录:%s" % self.current_path else: to_path = request.split()[1] current_path_list = self.current_path.split('\\') if '/' in to_path: new_path_list = to_path.split('/') # print(new_path_list) flag = True while flag: for path in new_path_list: if path == '..': tmp_path = current_path_list.pop() # print(tmp_path) # print(self.name) if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" flag = False break else: current_path_list.append(path) new_path = "\\".join(current_path_list) break if flag == True: if os.path.isdir(os.path.join(settings.BaseDir, new_path)): self.current_path = new_path msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path else: pass elif to_path == '..': tmp_path = current_path_list.pop() # if tmp_path == self.name: if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" else: self.current_path = "\\".join(current_path_list) msg = "切换成功,当前目录:%s" % self.current_path else: abs_path = os.path.join(settings.BaseDir, self.current_path) # if to_path in os.listdir(abs_path): if os.path.isdir(os.path.join(abs_path, to_path)): self.current_path = os.path.join(self.current_path, to_path) msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path # self.conn.send(msg.encode('utf-8')) self.user_info.current_path = self.current_path return msg.encode('utf-8') # 查看目录下文件 def ls(self, request): print(request) # print(settings.BaseDir) # print(self.current_path) abs_path = os.path.join(settings.BaseDir, self.current_path) # print(abs_path) files = os.listdir(abs_path) if files: print(files) msg = "当前目录的文件情况如下:\n文件名 文件大小 创建时间 修改时间 类型:\n" for file_name in files: file = os.path.join(abs_path, file_name) print(file) file_size = os.path.getsize(file) import time create_time = time.strftime("%x %X", time.localtime(os.path.getctime(file))) modify_time = time.strftime("%x %X", time.localtime(os.path.getmtime(file))) file_type = "文件夹" if os.path.isdir(file) else "文件" file_info = "【%s】 【%s】 【%s】 【%s】 【%s】 \n" % (file_name, file_size, create_time, modify_time, file_type) print(file_info) msg += file_info else: msg = "当前目录没有文件!" print(msg) # send_data = {} # send_data['action'] = 'pwd' # send_data['is_certified'] = self.is_certified # send_data['response'] = {} # send_data['response']['msg'] = msg # print(send_data) # self.conn.send(pickle.dumps(send_data)) # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') #上传 def put(self, request): """ 2.收到客户端上传文件的请求,判断该文件是否在服务器端存在,直接查看文件md5值 2.1 如果md5值相同,则文件存在 2.2 如果md5值不同,则告知客户端文件大小,如果md5值为None,则文件不存在 2.3 校验服务器空间是否充足,如果不足,则在1.2中同时告知客户端文件不足的信息 send {"filename":'1.jpg', "server_file_md5":'123333', "filesize": 1111, "space_aviable": 2334556 } 4 服务端收到客户端数据,ruguo seek_size = -1则不上传 4.1 如果seek_size = 0 ,则 wb 模式打开文件 4.2 如果seek_size > 0 ,则ab 模式打开文件 4.3 开始接收客户端数据 6. 当数据接收完成时,返回接收到的数据md5校验结果 """ print(request) filename = request.split()[-1] recv_data = pickle.loads(self.conn.recv(8192)) if recv_data['status']: abs_file_path = os.path.join(settings.BaseDir, self.current_path, filename) server_file_md5 = get_md5(abs_file_path, "file") if server_file_md5 == recv_data['file_md5']: print("服务器已经有相同文件!") send_msg = {"filename": filename, "server_file_md5": server_file_md5 } self.conn.send(pickle.dumps(send_msg)) else: if server_file_md5: filesize = os.path.getsize(abs_file_path) else: filesize = 0 space_aviable = pickle.loads(self.df(""))['aviable_space'] * 1024 * 1024 + filesize - recv_data['filesize'] send_msg = {"filename": filename, "server_file_md5": server_file_md5, "filesize": filesize, "space_aviable": space_aviable } self.conn.send(pickle.dumps(send_msg)) if space_aviable <= 0: print("服务器空间不够") else: #等待客户端响应 recv_data = pickle.loads(self.conn.recv(8192)) # print(recv_data) if recv_data['seek_size'] == 0: f = open(abs_file_path, 'wb') else: f = open(abs_file_path, 'ab') # 开始接收数据 flag = True while flag: data = self.conn.recv(8192) # print(data)
ame = request['name'] password = request['password'] send_data = {} send_data['action'] = 'login' send_data['response'] = {} if self.name in os.listdir(settings.db): self.user_info = get_info(self.name) # print(self.user_info.__dict__) if self.user_info.password == password: self.is_certified = True self.current_path = self.user_info.current_path send_data['response']['msg'] = "认证成功!" else: send_data['response']['msg'] = "认证失败!用户名密码错误!" else: send_data['response']['msg'] = "认证失败!无此用户!" send_data['is_certified'] = self.is_certified print(send_data) # self.conn.send(pickle.dumps(send_data)) return pickle.dumps(send_data)
identifier_body
ftp_manage.py
pickle.dump(user_info, user_obj) # pickle.dump() class
(): def __init__(self, conn): # 读取数据库 # self.name = None self.conn = conn self.is_certified = False # 是否已经认证 self.current_path = None # 当前路径 # self.db_file = os.path.join(settings.db, name) self.db_file = None self.user_info = None # 用户登陆 def login(self, request): request = eval(request) self.name = request['name'] password = request['password'] send_data = {} send_data['action'] = 'login' send_data['response'] = {} if self.name in os.listdir(settings.db): self.user_info = get_info(self.name) # print(self.user_info.__dict__) if self.user_info.password == password: self.is_certified = True self.current_path = self.user_info.current_path send_data['response']['msg'] = "认证成功!" else: send_data['response']['msg'] = "认证失败!用户名密码错误!" else: send_data['response']['msg'] = "认证失败!无此用户!" send_data['is_certified'] = self.is_certified print(send_data) # self.conn.send(pickle.dumps(send_data)) return pickle.dumps(send_data) def pwd(self, request): # print(request) msg = "当前路径:%s" % self.current_path # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def mkdir(self, request): print(request) new_dir = request.split()[1] abs_path = os.path.join(settings.BaseDir, self.current_path) if new_dir in os.listdir(abs_path): msg = "该目录名已经被占用!" else: os.makedirs(os.path.join(abs_path, new_dir)) msg = "目录【%s】创建成功" % new_dir # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') def df(self, request): print(self.user_info.__dict__) space_info = self.user_info.space_info print(space_info) print("空间限额:【%s】MB 已使用空间:【%s】MB 剩余空间: 【%s】 MB" %(space_info[0], space_info[1], space_info[2])) msg = {} msg['quota'] = space_info[0] msg['used_space'] = space_info[1] msg['aviable_space'] = space_info[2] return pickle.dumps(msg) # 切换目录 def cd(self, request): print(request) if request == "cd": self.current_path = '%s/%s' %(settings.Ftp_Base_Dir, self.name) msg = "切换成功,当前目录:%s" % self.current_path else: to_path = request.split()[1] current_path_list = self.current_path.split('\\') if '/' in to_path: new_path_list = to_path.split('/') # print(new_path_list) flag = True while flag: for path in new_path_list: if path == '..': tmp_path = current_path_list.pop() # print(tmp_path) # print(self.name) if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" flag = False break else: current_path_list.append(path) new_path = "\\".join(current_path_list) break if flag == True: if os.path.isdir(os.path.join(settings.BaseDir, new_path)): self.current_path = new_path msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path else: pass elif to_path == '..': tmp_path = current_path_list.pop() # if tmp_path == self.name: if len(current_path_list) == 0: msg = "没有权限切换到对应目录!" else: self.current_path = "\\".join(current_path_list) msg = "切换成功,当前目录:%s" % self.current_path else: abs_path = os.path.join(settings.BaseDir, self.current_path) # if to_path in os.listdir(abs_path): if os.path.isdir(os.path.join(abs_path, to_path)): self.current_path = os.path.join(self.current_path, to_path) msg = "切换成功,当前目录:%s" % self.current_path else: msg = "要切换的目录【%s】在当前路径不存在" % to_path # self.conn.send(msg.encode('utf-8')) self.user_info.current_path = self.current_path return msg.encode('utf-8') # 查看目录下文件 def ls(self, request): print(request) # print(settings.BaseDir) # print(self.current_path) abs_path = os.path.join(settings.BaseDir, self.current_path) # print(abs_path) files = os.listdir(abs_path) if files: print(files) msg = "当前目录的文件情况如下:\n文件名 文件大小 创建时间 修改时间 类型:\n" for file_name in files: file = os.path.join(abs_path, file_name) print(file) file_size = os.path.getsize(file) import time create_time = time.strftime("%x %X", time.localtime(os.path.getctime(file))) modify_time = time.strftime("%x %X", time.localtime(os.path.getmtime(file))) file_type = "文件夹" if os.path.isdir(file) else "文件" file_info = "【%s】 【%s】 【%s】 【%s】 【%s】 \n" % (file_name, file_size, create_time, modify_time, file_type) print(file_info) msg += file_info else: msg = "当前目录没有文件!" print(msg) # send_data = {} # send_data['action'] = 'pwd' # send_data['is_certified'] = self.is_certified # send_data['response'] = {} # send_data['response']['msg'] = msg # print(send_data) # self.conn.send(pickle.dumps(send_data)) # self.conn.send(msg.encode('utf-8')) return msg.encode('utf-8') #上传 def put(self, request): """ 2.收到客户端上传文件的请求,判断该文件是否在服务器端存在,直接查看文件md5值 2.1 如果md5值相同,则文件存在 2.2 如果md5值不同,则告知客户端文件大小,如果md5值为None,则文件不存在 2.3 校验服务器空间是否充足,如果不足,则在1.2中同时告知客户端文件不足的信息 send {"filename":'1.jpg', "server_file_md5":'123333', "filesize": 1111, "space_aviable": 2334556 } 4 服务端收到客户端数据,ruguo seek_size = -1则不上传 4.1 如果seek_size = 0 ,则 wb 模式打开文件 4.2 如果seek_size > 0 ,则ab 模式打开文件 4.3 开始接收客户端数据 6. 当数据接收完成时,返回接收到的数据md5校验结果 """ print(request) filename = request.split()[-1] recv_data = pickle.loads(self.conn.recv(8192)) if recv_data['status']: abs_file_path = os.path.join(settings.BaseDir, self.current_path, filename) server_file_md5 = get_md5(abs_file_path, "file") if server_file_md5 == recv_data['file_md5']: print("服务器已经有相同文件!") send_msg = {"filename": filename, "server_file_md5": server_file_md5 } self.conn.send(pickle.dumps(send_msg)) else: if server_file_md5: filesize = os.path.getsize(abs_file_path) else: filesize = 0 space_aviable = pickle.loads(self.df(""))['aviable_space'] * 1024 * 1024 + filesize - recv_data['filesize'] send_msg = {"filename": filename, "server_file_md5": server_file_md5, "filesize": filesize, "space_aviable": space_aviable } self.conn.send(pickle.dumps(send_msg)) if space_aviable <= 0: print("服务器空间不够") else: #等待客户端响应 recv_data = pickle.loads(self.conn.recv(8192)) # print(recv_data) if recv_data['seek_size'] == 0: f = open(abs_file_path, 'wb') else: f = open(abs_file_path, 'ab') # 开始接收数据 flag = True while flag: data = self.conn.recv(8192) # print(data) time
FtpManage
identifier_name
rows.go
err != nil { return nil, err } return slice, nil } // CollectOneRow calls fn for the first row in rows and returns the result. If no rows are found returns an error where errors.Is(ErrNoRows) is true. // CollectOneRow is to CollectRows as QueryRow is to Query. func CollectOneRow[T any](rows Rows, fn RowToFunc[T]) (T, error) { defer rows.Close() var value T var err error if !rows.Next() { if err = rows.Err(); err != nil { return value, err } return value, ErrNoRows } value, err = fn(rows) if err != nil { return value, err } rows.Close() return value, rows.Err() } // RowTo returns a T scanned from row. func RowTo[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&value) return value, err } // RowTo returns a the address of a T scanned from row. func RowToAddrOf[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&value) return &value, err } // RowToMap returns a map scanned from row. func RowToMap(row CollectableRow) (map[string]any, error) { var value map[string]any err := row.Scan((*mapRowScanner)(&value)) return value, err } type mapRowScanner map[string]any func (rs *mapRowScanner) ScanRow(rows Rows) error { values, err := rows.Values() if err != nil { return err } *rs = make(mapRowScanner, len(values)) for i := range values { (*rs)[string(rows.FieldDescriptions()[i].Name)] = values[i] } return nil } // RowToStructByPos returns a T scanned from row. T must be a struct. T must have the same number a public fields as row // has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then the field will be // ignored. func RowToStructByPos[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return value, err } // RowToAddrOfStructByPos returns the address of a T scanned from row. T must be a struct. T must have the same number a // public fields as row has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then // the field will be ignored. func RowToAddrOfStructByPos[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return &value, err } type positionalStructRowScanner struct { ptrToStruct any } func (rs *positionalStructRowScanner) ScanRow(rows Rows) error { dst := rs.ptrToStruct dstValue := reflect.ValueOf(dst) if dstValue.Kind() != reflect.Ptr { return fmt.Errorf("dst not a pointer") } dstElemValue := dstValue.Elem() scanTargets := rs.appendScanTargets(dstElemValue, nil) if len(rows.RawValues()) > len(scanTargets) { return fmt.Errorf("got %d values, but dst struct has only %d fields", len(rows.RawValues()), len(scanTargets)) } return rows.Scan(scanTargets...) } func (rs *positionalStructRowScanner) appendScanTargets(dstElemValue reflect.Value, scanTargets []any) []any { dstElemType := dstElemValue.Type() if scanTargets == nil { scanTargets = make([]any, 0, dstElemType.NumField()) } for i := 0; i < dstElemType.NumField(); i++ { sf := dstElemType.Field(i) // Handle anonymous struct embedding, but do not try to handle embedded pointers. if sf.Anonymous && sf.Type.Kind() == reflect.Struct { scanTargets = rs.appendScanTargets(dstElemValue.Field(i), scanTargets) } else if sf.PkgPath == "" { dbTag, _ := sf.Tag.Lookup(structTagKey) if dbTag == "-" { // Field is ignored, skip it. continue } scanTargets = append(scanTargets, dstElemValue.Field(i).Addr().Interface()) } } return scanTargets } // RowToStructByName returns a T scanned from row. T must be a struct. T must have the same number of named public // fields as row has fields. The row and T fields will by matched by name. The match is case-insensitive. The database // column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" then the field will be ignored. func RowToStructByName[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value}) return value, err } // RowToAddrOfStructByName returns the address of a T scanned from row. T must be a struct. T must have the same number // of named public fields as row has fields. The row and T fields will by matched by name. The match is // case-insensitive. The database column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" // then the field will be ignored. func RowToAddrOfStructByName[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value}) return &value, err } // RowToStructByNameLax returns a T scanned from row. T must be a struct. T must have greater than or equal number of named public // fields as row has fields. The row and T fields will by matched by name. The match is case-insensitive. The database // column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" then the field will be ignored. func RowToStructByNameLax[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value, lax: true}) return value, err } // RowToAddrOfStructByNameLax returns the address of a T scanned from row. T must be a struct. T must have greater than or // equal number of named public fields as row has fields. The row and T fields will by matched by name. The match is // case-insensitive. The database column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" // then the field will be ignored. func RowToAddrOfStructByNameLax[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value, lax: true}) return &value, err } type namedStructRowScanner struct { ptrToStruct any lax bool } func (rs *namedStructRowScanner) ScanRow(rows Rows) error { dst := rs.ptrToStruct dstValue := reflect.ValueOf(dst) if dstValue.Kind() != reflect.Ptr { return fmt.Errorf("dst not a pointer") } dstElemValue := dstValue.Elem() scanTargets, err := rs.appendScanTargets(dstElemValue, nil, rows.FieldDescriptions()) if err != nil { return err } for i, t := range scanTargets { if t == nil { return fmt.Errorf("struct doesn't have corresponding row field %s", rows.FieldDescriptions()[i].Name) } } return rows.Scan(scanTargets...) } const structTagKey = "db" func fieldPosByName(fldDescs []pgconn.FieldDescription, field string) (i int) { i = -1 for i, desc := range fldDescs { if strings.EqualFold(desc.Name, field) { return i } } return } func (rs *namedStructRowScanner) appendScanTargets(dstElemValue reflect.Value, scanTargets []any, fldDescs []pgconn.FieldDescription) ([]any, error) { var err error dstElemType := dstElemValue.Type() if scanTargets == nil { scanTargets = make([]any, len(fldDescs)) } for i := 0; i < dstElemType.NumField(); i++
{ sf := dstElemType.Field(i) if sf.PkgPath != "" && !sf.Anonymous { // Field is unexported, skip it. continue } // Handle anoymous struct embedding, but do not try to handle embedded pointers. if sf.Anonymous && sf.Type.Kind() == reflect.Struct { scanTargets, err = rs.appendScanTargets(dstElemValue.Field(i), scanTargets, fldDescs) if err != nil { return nil, err } } else { dbTag, dbTagPresent := sf.Tag.Lookup(structTagKey) if dbTagPresent { dbTag = strings.Split(dbTag, ",")[0] } if dbTag == "-" { // Field is ignored, skip it. continue
conditional_block
rows.go
pgconn.CommandTag, error) { defer rows.Close() for rows.Next() { err := rows.Scan(scans...) if err != nil { return pgconn.CommandTag{}, err } err = fn() if err != nil { return pgconn.CommandTag{}, err } } if err := rows.Err(); err != nil { return pgconn.CommandTag{}, err } return rows.CommandTag(), nil } // CollectableRow is the subset of Rows methods that a RowToFunc is allowed to call. type CollectableRow interface { FieldDescriptions() []pgconn.FieldDescription Scan(dest ...any) error Values() ([]any, error) RawValues() [][]byte } // RowToFunc is a function that scans or otherwise converts row to a T. type RowToFunc[T any] func(row CollectableRow) (T, error) // CollectRows iterates through rows, calling fn for each row, and collecting the results into a slice of T. func CollectRows[T any](rows Rows, fn RowToFunc[T]) ([]T, error) { defer rows.Close() slice := []T{} for rows.Next() { value, err := fn(rows) if err != nil { return nil, err } slice = append(slice, value) } if err := rows.Err(); err != nil { return nil, err } return slice, nil } // CollectOneRow calls fn for the first row in rows and returns the result. If no rows are found returns an error where errors.Is(ErrNoRows) is true. // CollectOneRow is to CollectRows as QueryRow is to Query. func CollectOneRow[T any](rows Rows, fn RowToFunc[T]) (T, error) { defer rows.Close() var value T var err error if !rows.Next() { if err = rows.Err(); err != nil { return value, err } return value, ErrNoRows } value, err = fn(rows) if err != nil { return value, err } rows.Close() return value, rows.Err() } // RowTo returns a T scanned from row. func RowTo[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&value) return value, err } // RowTo returns a the address of a T scanned from row. func RowToAddrOf[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&value) return &value, err } // RowToMap returns a map scanned from row. func RowToMap(row CollectableRow) (map[string]any, error) { var value map[string]any err := row.Scan((*mapRowScanner)(&value)) return value, err } type mapRowScanner map[string]any func (rs *mapRowScanner) ScanRow(rows Rows) error { values, err := rows.Values() if err != nil { return err } *rs = make(mapRowScanner, len(values)) for i := range values { (*rs)[string(rows.FieldDescriptions()[i].Name)] = values[i] } return nil } // RowToStructByPos returns a T scanned from row. T must be a struct. T must have the same number a public fields as row // has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then the field will be // ignored. func RowToStructByPos[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return value, err } // RowToAddrOfStructByPos returns the address of a T scanned from row. T must be a struct. T must have the same number a // public fields as row has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then // the field will be ignored. func RowToAddrOfStructByPos[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return &value, err } type positionalStructRowScanner struct { ptrToStruct any } func (rs *positionalStructRowScanner) ScanRow(rows Rows) error { dst := rs.ptrToStruct dstValue := reflect.ValueOf(dst) if dstValue.Kind() != reflect.Ptr { return fmt.Errorf("dst not a pointer") } dstElemValue := dstValue.Elem() scanTargets := rs.appendScanTargets(dstElemValue, nil) if len(rows.RawValues()) > len(scanTargets) { return fmt.Errorf("got %d values, but dst struct has only %d fields", len(rows.RawValues()), len(scanTargets)) } return rows.Scan(scanTargets...) } func (rs *positionalStructRowScanner) appendScanTargets(dstElemValue reflect.Value, scanTargets []any) []any { dstElemType := dstElemValue.Type() if scanTargets == nil { scanTargets = make([]any, 0, dstElemType.NumField()) } for i := 0; i < dstElemType.NumField(); i++ { sf := dstElemType.Field(i) // Handle anonymous struct embedding, but do not try to handle embedded pointers. if sf.Anonymous && sf.Type.Kind() == reflect.Struct { scanTargets = rs.appendScanTargets(dstElemValue.Field(i), scanTargets) } else if sf.PkgPath == "" { dbTag, _ := sf.Tag.Lookup(structTagKey) if dbTag == "-" { // Field is ignored, skip it. continue } scanTargets = append(scanTargets, dstElemValue.Field(i).Addr().Interface()) } } return scanTargets } // RowToStructByName returns a T scanned from row. T must be a struct. T must have the same number of named public // fields as row has fields. The row and T fields will by matched by name. The match is case-insensitive. The database // column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" then the field will be ignored. func RowToStructByName[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value}) return value, err } // RowToAddrOfStructByName returns the address of a T scanned from row. T must be a struct. T must have the same number // of named public fields as row has fields. The row and T fields will by matched by name. The match is // case-insensitive. The database column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" // then the field will be ignored. func RowToAddrOfStructByName[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value}) return &value, err } // RowToStructByNameLax returns a T scanned from row. T must be a struct. T must have greater than or equal number of named public // fields as row has fields. The row and T fields will by matched by name. The match is case-insensitive. The database // column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" then the field will be ignored. func RowToStructByNameLax[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value, lax: true}) return value, err } // RowToAddrOfStructByNameLax returns the address of a T scanned from row. T must be a struct. T must have greater than or // equal number of named public fields as row has fields. The row and T fields will by matched by name. The match is // case-insensitive. The database column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" // then the field will be ignored. func RowToAddrOfStructByNameLax[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value, lax: true}) return &value, err } type namedStructRowScanner struct { ptrToStruct any lax bool } func (rs *namedStructRowScanner) ScanRow(rows Rows) error { dst := rs.ptrToStruct dstValue := reflect.ValueOf(dst) if dstValue.Kind() != reflect.Ptr { return fmt.Errorf("dst not a pointer") } dstElemValue := dstValue.Elem() scanTargets, err := rs.appendScanTargets(dstElemValue, nil, rows.FieldDescriptions()) if err != nil { return err } for i, t := range scanTargets { if t == nil { return fmt.Errorf("struct doesn't have corresponding row field %s", rows.FieldDescriptions()[i].Name) } } return rows.Scan(scanTargets...) } const structTagKey = "db" func fieldPosByName(fldDescs []pgconn.FieldDescription, field string) (i int) { i = -1
for i, desc := range fldDescs {
random_line_split
rows.go
make([]pgtype.ScanPlan, len(values)) rows.scanTypes = make([]reflect.Type, len(values)) for i := range dest { rows.scanPlans[i] = m.PlanScan(fieldDescriptions[i].DataTypeOID, fieldDescriptions[i].Format, dest[i]) rows.scanTypes[i] = reflect.TypeOf(dest[i]) } } for i, dst := range dest { if dst == nil { continue } if rows.scanTypes[i] != reflect.TypeOf(dst) { rows.scanPlans[i] = m.PlanScan(fieldDescriptions[i].DataTypeOID, fieldDescriptions[i].Format, dest[i]) rows.scanTypes[i] = reflect.TypeOf(dest[i]) } err := rows.scanPlans[i].Scan(values[i], dst) if err != nil { err = ScanArgError{ColumnIndex: i, Err: err} rows.fatal(err) return err } } return nil } func (rows *baseRows) Values() ([]any, error) { if rows.closed { return nil, errors.New("rows is closed") } values := make([]any, 0, len(rows.FieldDescriptions())) for i := range rows.FieldDescriptions() { buf := rows.values[i] fd := &rows.FieldDescriptions()[i] if buf == nil { values = append(values, nil) continue } if dt, ok := rows.typeMap.TypeForOID(fd.DataTypeOID); ok { value, err := dt.Codec.DecodeValue(rows.typeMap, fd.DataTypeOID, fd.Format, buf) if err != nil { rows.fatal(err) } values = append(values, value) } else { switch fd.Format { case TextFormatCode: values = append(values, string(buf)) case BinaryFormatCode: newBuf := make([]byte, len(buf)) copy(newBuf, buf) values = append(values, newBuf) default: rows.fatal(errors.New("unknown format code")) } } if rows.Err() != nil { return nil, rows.Err() } } return values, rows.Err() } func (rows *baseRows) RawValues() [][]byte { return rows.values } func (rows *baseRows) Conn() *Conn { return rows.conn } type ScanArgError struct { ColumnIndex int Err error } func (e ScanArgError) Error() string { return fmt.Sprintf("can't scan into dest[%d]: %v", e.ColumnIndex, e.Err) } func (e ScanArgError) Unwrap() error { return e.Err } // ScanRow decodes raw row data into dest. It can be used to scan rows read from the lower level pgconn interface. // // typeMap - OID to Go type mapping. // fieldDescriptions - OID and format of values // values - the raw data as returned from the PostgreSQL server // dest - the destination that values will be decoded into func ScanRow(typeMap *pgtype.Map, fieldDescriptions []pgconn.FieldDescription, values [][]byte, dest ...any) error { if len(fieldDescriptions) != len(values) { return fmt.Errorf("number of field descriptions must equal number of values, got %d and %d", len(fieldDescriptions), len(values)) } if len(fieldDescriptions) != len(dest) { return fmt.Errorf("number of field descriptions must equal number of destinations, got %d and %d", len(fieldDescriptions), len(dest)) } for i, d := range dest { if d == nil { continue } err := typeMap.Scan(fieldDescriptions[i].DataTypeOID, fieldDescriptions[i].Format, values[i], d) if err != nil { return ScanArgError{ColumnIndex: i, Err: err} } } return nil } // RowsFromResultReader returns a Rows that will read from values resultReader and decode with typeMap. It can be used // to read from the lower level pgconn interface. func RowsFromResultReader(typeMap *pgtype.Map, resultReader *pgconn.ResultReader) Rows { return &baseRows{ typeMap: typeMap, resultReader: resultReader, } } // ForEachRow iterates through rows. For each row it scans into the elements of scans and calls fn. If any row // fails to scan or fn returns an error the query will be aborted and the error will be returned. Rows will be closed // when ForEachRow returns. func ForEachRow(rows Rows, scans []any, fn func() error) (pgconn.CommandTag, error) { defer rows.Close() for rows.Next() { err := rows.Scan(scans...) if err != nil { return pgconn.CommandTag{}, err } err = fn() if err != nil { return pgconn.CommandTag{}, err } } if err := rows.Err(); err != nil { return pgconn.CommandTag{}, err } return rows.CommandTag(), nil } // CollectableRow is the subset of Rows methods that a RowToFunc is allowed to call. type CollectableRow interface { FieldDescriptions() []pgconn.FieldDescription Scan(dest ...any) error Values() ([]any, error) RawValues() [][]byte } // RowToFunc is a function that scans or otherwise converts row to a T. type RowToFunc[T any] func(row CollectableRow) (T, error) // CollectRows iterates through rows, calling fn for each row, and collecting the results into a slice of T. func CollectRows[T any](rows Rows, fn RowToFunc[T]) ([]T, error) { defer rows.Close() slice := []T{} for rows.Next() { value, err := fn(rows) if err != nil { return nil, err } slice = append(slice, value) } if err := rows.Err(); err != nil { return nil, err } return slice, nil } // CollectOneRow calls fn for the first row in rows and returns the result. If no rows are found returns an error where errors.Is(ErrNoRows) is true. // CollectOneRow is to CollectRows as QueryRow is to Query. func CollectOneRow[T any](rows Rows, fn RowToFunc[T]) (T, error) { defer rows.Close() var value T var err error if !rows.Next() { if err = rows.Err(); err != nil { return value, err } return value, ErrNoRows } value, err = fn(rows) if err != nil { return value, err } rows.Close() return value, rows.Err() } // RowTo returns a T scanned from row. func RowTo[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&value) return value, err } // RowTo returns a the address of a T scanned from row. func RowToAddrOf[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&value) return &value, err } // RowToMap returns a map scanned from row. func RowToMap(row CollectableRow) (map[string]any, error) { var value map[string]any err := row.Scan((*mapRowScanner)(&value)) return value, err } type mapRowScanner map[string]any func (rs *mapRowScanner) ScanRow(rows Rows) error { values, err := rows.Values() if err != nil { return err } *rs = make(mapRowScanner, len(values)) for i := range values { (*rs)[string(rows.FieldDescriptions()[i].Name)] = values[i] } return nil } // RowToStructByPos returns a T scanned from row. T must be a struct. T must have the same number a public fields as row // has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then the field will be // ignored. func RowToStructByPos[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return value, err } // RowToAddrOfStructByPos returns the address of a T scanned from row. T must be a struct. T must have the same number a // public fields as row has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then // the field will be ignored. func RowToAddrOfStructByPos[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return &value, err } type positionalStructRowScanner struct { ptrToStruct any } func (rs *positionalStructRowScanner) ScanRow(rows Rows) error
{ dst := rs.ptrToStruct dstValue := reflect.ValueOf(dst) if dstValue.Kind() != reflect.Ptr { return fmt.Errorf("dst not a pointer") } dstElemValue := dstValue.Elem() scanTargets := rs.appendScanTargets(dstElemValue, nil) if len(rows.RawValues()) > len(scanTargets) { return fmt.Errorf("got %d values, but dst struct has only %d fields", len(rows.RawValues()), len(scanTargets)) } return rows.Scan(scanTargets...) }
identifier_body
rows.go
returned. Rows will be closed // when ForEachRow returns. func ForEachRow(rows Rows, scans []any, fn func() error) (pgconn.CommandTag, error) { defer rows.Close() for rows.Next() { err := rows.Scan(scans...) if err != nil { return pgconn.CommandTag{}, err } err = fn() if err != nil { return pgconn.CommandTag{}, err } } if err := rows.Err(); err != nil { return pgconn.CommandTag{}, err } return rows.CommandTag(), nil } // CollectableRow is the subset of Rows methods that a RowToFunc is allowed to call. type CollectableRow interface { FieldDescriptions() []pgconn.FieldDescription Scan(dest ...any) error Values() ([]any, error) RawValues() [][]byte } // RowToFunc is a function that scans or otherwise converts row to a T. type RowToFunc[T any] func(row CollectableRow) (T, error) // CollectRows iterates through rows, calling fn for each row, and collecting the results into a slice of T. func CollectRows[T any](rows Rows, fn RowToFunc[T]) ([]T, error) { defer rows.Close() slice := []T{} for rows.Next() { value, err := fn(rows) if err != nil { return nil, err } slice = append(slice, value) } if err := rows.Err(); err != nil { return nil, err } return slice, nil } // CollectOneRow calls fn for the first row in rows and returns the result. If no rows are found returns an error where errors.Is(ErrNoRows) is true. // CollectOneRow is to CollectRows as QueryRow is to Query. func CollectOneRow[T any](rows Rows, fn RowToFunc[T]) (T, error) { defer rows.Close() var value T var err error if !rows.Next() { if err = rows.Err(); err != nil { return value, err } return value, ErrNoRows } value, err = fn(rows) if err != nil { return value, err } rows.Close() return value, rows.Err() } // RowTo returns a T scanned from row. func RowTo[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&value) return value, err } // RowTo returns a the address of a T scanned from row. func RowToAddrOf[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&value) return &value, err } // RowToMap returns a map scanned from row. func RowToMap(row CollectableRow) (map[string]any, error) { var value map[string]any err := row.Scan((*mapRowScanner)(&value)) return value, err } type mapRowScanner map[string]any func (rs *mapRowScanner) ScanRow(rows Rows) error { values, err := rows.Values() if err != nil { return err } *rs = make(mapRowScanner, len(values)) for i := range values { (*rs)[string(rows.FieldDescriptions()[i].Name)] = values[i] } return nil } // RowToStructByPos returns a T scanned from row. T must be a struct. T must have the same number a public fields as row // has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then the field will be // ignored. func RowToStructByPos[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return value, err } // RowToAddrOfStructByPos returns the address of a T scanned from row. T must be a struct. T must have the same number a // public fields as row has fields. The row and T fields will by matched by position. If the "db" struct tag is "-" then // the field will be ignored. func RowToAddrOfStructByPos[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&positionalStructRowScanner{ptrToStruct: &value}) return &value, err } type positionalStructRowScanner struct { ptrToStruct any } func (rs *positionalStructRowScanner) ScanRow(rows Rows) error { dst := rs.ptrToStruct dstValue := reflect.ValueOf(dst) if dstValue.Kind() != reflect.Ptr { return fmt.Errorf("dst not a pointer") } dstElemValue := dstValue.Elem() scanTargets := rs.appendScanTargets(dstElemValue, nil) if len(rows.RawValues()) > len(scanTargets) { return fmt.Errorf("got %d values, but dst struct has only %d fields", len(rows.RawValues()), len(scanTargets)) } return rows.Scan(scanTargets...) } func (rs *positionalStructRowScanner) appendScanTargets(dstElemValue reflect.Value, scanTargets []any) []any { dstElemType := dstElemValue.Type() if scanTargets == nil { scanTargets = make([]any, 0, dstElemType.NumField()) } for i := 0; i < dstElemType.NumField(); i++ { sf := dstElemType.Field(i) // Handle anonymous struct embedding, but do not try to handle embedded pointers. if sf.Anonymous && sf.Type.Kind() == reflect.Struct { scanTargets = rs.appendScanTargets(dstElemValue.Field(i), scanTargets) } else if sf.PkgPath == "" { dbTag, _ := sf.Tag.Lookup(structTagKey) if dbTag == "-" { // Field is ignored, skip it. continue } scanTargets = append(scanTargets, dstElemValue.Field(i).Addr().Interface()) } } return scanTargets } // RowToStructByName returns a T scanned from row. T must be a struct. T must have the same number of named public // fields as row has fields. The row and T fields will by matched by name. The match is case-insensitive. The database // column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" then the field will be ignored. func RowToStructByName[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value}) return value, err } // RowToAddrOfStructByName returns the address of a T scanned from row. T must be a struct. T must have the same number // of named public fields as row has fields. The row and T fields will by matched by name. The match is // case-insensitive. The database column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" // then the field will be ignored. func RowToAddrOfStructByName[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value}) return &value, err } // RowToStructByNameLax returns a T scanned from row. T must be a struct. T must have greater than or equal number of named public // fields as row has fields. The row and T fields will by matched by name. The match is case-insensitive. The database // column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" then the field will be ignored. func RowToStructByNameLax[T any](row CollectableRow) (T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value, lax: true}) return value, err } // RowToAddrOfStructByNameLax returns the address of a T scanned from row. T must be a struct. T must have greater than or // equal number of named public fields as row has fields. The row and T fields will by matched by name. The match is // case-insensitive. The database column name can be overridden with a "db" struct tag. If the "db" struct tag is "-" // then the field will be ignored. func RowToAddrOfStructByNameLax[T any](row CollectableRow) (*T, error) { var value T err := row.Scan(&namedStructRowScanner{ptrToStruct: &value, lax: true}) return &value, err } type namedStructRowScanner struct { ptrToStruct any lax bool } func (rs *namedStructRowScanner) ScanRow(rows Rows) error { dst := rs.ptrToStruct dstValue := reflect.ValueOf(dst) if dstValue.Kind() != reflect.Ptr { return fmt.Errorf("dst not a pointer") } dstElemValue := dstValue.Elem() scanTargets, err := rs.appendScanTargets(dstElemValue, nil, rows.FieldDescriptions()) if err != nil { return err } for i, t := range scanTargets { if t == nil { return fmt.Errorf("struct doesn't have corresponding row field %s", rows.FieldDescriptions()[i].Name) } } return rows.Scan(scanTargets...) } const structTagKey = "db" func
fieldPosByName
identifier_name
build.py
openssl' OPENSSL_OQS_BRANCH = 'OpenSSL_1_0_2-stable' OPENSSL_OQS_COMMIT = '01f211920aea41640c647f462e9d7c4c106e3240' OPENVPN_TGZ_NAME = '/tmp/openvpn-2.4.4.tar.gz' OPENVPN_GUI_TGZ_NAME = '/tmp/openvpn-gui-11.tar.gz' OPENVPN_REPO_DIRNAME = 'openvpn-2.4.4' OPENVPN_INSTALL_EXE_NAME = 'openvpn-install-2.4.4-I601.exe' OPENVPN_GUI_REPO_DIRNAME = 'openvpn-gui' OPENVPN_LINUX_PREFIX = '/usr/local/openvpn' VCVARSALL = '"C:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\Enterprise\\VC\\Auxiliary\\Build\\vcvarsall.bat"' # Run an external command, block until it completes def run_command(cmd): print '***** Running command: %s' % ' '.join(map(str,cmd)) p = subprocess.Popen(cmd) p.wait() # Clone a git repo, using the default name, in the CWD # If branch is specified, clone that branch def git_clone(repo_url, branch, local_name, commit=None): r = re.compile(".*/(.*)$") m = r.match(repo_url) repo_name = m.group(1) print "Cloning %s ..." % repo_name cmd = ['git', 'clone', '-q'] if branch:
cmd.append(repo_url) if local_name: cmd.append(local_name) run_command(cmd) if commit is not None: if local_name: os.chdir(local_name) else: print "git_clone with a commit ID only valid with a local_name" sys.exit(1) cmd = ['git', 'checkout', commit] run_command(cmd) os.chdir('..') # Build oqs_openssl def build_oqs_openssl(): if platform.system() == 'Windows': # Create source trees for x86 and x64 # Note that there's no way to clean up one tree and re-use it for a different arch git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs-win-x86', OPENSSL_OQS_COMMIT) shutil.copytree('openssl-oqs-win-x86', 'openssl-oqs-win-x64') os.chdir('openssl-oqs-win-x86') # Start the X86 build run_command(['perl', 'Configure', 'VC-WIN32', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_ms.bat']) # vcvarsall may change the current working directory. Remember where we were and cd back to it. mycwd = os.getcwd() os.system(VCVARSALL + ' x86 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x86\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x86\\') # TODO: is there a way to check that the other DLLs in # oqs-openssl-win\x86 (e.g., vcruntime140.dll) have the right version to # work with these openssl DLLs? somehow check that the dependencies of # libeay32.dll and ssleay32.dll are present in the x86 folder. # Start the x64 build os.chdir('..') os.chdir('openssl-oqs-win-x64') run_command(['perl', 'Configure', 'VC-WIN64A', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_win64a.bat']) mycwd = os.getcwd() # Before running nmake, we have to run vcvarsall.bat to set the x64 env vars, in the same shell mycwd = os.getcwd() os.system(VCVARSALL + ' amd64 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x64\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x64\\') if platform.system() == 'Linux': git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs', OPENSSL_OQS_COMMIT) os.makedirs('oqs-openssl-output/openssl') os.makedirs('oqs-openssl-output/ssl') prefix = os.path.abspath('oqs-openssl-output/openssl') openssldir = os.path.abspath('oqs-openssl-output/ssl') os.chdir('openssl-oqs') run_command(['./config', 'shared', '--prefix='+prefix, '--openssldir='+openssldir]) run_command(['make']) run_command(['make', 'test']) run_command(['make', 'install']) os.chdir('..') def on_error(func, path, exc_info): """ Error handler for ``shutil.rmtree``. If the error is due to an access error (read only file) it attempts to add write permission and then retries. If the error is for another reason it re-raises the error. Usage : ``shutil.rmtree(path, onerror=onerror)`` """ import stat if not os.access(path, os.W_OK): # Is the error an access error ? os.chmod(path, stat.S_IWUSR) func(path) else: raise def build_openvpn_linux(): git_clone(OPENVPN_REPO, OPENVPN_BRANCH, 'openvpn-pq') if os.path.exists('stage'): shutil.rmtree('stage') os.makedirs('stage') stagepath = os.path.abspath('stage') os.chdir('openvpn-pq') run_command(['autoreconf', '-i', '-f', '-v']) if not os.path.exists("../oqs-openssl-output/"): print "Didn't find oqs-openssl-output directory, exiting" sys.exit(1) lib_path = os.path.abspath('../oqs-openssl-output/openssl/lib') inc_path = os.path.abspath('../oqs-openssl-output/openssl/include') openssl_cflags = 'OPENSSL_CFLAGS="-I' + inc_path + '"' openssl_libs = 'OPENSSL_LIBS="-L' + lib_path + ' -Wl,-rpath='+ OPENVPN_LINUX_PREFIX + '/lib ' + ' -lssl -lcrypto"' # we need to use os.system here so that the env vars are set correctly os.system('./configure --prefix=' + OPENVPN_LINUX_PREFIX + ' ' + openssl_cflags + ' ' + openssl_libs + ' && make && make DESTDIR=' + stagepath + ' install') # We need to copy our versions of libcrypto and libssl into the staging area shutil.copy('../oqs-openssl-output/openssl/lib/libcrypto.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') shutil.copy('../oqs-openssl-output/openssl/lib/libssl.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') os.chdir('..') # Create a tarball for linux (needed to do Raspberry Pi builds) os.makedirs('pq-openvpn-linux') shutil.move('oqs-openssl-output', 'pq-openvpn-linux') shutil.move('openvpn-pq', 'pq-openvpn-linux') run_command(['tar', 'czf', 'pq-openvpn-linux.tgz', 'pq-openvpn-linux']) shutil.move('pq-openvpn-linux.tgz', '../pq-openvpn-linux.tgz') ## Create a staged tarball for Linux os.chdir('stage') # Create placeholders for etc and log directories so they'll be created os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/etc') os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/log') run_command(['touch', '.' + OPENVPN_LINUX_PREFIX + '/etc/.placeholder', '.' + OPENVPN_LINUX_PREFIX + '/log/.placeholder']) # Copy initial setup script into sbin directory shutil.copy('../../initialsetup.sh', '.' + OPENVPN_LINUX_PREFIX + '/sbin') # Copy pointer to privacy statement into doc directory shutil.copy('../../PRIVACY.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy Third Party notice into doc directory shutil.copy('../../../../ThirdPartyNotice.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy service file for systemd into the appropriate place os.makedirs('etc/systemd/system') shutil.copy('../../pq-openvpn.service', 'etc/systemd/system') # Create staged tarball run_command(['tar', '-cz', '--
cmd.extend(['--branch', branch])
conditional_block
build.py
' OPENSSL_OQS_BRANCH = 'OpenSSL_1_0_2-stable' OPENSSL_OQS_COMMIT = '01f211920aea41640c647f462e9d7c4c106e3240' OPENVPN_TGZ_NAME = '/tmp/openvpn-2.4.4.tar.gz' OPENVPN_GUI_TGZ_NAME = '/tmp/openvpn-gui-11.tar.gz' OPENVPN_REPO_DIRNAME = 'openvpn-2.4.4' OPENVPN_INSTALL_EXE_NAME = 'openvpn-install-2.4.4-I601.exe' OPENVPN_GUI_REPO_DIRNAME = 'openvpn-gui' OPENVPN_LINUX_PREFIX = '/usr/local/openvpn' VCVARSALL = '"C:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\Enterprise\\VC\\Auxiliary\\Build\\vcvarsall.bat"' # Run an external command, block until it completes def run_command(cmd): print '***** Running command: %s' % ' '.join(map(str,cmd)) p = subprocess.Popen(cmd) p.wait() # Clone a git repo, using the default name, in the CWD # If branch is specified, clone that branch def git_clone(repo_url, branch, local_name, commit=None): r = re.compile(".*/(.*)$") m = r.match(repo_url) repo_name = m.group(1) print "Cloning %s ..." % repo_name cmd = ['git', 'clone', '-q'] if branch: cmd.extend(['--branch', branch]) cmd.append(repo_url) if local_name: cmd.append(local_name) run_command(cmd) if commit is not None: if local_name: os.chdir(local_name) else: print "git_clone with a commit ID only valid with a local_name" sys.exit(1) cmd = ['git', 'checkout', commit] run_command(cmd) os.chdir('..') # Build oqs_openssl def build_oqs_openssl(): if platform.system() == 'Windows': # Create source trees for x86 and x64 # Note that there's no way to clean up one tree and re-use it for a different arch git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs-win-x86', OPENSSL_OQS_COMMIT) shutil.copytree('openssl-oqs-win-x86', 'openssl-oqs-win-x64') os.chdir('openssl-oqs-win-x86') # Start the X86 build run_command(['perl', 'Configure', 'VC-WIN32', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_ms.bat']) # vcvarsall may change the current working directory. Remember where we were and cd back to it. mycwd = os.getcwd() os.system(VCVARSALL + ' x86 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x86\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x86\\') # TODO: is there a way to check that the other DLLs in # oqs-openssl-win\x86 (e.g., vcruntime140.dll) have the right version to # work with these openssl DLLs? somehow check that the dependencies of # libeay32.dll and ssleay32.dll are present in the x86 folder. # Start the x64 build os.chdir('..') os.chdir('openssl-oqs-win-x64') run_command(['perl', 'Configure', 'VC-WIN64A', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_win64a.bat']) mycwd = os.getcwd() # Before running nmake, we have to run vcvarsall.bat to set the x64 env vars, in the same shell mycwd = os.getcwd() os.system(VCVARSALL + ' amd64 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x64\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x64\\') if platform.system() == 'Linux': git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs', OPENSSL_OQS_COMMIT) os.makedirs('oqs-openssl-output/openssl') os.makedirs('oqs-openssl-output/ssl') prefix = os.path.abspath('oqs-openssl-output/openssl') openssldir = os.path.abspath('oqs-openssl-output/ssl') os.chdir('openssl-oqs') run_command(['./config', 'shared', '--prefix='+prefix, '--openssldir='+openssldir]) run_command(['make']) run_command(['make', 'test']) run_command(['make', 'install']) os.chdir('..') def on_error(func, path, exc_info): """ Error handler for ``shutil.rmtree``. If the error is due to an access error (read only file) it attempts to add write permission and then retries.
If the error is for another reason it re-raises the error. Usage : ``shutil.rmtree(path, onerror=onerror)`` """ import stat if not os.access(path, os.W_OK): # Is the error an access error ? os.chmod(path, stat.S_IWUSR) func(path) else: raise def build_openvpn_linux(): git_clone(OPENVPN_REPO, OPENVPN_BRANCH, 'openvpn-pq') if os.path.exists('stage'): shutil.rmtree('stage') os.makedirs('stage') stagepath = os.path.abspath('stage') os.chdir('openvpn-pq') run_command(['autoreconf', '-i', '-f', '-v']) if not os.path.exists("../oqs-openssl-output/"): print "Didn't find oqs-openssl-output directory, exiting" sys.exit(1) lib_path = os.path.abspath('../oqs-openssl-output/openssl/lib') inc_path = os.path.abspath('../oqs-openssl-output/openssl/include') openssl_cflags = 'OPENSSL_CFLAGS="-I' + inc_path + '"' openssl_libs = 'OPENSSL_LIBS="-L' + lib_path + ' -Wl,-rpath='+ OPENVPN_LINUX_PREFIX + '/lib ' + ' -lssl -lcrypto"' # we need to use os.system here so that the env vars are set correctly os.system('./configure --prefix=' + OPENVPN_LINUX_PREFIX + ' ' + openssl_cflags + ' ' + openssl_libs + ' && make && make DESTDIR=' + stagepath + ' install') # We need to copy our versions of libcrypto and libssl into the staging area shutil.copy('../oqs-openssl-output/openssl/lib/libcrypto.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') shutil.copy('../oqs-openssl-output/openssl/lib/libssl.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') os.chdir('..') # Create a tarball for linux (needed to do Raspberry Pi builds) os.makedirs('pq-openvpn-linux') shutil.move('oqs-openssl-output', 'pq-openvpn-linux') shutil.move('openvpn-pq', 'pq-openvpn-linux') run_command(['tar', 'czf', 'pq-openvpn-linux.tgz', 'pq-openvpn-linux']) shutil.move('pq-openvpn-linux.tgz', '../pq-openvpn-linux.tgz') ## Create a staged tarball for Linux os.chdir('stage') # Create placeholders for etc and log directories so they'll be created os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/etc') os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/log') run_command(['touch', '.' + OPENVPN_LINUX_PREFIX + '/etc/.placeholder', '.' + OPENVPN_LINUX_PREFIX + '/log/.placeholder']) # Copy initial setup script into sbin directory shutil.copy('../../initialsetup.sh', '.' + OPENVPN_LINUX_PREFIX + '/sbin') # Copy pointer to privacy statement into doc directory shutil.copy('../../PRIVACY.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy Third Party notice into doc directory shutil.copy('../../../../ThirdPartyNotice.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy service file for systemd into the appropriate place os.makedirs('etc/systemd/system') shutil.copy('../../pq-openvpn.service', 'etc/systemd/system') # Create staged tarball run_command(['tar', '-cz', '--
random_line_split
build.py
' OPENSSL_OQS_BRANCH = 'OpenSSL_1_0_2-stable' OPENSSL_OQS_COMMIT = '01f211920aea41640c647f462e9d7c4c106e3240' OPENVPN_TGZ_NAME = '/tmp/openvpn-2.4.4.tar.gz' OPENVPN_GUI_TGZ_NAME = '/tmp/openvpn-gui-11.tar.gz' OPENVPN_REPO_DIRNAME = 'openvpn-2.4.4' OPENVPN_INSTALL_EXE_NAME = 'openvpn-install-2.4.4-I601.exe' OPENVPN_GUI_REPO_DIRNAME = 'openvpn-gui' OPENVPN_LINUX_PREFIX = '/usr/local/openvpn' VCVARSALL = '"C:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\Enterprise\\VC\\Auxiliary\\Build\\vcvarsall.bat"' # Run an external command, block until it completes def
(cmd): print '***** Running command: %s' % ' '.join(map(str,cmd)) p = subprocess.Popen(cmd) p.wait() # Clone a git repo, using the default name, in the CWD # If branch is specified, clone that branch def git_clone(repo_url, branch, local_name, commit=None): r = re.compile(".*/(.*)$") m = r.match(repo_url) repo_name = m.group(1) print "Cloning %s ..." % repo_name cmd = ['git', 'clone', '-q'] if branch: cmd.extend(['--branch', branch]) cmd.append(repo_url) if local_name: cmd.append(local_name) run_command(cmd) if commit is not None: if local_name: os.chdir(local_name) else: print "git_clone with a commit ID only valid with a local_name" sys.exit(1) cmd = ['git', 'checkout', commit] run_command(cmd) os.chdir('..') # Build oqs_openssl def build_oqs_openssl(): if platform.system() == 'Windows': # Create source trees for x86 and x64 # Note that there's no way to clean up one tree and re-use it for a different arch git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs-win-x86', OPENSSL_OQS_COMMIT) shutil.copytree('openssl-oqs-win-x86', 'openssl-oqs-win-x64') os.chdir('openssl-oqs-win-x86') # Start the X86 build run_command(['perl', 'Configure', 'VC-WIN32', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_ms.bat']) # vcvarsall may change the current working directory. Remember where we were and cd back to it. mycwd = os.getcwd() os.system(VCVARSALL + ' x86 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x86\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x86\\') # TODO: is there a way to check that the other DLLs in # oqs-openssl-win\x86 (e.g., vcruntime140.dll) have the right version to # work with these openssl DLLs? somehow check that the dependencies of # libeay32.dll and ssleay32.dll are present in the x86 folder. # Start the x64 build os.chdir('..') os.chdir('openssl-oqs-win-x64') run_command(['perl', 'Configure', 'VC-WIN64A', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_win64a.bat']) mycwd = os.getcwd() # Before running nmake, we have to run vcvarsall.bat to set the x64 env vars, in the same shell mycwd = os.getcwd() os.system(VCVARSALL + ' amd64 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x64\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x64\\') if platform.system() == 'Linux': git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs', OPENSSL_OQS_COMMIT) os.makedirs('oqs-openssl-output/openssl') os.makedirs('oqs-openssl-output/ssl') prefix = os.path.abspath('oqs-openssl-output/openssl') openssldir = os.path.abspath('oqs-openssl-output/ssl') os.chdir('openssl-oqs') run_command(['./config', 'shared', '--prefix='+prefix, '--openssldir='+openssldir]) run_command(['make']) run_command(['make', 'test']) run_command(['make', 'install']) os.chdir('..') def on_error(func, path, exc_info): """ Error handler for ``shutil.rmtree``. If the error is due to an access error (read only file) it attempts to add write permission and then retries. If the error is for another reason it re-raises the error. Usage : ``shutil.rmtree(path, onerror=onerror)`` """ import stat if not os.access(path, os.W_OK): # Is the error an access error ? os.chmod(path, stat.S_IWUSR) func(path) else: raise def build_openvpn_linux(): git_clone(OPENVPN_REPO, OPENVPN_BRANCH, 'openvpn-pq') if os.path.exists('stage'): shutil.rmtree('stage') os.makedirs('stage') stagepath = os.path.abspath('stage') os.chdir('openvpn-pq') run_command(['autoreconf', '-i', '-f', '-v']) if not os.path.exists("../oqs-openssl-output/"): print "Didn't find oqs-openssl-output directory, exiting" sys.exit(1) lib_path = os.path.abspath('../oqs-openssl-output/openssl/lib') inc_path = os.path.abspath('../oqs-openssl-output/openssl/include') openssl_cflags = 'OPENSSL_CFLAGS="-I' + inc_path + '"' openssl_libs = 'OPENSSL_LIBS="-L' + lib_path + ' -Wl,-rpath='+ OPENVPN_LINUX_PREFIX + '/lib ' + ' -lssl -lcrypto"' # we need to use os.system here so that the env vars are set correctly os.system('./configure --prefix=' + OPENVPN_LINUX_PREFIX + ' ' + openssl_cflags + ' ' + openssl_libs + ' && make && make DESTDIR=' + stagepath + ' install') # We need to copy our versions of libcrypto and libssl into the staging area shutil.copy('../oqs-openssl-output/openssl/lib/libcrypto.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') shutil.copy('../oqs-openssl-output/openssl/lib/libssl.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') os.chdir('..') # Create a tarball for linux (needed to do Raspberry Pi builds) os.makedirs('pq-openvpn-linux') shutil.move('oqs-openssl-output', 'pq-openvpn-linux') shutil.move('openvpn-pq', 'pq-openvpn-linux') run_command(['tar', 'czf', 'pq-openvpn-linux.tgz', 'pq-openvpn-linux']) shutil.move('pq-openvpn-linux.tgz', '../pq-openvpn-linux.tgz') ## Create a staged tarball for Linux os.chdir('stage') # Create placeholders for etc and log directories so they'll be created os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/etc') os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/log') run_command(['touch', '.' + OPENVPN_LINUX_PREFIX + '/etc/.placeholder', '.' + OPENVPN_LINUX_PREFIX + '/log/.placeholder']) # Copy initial setup script into sbin directory shutil.copy('../../initialsetup.sh', '.' + OPENVPN_LINUX_PREFIX + '/sbin') # Copy pointer to privacy statement into doc directory shutil.copy('../../PRIVACY.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy Third Party notice into doc directory shutil.copy('../../../../ThirdPartyNotice.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy service file for systemd into the appropriate place os.makedirs('etc/systemd/system') shutil.copy('../../pq-openvpn.service', 'etc/systemd/system') # Create staged tarball run_command(['tar', '-cz', '--
run_command
identifier_name
build.py
' OPENSSL_OQS_BRANCH = 'OpenSSL_1_0_2-stable' OPENSSL_OQS_COMMIT = '01f211920aea41640c647f462e9d7c4c106e3240' OPENVPN_TGZ_NAME = '/tmp/openvpn-2.4.4.tar.gz' OPENVPN_GUI_TGZ_NAME = '/tmp/openvpn-gui-11.tar.gz' OPENVPN_REPO_DIRNAME = 'openvpn-2.4.4' OPENVPN_INSTALL_EXE_NAME = 'openvpn-install-2.4.4-I601.exe' OPENVPN_GUI_REPO_DIRNAME = 'openvpn-gui' OPENVPN_LINUX_PREFIX = '/usr/local/openvpn' VCVARSALL = '"C:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\Enterprise\\VC\\Auxiliary\\Build\\vcvarsall.bat"' # Run an external command, block until it completes def run_command(cmd): print '***** Running command: %s' % ' '.join(map(str,cmd)) p = subprocess.Popen(cmd) p.wait() # Clone a git repo, using the default name, in the CWD # If branch is specified, clone that branch def git_clone(repo_url, branch, local_name, commit=None): r = re.compile(".*/(.*)$") m = r.match(repo_url) repo_name = m.group(1) print "Cloning %s ..." % repo_name cmd = ['git', 'clone', '-q'] if branch: cmd.extend(['--branch', branch]) cmd.append(repo_url) if local_name: cmd.append(local_name) run_command(cmd) if commit is not None: if local_name: os.chdir(local_name) else: print "git_clone with a commit ID only valid with a local_name" sys.exit(1) cmd = ['git', 'checkout', commit] run_command(cmd) os.chdir('..') # Build oqs_openssl def build_oqs_openssl():
# Start the x64 build os.chdir('..') os.chdir('openssl-oqs-win-x64') run_command(['perl', 'Configure', 'VC-WIN64A', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_win64a.bat']) mycwd = os.getcwd() # Before running nmake, we have to run vcvarsall.bat to set the x64 env vars, in the same shell mycwd = os.getcwd() os.system(VCVARSALL + ' amd64 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x64\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x64\\') if platform.system() == 'Linux': git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs', OPENSSL_OQS_COMMIT) os.makedirs('oqs-openssl-output/openssl') os.makedirs('oqs-openssl-output/ssl') prefix = os.path.abspath('oqs-openssl-output/openssl') openssldir = os.path.abspath('oqs-openssl-output/ssl') os.chdir('openssl-oqs') run_command(['./config', 'shared', '--prefix='+prefix, '--openssldir='+openssldir]) run_command(['make']) run_command(['make', 'test']) run_command(['make', 'install']) os.chdir('..') def on_error(func, path, exc_info): """ Error handler for ``shutil.rmtree``. If the error is due to an access error (read only file) it attempts to add write permission and then retries. If the error is for another reason it re-raises the error. Usage : ``shutil.rmtree(path, onerror=onerror)`` """ import stat if not os.access(path, os.W_OK): # Is the error an access error ? os.chmod(path, stat.S_IWUSR) func(path) else: raise def build_openvpn_linux(): git_clone(OPENVPN_REPO, OPENVPN_BRANCH, 'openvpn-pq') if os.path.exists('stage'): shutil.rmtree('stage') os.makedirs('stage') stagepath = os.path.abspath('stage') os.chdir('openvpn-pq') run_command(['autoreconf', '-i', '-f', '-v']) if not os.path.exists("../oqs-openssl-output/"): print "Didn't find oqs-openssl-output directory, exiting" sys.exit(1) lib_path = os.path.abspath('../oqs-openssl-output/openssl/lib') inc_path = os.path.abspath('../oqs-openssl-output/openssl/include') openssl_cflags = 'OPENSSL_CFLAGS="-I' + inc_path + '"' openssl_libs = 'OPENSSL_LIBS="-L' + lib_path + ' -Wl,-rpath='+ OPENVPN_LINUX_PREFIX + '/lib ' + ' -lssl -lcrypto"' # we need to use os.system here so that the env vars are set correctly os.system('./configure --prefix=' + OPENVPN_LINUX_PREFIX + ' ' + openssl_cflags + ' ' + openssl_libs + ' && make && make DESTDIR=' + stagepath + ' install') # We need to copy our versions of libcrypto and libssl into the staging area shutil.copy('../oqs-openssl-output/openssl/lib/libcrypto.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') shutil.copy('../oqs-openssl-output/openssl/lib/libssl.so.1.0.0', stagepath + '/' + OPENVPN_LINUX_PREFIX + '/lib') os.chdir('..') # Create a tarball for linux (needed to do Raspberry Pi builds) os.makedirs('pq-openvpn-linux') shutil.move('oqs-openssl-output', 'pq-openvpn-linux') shutil.move('openvpn-pq', 'pq-openvpn-linux') run_command(['tar', 'czf', 'pq-openvpn-linux.tgz', 'pq-openvpn-linux']) shutil.move('pq-openvpn-linux.tgz', '../pq-openvpn-linux.tgz') ## Create a staged tarball for Linux os.chdir('stage') # Create placeholders for etc and log directories so they'll be created os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/etc') os.makedirs('.' + OPENVPN_LINUX_PREFIX + '/log') run_command(['touch', '.' + OPENVPN_LINUX_PREFIX + '/etc/.placeholder', '.' + OPENVPN_LINUX_PREFIX + '/log/.placeholder']) # Copy initial setup script into sbin directory shutil.copy('../../initialsetup.sh', '.' + OPENVPN_LINUX_PREFIX + '/sbin') # Copy pointer to privacy statement into doc directory shutil.copy('../../PRIVACY.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy Third Party notice into doc directory shutil.copy('../../../../ThirdPartyNotice.txt', '.' + OPENVPN_LINUX_PREFIX + '/share/doc/openvpn') # Copy service file for systemd into the appropriate place os.makedirs('etc/systemd/system') shutil.copy('../../pq-openvpn.service', 'etc/systemd/system') # Create staged tarball run_command(['tar', '-cz', '--
if platform.system() == 'Windows': # Create source trees for x86 and x64 # Note that there's no way to clean up one tree and re-use it for a different arch git_clone(OPENSSL_OQS_REPO, OPENSSL_OQS_BRANCH, 'openssl-oqs-win-x86', OPENSSL_OQS_COMMIT) shutil.copytree('openssl-oqs-win-x86', 'openssl-oqs-win-x64') os.chdir('openssl-oqs-win-x86') # Start the X86 build run_command(['perl', 'Configure', 'VC-WIN32', 'no-asm', 'enable-static-engine']) run_command(['ms\\do_ms.bat']) # vcvarsall may change the current working directory. Remember where we were and cd back to it. mycwd = os.getcwd() os.system(VCVARSALL + ' x86 && cd /d ' + mycwd + ' && nmake -f ms\\ntdll.mak') # Copy the binaries to ../oqs-openssl-win shutil.copy('out32dll\\libeay32.dll', '..\\..\\oqs-openssl-win\\x86\\') shutil.copy('out32dll\\ssleay32.dll', '..\\..\\oqs-openssl-win\\x86\\') # TODO: is there a way to check that the other DLLs in # oqs-openssl-win\x86 (e.g., vcruntime140.dll) have the right version to # work with these openssl DLLs? somehow check that the dependencies of # libeay32.dll and ssleay32.dll are present in the x86 folder.
identifier_body
utils.py
Indices.csv') VALIDATION_MASK_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_mask.csv') AUX = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_first.csv') META_VALIDATION_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_second.csv') SAMPLE_SUBMISSION = os.path.join(ROOT_DIR, \ 'data/sampleSubmission.csv') ENSEMBLE_INPUT_DIR = 'data/stacking/good_data' ITEM_COUNT = 1000 USER_COUNT = 10000 WEIGHT_KNN = 0.001 N_NEIGHBORS = 3 USER_COUNT_WEIGHT = 10 SAVE_META_PREDICTIONS = False def load_ratings(data_file=DATA_FILE): ratings = [] with open(data_file, 'r') as file: # Read header. _ = file.readline() for line in file: key, value_string = line.split(",") rating = float(value_string) row_string, col_string = key.split("_") row = int(row_string[1:]) col = int(col_string[1:]) ratings.append((row - 1, col - 1, rating)) return ratings def ratings_to_matrix(ratings): matrix_rows = USER_COUNT matrix_cols = ITEM_COUNT matrix = np.zeros([matrix_rows, matrix_cols]) for row, col, rating in ratings: matrix[row, col] = rating return matrix def
(data, use_three_way): masked_data = np.copy(data) if use_three_way: mask_file = VALIDATION_MASK_FILE_NAME else: mask_file = VALIDATION_FILE_NAME mask_indices = get_indices_from_file(mask_file) for row_index, col_index in mask_indices: masked_data[row_index][col_index] = 0 return masked_data def get_validation_indices(use_three_way): if use_three_way: validation_indices = get_indices_from_file(AUX) else: validation_indices = get_indices_from_file(VALIDATION_FILE_NAME) return validation_indices def get_meta_validation_indices(): return get_indices_from_file(META_VALIDATION_FILE_NAME) def get_observed_indices(data): row_indices, col_indices = np.where(data != 0) return list(zip(row_indices, col_indices)) def get_unobserved_indices(data): row_indices, col_indices = np.where(data == 0) return list(zip(row_indices, col_indices)) def get_indices_from_file(file_name): indices = [] with open(file_name, 'r') as file: # Read header. _ = file.readline() for line in file: i, j = line.split(",") indices.append((int(i), int(j))) return indices def get_indices_to_predict(): """Get list of indices to predict from sample submission file. Returns: indices_to_predict: list of tuples with indices""" indices_to_predict = [] with open(SAMPLE_SUBMISSION, 'r') as file: _ = file.readline() for line in file: key, _ = line.split(",") row_string, col_string = key.split("_") i = int(row_string[1:]) - 1 j = int(col_string[1:]) - 1 indices_to_predict.append((i, j)) return indices_to_predict def write_ratings(predictions, submission_file): with open(submission_file, 'w') as file: file.write('Id,Prediction\n') for i, j, prediction in predictions: file.write('r%d_c%d,%f\n' % (i, j, prediction)) def reconstruction_to_predictions( reconstruction, submission_file, indices_to_predict=None): if indices_to_predict is None: indices_to_predict = get_indices_to_predict() enumerate_predictions = lambda t: ( t[0] + 1, t[1] + 1, reconstruction[t[0], t[1]]) predictions = list(map(enumerate_predictions, indices_to_predict)) write_ratings(predictions, submission_file) def save_ensembling_predictions(reconstruction, name): reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_training_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_validation_indices(use_three_way=True)) reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_validation_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_meta_validation_indices()) def clip(data): data[data > 5] = 5 data[data < 1] = 1 return data def ampute_reconstruction(reconstruction, data): observed_indices = get_observed_indices(data) for row_index, col_index in observed_indices: reconstruction[row_index][col_index] = data[row_index][col_index] def impute_by_avg(data, by_row): data = data.T if by_row else data for row in data: empty = (row == 0) row_sum = np.sum(row) row[empty] = row_sum / np.count_nonzero(row) return data.T if by_row else data def impute_by_bias(data): total_average = np.mean(data[np.nonzero(data)]) row_biases = np.zeros(data.shape[0]) col_biases = np.zeros(data.shape[1]) for row_index in range(data.shape[0]): row_biases[row_index] = np.sum(data[row_index]) / \ np.count_nonzero(data[row_index]) - total_average for col_index in range(data.shape[1]): col_biases[col_index] = np.sum(data[:][col_index]) / \ np.count_nonzero(data[:][col_index]) - total_average for row_index in range(data.shape[0]): for col_index in range(data.shape[1]): if data[row_index, col_index] == 0: new_value = total_average + \ row_biases[row_index] + col_biases[col_index] data[row_index, col_index] = new_value return data def impute_by_variance(data): global_average = np.sum(data) / np.count_nonzero(data) global_variance = np.var(data[data != 0]) adjusted_movie_means = np.zeros((data.shape[1],)) for i in range(data.shape[1]): movie_ratings = data[:, i] movie_ratings = movie_ratings[movie_ratings != 0] movie_variance = np.var(movie_ratings) relative_variance = movie_variance / global_variance adjusted_movie_means[i] = ( global_average * relative_variance + np.sum(movie_ratings)) / ( relative_variance + np.count_nonzero(movie_ratings)) adjusted_user_deviation = np.zeros((data.shape[0],)) for i in range(data.shape[0]): user_ratings = data[i] user_deviations = adjusted_movie_means - user_ratings user_deviations = user_deviations[user_ratings != 0] user_deviation_variance = np.var(user_deviations) relative_variance = user_deviation_variance / global_variance adjusted_user_deviation[i] = ( global_average * relative_variance + sum(user_deviations)) / ( relative_variance + np.count_nonzero(user_deviations)) user_counts = np.count_nonzero(data, axis=1) movie_counts = np.count_nonzero(data, axis=0) movie_count_matrix = np.tile(movie_counts, (len(user_counts), 1)) user_count_matrix = np.tile(user_counts, (len(movie_counts), 1)).T combined_matrix = copy.copy( movie_count_matrix) + USER_COUNT_WEIGHT * copy.copy(user_count_matrix) d_matrix = np.divide(movie_count_matrix, combined_matrix) m_matrix = np.tile( adjusted_movie_means, (len(adjusted_user_deviation), 1)) u_matrix = np.tile( adjusted_user_deviation, (len(adjusted_movie_means), 1)).T data = np.multiply(m_matrix, d_matrix) + \ np.multiply(u_matrix, np.ones(d_matrix.shape) - d_matrix) return data def compute_rmse(data, prediction, indices=None): if indices is None: indices = get_indices_from_file(VALIDATION_FILE_NAME) squared_error = 0 for i, j in indices: squared_error += (data[i][j] - prediction[i][j]) ** 2 return np.sqrt(squared_error / len(indices)) def knn_smoothing(reconstruction, user_embeddings): normalized_user_embeddings = normalize(user_embeddings) knn = NearestNeighbors(n_neighbors=N_NEIGHBORS + 1) knn.fit(normalized_user_embeddings) distances, neighbors = knn.kneighbors(normalized_user_embeddings) distances = distances[:, 1:] neighbors = neighbors[:, 1:] ones = np.ones(distances.shape) similarities = ones - distances weights = np.square(np.square(similarities)) smoothed_data = np.zeros(reconstruction.shape) aggregated_neighbor_ratings = np.zeros(reconstruction.shape) for i in range(reconstruction.shape[0]): stacked_ratings = [] for neighbor in neighbors[i]: stacked_ratings.append(reconstruction[neighbor]) stacked_ratings = np
mask_validation
identifier_name
utils.py
/validationIndices.csv') VALIDATION_MASK_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_mask.csv') AUX = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_first.csv') META_VALIDATION_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_second.csv') SAMPLE_SUBMISSION = os.path.join(ROOT_DIR, \ 'data/sampleSubmission.csv') ENSEMBLE_INPUT_DIR = 'data/stacking/good_data' ITEM_COUNT = 1000 USER_COUNT = 10000 WEIGHT_KNN = 0.001 N_NEIGHBORS = 3 USER_COUNT_WEIGHT = 10 SAVE_META_PREDICTIONS = False def load_ratings(data_file=DATA_FILE): ratings = [] with open(data_file, 'r') as file: # Read header. _ = file.readline() for line in file: key, value_string = line.split(",") rating = float(value_string) row_string, col_string = key.split("_") row = int(row_string[1:]) col = int(col_string[1:]) ratings.append((row - 1, col - 1, rating)) return ratings def ratings_to_matrix(ratings): matrix_rows = USER_COUNT matrix_cols = ITEM_COUNT matrix = np.zeros([matrix_rows, matrix_cols]) for row, col, rating in ratings: matrix[row, col] = rating return matrix def mask_validation(data, use_three_way): masked_data = np.copy(data) if use_three_way: mask_file = VALIDATION_MASK_FILE_NAME else: mask_file = VALIDATION_FILE_NAME mask_indices = get_indices_from_file(mask_file) for row_index, col_index in mask_indices: masked_data[row_index][col_index] = 0 return masked_data def get_validation_indices(use_three_way): if use_three_way: validation_indices = get_indices_from_file(AUX) else: validation_indices = get_indices_from_file(VALIDATION_FILE_NAME) return validation_indices def get_meta_validation_indices(): return get_indices_from_file(META_VALIDATION_FILE_NAME) def get_observed_indices(data): row_indices, col_indices = np.where(data != 0) return list(zip(row_indices, col_indices)) def get_unobserved_indices(data): row_indices, col_indices = np.where(data == 0) return list(zip(row_indices, col_indices)) def get_indices_from_file(file_name): indices = [] with open(file_name, 'r') as file: # Read header. _ = file.readline() for line in file: i, j = line.split(",") indices.append((int(i), int(j))) return indices def get_indices_to_predict(): """Get list of indices to predict from sample submission file. Returns: indices_to_predict: list of tuples with indices""" indices_to_predict = [] with open(SAMPLE_SUBMISSION, 'r') as file: _ = file.readline() for line in file: key, _ = line.split(",") row_string, col_string = key.split("_") i = int(row_string[1:]) - 1 j = int(col_string[1:]) - 1 indices_to_predict.append((i, j)) return indices_to_predict def write_ratings(predictions, submission_file): with open(submission_file, 'w') as file: file.write('Id,Prediction\n') for i, j, prediction in predictions: file.write('r%d_c%d,%f\n' % (i, j, prediction)) def reconstruction_to_predictions( reconstruction, submission_file, indices_to_predict=None): if indices_to_predict is None: indices_to_predict = get_indices_to_predict() enumerate_predictions = lambda t: ( t[0] + 1, t[1] + 1, reconstruction[t[0], t[1]]) predictions = list(map(enumerate_predictions, indices_to_predict)) write_ratings(predictions, submission_file) def save_ensembling_predictions(reconstruction, name): reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_training_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_validation_indices(use_three_way=True)) reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_validation_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_meta_validation_indices()) def clip(data): data[data > 5] = 5 data[data < 1] = 1 return data def ampute_reconstruction(reconstruction, data): observed_indices = get_observed_indices(data) for row_index, col_index in observed_indices: reconstruction[row_index][col_index] = data[row_index][col_index] def impute_by_avg(data, by_row): data = data.T if by_row else data for row in data: empty = (row == 0) row_sum = np.sum(row) row[empty] = row_sum / np.count_nonzero(row) return data.T if by_row else data def impute_by_bias(data): total_average = np.mean(data[np.nonzero(data)]) row_biases = np.zeros(data.shape[0]) col_biases = np.zeros(data.shape[1]) for row_index in range(data.shape[0]): row_biases[row_index] = np.sum(data[row_index]) / \ np.count_nonzero(data[row_index]) - total_average for col_index in range(data.shape[1]): col_biases[col_index] = np.sum(data[:][col_index]) / \ np.count_nonzero(data[:][col_index]) - total_average for row_index in range(data.shape[0]): for col_index in range(data.shape[1]): if data[row_index, col_index] == 0: new_value = total_average + \ row_biases[row_index] + col_biases[col_index] data[row_index, col_index] = new_value return data def impute_by_variance(data): global_average = np.sum(data) / np.count_nonzero(data) global_variance = np.var(data[data != 0]) adjusted_movie_means = np.zeros((data.shape[1],)) for i in range(data.shape[1]): movie_ratings = data[:, i] movie_ratings = movie_ratings[movie_ratings != 0] movie_variance = np.var(movie_ratings) relative_variance = movie_variance / global_variance adjusted_movie_means[i] = ( global_average * relative_variance + np.sum(movie_ratings)) / ( relative_variance + np.count_nonzero(movie_ratings)) adjusted_user_deviation = np.zeros((data.shape[0],)) for i in range(data.shape[0]): user_ratings = data[i] user_deviations = adjusted_movie_means - user_ratings user_deviations = user_deviations[user_ratings != 0] user_deviation_variance = np.var(user_deviations) relative_variance = user_deviation_variance / global_variance adjusted_user_deviation[i] = ( global_average * relative_variance + sum(user_deviations)) / ( relative_variance + np.count_nonzero(user_deviations)) user_counts = np.count_nonzero(data, axis=1) movie_counts = np.count_nonzero(data, axis=0) movie_count_matrix = np.tile(movie_counts, (len(user_counts), 1)) user_count_matrix = np.tile(user_counts, (len(movie_counts), 1)).T combined_matrix = copy.copy( movie_count_matrix) + USER_COUNT_WEIGHT * copy.copy(user_count_matrix) d_matrix = np.divide(movie_count_matrix, combined_matrix) m_matrix = np.tile( adjusted_movie_means, (len(adjusted_user_deviation), 1)) u_matrix = np.tile( adjusted_user_deviation, (len(adjusted_movie_means), 1)).T data = np.multiply(m_matrix, d_matrix) + \ np.multiply(u_matrix, np.ones(d_matrix.shape) - d_matrix) return data def compute_rmse(data, prediction, indices=None): if indices is None: indices = get_indices_from_file(VALIDATION_FILE_NAME) squared_error = 0 for i, j in indices: squared_error += (data[i][j] - prediction[i][j]) ** 2 return np.sqrt(squared_error / len(indices)) def knn_smoothing(reconstruction, user_embeddings): normalized_user_embeddings = normalize(user_embeddings) knn = NearestNeighbors(n_neighbors=N_NEIGHBORS + 1) knn.fit(normalized_user_embeddings) distances, neighbors = knn.kneighbors(normalized_user_embeddings) distances = distances[:, 1:] neighbors = neighbors[:, 1:] ones = np.ones(distances.shape)
for i in range(reconstruction.shape[0]): stacked_ratings = [] for neighbor in neighbors[i]: stacked_ratings.append(reconstruction[neighbor]) stacked_ratings = np
similarities = ones - distances weights = np.square(np.square(similarities)) smoothed_data = np.zeros(reconstruction.shape) aggregated_neighbor_ratings = np.zeros(reconstruction.shape)
random_line_split
utils.py
Indices.csv') VALIDATION_MASK_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_mask.csv') AUX = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_first.csv') META_VALIDATION_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_second.csv') SAMPLE_SUBMISSION = os.path.join(ROOT_DIR, \ 'data/sampleSubmission.csv') ENSEMBLE_INPUT_DIR = 'data/stacking/good_data' ITEM_COUNT = 1000 USER_COUNT = 10000 WEIGHT_KNN = 0.001 N_NEIGHBORS = 3 USER_COUNT_WEIGHT = 10 SAVE_META_PREDICTIONS = False def load_ratings(data_file=DATA_FILE): ratings = [] with open(data_file, 'r') as file: # Read header. _ = file.readline() for line in file: key, value_string = line.split(",") rating = float(value_string) row_string, col_string = key.split("_") row = int(row_string[1:]) col = int(col_string[1:]) ratings.append((row - 1, col - 1, rating)) return ratings def ratings_to_matrix(ratings): matrix_rows = USER_COUNT matrix_cols = ITEM_COUNT matrix = np.zeros([matrix_rows, matrix_cols]) for row, col, rating in ratings: matrix[row, col] = rating return matrix def mask_validation(data, use_three_way): masked_data = np.copy(data) if use_three_way: mask_file = VALIDATION_MASK_FILE_NAME else: mask_file = VALIDATION_FILE_NAME mask_indices = get_indices_from_file(mask_file) for row_index, col_index in mask_indices: masked_data[row_index][col_index] = 0 return masked_data def get_validation_indices(use_three_way): if use_three_way: validation_indices = get_indices_from_file(AUX) else: validation_indices = get_indices_from_file(VALIDATION_FILE_NAME) return validation_indices def get_meta_validation_indices(): return get_indices_from_file(META_VALIDATION_FILE_NAME) def get_observed_indices(data): row_indices, col_indices = np.where(data != 0) return list(zip(row_indices, col_indices)) def get_unobserved_indices(data): row_indices, col_indices = np.where(data == 0) return list(zip(row_indices, col_indices)) def get_indices_from_file(file_name): indices = [] with open(file_name, 'r') as file: # Read header. _ = file.readline() for line in file: i, j = line.split(",") indices.append((int(i), int(j))) return indices def get_indices_to_predict(): """Get list of indices to predict from sample submission file. Returns: indices_to_predict: list of tuples with indices""" indices_to_predict = [] with open(SAMPLE_SUBMISSION, 'r') as file: _ = file.readline() for line in file:
return indices_to_predict def write_ratings(predictions, submission_file): with open(submission_file, 'w') as file: file.write('Id,Prediction\n') for i, j, prediction in predictions: file.write('r%d_c%d,%f\n' % (i, j, prediction)) def reconstruction_to_predictions( reconstruction, submission_file, indices_to_predict=None): if indices_to_predict is None: indices_to_predict = get_indices_to_predict() enumerate_predictions = lambda t: ( t[0] + 1, t[1] + 1, reconstruction[t[0], t[1]]) predictions = list(map(enumerate_predictions, indices_to_predict)) write_ratings(predictions, submission_file) def save_ensembling_predictions(reconstruction, name): reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_training_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_validation_indices(use_three_way=True)) reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_validation_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_meta_validation_indices()) def clip(data): data[data > 5] = 5 data[data < 1] = 1 return data def ampute_reconstruction(reconstruction, data): observed_indices = get_observed_indices(data) for row_index, col_index in observed_indices: reconstruction[row_index][col_index] = data[row_index][col_index] def impute_by_avg(data, by_row): data = data.T if by_row else data for row in data: empty = (row == 0) row_sum = np.sum(row) row[empty] = row_sum / np.count_nonzero(row) return data.T if by_row else data def impute_by_bias(data): total_average = np.mean(data[np.nonzero(data)]) row_biases = np.zeros(data.shape[0]) col_biases = np.zeros(data.shape[1]) for row_index in range(data.shape[0]): row_biases[row_index] = np.sum(data[row_index]) / \ np.count_nonzero(data[row_index]) - total_average for col_index in range(data.shape[1]): col_biases[col_index] = np.sum(data[:][col_index]) / \ np.count_nonzero(data[:][col_index]) - total_average for row_index in range(data.shape[0]): for col_index in range(data.shape[1]): if data[row_index, col_index] == 0: new_value = total_average + \ row_biases[row_index] + col_biases[col_index] data[row_index, col_index] = new_value return data def impute_by_variance(data): global_average = np.sum(data) / np.count_nonzero(data) global_variance = np.var(data[data != 0]) adjusted_movie_means = np.zeros((data.shape[1],)) for i in range(data.shape[1]): movie_ratings = data[:, i] movie_ratings = movie_ratings[movie_ratings != 0] movie_variance = np.var(movie_ratings) relative_variance = movie_variance / global_variance adjusted_movie_means[i] = ( global_average * relative_variance + np.sum(movie_ratings)) / ( relative_variance + np.count_nonzero(movie_ratings)) adjusted_user_deviation = np.zeros((data.shape[0],)) for i in range(data.shape[0]): user_ratings = data[i] user_deviations = adjusted_movie_means - user_ratings user_deviations = user_deviations[user_ratings != 0] user_deviation_variance = np.var(user_deviations) relative_variance = user_deviation_variance / global_variance adjusted_user_deviation[i] = ( global_average * relative_variance + sum(user_deviations)) / ( relative_variance + np.count_nonzero(user_deviations)) user_counts = np.count_nonzero(data, axis=1) movie_counts = np.count_nonzero(data, axis=0) movie_count_matrix = np.tile(movie_counts, (len(user_counts), 1)) user_count_matrix = np.tile(user_counts, (len(movie_counts), 1)).T combined_matrix = copy.copy( movie_count_matrix) + USER_COUNT_WEIGHT * copy.copy(user_count_matrix) d_matrix = np.divide(movie_count_matrix, combined_matrix) m_matrix = np.tile( adjusted_movie_means, (len(adjusted_user_deviation), 1)) u_matrix = np.tile( adjusted_user_deviation, (len(adjusted_movie_means), 1)).T data = np.multiply(m_matrix, d_matrix) + \ np.multiply(u_matrix, np.ones(d_matrix.shape) - d_matrix) return data def compute_rmse(data, prediction, indices=None): if indices is None: indices = get_indices_from_file(VALIDATION_FILE_NAME) squared_error = 0 for i, j in indices: squared_error += (data[i][j] - prediction[i][j]) ** 2 return np.sqrt(squared_error / len(indices)) def knn_smoothing(reconstruction, user_embeddings): normalized_user_embeddings = normalize(user_embeddings) knn = NearestNeighbors(n_neighbors=N_NEIGHBORS + 1) knn.fit(normalized_user_embeddings) distances, neighbors = knn.kneighbors(normalized_user_embeddings) distances = distances[:, 1:] neighbors = neighbors[:, 1:] ones = np.ones(distances.shape) similarities = ones - distances weights = np.square(np.square(similarities)) smoothed_data = np.zeros(reconstruction.shape) aggregated_neighbor_ratings = np.zeros(reconstruction.shape) for i in range(reconstruction.shape[0]): stacked_ratings = [] for neighbor in neighbors[i]: stacked_ratings.append(reconstruction[neighbor]) stacked_ratings = np
key, _ = line.split(",") row_string, col_string = key.split("_") i = int(row_string[1:]) - 1 j = int(col_string[1:]) - 1 indices_to_predict.append((i, j))
conditional_block
utils.py
Indices.csv') VALIDATION_MASK_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_mask.csv') AUX = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_first.csv') META_VALIDATION_FILE_NAME = os.path.join( ROOT_DIR, 'data/train_valid_80_10_10/validationIndices_second.csv') SAMPLE_SUBMISSION = os.path.join(ROOT_DIR, \ 'data/sampleSubmission.csv') ENSEMBLE_INPUT_DIR = 'data/stacking/good_data' ITEM_COUNT = 1000 USER_COUNT = 10000 WEIGHT_KNN = 0.001 N_NEIGHBORS = 3 USER_COUNT_WEIGHT = 10 SAVE_META_PREDICTIONS = False def load_ratings(data_file=DATA_FILE): ratings = [] with open(data_file, 'r') as file: # Read header. _ = file.readline() for line in file: key, value_string = line.split(",") rating = float(value_string) row_string, col_string = key.split("_") row = int(row_string[1:]) col = int(col_string[1:]) ratings.append((row - 1, col - 1, rating)) return ratings def ratings_to_matrix(ratings): matrix_rows = USER_COUNT matrix_cols = ITEM_COUNT matrix = np.zeros([matrix_rows, matrix_cols]) for row, col, rating in ratings: matrix[row, col] = rating return matrix def mask_validation(data, use_three_way): masked_data = np.copy(data) if use_three_way: mask_file = VALIDATION_MASK_FILE_NAME else: mask_file = VALIDATION_FILE_NAME mask_indices = get_indices_from_file(mask_file) for row_index, col_index in mask_indices: masked_data[row_index][col_index] = 0 return masked_data def get_validation_indices(use_three_way): if use_three_way: validation_indices = get_indices_from_file(AUX) else: validation_indices = get_indices_from_file(VALIDATION_FILE_NAME) return validation_indices def get_meta_validation_indices(): return get_indices_from_file(META_VALIDATION_FILE_NAME) def get_observed_indices(data): row_indices, col_indices = np.where(data != 0) return list(zip(row_indices, col_indices)) def get_unobserved_indices(data): row_indices, col_indices = np.where(data == 0) return list(zip(row_indices, col_indices)) def get_indices_from_file(file_name): indices = [] with open(file_name, 'r') as file: # Read header. _ = file.readline() for line in file: i, j = line.split(",") indices.append((int(i), int(j))) return indices def get_indices_to_predict(): """Get list of indices to predict from sample submission file. Returns: indices_to_predict: list of tuples with indices""" indices_to_predict = [] with open(SAMPLE_SUBMISSION, 'r') as file: _ = file.readline() for line in file: key, _ = line.split(",") row_string, col_string = key.split("_") i = int(row_string[1:]) - 1 j = int(col_string[1:]) - 1 indices_to_predict.append((i, j)) return indices_to_predict def write_ratings(predictions, submission_file): with open(submission_file, 'w') as file: file.write('Id,Prediction\n') for i, j, prediction in predictions: file.write('r%d_c%d,%f\n' % (i, j, prediction)) def reconstruction_to_predictions( reconstruction, submission_file, indices_to_predict=None): if indices_to_predict is None: indices_to_predict = get_indices_to_predict() enumerate_predictions = lambda t: ( t[0] + 1, t[1] + 1, reconstruction[t[0], t[1]]) predictions = list(map(enumerate_predictions, indices_to_predict)) write_ratings(predictions, submission_file) def save_ensembling_predictions(reconstruction, name):
def clip(data): data[data > 5] = 5 data[data < 1] = 1 return data def ampute_reconstruction(reconstruction, data): observed_indices = get_observed_indices(data) for row_index, col_index in observed_indices: reconstruction[row_index][col_index] = data[row_index][col_index] def impute_by_avg(data, by_row): data = data.T if by_row else data for row in data: empty = (row == 0) row_sum = np.sum(row) row[empty] = row_sum / np.count_nonzero(row) return data.T if by_row else data def impute_by_bias(data): total_average = np.mean(data[np.nonzero(data)]) row_biases = np.zeros(data.shape[0]) col_biases = np.zeros(data.shape[1]) for row_index in range(data.shape[0]): row_biases[row_index] = np.sum(data[row_index]) / \ np.count_nonzero(data[row_index]) - total_average for col_index in range(data.shape[1]): col_biases[col_index] = np.sum(data[:][col_index]) / \ np.count_nonzero(data[:][col_index]) - total_average for row_index in range(data.shape[0]): for col_index in range(data.shape[1]): if data[row_index, col_index] == 0: new_value = total_average + \ row_biases[row_index] + col_biases[col_index] data[row_index, col_index] = new_value return data def impute_by_variance(data): global_average = np.sum(data) / np.count_nonzero(data) global_variance = np.var(data[data != 0]) adjusted_movie_means = np.zeros((data.shape[1],)) for i in range(data.shape[1]): movie_ratings = data[:, i] movie_ratings = movie_ratings[movie_ratings != 0] movie_variance = np.var(movie_ratings) relative_variance = movie_variance / global_variance adjusted_movie_means[i] = ( global_average * relative_variance + np.sum(movie_ratings)) / ( relative_variance + np.count_nonzero(movie_ratings)) adjusted_user_deviation = np.zeros((data.shape[0],)) for i in range(data.shape[0]): user_ratings = data[i] user_deviations = adjusted_movie_means - user_ratings user_deviations = user_deviations[user_ratings != 0] user_deviation_variance = np.var(user_deviations) relative_variance = user_deviation_variance / global_variance adjusted_user_deviation[i] = ( global_average * relative_variance + sum(user_deviations)) / ( relative_variance + np.count_nonzero(user_deviations)) user_counts = np.count_nonzero(data, axis=1) movie_counts = np.count_nonzero(data, axis=0) movie_count_matrix = np.tile(movie_counts, (len(user_counts), 1)) user_count_matrix = np.tile(user_counts, (len(movie_counts), 1)).T combined_matrix = copy.copy( movie_count_matrix) + USER_COUNT_WEIGHT * copy.copy(user_count_matrix) d_matrix = np.divide(movie_count_matrix, combined_matrix) m_matrix = np.tile( adjusted_movie_means, (len(adjusted_user_deviation), 1)) u_matrix = np.tile( adjusted_user_deviation, (len(adjusted_movie_means), 1)).T data = np.multiply(m_matrix, d_matrix) + \ np.multiply(u_matrix, np.ones(d_matrix.shape) - d_matrix) return data def compute_rmse(data, prediction, indices=None): if indices is None: indices = get_indices_from_file(VALIDATION_FILE_NAME) squared_error = 0 for i, j in indices: squared_error += (data[i][j] - prediction[i][j]) ** 2 return np.sqrt(squared_error / len(indices)) def knn_smoothing(reconstruction, user_embeddings): normalized_user_embeddings = normalize(user_embeddings) knn = NearestNeighbors(n_neighbors=N_NEIGHBORS + 1) knn.fit(normalized_user_embeddings) distances, neighbors = knn.kneighbors(normalized_user_embeddings) distances = distances[:, 1:] neighbors = neighbors[:, 1:] ones = np.ones(distances.shape) similarities = ones - distances weights = np.square(np.square(similarities)) smoothed_data = np.zeros(reconstruction.shape) aggregated_neighbor_ratings = np.zeros(reconstruction.shape) for i in range(reconstruction.shape[0]): stacked_ratings = [] for neighbor in neighbors[i]: stacked_ratings.append(reconstruction[neighbor]) stacked_ratings =
reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_training_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_validation_indices(use_three_way=True)) reconstruction_to_predictions( reconstruction, ROOT_DIR + 'data/meta_validation_' + name + '_stacking' + datetime.now().strftime('%Y-%b-%d-%H-%M-%S') + '.csv', indices_to_predict=get_meta_validation_indices())
identifier_body
Q_Learner.py
Q self.dueling = dueling self.perMemory = perMemory self.rendering = watch pass print ("POSSIBLE ACTIONS :", self.actions) if training: self.updates = 0 self.totalLoss = 0.0 self.countL = 0 self.minibatch = AgentSetting.minibatch self.replay_memorySize = AgentSetting.replay_memory self.t_net_update_freq = AgentSetting.t_net_update_freq self.discount_factor = AgentSetting.discount_factor self.update_freq = AgentSetting.update_freq self.momentum = AgentSetting.momentum self.e_greedy_init = AgentSetting.e_greedy_init self.e_greedy_final = AgentSetting.e_greedy_final self.e_final_at = AgentSetting.e_final_at #self.e_decay_rate = (self.e_greedy_init - self.e_greedy_final) / self.e_final_at self.epsilon = tf.Variable(0.0, trainable = False, dtype = tf.float32, name = "epsilon") self.epsilonHolder = tf.placeholder(dtype = tf.float32) self.epsilonUpdater = self.epsilon.assign(self.epsilonHolder) self.replay_strt_size = AgentSetting.replay_strt_size self.global_step = tf.Variable(0, trainable=False,name='global_step') self.training_hrs = tf.Variable(0.0, trainable=False,name='training_hrs') self.training_episodes = tf.Variable(0,trainable = False , name = "training_episodes") self.training_hrsHolder = tf.placeholder(dtype = tf.float32) self.training_hrsUpdater = self.training_hrs.assign_add((self.training_hrsHolder / 60.0) / 60.0) self.training_episodesUpdater = self.training_episodes.assign_add(1) self.targetNet = self.deepNet.T_nn(forSess=True) if doubleQ: '''DoubleQ aims to reduce overestimations of Q-values by decoupling action selection from action evaluation in target calculation''' # if double # 1- action selection using Q-net(online net) self.selectedActionIndices = tf.argmax(self.onlineNet, axis=1) self.selectedAction = tf.one_hot(indices=self.selectedActionIndices, depth=self.num_action, axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0) # 2- action evaluation using T-net (target net) self.nxtState_qValueSelected = tf.reduce_sum(tf.multiply(self.targetNet, self.selectedAction), axis=1) # element wise else: # else # 1,2- make a one step look ahead and follow a greed policy self.nxtState_qValueSelected = tf.reduce_max(self.targetNet, axis=1) #3- td-target self.td_targetHolder = tf.placeholder(shape=[self.minibatch], name='td-target', dtype=tf.float32) #4- current state chosen action value self.actionBatchHolder = tf.placeholder(dtype=tf.uint8) self.chosenAction = tf.one_hot(indices=self.actionBatchHolder, depth=self.num_action, axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0) self.curState_qValueSelected = tf.reduce_sum(tf.multiply(self.onlineNet, self.chosenAction), axis=1) # elementwise pass self.delta = tf.subtract(self.td_targetHolder, self.curState_qValueSelected) #set learning rate self._setLearningRate() pass #TODO Dueling (rescale and clipping of gradients) pass if perMemory: self.replay_memory = PEM(ArchitectureSetting.in_shape, self.replay_memorySize) self.weightedISHolder = tf.placeholder(shape=[self.minibatch], name='weighted-IS', dtype=tf.float32) self.weightedDelta = tf.multiply(self.delta, self.weightedISHolder) self.clipped_loss = tf.where(tf.abs(self.weightedDelta) < 1.0, 0.5 * tf.square(self.weightedDelta), tf.abs(self.weightedDelta) - 0.5, name='clipped_loss') else: #not dueling or per self.replay_memory = ExperienceMemory(ArchitectureSetting.in_shape, self.replay_memorySize) self.clipped_loss = tf.where(tf.abs(self.delta) < 1.0, 0.5 * tf.square(self.delta), tf.abs(self.delta) - 0.5, name='clipped_loss') pass self.loss = tf.reduce_mean(self.clipped_loss, name='loss') #$self.loss = tf.reduce_mean(tf.squared_difference(self.td_targetHolder, self.curState_qValueSelected)) pass self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) self.train_step = self.optimizer.minimize(self.loss, global_step=self.global_step) pass # https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer # self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) # self.train_step = self.optimizer.minimize(self.loss,global_step = self.global_step) else: self.epsilon = tf.constant(AgentSetting.epsilon_eval,dtype=tf.float32) #finallizee self.util.summANDsave(self.training) '''sets the agent learning rate ''' def _setLearningRate(self): if self.dueling: # regardless of anything else self.learning_rate = AgentSetting.duel_learining_rate elif self.perMemory and not self.dueling: self.learning_rate = PerSettings.step_size else: self.learning_rate = AgentSetting.learning_rate #fill memory def
(self,sess,reloadM): self.env.reset(sess) if not reloadM: print ('Initializing my experience memory...') else: print('Restoring my experience memory (naive solution!)...') state = self.state_process.get_state(sess) done = False for v in tqdm(range(self.replay_strt_size)): if not reloadM: #select an action randomly action = self.env.takeRandomAction() else: action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) nxt_state = self.state_process.get_state(sess) experience = (state , action , reward, done , nxt_state) self.replay_memory.add(experience) if done: self.env.reset(sess) state = self.state_process.get_state(sess) else: state = nxt_state pass print ("Waiting for current episode to be terminated...") while not done: action = self.env.takeRandomAction() reward , done = self.env.step(action,sess) def _epsilonDecay(self,sess): pass eps = self.e_greedy_final + max(0,(self.e_greedy_init - self.e_greedy_final) * (self.e_final_at - self.agentSteps.eval()) / self.e_final_at) sess.run(self.epsilonUpdater, feed_dict={self.epsilonHolder: eps}) #Return the chosen action! def behaviour_e_policy(self,state,sess): #decay eps and calc prob for actions action_probs = (np.ones(self.num_action, dtype =float) * self.epsilon.eval() ) / self.num_action q_val = sess.run(self.onlineNet, feed_dict = { self.net_feed : np.expand_dims(state,0)}) greedy_choice = np.argmax(q_val) action_probs[greedy_choice] += 1.0 - self.epsilon.eval() action = np.random.choice(self.actions, p=action_probs) pass #decay epsilon #if self.training: # self._epsilonDecay(sess) return action #Playing def playing(self,sess): self.totalReward = 0.0 self.countR = 0 self.startTime = time.time() self.env.reset(sess) state = self.state_process.get_state(sess) for t in itertools.count(): action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) self.totalReward += reward self.countR += 1 nxt_state = self.state_process.get_state(sess) print("playing well as much as you trained me :)") if done: self.duration = round(time.time() - self.startTime, 3) self.summaries(sess) break #end of episode else: state = nxt_state pass if (self.rendering): self.env.render() def learning(self,sess): #loop for one episode #reset vars self.totalLoss =0.0 self.countL = 0 self.totalReward = 0.0 self.countR = 0 self.updates = 0 self.startTime = time.time() self.env
fill_memory
identifier_name
Q_Learner.py
', dtype=tf.float32) #4- current state chosen action value self.actionBatchHolder = tf.placeholder(dtype=tf.uint8) self.chosenAction = tf.one_hot(indices=self.actionBatchHolder, depth=self.num_action, axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0) self.curState_qValueSelected = tf.reduce_sum(tf.multiply(self.onlineNet, self.chosenAction), axis=1) # elementwise pass self.delta = tf.subtract(self.td_targetHolder, self.curState_qValueSelected) #set learning rate self._setLearningRate() pass #TODO Dueling (rescale and clipping of gradients) pass if perMemory: self.replay_memory = PEM(ArchitectureSetting.in_shape, self.replay_memorySize) self.weightedISHolder = tf.placeholder(shape=[self.minibatch], name='weighted-IS', dtype=tf.float32) self.weightedDelta = tf.multiply(self.delta, self.weightedISHolder) self.clipped_loss = tf.where(tf.abs(self.weightedDelta) < 1.0, 0.5 * tf.square(self.weightedDelta), tf.abs(self.weightedDelta) - 0.5, name='clipped_loss') else: #not dueling or per self.replay_memory = ExperienceMemory(ArchitectureSetting.in_shape, self.replay_memorySize) self.clipped_loss = tf.where(tf.abs(self.delta) < 1.0, 0.5 * tf.square(self.delta), tf.abs(self.delta) - 0.5, name='clipped_loss') pass self.loss = tf.reduce_mean(self.clipped_loss, name='loss') #$self.loss = tf.reduce_mean(tf.squared_difference(self.td_targetHolder, self.curState_qValueSelected)) pass self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) self.train_step = self.optimizer.minimize(self.loss, global_step=self.global_step) pass # https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer # self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) # self.train_step = self.optimizer.minimize(self.loss,global_step = self.global_step) else: self.epsilon = tf.constant(AgentSetting.epsilon_eval,dtype=tf.float32) #finallizee self.util.summANDsave(self.training) '''sets the agent learning rate ''' def _setLearningRate(self): if self.dueling: # regardless of anything else self.learning_rate = AgentSetting.duel_learining_rate elif self.perMemory and not self.dueling: self.learning_rate = PerSettings.step_size else: self.learning_rate = AgentSetting.learning_rate #fill memory def fill_memory(self,sess,reloadM): self.env.reset(sess) if not reloadM: print ('Initializing my experience memory...') else: print('Restoring my experience memory (naive solution!)...') state = self.state_process.get_state(sess) done = False for v in tqdm(range(self.replay_strt_size)): if not reloadM: #select an action randomly action = self.env.takeRandomAction() else: action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) nxt_state = self.state_process.get_state(sess) experience = (state , action , reward, done , nxt_state) self.replay_memory.add(experience) if done: self.env.reset(sess) state = self.state_process.get_state(sess) else: state = nxt_state pass print ("Waiting for current episode to be terminated...") while not done: action = self.env.takeRandomAction() reward , done = self.env.step(action,sess) def _epsilonDecay(self,sess): pass eps = self.e_greedy_final + max(0,(self.e_greedy_init - self.e_greedy_final) * (self.e_final_at - self.agentSteps.eval()) / self.e_final_at) sess.run(self.epsilonUpdater, feed_dict={self.epsilonHolder: eps}) #Return the chosen action! def behaviour_e_policy(self,state,sess): #decay eps and calc prob for actions action_probs = (np.ones(self.num_action, dtype =float) * self.epsilon.eval() ) / self.num_action q_val = sess.run(self.onlineNet, feed_dict = { self.net_feed : np.expand_dims(state,0)}) greedy_choice = np.argmax(q_val) action_probs[greedy_choice] += 1.0 - self.epsilon.eval() action = np.random.choice(self.actions, p=action_probs) pass #decay epsilon #if self.training: # self._epsilonDecay(sess) return action #Playing def playing(self,sess): self.totalReward = 0.0 self.countR = 0 self.startTime = time.time() self.env.reset(sess) state = self.state_process.get_state(sess) for t in itertools.count(): action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) self.totalReward += reward self.countR += 1 nxt_state = self.state_process.get_state(sess) print("playing well as much as you trained me :)") if done: self.duration = round(time.time() - self.startTime, 3) self.summaries(sess) break #end of episode else: state = nxt_state pass if (self.rendering): self.env.render() def learning(self,sess): #loop for one episode #reset vars self.totalLoss =0.0 self.countL = 0 self.totalReward = 0.0 self.countR = 0 self.updates = 0 self.startTime = time.time() self.env.reset(sess) state = self.state_process.get_state(sess) no_op = 0 for _ in itertools.count(): #take action action = self.behaviour_e_policy(state,sess) #step and observe reward , done = self.env.step(action,sess) #inc agent steps sess.run(self.agentStepsUpdater) #decay epsilon after every step self._epsilonDecay(sess) pass if(action == 0): no_op += 1 pass #can't force episode to end #if(no_op == self.no_op_max): #end this boring episode # done = True self.totalReward += reward self.countR += 1 nxt_state = self.state_process.get_state(sess) experience = (state , action , reward, done , nxt_state) self.replay_memory.add(experience) if( self.agentSteps.eval() % self.update_freq == 0): #sample a minibatch state_batch, action_batch, reward_batch, done_batch, nxt_state_batch = self.replay_memory.sample(self.minibatch) nxtStateFeedDict = {self.net_feed : nxt_state_batch} nxtQVal = sess.run(self.nxtState_qValueSelected, feed_dict = nxtStateFeedDict) #compute td-target td_target = reward_batch + np.invert(done_batch).astype(np.float32) * self.discount_factor * nxtQVal curStateFeedDict = {self.net_feed: state_batch, self.actionBatchHolder : action_batch, self.td_targetHolder : td_target } if self.perMemory: # update priorities with new td_errors(deltas) self.replay_memory.update(sess.run(self.delta, feed_dict =curStateFeedDict )) #add to feedDict ISW curStateFeedDict.update({self.weightedISHolder : self.replay_memory.getISW()}) # anneal beta self.replay_memory.betaAnneal(sess) pass #run...run...run loss, _ = sess.run([self.loss,self.train_step],feed_dict = curStateFeedDict) #print ("loss %.5f at step %d" %(loss, self.global_step.eval())) #stats self.totalLoss += loss self.countL +=1 self.updates +=1 #num of updates made per episode pass #TRY self.global_step.eval() if ( self.agentSteps.eval() % self.t_net_update_freq == 0 ): sess.run(self.deepNet.updateTparas(True)) print("Target net parameters updated!") pass if done: self.duration = round(time.time() - self.startTime, 3) #secs sess.run([self.training_hrsUpdater, self.training_episodesUpdater], feed_dict = { self.training_hrsHolder : self.duration}) #update tf board every episode
self.summaries(sess) break #end of episode
random_line_split
Q_Learner.py
self.replay_memorySize = AgentSetting.replay_memory self.t_net_update_freq = AgentSetting.t_net_update_freq self.discount_factor = AgentSetting.discount_factor self.update_freq = AgentSetting.update_freq self.momentum = AgentSetting.momentum self.e_greedy_init = AgentSetting.e_greedy_init self.e_greedy_final = AgentSetting.e_greedy_final self.e_final_at = AgentSetting.e_final_at #self.e_decay_rate = (self.e_greedy_init - self.e_greedy_final) / self.e_final_at self.epsilon = tf.Variable(0.0, trainable = False, dtype = tf.float32, name = "epsilon") self.epsilonHolder = tf.placeholder(dtype = tf.float32) self.epsilonUpdater = self.epsilon.assign(self.epsilonHolder) self.replay_strt_size = AgentSetting.replay_strt_size self.global_step = tf.Variable(0, trainable=False,name='global_step') self.training_hrs = tf.Variable(0.0, trainable=False,name='training_hrs') self.training_episodes = tf.Variable(0,trainable = False , name = "training_episodes") self.training_hrsHolder = tf.placeholder(dtype = tf.float32) self.training_hrsUpdater = self.training_hrs.assign_add((self.training_hrsHolder / 60.0) / 60.0) self.training_episodesUpdater = self.training_episodes.assign_add(1) self.targetNet = self.deepNet.T_nn(forSess=True) if doubleQ: '''DoubleQ aims to reduce overestimations of Q-values by decoupling action selection from action evaluation in target calculation''' # if double # 1- action selection using Q-net(online net) self.selectedActionIndices = tf.argmax(self.onlineNet, axis=1) self.selectedAction = tf.one_hot(indices=self.selectedActionIndices, depth=self.num_action, axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0) # 2- action evaluation using T-net (target net) self.nxtState_qValueSelected = tf.reduce_sum(tf.multiply(self.targetNet, self.selectedAction), axis=1) # element wise else: # else # 1,2- make a one step look ahead and follow a greed policy self.nxtState_qValueSelected = tf.reduce_max(self.targetNet, axis=1) #3- td-target self.td_targetHolder = tf.placeholder(shape=[self.minibatch], name='td-target', dtype=tf.float32) #4- current state chosen action value self.actionBatchHolder = tf.placeholder(dtype=tf.uint8) self.chosenAction = tf.one_hot(indices=self.actionBatchHolder, depth=self.num_action, axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0) self.curState_qValueSelected = tf.reduce_sum(tf.multiply(self.onlineNet, self.chosenAction), axis=1) # elementwise pass self.delta = tf.subtract(self.td_targetHolder, self.curState_qValueSelected) #set learning rate self._setLearningRate() pass #TODO Dueling (rescale and clipping of gradients) pass if perMemory: self.replay_memory = PEM(ArchitectureSetting.in_shape, self.replay_memorySize) self.weightedISHolder = tf.placeholder(shape=[self.minibatch], name='weighted-IS', dtype=tf.float32) self.weightedDelta = tf.multiply(self.delta, self.weightedISHolder) self.clipped_loss = tf.where(tf.abs(self.weightedDelta) < 1.0, 0.5 * tf.square(self.weightedDelta), tf.abs(self.weightedDelta) - 0.5, name='clipped_loss') else: #not dueling or per self.replay_memory = ExperienceMemory(ArchitectureSetting.in_shape, self.replay_memorySize) self.clipped_loss = tf.where(tf.abs(self.delta) < 1.0, 0.5 * tf.square(self.delta), tf.abs(self.delta) - 0.5, name='clipped_loss') pass self.loss = tf.reduce_mean(self.clipped_loss, name='loss') #$self.loss = tf.reduce_mean(tf.squared_difference(self.td_targetHolder, self.curState_qValueSelected)) pass self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) self.train_step = self.optimizer.minimize(self.loss, global_step=self.global_step) pass # https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer # self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) # self.train_step = self.optimizer.minimize(self.loss,global_step = self.global_step) else: self.epsilon = tf.constant(AgentSetting.epsilon_eval,dtype=tf.float32) #finallizee self.util.summANDsave(self.training) '''sets the agent learning rate ''' def _setLearningRate(self): if self.dueling: # regardless of anything else self.learning_rate = AgentSetting.duel_learining_rate elif self.perMemory and not self.dueling: self.learning_rate = PerSettings.step_size else: self.learning_rate = AgentSetting.learning_rate #fill memory def fill_memory(self,sess,reloadM): self.env.reset(sess) if not reloadM: print ('Initializing my experience memory...') else: print('Restoring my experience memory (naive solution!)...') state = self.state_process.get_state(sess) done = False for v in tqdm(range(self.replay_strt_size)): if not reloadM: #select an action randomly action = self.env.takeRandomAction() else: action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) nxt_state = self.state_process.get_state(sess) experience = (state , action , reward, done , nxt_state) self.replay_memory.add(experience) if done: self.env.reset(sess) state = self.state_process.get_state(sess) else: state = nxt_state pass print ("Waiting for current episode to be terminated...") while not done: action = self.env.takeRandomAction() reward , done = self.env.step(action,sess) def _epsilonDecay(self,sess): pass eps = self.e_greedy_final + max(0,(self.e_greedy_init - self.e_greedy_final) * (self.e_final_at - self.agentSteps.eval()) / self.e_final_at) sess.run(self.epsilonUpdater, feed_dict={self.epsilonHolder: eps}) #Return the chosen action! def behaviour_e_policy(self,state,sess): #decay eps and calc prob for actions action_probs = (np.ones(self.num_action, dtype =float) * self.epsilon.eval() ) / self.num_action q_val = sess.run(self.onlineNet, feed_dict = { self.net_feed : np.expand_dims(state,0)}) greedy_choice = np.argmax(q_val) action_probs[greedy_choice] += 1.0 - self.epsilon.eval() action = np.random.choice(self.actions, p=action_probs) pass #decay epsilon #if self.training: # self._epsilonDecay(sess) return action #Playing def playing(self,sess): self.totalReward = 0.0 self.countR = 0 self.startTime = time.time() self.env.reset(sess) state = self.state_process.get_state(sess) for t in itertools.count(): action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) self.totalReward += reward self.countR += 1 nxt_state = self.state_process.get_state(sess) print("playing well as much as you trained me :)") if done: self.duration = round(time.time() - self.startTime, 3) self.summaries(sess) break #end of episode else: state = nxt_state pass if (self.rendering): self.env.render() def learning(self,sess): #loop for one episode #reset vars
self.totalLoss =0.0 self.countL = 0 self.totalReward = 0.0 self.countR = 0 self.updates = 0 self.startTime = time.time() self.env.reset(sess) state = self.state_process.get_state(sess) no_op = 0 for _ in itertools.count(): #take action action = self.behaviour_e_policy(state,sess) #step and observe reward , done = self.env.step(action,sess) #inc agent steps sess.run(self.agentStepsUpdater)
identifier_body
Q_Learner.py
Q self.dueling = dueling self.perMemory = perMemory self.rendering = watch pass print ("POSSIBLE ACTIONS :", self.actions) if training: self.updates = 0 self.totalLoss = 0.0 self.countL = 0 self.minibatch = AgentSetting.minibatch self.replay_memorySize = AgentSetting.replay_memory self.t_net_update_freq = AgentSetting.t_net_update_freq self.discount_factor = AgentSetting.discount_factor self.update_freq = AgentSetting.update_freq self.momentum = AgentSetting.momentum self.e_greedy_init = AgentSetting.e_greedy_init self.e_greedy_final = AgentSetting.e_greedy_final self.e_final_at = AgentSetting.e_final_at #self.e_decay_rate = (self.e_greedy_init - self.e_greedy_final) / self.e_final_at self.epsilon = tf.Variable(0.0, trainable = False, dtype = tf.float32, name = "epsilon") self.epsilonHolder = tf.placeholder(dtype = tf.float32) self.epsilonUpdater = self.epsilon.assign(self.epsilonHolder) self.replay_strt_size = AgentSetting.replay_strt_size self.global_step = tf.Variable(0, trainable=False,name='global_step') self.training_hrs = tf.Variable(0.0, trainable=False,name='training_hrs') self.training_episodes = tf.Variable(0,trainable = False , name = "training_episodes") self.training_hrsHolder = tf.placeholder(dtype = tf.float32) self.training_hrsUpdater = self.training_hrs.assign_add((self.training_hrsHolder / 60.0) / 60.0) self.training_episodesUpdater = self.training_episodes.assign_add(1) self.targetNet = self.deepNet.T_nn(forSess=True) if doubleQ: '''DoubleQ aims to reduce overestimations of Q-values by decoupling action selection from action evaluation in target calculation''' # if double # 1- action selection using Q-net(online net) self.selectedActionIndices = tf.argmax(self.onlineNet, axis=1) self.selectedAction = tf.one_hot(indices=self.selectedActionIndices, depth=self.num_action, axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0) # 2- action evaluation using T-net (target net) self.nxtState_qValueSelected = tf.reduce_sum(tf.multiply(self.targetNet, self.selectedAction), axis=1) # element wise else: # else # 1,2- make a one step look ahead and follow a greed policy self.nxtState_qValueSelected = tf.reduce_max(self.targetNet, axis=1) #3- td-target self.td_targetHolder = tf.placeholder(shape=[self.minibatch], name='td-target', dtype=tf.float32) #4- current state chosen action value self.actionBatchHolder = tf.placeholder(dtype=tf.uint8) self.chosenAction = tf.one_hot(indices=self.actionBatchHolder, depth=self.num_action, axis=-1, dtype=tf.float32, on_value=1.0, off_value=0.0) self.curState_qValueSelected = tf.reduce_sum(tf.multiply(self.onlineNet, self.chosenAction), axis=1) # elementwise pass self.delta = tf.subtract(self.td_targetHolder, self.curState_qValueSelected) #set learning rate self._setLearningRate() pass #TODO Dueling (rescale and clipping of gradients) pass if perMemory: self.replay_memory = PEM(ArchitectureSetting.in_shape, self.replay_memorySize) self.weightedISHolder = tf.placeholder(shape=[self.minibatch], name='weighted-IS', dtype=tf.float32) self.weightedDelta = tf.multiply(self.delta, self.weightedISHolder) self.clipped_loss = tf.where(tf.abs(self.weightedDelta) < 1.0, 0.5 * tf.square(self.weightedDelta), tf.abs(self.weightedDelta) - 0.5, name='clipped_loss') else: #not dueling or per self.replay_memory = ExperienceMemory(ArchitectureSetting.in_shape, self.replay_memorySize) self.clipped_loss = tf.where(tf.abs(self.delta) < 1.0, 0.5 * tf.square(self.delta), tf.abs(self.delta) - 0.5, name='clipped_loss') pass self.loss = tf.reduce_mean(self.clipped_loss, name='loss') #$self.loss = tf.reduce_mean(tf.squared_difference(self.td_targetHolder, self.curState_qValueSelected)) pass self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) self.train_step = self.optimizer.minimize(self.loss, global_step=self.global_step) pass # https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer # self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=self.momentum, epsilon=1e-10) # self.train_step = self.optimizer.minimize(self.loss,global_step = self.global_step) else: self.epsilon = tf.constant(AgentSetting.epsilon_eval,dtype=tf.float32) #finallizee self.util.summANDsave(self.training) '''sets the agent learning rate ''' def _setLearningRate(self): if self.dueling: # regardless of anything else self.learning_rate = AgentSetting.duel_learining_rate elif self.perMemory and not self.dueling: self.learning_rate = PerSettings.step_size else: self.learning_rate = AgentSetting.learning_rate #fill memory def fill_memory(self,sess,reloadM): self.env.reset(sess) if not reloadM:
else: print('Restoring my experience memory (naive solution!)...') state = self.state_process.get_state(sess) done = False for v in tqdm(range(self.replay_strt_size)): if not reloadM: #select an action randomly action = self.env.takeRandomAction() else: action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) nxt_state = self.state_process.get_state(sess) experience = (state , action , reward, done , nxt_state) self.replay_memory.add(experience) if done: self.env.reset(sess) state = self.state_process.get_state(sess) else: state = nxt_state pass print ("Waiting for current episode to be terminated...") while not done: action = self.env.takeRandomAction() reward , done = self.env.step(action,sess) def _epsilonDecay(self,sess): pass eps = self.e_greedy_final + max(0,(self.e_greedy_init - self.e_greedy_final) * (self.e_final_at - self.agentSteps.eval()) / self.e_final_at) sess.run(self.epsilonUpdater, feed_dict={self.epsilonHolder: eps}) #Return the chosen action! def behaviour_e_policy(self,state,sess): #decay eps and calc prob for actions action_probs = (np.ones(self.num_action, dtype =float) * self.epsilon.eval() ) / self.num_action q_val = sess.run(self.onlineNet, feed_dict = { self.net_feed : np.expand_dims(state,0)}) greedy_choice = np.argmax(q_val) action_probs[greedy_choice] += 1.0 - self.epsilon.eval() action = np.random.choice(self.actions, p=action_probs) pass #decay epsilon #if self.training: # self._epsilonDecay(sess) return action #Playing def playing(self,sess): self.totalReward = 0.0 self.countR = 0 self.startTime = time.time() self.env.reset(sess) state = self.state_process.get_state(sess) for t in itertools.count(): action = self.behaviour_e_policy(state,sess) reward , done = self.env.step(action,sess) self.totalReward += reward self.countR += 1 nxt_state = self.state_process.get_state(sess) print("playing well as much as you trained me :)") if done: self.duration = round(time.time() - self.startTime, 3) self.summaries(sess) break #end of episode else: state = nxt_state pass if (self.rendering): self.env.render() def learning(self,sess): #loop for one episode #reset vars self.totalLoss =0.0 self.countL = 0 self.totalReward = 0.0 self.countR = 0 self.updates = 0 self.startTime = time.time() self
print ('Initializing my experience memory...')
conditional_block
scripts.js
} // =================================================================== // Function to gather all of the search criteria and submit the page // =================================================================== function petSearch() { $('#sidebar .controls button').click(function () { var search = {}; var url = ''; $("input[name='animal']:checked").each(function () { if (search['animal'] === undefined) { search['animal'] = $(this).val(); } else { search['animal'] += ',' + $(this).val(); } }); $("input[name='category']:checked").each(function () { if (search['category'] === undefined) { search['category'] = $(this).val(); } else { search['category'] += ',' + $(this).val(); } }); //Creates search URL $.each(search, function (key, value) { if (url.length === 0) { url = '?' + key + '=' + value; } else { url += '&' + key + '=' + value; } }); // Use "search" variable to record events if desired window.location = DOMAIN + '/adoption/' + url; }); } // =================================================================== // Function to initialize Featured Pets Carousel // =================================================================== function initFeaturedCarousel() { $('#featured .carousel').slick({ infinite: true, slidesToShow: 4, slidesToScroll: 1, autoplay: true, autoplaySpeed: 2000, responsive: [ {breakpoint: 960, settings: {slidesToShow: 3}}, {breakpoint: 768, settings: {slidesToShow: 2}}, {breakpoint: 480, settings: {slidesToShow: 1}} ] }); } // =================================================================== // Function to initialize Gallery Carousel // =================================================================== function initGalleryCarousel() { $('#gallery .carousel').slick({ infinite: true, slidesToShow: 1, slidesToScroll: 1, autoplay: false }); $('#gallery .thumbnails .thumb').click(function () { $('#gallery .carousel').slick('slickGoTo', $(this).attr('data-thumb')); }); } // =================================================================== // Function for the FAQ show/hide feature // =================================================================== function initFAQ() { $('.answer').hide(); $('h3.question').click(function () { if ($(this).hasClass('active')) { $(this).next('.answer').slideUp('fase', function () { $(this).prev('h3.question').removeClass('active'); }); } else { $(this).next('.answer').slideDown('slow', function () { $(this).prev('h3.question').addClass('active'); }); } }); } // =================================================================== // Global Function to determine what page is viewed based on main ID // =================================================================== function isPage(a) { var array = a.split(','); if (array.length === 2) { return $("#" + array[0]).length && $("main").attr("data-sub") === array[1]; } else { return $("#" + a).length; } } // v2 function sizeElements(element) { var maxHeight = 0; console.log(element); $(element).height('auto'); $(element).each(function () { maxHeight = $(this).height() > maxHeight ? $(this).height() : maxHeight; }); $(element).css('height', maxHeight); } // basic slider initialization function function initSlick(slider, args) { $(slider).slick(args); } // slider with custom pagination thumbnails. defined args, reusable on same-structural elements function infoSlider(blockID) { gallery = $(blockID).find('.gallery'); thumbs = $(blockID).find('.thumbnails'); $(gallery).slick({ dots: true, infinite: true, arrows: false, appendDots: $(thumbs), customPaging: function (slider, i) { var thumb = $(slider.$slides[i]).data('thumb'); return '<a><img src="' + thumb + '"></a>'; }, }) } function sizeFooterColumns() { $('#footer-center').height($('#footer-left').height()) } // active video player button on homepage // muted: show iframe embed and hide thumbnail + play button\ function videoPlayer() { $('a.video').click(function () { $me = $(this); $id = $me.attr('yt-id'); popVideo($id); }) } // resize iframe after play function resizeVideo() { var $frame = $('iframe'); var width = $('.video').width(); $frame.attr('width', width); $frame.attr('height', (width * 3 / 5)); } // mobile menu function menu() { // mobile menu clicks $('#burger').on('click', function () { $('#menu').toggleClass('open'); $('#burger').toggleClass('open'); $('html').toggleClass('scroll-lock'); }); } function popVideo(id) { $tar = $('#videobox'); $tar.addClass('on'); $str = '<div class="video-frame"><div class="videowrapper"><iframe width="560" height="315" src="https://www.youtube.com/embed/' + id + '?autoplay=1&controls=0" frameborder="0" allowfullscreen></iframe></div></div>'; $tar.html($str); } function killVideo() { $tar = $('#videobox'); $tar.removeClass('on'); $tar.html(''); } jQuery(document).ready(function ($) { menu(); sizeFooterColumns(); $(window).resize(function () { sizeFooterColumns(); }); if ($('header #navbar > li.current-menu-ancestor').length > 0) { $('header #navbar > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } // MOBILE MENU SWITCH-A-ROO $('header #navbar > li > a').each(function () { $(this).on('click', function (e) { if ($(window).width() < 980) { e.preventDefault(); $it = $(this).parent(); console.log('hi'); if (!$it.hasClass('mobile-open show-sub')) { if ($('#navbar.menu .mobile-open.show-sub').length > 0) { $('#navbar.menu .mobile-open.show-sub').removeClass('mobile-open show-sub'); } $it.addClass('mobile-open show-sub'); } else { $it.removeClass('mobile-open show-sub'); $('#navbar.menu > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } } }); }); // OFF SITE LINKS $('a[href]').not('a[href*="' + DOMAIN + '"]').not('a[href*="mailto"]').each(function () { // $(this).attr('target', '_blank'); }); // HOME LOAD FUNCTIONS if ($('.page.home').length > 0) { // sizing function on load and on window resize sizeElements('.preview-text'); $(window).resize(function () { sizeElements('.preview-text'); resizeVideo(); }); videoPlayer(); } // YouTube lightbox link action if ($('.yt-lb').length > 0) { $('.yt-lb').each(function () { $me = $(this); $id = $me.attr('yt-id'); $me.on('click', function () { popVideo($id); }); }); $('.video-lightbox').on('click', function () { killVideo(); }); $('body').keyup(function (event) { if (event.which === 27) { killVideo(); } }); } // Testimonial Carousel Functionality if ($('#testimonial-slides').length > 0) { initSlick($('#testimonial-slides'), { nextArrow: '<button type="button" class="slick-next"><img src="' + theme + '/img/arrow_r.png"></button>', prevArrow: '<button type="button" class="slick-prev"><img src="' + theme + '/img/arrow_l.png"></button>', dots: true, appendDots: $("#tesimonial-dots"), autoplay: true, autoplaySpeed: 13000, }); } // Hero Carousel Functionality if ($('#hero .bg-frame .caro').length > 0) { initSlick($('#hero .bg-frame .caro'), { autoplay: true, arrows: false }); } // FAQ Page functionality if ($('.page-frequently-asked-questions').length > 0) { $('.page-frequently-asked-questions .faq').addClass('armed'); $('.faq .question').each(function () { $i = $(this); $j = $i.next(); $j.hide();
$me = $(this); if (!$me.hasClass('active')) { if ($('.faq .question.active').length > 0) { $('.faq .active').removeClass('active').next().hide(); } $me.addClass('active').next().slideDown(); } else { $me.removeClass('active').next().hide(); } }); }); } if ($('.page.about').length > 0) { $('.info-block').each(function () { ID = '#' + $(this).attr('id'); console.log(ID);
$i.on('click', function () {
random_line_split
scripts.js
} // =================================================================== // Function to gather all of the search criteria and submit the page // =================================================================== function petSearch() { $('#sidebar .controls button').click(function () { var search = {}; var url = ''; $("input[name='animal']:checked").each(function () { if (search['animal'] === undefined) { search['animal'] = $(this).val(); } else { search['animal'] += ',' + $(this).val(); } }); $("input[name='category']:checked").each(function () { if (search['category'] === undefined) { search['category'] = $(this).val(); } else { search['category'] += ',' + $(this).val(); } }); //Creates search URL $.each(search, function (key, value) { if (url.length === 0) { url = '?' + key + '=' + value; } else { url += '&' + key + '=' + value; } }); // Use "search" variable to record events if desired window.location = DOMAIN + '/adoption/' + url; }); } // =================================================================== // Function to initialize Featured Pets Carousel // =================================================================== function initFeaturedCarousel() { $('#featured .carousel').slick({ infinite: true, slidesToShow: 4, slidesToScroll: 1, autoplay: true, autoplaySpeed: 2000, responsive: [ {breakpoint: 960, settings: {slidesToShow: 3}}, {breakpoint: 768, settings: {slidesToShow: 2}}, {breakpoint: 480, settings: {slidesToShow: 1}} ] }); } // =================================================================== // Function to initialize Gallery Carousel // =================================================================== function initGalleryCarousel() { $('#gallery .carousel').slick({ infinite: true, slidesToShow: 1, slidesToScroll: 1, autoplay: false }); $('#gallery .thumbnails .thumb').click(function () { $('#gallery .carousel').slick('slickGoTo', $(this).attr('data-thumb')); }); } // =================================================================== // Function for the FAQ show/hide feature // =================================================================== function initFAQ() { $('.answer').hide(); $('h3.question').click(function () { if ($(this).hasClass('active')) { $(this).next('.answer').slideUp('fase', function () { $(this).prev('h3.question').removeClass('active'); }); } else { $(this).next('.answer').slideDown('slow', function () { $(this).prev('h3.question').addClass('active'); }); } }); } // =================================================================== // Global Function to determine what page is viewed based on main ID // =================================================================== function isPage(a) { var array = a.split(','); if (array.length === 2) { return $("#" + array[0]).length && $("main").attr("data-sub") === array[1]; } else { return $("#" + a).length; } } // v2 function sizeElements(element) { var maxHeight = 0; console.log(element); $(element).height('auto'); $(element).each(function () { maxHeight = $(this).height() > maxHeight ? $(this).height() : maxHeight; }); $(element).css('height', maxHeight); } // basic slider initialization function function initSlick(slider, args) { $(slider).slick(args); } // slider with custom pagination thumbnails. defined args, reusable on same-structural elements function infoSlider(blockID) { gallery = $(blockID).find('.gallery'); thumbs = $(blockID).find('.thumbnails'); $(gallery).slick({ dots: true, infinite: true, arrows: false, appendDots: $(thumbs), customPaging: function (slider, i) { var thumb = $(slider.$slides[i]).data('thumb'); return '<a><img src="' + thumb + '"></a>'; }, }) } function sizeFooterColumns() { $('#footer-center').height($('#footer-left').height()) } // active video player button on homepage // muted: show iframe embed and hide thumbnail + play button\ function videoPlayer() { $('a.video').click(function () { $me = $(this); $id = $me.attr('yt-id'); popVideo($id); }) } // resize iframe after play function resizeVideo() { var $frame = $('iframe'); var width = $('.video').width(); $frame.attr('width', width); $frame.attr('height', (width * 3 / 5)); } // mobile menu function
() { // mobile menu clicks $('#burger').on('click', function () { $('#menu').toggleClass('open'); $('#burger').toggleClass('open'); $('html').toggleClass('scroll-lock'); }); } function popVideo(id) { $tar = $('#videobox'); $tar.addClass('on'); $str = '<div class="video-frame"><div class="videowrapper"><iframe width="560" height="315" src="https://www.youtube.com/embed/' + id + '?autoplay=1&controls=0" frameborder="0" allowfullscreen></iframe></div></div>'; $tar.html($str); } function killVideo() { $tar = $('#videobox'); $tar.removeClass('on'); $tar.html(''); } jQuery(document).ready(function ($) { menu(); sizeFooterColumns(); $(window).resize(function () { sizeFooterColumns(); }); if ($('header #navbar > li.current-menu-ancestor').length > 0) { $('header #navbar > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } // MOBILE MENU SWITCH-A-ROO $('header #navbar > li > a').each(function () { $(this).on('click', function (e) { if ($(window).width() < 980) { e.preventDefault(); $it = $(this).parent(); console.log('hi'); if (!$it.hasClass('mobile-open show-sub')) { if ($('#navbar.menu .mobile-open.show-sub').length > 0) { $('#navbar.menu .mobile-open.show-sub').removeClass('mobile-open show-sub'); } $it.addClass('mobile-open show-sub'); } else { $it.removeClass('mobile-open show-sub'); $('#navbar.menu > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } } }); }); // OFF SITE LINKS $('a[href]').not('a[href*="' + DOMAIN + '"]').not('a[href*="mailto"]').each(function () { // $(this).attr('target', '_blank'); }); // HOME LOAD FUNCTIONS if ($('.page.home').length > 0) { // sizing function on load and on window resize sizeElements('.preview-text'); $(window).resize(function () { sizeElements('.preview-text'); resizeVideo(); }); videoPlayer(); } // YouTube lightbox link action if ($('.yt-lb').length > 0) { $('.yt-lb').each(function () { $me = $(this); $id = $me.attr('yt-id'); $me.on('click', function () { popVideo($id); }); }); $('.video-lightbox').on('click', function () { killVideo(); }); $('body').keyup(function (event) { if (event.which === 27) { killVideo(); } }); } // Testimonial Carousel Functionality if ($('#testimonial-slides').length > 0) { initSlick($('#testimonial-slides'), { nextArrow: '<button type="button" class="slick-next"><img src="' + theme + '/img/arrow_r.png"></button>', prevArrow: '<button type="button" class="slick-prev"><img src="' + theme + '/img/arrow_l.png"></button>', dots: true, appendDots: $("#tesimonial-dots"), autoplay: true, autoplaySpeed: 13000, }); } // Hero Carousel Functionality if ($('#hero .bg-frame .caro').length > 0) { initSlick($('#hero .bg-frame .caro'), { autoplay: true, arrows: false }); } // FAQ Page functionality if ($('.page-frequently-asked-questions').length > 0) { $('.page-frequently-asked-questions .faq').addClass('armed'); $('.faq .question').each(function () { $i = $(this); $j = $i.next(); $j.hide(); $i.on('click', function () { $me = $(this); if (!$me.hasClass('active')) { if ($('.faq .question.active').length > 0) { $('.faq .active').removeClass('active').next().hide(); } $me.addClass('active').next().slideDown(); } else { $me.removeClass('active').next().hide(); } }); }); } if ($('.page.about').length > 0) { $('.info-block').each(function () { ID = '#' + $(this).attr('id'); console.log(ID);
menu
identifier_name
scripts.js
// =================================================================== // Function to gather all of the search criteria and submit the page // =================================================================== function petSearch() { $('#sidebar .controls button').click(function () { var search = {}; var url = ''; $("input[name='animal']:checked").each(function () { if (search['animal'] === undefined) { search['animal'] = $(this).val(); } else { search['animal'] += ',' + $(this).val(); } }); $("input[name='category']:checked").each(function () { if (search['category'] === undefined) { search['category'] = $(this).val(); } else { search['category'] += ',' + $(this).val(); } }); //Creates search URL $.each(search, function (key, value) { if (url.length === 0) { url = '?' + key + '=' + value; } else { url += '&' + key + '=' + value; } }); // Use "search" variable to record events if desired window.location = DOMAIN + '/adoption/' + url; }); } // =================================================================== // Function to initialize Featured Pets Carousel // =================================================================== function initFeaturedCarousel() { $('#featured .carousel').slick({ infinite: true, slidesToShow: 4, slidesToScroll: 1, autoplay: true, autoplaySpeed: 2000, responsive: [ {breakpoint: 960, settings: {slidesToShow: 3}}, {breakpoint: 768, settings: {slidesToShow: 2}}, {breakpoint: 480, settings: {slidesToShow: 1}} ] }); } // =================================================================== // Function to initialize Gallery Carousel // =================================================================== function initGalleryCarousel() { $('#gallery .carousel').slick({ infinite: true, slidesToShow: 1, slidesToScroll: 1, autoplay: false }); $('#gallery .thumbnails .thumb').click(function () { $('#gallery .carousel').slick('slickGoTo', $(this).attr('data-thumb')); }); } // =================================================================== // Function for the FAQ show/hide feature // =================================================================== function initFAQ() { $('.answer').hide(); $('h3.question').click(function () { if ($(this).hasClass('active')) { $(this).next('.answer').slideUp('fase', function () { $(this).prev('h3.question').removeClass('active'); }); } else { $(this).next('.answer').slideDown('slow', function () { $(this).prev('h3.question').addClass('active'); }); } }); } // =================================================================== // Global Function to determine what page is viewed based on main ID // =================================================================== function isPage(a) { var array = a.split(','); if (array.length === 2) { return $("#" + array[0]).length && $("main").attr("data-sub") === array[1]; } else { return $("#" + a).length; } } // v2 function sizeElements(element) { var maxHeight = 0; console.log(element); $(element).height('auto'); $(element).each(function () { maxHeight = $(this).height() > maxHeight ? $(this).height() : maxHeight; }); $(element).css('height', maxHeight); } // basic slider initialization function function initSlick(slider, args) { $(slider).slick(args); } // slider with custom pagination thumbnails. defined args, reusable on same-structural elements function infoSlider(blockID) { gallery = $(blockID).find('.gallery'); thumbs = $(blockID).find('.thumbnails'); $(gallery).slick({ dots: true, infinite: true, arrows: false, appendDots: $(thumbs), customPaging: function (slider, i) { var thumb = $(slider.$slides[i]).data('thumb'); return '<a><img src="' + thumb + '"></a>'; }, }) } function sizeFooterColumns() { $('#footer-center').height($('#footer-left').height()) } // active video player button on homepage // muted: show iframe embed and hide thumbnail + play button\ function videoPlayer() { $('a.video').click(function () { $me = $(this); $id = $me.attr('yt-id'); popVideo($id); }) } // resize iframe after play function resizeVideo()
// mobile menu function menu() { // mobile menu clicks $('#burger').on('click', function () { $('#menu').toggleClass('open'); $('#burger').toggleClass('open'); $('html').toggleClass('scroll-lock'); }); } function popVideo(id) { $tar = $('#videobox'); $tar.addClass('on'); $str = '<div class="video-frame"><div class="videowrapper"><iframe width="560" height="315" src="https://www.youtube.com/embed/' + id + '?autoplay=1&controls=0" frameborder="0" allowfullscreen></iframe></div></div>'; $tar.html($str); } function killVideo() { $tar = $('#videobox'); $tar.removeClass('on'); $tar.html(''); } jQuery(document).ready(function ($) { menu(); sizeFooterColumns(); $(window).resize(function () { sizeFooterColumns(); }); if ($('header #navbar > li.current-menu-ancestor').length > 0) { $('header #navbar > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } // MOBILE MENU SWITCH-A-ROO $('header #navbar > li > a').each(function () { $(this).on('click', function (e) { if ($(window).width() < 980) { e.preventDefault(); $it = $(this).parent(); console.log('hi'); if (!$it.hasClass('mobile-open show-sub')) { if ($('#navbar.menu .mobile-open.show-sub').length > 0) { $('#navbar.menu .mobile-open.show-sub').removeClass('mobile-open show-sub'); } $it.addClass('mobile-open show-sub'); } else { $it.removeClass('mobile-open show-sub'); $('#navbar.menu > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } } }); }); // OFF SITE LINKS $('a[href]').not('a[href*="' + DOMAIN + '"]').not('a[href*="mailto"]').each(function () { // $(this).attr('target', '_blank'); }); // HOME LOAD FUNCTIONS if ($('.page.home').length > 0) { // sizing function on load and on window resize sizeElements('.preview-text'); $(window).resize(function () { sizeElements('.preview-text'); resizeVideo(); }); videoPlayer(); } // YouTube lightbox link action if ($('.yt-lb').length > 0) { $('.yt-lb').each(function () { $me = $(this); $id = $me.attr('yt-id'); $me.on('click', function () { popVideo($id); }); }); $('.video-lightbox').on('click', function () { killVideo(); }); $('body').keyup(function (event) { if (event.which === 27) { killVideo(); } }); } // Testimonial Carousel Functionality if ($('#testimonial-slides').length > 0) { initSlick($('#testimonial-slides'), { nextArrow: '<button type="button" class="slick-next"><img src="' + theme + '/img/arrow_r.png"></button>', prevArrow: '<button type="button" class="slick-prev"><img src="' + theme + '/img/arrow_l.png"></button>', dots: true, appendDots: $("#tesimonial-dots"), autoplay: true, autoplaySpeed: 13000, }); } // Hero Carousel Functionality if ($('#hero .bg-frame .caro').length > 0) { initSlick($('#hero .bg-frame .caro'), { autoplay: true, arrows: false }); } // FAQ Page functionality if ($('.page-frequently-asked-questions').length > 0) { $('.page-frequently-asked-questions .faq').addClass('armed'); $('.faq .question').each(function () { $i = $(this); $j = $i.next(); $j.hide(); $i.on('click', function () { $me = $(this); if (!$me.hasClass('active')) { if ($('.faq .question.active').length > 0) { $('.faq .active').removeClass('active').next().hide(); } $me.addClass('active').next().slideDown(); } else { $me.removeClass('active').next().hide(); } }); }); } if ($('.page.about').length > 0) { $('.info-block').each(function () { ID = '#' + $(this).attr('id'); console.log(ID);
{ var $frame = $('iframe'); var width = $('.video').width(); $frame.attr('width', width); $frame.attr('height', (width * 3 / 5)); }
identifier_body
scripts.js
} // =================================================================== // Function to gather all of the search criteria and submit the page // =================================================================== function petSearch() { $('#sidebar .controls button').click(function () { var search = {}; var url = ''; $("input[name='animal']:checked").each(function () { if (search['animal'] === undefined) { search['animal'] = $(this).val(); } else { search['animal'] += ',' + $(this).val(); } }); $("input[name='category']:checked").each(function () { if (search['category'] === undefined) { search['category'] = $(this).val(); } else { search['category'] += ',' + $(this).val(); } }); //Creates search URL $.each(search, function (key, value) { if (url.length === 0)
else { url += '&' + key + '=' + value; } }); // Use "search" variable to record events if desired window.location = DOMAIN + '/adoption/' + url; }); } // =================================================================== // Function to initialize Featured Pets Carousel // =================================================================== function initFeaturedCarousel() { $('#featured .carousel').slick({ infinite: true, slidesToShow: 4, slidesToScroll: 1, autoplay: true, autoplaySpeed: 2000, responsive: [ {breakpoint: 960, settings: {slidesToShow: 3}}, {breakpoint: 768, settings: {slidesToShow: 2}}, {breakpoint: 480, settings: {slidesToShow: 1}} ] }); } // =================================================================== // Function to initialize Gallery Carousel // =================================================================== function initGalleryCarousel() { $('#gallery .carousel').slick({ infinite: true, slidesToShow: 1, slidesToScroll: 1, autoplay: false }); $('#gallery .thumbnails .thumb').click(function () { $('#gallery .carousel').slick('slickGoTo', $(this).attr('data-thumb')); }); } // =================================================================== // Function for the FAQ show/hide feature // =================================================================== function initFAQ() { $('.answer').hide(); $('h3.question').click(function () { if ($(this).hasClass('active')) { $(this).next('.answer').slideUp('fase', function () { $(this).prev('h3.question').removeClass('active'); }); } else { $(this).next('.answer').slideDown('slow', function () { $(this).prev('h3.question').addClass('active'); }); } }); } // =================================================================== // Global Function to determine what page is viewed based on main ID // =================================================================== function isPage(a) { var array = a.split(','); if (array.length === 2) { return $("#" + array[0]).length && $("main").attr("data-sub") === array[1]; } else { return $("#" + a).length; } } // v2 function sizeElements(element) { var maxHeight = 0; console.log(element); $(element).height('auto'); $(element).each(function () { maxHeight = $(this).height() > maxHeight ? $(this).height() : maxHeight; }); $(element).css('height', maxHeight); } // basic slider initialization function function initSlick(slider, args) { $(slider).slick(args); } // slider with custom pagination thumbnails. defined args, reusable on same-structural elements function infoSlider(blockID) { gallery = $(blockID).find('.gallery'); thumbs = $(blockID).find('.thumbnails'); $(gallery).slick({ dots: true, infinite: true, arrows: false, appendDots: $(thumbs), customPaging: function (slider, i) { var thumb = $(slider.$slides[i]).data('thumb'); return '<a><img src="' + thumb + '"></a>'; }, }) } function sizeFooterColumns() { $('#footer-center').height($('#footer-left').height()) } // active video player button on homepage // muted: show iframe embed and hide thumbnail + play button\ function videoPlayer() { $('a.video').click(function () { $me = $(this); $id = $me.attr('yt-id'); popVideo($id); }) } // resize iframe after play function resizeVideo() { var $frame = $('iframe'); var width = $('.video').width(); $frame.attr('width', width); $frame.attr('height', (width * 3 / 5)); } // mobile menu function menu() { // mobile menu clicks $('#burger').on('click', function () { $('#menu').toggleClass('open'); $('#burger').toggleClass('open'); $('html').toggleClass('scroll-lock'); }); } function popVideo(id) { $tar = $('#videobox'); $tar.addClass('on'); $str = '<div class="video-frame"><div class="videowrapper"><iframe width="560" height="315" src="https://www.youtube.com/embed/' + id + '?autoplay=1&controls=0" frameborder="0" allowfullscreen></iframe></div></div>'; $tar.html($str); } function killVideo() { $tar = $('#videobox'); $tar.removeClass('on'); $tar.html(''); } jQuery(document).ready(function ($) { menu(); sizeFooterColumns(); $(window).resize(function () { sizeFooterColumns(); }); if ($('header #navbar > li.current-menu-ancestor').length > 0) { $('header #navbar > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } // MOBILE MENU SWITCH-A-ROO $('header #navbar > li > a').each(function () { $(this).on('click', function (e) { if ($(window).width() < 980) { e.preventDefault(); $it = $(this).parent(); console.log('hi'); if (!$it.hasClass('mobile-open show-sub')) { if ($('#navbar.menu .mobile-open.show-sub').length > 0) { $('#navbar.menu .mobile-open.show-sub').removeClass('mobile-open show-sub'); } $it.addClass('mobile-open show-sub'); } else { $it.removeClass('mobile-open show-sub'); $('#navbar.menu > li.current-menu-ancestor').addClass('mobile-open').addClass('show-sub'); } } }); }); // OFF SITE LINKS $('a[href]').not('a[href*="' + DOMAIN + '"]').not('a[href*="mailto"]').each(function () { // $(this).attr('target', '_blank'); }); // HOME LOAD FUNCTIONS if ($('.page.home').length > 0) { // sizing function on load and on window resize sizeElements('.preview-text'); $(window).resize(function () { sizeElements('.preview-text'); resizeVideo(); }); videoPlayer(); } // YouTube lightbox link action if ($('.yt-lb').length > 0) { $('.yt-lb').each(function () { $me = $(this); $id = $me.attr('yt-id'); $me.on('click', function () { popVideo($id); }); }); $('.video-lightbox').on('click', function () { killVideo(); }); $('body').keyup(function (event) { if (event.which === 27) { killVideo(); } }); } // Testimonial Carousel Functionality if ($('#testimonial-slides').length > 0) { initSlick($('#testimonial-slides'), { nextArrow: '<button type="button" class="slick-next"><img src="' + theme + '/img/arrow_r.png"></button>', prevArrow: '<button type="button" class="slick-prev"><img src="' + theme + '/img/arrow_l.png"></button>', dots: true, appendDots: $("#tesimonial-dots"), autoplay: true, autoplaySpeed: 13000, }); } // Hero Carousel Functionality if ($('#hero .bg-frame .caro').length > 0) { initSlick($('#hero .bg-frame .caro'), { autoplay: true, arrows: false }); } // FAQ Page functionality if ($('.page-frequently-asked-questions').length > 0) { $('.page-frequently-asked-questions .faq').addClass('armed'); $('.faq .question').each(function () { $i = $(this); $j = $i.next(); $j.hide(); $i.on('click', function () { $me = $(this); if (!$me.hasClass('active')) { if ($('.faq .question.active').length > 0) { $('.faq .active').removeClass('active').next().hide(); } $me.addClass('active').next().slideDown(); } else { $me.removeClass('active').next().hide(); } }); }); } if ($('.page.about').length > 0) { $('.info-block').each(function () { ID = '#' + $(this).attr('id'); console.log(ID);
{ url = '?' + key + '=' + value; }
conditional_block
queued.rs
permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. use capnp::any_pointer; use capnp::capability::Promise; use capnp::private::capability::{ClientHook, ParamsHook, PipelineHook, PipelineOp, ResultsHook}; use capnp::Error; use futures::{Future, FutureExt, TryFutureExt}; use std::cell::RefCell; use std::rc::{Rc, Weak}; use crate::attach::Attach; use crate::sender_queue::SenderQueue; use crate::{broken, local}; pub struct PipelineInner { // Once the promise resolves, this will become non-null and point to the underlying object. redirect: Option<Box<dyn PipelineHook>>, promise_to_drive: futures::future::Shared<Promise<(), Error>>, clients_to_resolve: SenderQueue<(Weak<RefCell<ClientInner>>, Vec<PipelineOp>), ()>, } impl PipelineInner { fn resolve(this: &Rc<RefCell<Self>>, result: Result<Box<dyn PipelineHook>, Error>) { assert!(this.borrow().redirect.is_none()); let pipeline = match result { Ok(pipeline_hook) => pipeline_hook, Err(e) => Box::new(broken::Pipeline::new(e)), }; this.borrow_mut().redirect = Some(pipeline.add_ref()); for ((weak_client, ops), waiter) in this.borrow_mut().clients_to_resolve.drain() { if let Some(client) = weak_client.upgrade() { let clienthook = pipeline.get_pipelined_cap_move(ops); ClientInner::resolve(&client, Ok(clienthook)); } let _ = waiter.send(()); } this.borrow_mut().promise_to_drive = Promise::ok(()).shared(); } } pub struct PipelineInnerSender { inner: Option<Weak<RefCell<PipelineInner>>>, } impl Drop for PipelineInnerSender { fn drop(&mut self) { if let Some(weak_queued) = self.inner.take() { if let Some(pipeline_inner) = weak_queued.upgrade() { PipelineInner::resolve( &pipeline_inner, Ok(Box::new(crate::broken::Pipeline::new(Error::failed( "PipelineInnerSender was canceled".into(), )))), ); } } } } impl PipelineInnerSender { pub fn complete(mut self, pipeline: Box<dyn PipelineHook>) { if let Some(weak_queued) = self.inner.take() { if let Some(pipeline_inner) = weak_queued.upgrade() { crate::queued::PipelineInner::resolve(&pipeline_inner, Ok(pipeline)); } } } } pub struct Pipeline { inner: Rc<RefCell<PipelineInner>>, } impl Pipeline { pub fn new() -> (PipelineInnerSender, Self) { let inner = Rc::new(RefCell::new(PipelineInner { redirect: None, promise_to_drive: Promise::ok(()).shared(), clients_to_resolve: SenderQueue::new(), })); ( PipelineInnerSender { inner: Some(Rc::downgrade(&inner)), }, Self { inner }, ) } pub fn drive<F>(&mut self, promise: F) where F: Future<Output = Result<(), Error>> + 'static + Unpin, { let new = Promise::from_future( futures::future::try_join(self.inner.borrow_mut().promise_to_drive.clone(), promise) .map_ok(|_| ()), ) .shared(); self.inner.borrow_mut().promise_to_drive = new; } } impl Clone for Pipeline { fn clone(&self) -> Self { Self { inner: self.inner.clone(), } } } impl PipelineHook for Pipeline { fn
(&self) -> Box<dyn PipelineHook> { Box::new(self.clone()) } fn get_pipelined_cap(&self, ops: &[PipelineOp]) -> Box<dyn ClientHook> { self.get_pipelined_cap_move(ops.into()) } fn get_pipelined_cap_move(&self, ops: Vec<PipelineOp>) -> Box<dyn ClientHook> { if let Some(p) = &self.inner.borrow().redirect { return p.get_pipelined_cap_move(ops); } let mut queued_client = Client::new(Some(self.inner.clone())); queued_client.drive(self.inner.borrow().promise_to_drive.clone()); let weak_queued = Rc::downgrade(&queued_client.inner); self.inner .borrow_mut() .clients_to_resolve .push_detach((weak_queued, ops)); Box::new(queued_client) } } pub struct ClientInner { // Once the promise resolves, this will become non-null and point to the underlying object. redirect: Option<Box<dyn ClientHook>>, // The queued::PipelineInner that this client is derived from, if any. We need to hold on // to a reference to it so that it doesn't get canceled before the client is resolved. pipeline_inner: Option<Rc<RefCell<PipelineInner>>>, promise_to_drive: Option<futures::future::Shared<Promise<(), Error>>>, // When this promise resolves, each queued call will be forwarded to the real client. This needs // to occur *before* any 'whenMoreResolved()' promises resolve, because we want to make sure // previously-queued calls are delivered before any new calls made in response to the resolution. call_forwarding_queue: SenderQueue<(u64, u16, Box<dyn ParamsHook>, Box<dyn ResultsHook>), Promise<(), Error>>, // whenMoreResolved() returns forks of this promise. These must resolve *after* queued calls // have been initiated (so that any calls made in the whenMoreResolved() handler are correctly // delivered after calls made earlier), but *before* any queued calls return (because it might // confuse the application if a queued call returns before the capability on which it was made // resolves). Luckily, we know that queued calls will involve, at the very least, an // eventLoop.evalLater. client_resolution_queue: SenderQueue<(), Box<dyn ClientHook>>, } impl ClientInner { pub fn resolve(state: &Rc<RefCell<Self>>, result: Result<Box<dyn ClientHook>, Error>) { assert!(state.borrow().redirect.is_none()); let client = match result { Ok(clienthook) => clienthook, Err(e) => broken::new_cap(e), }; state.borrow_mut().redirect = Some(client.add_ref()); for (args, waiter) in state.borrow_mut().call_forwarding_queue.drain() { let (interface_id, method_id, params, results) = args; let result_promise = client.call(interface_id, method_id, params, results); let _ = waiter.send(result_promise); } for ((), waiter) in state.borrow_mut().client_resolution_queue.drain() { let _ = waiter.send(client.add_ref()); } state.borrow_mut().promise_to_drive.take(); state.borrow_mut().pipeline_inner.take(); } } pub struct Client { pub inner: Rc<RefCell<ClientInner>>, } impl Client { pub fn new(pipeline_inner: Option<Rc<RefCell<PipelineInner>>>) -> Self { let inner = Rc::new(RefCell::new(ClientInner { promise_to_drive: None, pipeline_inner, redirect: None, call_forwarding_queue: SenderQueue::new(), client_resolution_queue: SenderQueue::new(), })); Self { inner } } pub fn drive<F>(&mut self, promise: F) where F: Future<Output = Result<(), Error>> + 'static + Unpin, { assert!(self.inner.borrow().promise_to_drive.is_none()); self.inner.borrow_mut().promise_to_drive = Some(Promise::from_future(promise).shared()); } } impl ClientHook for Client { fn add_ref(&self) -> Box<dyn ClientHook> { Box::new(Self { inner: self.inner.clone(), }) } fn new_call( &self, interface_id: u64, method_id: u16, size_hint: Option<::capnp::MessageSize>, ) -> ::capnp::capability::Request<any_pointer::Owned, any_pointer::Owned> { ::capnp::capability::Request::new(Box::new(local::Request::new( interface_id, method_id, size_hint, self.add_ref(), ))) } fn call( &self, interface_id: u64, method_id: u16, params: Box<dyn ParamsHook>, results: Box<dyn ResultsHook>, ) -> Promise<(), Error> { if let Some(client) = &self.inner.borrow().redirect { return client.call(interface_id, method_id, params, results); } let inner_clone = self.inner.clone(); let promise = self .inner .borrow_mut() .call_forwarding_queue .push((interface_id, method_id
add_ref
identifier_name
queued.rs
permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. use capnp::any_pointer; use capnp::capability::Promise; use capnp::private::capability::{ClientHook, ParamsHook, PipelineHook, PipelineOp, ResultsHook}; use capnp::Error; use futures::{Future, FutureExt, TryFutureExt}; use std::cell::RefCell; use std::rc::{Rc, Weak}; use crate::attach::Attach; use crate::sender_queue::SenderQueue; use crate::{broken, local}; pub struct PipelineInner { // Once the promise resolves, this will become non-null and point to the underlying object. redirect: Option<Box<dyn PipelineHook>>, promise_to_drive: futures::future::Shared<Promise<(), Error>>, clients_to_resolve: SenderQueue<(Weak<RefCell<ClientInner>>, Vec<PipelineOp>), ()>, } impl PipelineInner { fn resolve(this: &Rc<RefCell<Self>>, result: Result<Box<dyn PipelineHook>, Error>) { assert!(this.borrow().redirect.is_none()); let pipeline = match result { Ok(pipeline_hook) => pipeline_hook, Err(e) => Box::new(broken::Pipeline::new(e)), }; this.borrow_mut().redirect = Some(pipeline.add_ref()); for ((weak_client, ops), waiter) in this.borrow_mut().clients_to_resolve.drain() { if let Some(client) = weak_client.upgrade() { let clienthook = pipeline.get_pipelined_cap_move(ops); ClientInner::resolve(&client, Ok(clienthook)); } let _ = waiter.send(()); } this.borrow_mut().promise_to_drive = Promise::ok(()).shared(); } } pub struct PipelineInnerSender { inner: Option<Weak<RefCell<PipelineInner>>>, } impl Drop for PipelineInnerSender { fn drop(&mut self) { if let Some(weak_queued) = self.inner.take() { if let Some(pipeline_inner) = weak_queued.upgrade() { PipelineInner::resolve( &pipeline_inner, Ok(Box::new(crate::broken::Pipeline::new(Error::failed( "PipelineInnerSender was canceled".into(), )))), ); } } } } impl PipelineInnerSender { pub fn complete(mut self, pipeline: Box<dyn PipelineHook>) { if let Some(weak_queued) = self.inner.take() { if let Some(pipeline_inner) = weak_queued.upgrade() { crate::queued::PipelineInner::resolve(&pipeline_inner, Ok(pipeline)); } } } } pub struct Pipeline { inner: Rc<RefCell<PipelineInner>>, } impl Pipeline { pub fn new() -> (PipelineInnerSender, Self) { let inner = Rc::new(RefCell::new(PipelineInner { redirect: None, promise_to_drive: Promise::ok(()).shared(), clients_to_resolve: SenderQueue::new(), })); ( PipelineInnerSender { inner: Some(Rc::downgrade(&inner)), }, Self { inner }, ) } pub fn drive<F>(&mut self, promise: F) where F: Future<Output = Result<(), Error>> + 'static + Unpin, { let new = Promise::from_future( futures::future::try_join(self.inner.borrow_mut().promise_to_drive.clone(), promise) .map_ok(|_| ()), ) .shared(); self.inner.borrow_mut().promise_to_drive = new; } } impl Clone for Pipeline { fn clone(&self) -> Self { Self { inner: self.inner.clone(), } } } impl PipelineHook for Pipeline { fn add_ref(&self) -> Box<dyn PipelineHook> { Box::new(self.clone()) } fn get_pipelined_cap(&self, ops: &[PipelineOp]) -> Box<dyn ClientHook> { self.get_pipelined_cap_move(ops.into()) } fn get_pipelined_cap_move(&self, ops: Vec<PipelineOp>) -> Box<dyn ClientHook> { if let Some(p) = &self.inner.borrow().redirect { return p.get_pipelined_cap_move(ops); } let mut queued_client = Client::new(Some(self.inner.clone())); queued_client.drive(self.inner.borrow().promise_to_drive.clone()); let weak_queued = Rc::downgrade(&queued_client.inner); self.inner .borrow_mut() .clients_to_resolve .push_detach((weak_queued, ops)); Box::new(queued_client) } } pub struct ClientInner { // Once the promise resolves, this will become non-null and point to the underlying object. redirect: Option<Box<dyn ClientHook>>, // The queued::PipelineInner that this client is derived from, if any. We need to hold on // to a reference to it so that it doesn't get canceled before the client is resolved. pipeline_inner: Option<Rc<RefCell<PipelineInner>>>, promise_to_drive: Option<futures::future::Shared<Promise<(), Error>>>, // When this promise resolves, each queued call will be forwarded to the real client. This needs // to occur *before* any 'whenMoreResolved()' promises resolve, because we want to make sure // previously-queued calls are delivered before any new calls made in response to the resolution. call_forwarding_queue: SenderQueue<(u64, u16, Box<dyn ParamsHook>, Box<dyn ResultsHook>), Promise<(), Error>>, // whenMoreResolved() returns forks of this promise. These must resolve *after* queued calls // have been initiated (so that any calls made in the whenMoreResolved() handler are correctly
client_resolution_queue: SenderQueue<(), Box<dyn ClientHook>>, } impl ClientInner { pub fn resolve(state: &Rc<RefCell<Self>>, result: Result<Box<dyn ClientHook>, Error>) { assert!(state.borrow().redirect.is_none()); let client = match result { Ok(clienthook) => clienthook, Err(e) => broken::new_cap(e), }; state.borrow_mut().redirect = Some(client.add_ref()); for (args, waiter) in state.borrow_mut().call_forwarding_queue.drain() { let (interface_id, method_id, params, results) = args; let result_promise = client.call(interface_id, method_id, params, results); let _ = waiter.send(result_promise); } for ((), waiter) in state.borrow_mut().client_resolution_queue.drain() { let _ = waiter.send(client.add_ref()); } state.borrow_mut().promise_to_drive.take(); state.borrow_mut().pipeline_inner.take(); } } pub struct Client { pub inner: Rc<RefCell<ClientInner>>, } impl Client { pub fn new(pipeline_inner: Option<Rc<RefCell<PipelineInner>>>) -> Self { let inner = Rc::new(RefCell::new(ClientInner { promise_to_drive: None, pipeline_inner, redirect: None, call_forwarding_queue: SenderQueue::new(), client_resolution_queue: SenderQueue::new(), })); Self { inner } } pub fn drive<F>(&mut self, promise: F) where F: Future<Output = Result<(), Error>> + 'static + Unpin, { assert!(self.inner.borrow().promise_to_drive.is_none()); self.inner.borrow_mut().promise_to_drive = Some(Promise::from_future(promise).shared()); } } impl ClientHook for Client { fn add_ref(&self) -> Box<dyn ClientHook> { Box::new(Self { inner: self.inner.clone(), }) } fn new_call( &self, interface_id: u64, method_id: u16, size_hint: Option<::capnp::MessageSize>, ) -> ::capnp::capability::Request<any_pointer::Owned, any_pointer::Owned> { ::capnp::capability::Request::new(Box::new(local::Request::new( interface_id, method_id, size_hint, self.add_ref(), ))) } fn call( &self, interface_id: u64, method_id: u16, params: Box<dyn ParamsHook>, results: Box<dyn ResultsHook>, ) -> Promise<(), Error> { if let Some(client) = &self.inner.borrow().redirect { return client.call(interface_id, method_id, params, results); } let inner_clone = self.inner.clone(); let promise = self .inner .borrow_mut() .call_forwarding_queue .push((interface_id, method_id, params
// delivered after calls made earlier), but *before* any queued calls return (because it might // confuse the application if a queued call returns before the capability on which it was made // resolves). Luckily, we know that queued calls will involve, at the very least, an // eventLoop.evalLater.
random_line_split
framework.rs
Result)") .expect("couldn't create ImageBitmapRenderingContext (Option)") .dyn_into::<ImageBitmapRenderingContext>() .expect("couldn't convert into ImageBitmapRenderingContext"); offscreen_canvas_setup = Some(OffscreenCanvasSetup { offscreen_canvas, bitmap_renderer, }) } } }; log::info!("Initializing the surface..."); let backends = wgpu::util::backend_bits_from_env().unwrap_or_else(wgpu::Backends::all); let dx12_shader_compiler = wgpu::util::dx12_shader_compiler_from_env().unwrap_or_default(); let gles_minor_version = wgpu::util::gles_minor_version_from_env().unwrap_or_default(); let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends, dx12_shader_compiler, gles_minor_version, }); let (size, surface) = unsafe { let size = window.inner_size(); #[cfg(any(not(target_arch = "wasm32"), target_os = "emscripten"))] let surface = instance.create_surface(&window).unwrap(); #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] let surface = { if let Some(offscreen_canvas_setup) = &offscreen_canvas_setup { log::info!("Creating surface from OffscreenCanvas"); instance.create_surface_from_offscreen_canvas( offscreen_canvas_setup.offscreen_canvas.clone(), ) } else { instance.create_surface(&window) } } .unwrap(); (size, surface) }; let adapter = wgpu::util::initialize_adapter_from_env_or_default(&instance, Some(&surface)) .await .expect("No suitable GPU adapters found on the system!"); #[cfg(not(target_arch = "wasm32"))] { let adapter_info = adapter.get_info(); println!("Using {} ({:?})", adapter_info.name, adapter_info.backend); } let optional_features = E::optional_features(); let required_features = E::required_features(); let adapter_features = adapter.features(); assert!( adapter_features.contains(required_features), "Adapter does not support required features for this example: {:?}", required_features - adapter_features ); let required_downlevel_capabilities = E::required_downlevel_capabilities(); let downlevel_capabilities = adapter.get_downlevel_capabilities(); assert!( downlevel_capabilities.shader_model >= required_downlevel_capabilities.shader_model, "Adapter does not support the minimum shader model required to run this example: {:?}", required_downlevel_capabilities.shader_model ); assert!( downlevel_capabilities .flags .contains(required_downlevel_capabilities.flags), "Adapter does not support the downlevel capabilities required to run this example: {:?}", required_downlevel_capabilities.flags - downlevel_capabilities.flags ); // Make sure we use the texture resolution limits from the adapter, so we can support images the size of the surface. let needed_limits = E::required_limits().using_resolution(adapter.limits()); let trace_dir = std::env::var("WGPU_TRACE"); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, features: (optional_features & adapter_features) | required_features, limits: needed_limits, }, trace_dir.ok().as_ref().map(std::path::Path::new), ) .await .expect("Unable to find a suitable GPU adapter!"); Setup { window, event_loop, instance, size, surface, adapter, device, queue, #[cfg(target_arch = "wasm32")] offscreen_canvas_setup, } } fn start<E: Example>( #[cfg(not(target_arch = "wasm32"))] Setup { window, event_loop, instance, size, surface, adapter, device, queue, }: Setup, #[cfg(target_arch = "wasm32")] Setup { window, event_loop, instance, size, surface, adapter, device, queue, offscreen_canvas_setup, }: Setup, ) { let spawner = Spawner::new(); let mut config = surface .get_default_config(&adapter, size.width, size.height) .expect("Surface isn't supported by the adapter."); let surface_view_format = config.format.add_srgb_suffix(); config.view_formats.push(surface_view_format); surface.configure(&device, &config); log::info!("Initializing the example..."); let mut example = E::init(&config, &adapter, &device, &queue); #[cfg(not(target_arch = "wasm32"))] let mut last_frame_inst = Instant::now(); #[cfg(not(target_arch = "wasm32"))] let (mut frame_count, mut accum_time) = (0, 0.0); log::info!("Entering render loop..."); event_loop.run(move |event, _, control_flow| { let _ = (&instance, &adapter); // force ownership by the closure *control_flow = if cfg!(feature = "metal-auto-capture") { ControlFlow::Exit } else { ControlFlow::Poll }; match event { event::Event::RedrawEventsCleared => { #[cfg(not(target_arch = "wasm32"))] spawner.run_until_stalled(); window.request_redraw(); } event::Event::WindowEvent { event: WindowEvent::Resized(size) | WindowEvent::ScaleFactorChanged { new_inner_size: &mut size, .. }, .. } => { // Once winit is fixed, the detection conditions here can be removed. // https://github.com/rust-windowing/winit/issues/2876 let max_dimension = adapter.limits().max_texture_dimension_2d; if size.width > max_dimension || size.height > max_dimension { log::warn!( "The resizing size {:?} exceeds the limit of {}.", size, max_dimension ); } else { log::info!("Resizing to {:?}", size); config.width = size.width.max(1); config.height = size.height.max(1); example.resize(&config, &device, &queue); surface.configure(&device, &config); } } event::Event::WindowEvent { event, .. } => match event { WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::Escape), state: event::ElementState::Pressed, .. }, .. } | WindowEvent::CloseRequested => { *control_flow = ControlFlow::Exit; } #[cfg(not(target_arch = "wasm32"))] WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::R), state: event::ElementState::Pressed, .. }, .. } => { println!("{:#?}", instance.generate_report()); } _ => { example.update(event); } }, event::Event::RedrawRequested(_) => { #[cfg(not(target_arch = "wasm32"))] { accum_time += last_frame_inst.elapsed().as_secs_f32(); last_frame_inst = Instant::now(); frame_count += 1; if frame_count == 100 { println!( "Avg frame time {}ms", accum_time * 1000.0 / frame_count as f32 ); accum_time = 0.0; frame_count = 0; } } let frame = match surface.get_current_texture() { Ok(frame) => frame, Err(_) => { surface.configure(&device, &config); surface .get_current_texture() .expect("Failed to acquire next surface texture!") } }; let view = frame.texture.create_view(&wgpu::TextureViewDescriptor { format: Some(surface_view_format), ..wgpu::TextureViewDescriptor::default() }); example.render(&view, &device, &queue, &spawner); frame.present(); #[cfg(target_arch = "wasm32")] { if let Some(offscreen_canvas_setup) = &offscreen_canvas_setup { let image_bitmap = offscreen_canvas_setup .offscreen_canvas .transfer_to_image_bitmap() .expect("couldn't transfer offscreen canvas to image bitmap."); offscreen_canvas_setup .bitmap_renderer .transfer_from_image_bitmap(&image_bitmap); log::info!("Transferring OffscreenCanvas to ImageBitmapRenderer"); } } } _ => {} } }); } #[cfg(not(target_arch = "wasm32"))] pub struct Spawner<'a> { executor: async_executor::LocalExecutor<'a>, } #[cfg(not(target_arch = "wasm32"))] impl<'a> Spawner<'a> { fn new() -> Self { Self { executor: async_executor::LocalExecutor::new(), } } #[allow(dead_code)] pub fn spawn_local(&self, future: impl Future<Output = ()> + 'a) { self.executor.spawn(future).detach(); }
fn run_until_stalled(&self) { while self.executor.try_tick() {} } }
random_line_split
framework.rs
let level: log::Level = parse_url_query_string(&query_string, "RUST_LOG") .and_then(|x| x.parse().ok()) .unwrap_or(log::Level::Error); console_log::init_with_level(level).expect("could not initialize logger"); std::panic::set_hook(Box::new(console_error_panic_hook::hook)); // On wasm, append the canvas to the document body web_sys::window() .and_then(|win| win.document()) .and_then(|doc| doc.body()) .and_then(|body| { body.append_child(&web_sys::Element::from(window.canvas())) .ok() }) .expect("couldn't append canvas to document body"); } #[cfg(target_arch = "wasm32")] let mut offscreen_canvas_setup: Option<OffscreenCanvasSetup> = None; #[cfg(target_arch = "wasm32")] { use wasm_bindgen::JsCast; use winit::platform::web::WindowExtWebSys; let query_string = web_sys::window().unwrap().location().search().unwrap(); if let Some(offscreen_canvas_param) = parse_url_query_string(&query_string, "offscreen_canvas") { if FromStr::from_str(offscreen_canvas_param) == Ok(true) { log::info!("Creating OffscreenCanvasSetup"); let offscreen_canvas = OffscreenCanvas::new(1024, 768).expect("couldn't create OffscreenCanvas"); let bitmap_renderer = window .canvas() .get_context("bitmaprenderer") .expect("couldn't create ImageBitmapRenderingContext (Result)") .expect("couldn't create ImageBitmapRenderingContext (Option)") .dyn_into::<ImageBitmapRenderingContext>() .expect("couldn't convert into ImageBitmapRenderingContext"); offscreen_canvas_setup = Some(OffscreenCanvasSetup { offscreen_canvas, bitmap_renderer, }) } } }; log::info!("Initializing the surface..."); let backends = wgpu::util::backend_bits_from_env().unwrap_or_else(wgpu::Backends::all); let dx12_shader_compiler = wgpu::util::dx12_shader_compiler_from_env().unwrap_or_default(); let gles_minor_version = wgpu::util::gles_minor_version_from_env().unwrap_or_default(); let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends, dx12_shader_compiler, gles_minor_version, }); let (size, surface) = unsafe { let size = window.inner_size(); #[cfg(any(not(target_arch = "wasm32"), target_os = "emscripten"))] let surface = instance.create_surface(&window).unwrap(); #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] let surface = { if let Some(offscreen_canvas_setup) = &offscreen_canvas_setup { log::info!("Creating surface from OffscreenCanvas"); instance.create_surface_from_offscreen_canvas( offscreen_canvas_setup.offscreen_canvas.clone(), ) } else { instance.create_surface(&window) } } .unwrap(); (size, surface) }; let adapter = wgpu::util::initialize_adapter_from_env_or_default(&instance, Some(&surface)) .await .expect("No suitable GPU adapters found on the system!"); #[cfg(not(target_arch = "wasm32"))] { let adapter_info = adapter.get_info(); println!("Using {} ({:?})", adapter_info.name, adapter_info.backend); } let optional_features = E::optional_features(); let required_features = E::required_features(); let adapter_features = adapter.features(); assert!( adapter_features.contains(required_features), "Adapter does not support required features for this example: {:?}", required_features - adapter_features ); let required_downlevel_capabilities = E::required_downlevel_capabilities(); let downlevel_capabilities = adapter.get_downlevel_capabilities(); assert!( downlevel_capabilities.shader_model >= required_downlevel_capabilities.shader_model, "Adapter does not support the minimum shader model required to run this example: {:?}", required_downlevel_capabilities.shader_model ); assert!( downlevel_capabilities .flags .contains(required_downlevel_capabilities.flags), "Adapter does not support the downlevel capabilities required to run this example: {:?}", required_downlevel_capabilities.flags - downlevel_capabilities.flags ); // Make sure we use the texture resolution limits from the adapter, so we can support images the size of the surface. let needed_limits = E::required_limits().using_resolution(adapter.limits()); let trace_dir = std::env::var("WGPU_TRACE"); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, features: (optional_features & adapter_features) | required_features, limits: needed_limits, }, trace_dir.ok().as_ref().map(std::path::Path::new), ) .await .expect("Unable to find a suitable GPU adapter!"); Setup { window, event_loop, instance, size, surface, adapter, device, queue, #[cfg(target_arch = "wasm32")] offscreen_canvas_setup, } } fn start<E: Example>( #[cfg(not(target_arch = "wasm32"))] Setup { window, event_loop, instance, size, surface, adapter, device, queue, }: Setup, #[cfg(target_arch = "wasm32")] Setup { window, event_loop, instance, size, surface, adapter, device, queue, offscreen_canvas_setup, }: Setup, ) { let spawner = Spawner::new(); let mut config = surface .get_default_config(&adapter, size.width, size.height) .expect("Surface isn't supported by the adapter."); let surface_view_format = config.format.add_srgb_suffix(); config.view_formats.push(surface_view_format); surface.configure(&device, &config); log::info!("Initializing the example..."); let mut example = E::init(&config, &adapter, &device, &queue); #[cfg(not(target_arch = "wasm32"))] let mut last_frame_inst = Instant::now(); #[cfg(not(target_arch = "wasm32"))] let (mut frame_count, mut accum_time) = (0, 0.0); log::info!("Entering render loop..."); event_loop.run(move |event, _, control_flow| { let _ = (&instance, &adapter); // force ownership by the closure *control_flow = if cfg!(feature = "metal-auto-capture") { ControlFlow::Exit } else { ControlFlow::Poll }; match event { event::Event::RedrawEventsCleared => { #[cfg(not(target_arch = "wasm32"))] spawner.run_until_stalled(); window.request_redraw(); } event::Event::WindowEvent { event: WindowEvent::Resized(size) | WindowEvent::ScaleFactorChanged { new_inner_size: &mut size, .. }, .. } => { // Once winit is fixed, the detection conditions here can be removed. // https://github.com/rust-windowing/winit/issues/2876 let max_dimension = adapter.limits().max_texture_dimension_2d; if size.width > max_dimension || size.height > max_dimension { log::warn!( "The resizing size {:?} exceeds the limit of {}.", size, max_dimension ); } else { log::info!("Resizing to {:?}", size); config.width = size.width.max(1); config.height = size.height.max(1); example.resize(&config, &device, &queue); surface.configure(&device, &config); } } event::Event::WindowEvent { event, .. } => match event { WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::Escape), state: event::ElementState::Pressed, .. }, .. } | WindowEvent::CloseRequested => { *control_flow = ControlFlow::Exit; } #[cfg(not(target_arch = "wasm32"))] WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::R), state: event::ElementState::Pressed, .. }, .. } => { println!("{
{ #[cfg(not(target_arch = "wasm32"))] { env_logger::init(); }; let event_loop = EventLoop::new(); let mut builder = winit::window::WindowBuilder::new(); builder = builder.with_title(title); #[cfg(windows_OFF)] // TODO { use winit::platform::windows::WindowBuilderExtWindows; builder = builder.with_no_redirection_bitmap(true); } let window = builder.build(&event_loop).unwrap(); #[cfg(target_arch = "wasm32")] { use winit::platform::web::WindowExtWebSys; let query_string = web_sys::window().unwrap().location().search().unwrap();
identifier_body
framework.rs
could not initialize logger"); std::panic::set_hook(Box::new(console_error_panic_hook::hook)); // On wasm, append the canvas to the document body web_sys::window() .and_then(|win| win.document()) .and_then(|doc| doc.body()) .and_then(|body| { body.append_child(&web_sys::Element::from(window.canvas())) .ok() }) .expect("couldn't append canvas to document body"); } #[cfg(target_arch = "wasm32")] let mut offscreen_canvas_setup: Option<OffscreenCanvasSetup> = None; #[cfg(target_arch = "wasm32")] { use wasm_bindgen::JsCast; use winit::platform::web::WindowExtWebSys; let query_string = web_sys::window().unwrap().location().search().unwrap(); if let Some(offscreen_canvas_param) = parse_url_query_string(&query_string, "offscreen_canvas") { if FromStr::from_str(offscreen_canvas_param) == Ok(true) { log::info!("Creating OffscreenCanvasSetup"); let offscreen_canvas = OffscreenCanvas::new(1024, 768).expect("couldn't create OffscreenCanvas"); let bitmap_renderer = window .canvas() .get_context("bitmaprenderer") .expect("couldn't create ImageBitmapRenderingContext (Result)") .expect("couldn't create ImageBitmapRenderingContext (Option)") .dyn_into::<ImageBitmapRenderingContext>() .expect("couldn't convert into ImageBitmapRenderingContext"); offscreen_canvas_setup = Some(OffscreenCanvasSetup { offscreen_canvas, bitmap_renderer, }) } } }; log::info!("Initializing the surface..."); let backends = wgpu::util::backend_bits_from_env().unwrap_or_else(wgpu::Backends::all); let dx12_shader_compiler = wgpu::util::dx12_shader_compiler_from_env().unwrap_or_default(); let gles_minor_version = wgpu::util::gles_minor_version_from_env().unwrap_or_default(); let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends, dx12_shader_compiler, gles_minor_version, }); let (size, surface) = unsafe { let size = window.inner_size(); #[cfg(any(not(target_arch = "wasm32"), target_os = "emscripten"))] let surface = instance.create_surface(&window).unwrap(); #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] let surface = { if let Some(offscreen_canvas_setup) = &offscreen_canvas_setup { log::info!("Creating surface from OffscreenCanvas"); instance.create_surface_from_offscreen_canvas( offscreen_canvas_setup.offscreen_canvas.clone(), ) } else { instance.create_surface(&window) } } .unwrap(); (size, surface) }; let adapter = wgpu::util::initialize_adapter_from_env_or_default(&instance, Some(&surface)) .await .expect("No suitable GPU adapters found on the system!"); #[cfg(not(target_arch = "wasm32"))] { let adapter_info = adapter.get_info(); println!("Using {} ({:?})", adapter_info.name, adapter_info.backend); } let optional_features = E::optional_features(); let required_features = E::required_features(); let adapter_features = adapter.features(); assert!( adapter_features.contains(required_features), "Adapter does not support required features for this example: {:?}", required_features - adapter_features ); let required_downlevel_capabilities = E::required_downlevel_capabilities(); let downlevel_capabilities = adapter.get_downlevel_capabilities(); assert!( downlevel_capabilities.shader_model >= required_downlevel_capabilities.shader_model, "Adapter does not support the minimum shader model required to run this example: {:?}", required_downlevel_capabilities.shader_model ); assert!( downlevel_capabilities .flags .contains(required_downlevel_capabilities.flags), "Adapter does not support the downlevel capabilities required to run this example: {:?}", required_downlevel_capabilities.flags - downlevel_capabilities.flags ); // Make sure we use the texture resolution limits from the adapter, so we can support images the size of the surface. let needed_limits = E::required_limits().using_resolution(adapter.limits()); let trace_dir = std::env::var("WGPU_TRACE"); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, features: (optional_features & adapter_features) | required_features, limits: needed_limits, }, trace_dir.ok().as_ref().map(std::path::Path::new), ) .await .expect("Unable to find a suitable GPU adapter!"); Setup { window, event_loop, instance, size, surface, adapter, device, queue, #[cfg(target_arch = "wasm32")] offscreen_canvas_setup, } } fn start<E: Example>( #[cfg(not(target_arch = "wasm32"))] Setup { window, event_loop, instance, size, surface, adapter, device, queue, }: Setup, #[cfg(target_arch = "wasm32")] Setup { window, event_loop, instance, size, surface, adapter, device, queue, offscreen_canvas_setup, }: Setup, ) { let spawner = Spawner::new(); let mut config = surface .get_default_config(&adapter, size.width, size.height) .expect("Surface isn't supported by the adapter."); let surface_view_format = config.format.add_srgb_suffix(); config.view_formats.push(surface_view_format); surface.configure(&device, &config); log::info!("Initializing the example..."); let mut example = E::init(&config, &adapter, &device, &queue); #[cfg(not(target_arch = "wasm32"))] let mut last_frame_inst = Instant::now(); #[cfg(not(target_arch = "wasm32"))] let (mut frame_count, mut accum_time) = (0, 0.0); log::info!("Entering render loop..."); event_loop.run(move |event, _, control_flow| { let _ = (&instance, &adapter); // force ownership by the closure *control_flow = if cfg!(feature = "metal-auto-capture") { ControlFlow::Exit } else { ControlFlow::Poll }; match event { event::Event::RedrawEventsCleared => { #[cfg(not(target_arch = "wasm32"))] spawner.run_until_stalled(); window.request_redraw(); } event::Event::WindowEvent { event: WindowEvent::Resized(size) | WindowEvent::ScaleFactorChanged { new_inner_size: &mut size, .. }, .. } => { // Once winit is fixed, the detection conditions here can be removed. // https://github.com/rust-windowing/winit/issues/2876 let max_dimension = adapter.limits().max_texture_dimension_2d; if size.width > max_dimension || size.height > max_dimension { log::warn!( "The resizing size {:?} exceeds the limit of {}.", size, max_dimension ); } else { log::info!("Resizing to {:?}", size); config.width = size.width.max(1); config.height = size.height.max(1); example.resize(&config, &device, &queue); surface.configure(&device, &config); } } event::Event::WindowEvent { event, .. } => match event { WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::Escape), state: event::ElementState::Pressed, .. }, .. } | WindowEvent::CloseRequested => { *control_flow = ControlFlow::Exit; } #[cfg(not(target_arch = "wasm32"))] WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::R), state: event::ElementState::Pressed, .. }, .. } => { println!("{:#?}", instance.generate_report()); } _ => { example.update(event); } }, event::Event::RedrawRequested(_) => { #[cfg(not(target_arch = "wasm32"))] { accum_time += last_frame_inst.elapsed().as_secs_f32(); last_frame_inst = Instant::now(); frame_count += 1; if frame_count == 100 { println!( "Avg frame time {}ms", accum_time * 1000.0 / frame_count as f32 ); accum_time = 0.0; frame_count = 0; } } let frame = match surface.get_current_texture() { Ok(frame) => frame, Err(_) =>
}; let view = frame.texture.create_view(&w
{ surface.configure(&device, &config); surface .get_current_texture() .expect("Failed to acquire next surface texture!") }
conditional_block
framework.rs
= wgpu::Instance::new(wgpu::InstanceDescriptor { backends, dx12_shader_compiler, gles_minor_version, }); let (size, surface) = unsafe { let size = window.inner_size(); #[cfg(any(not(target_arch = "wasm32"), target_os = "emscripten"))] let surface = instance.create_surface(&window).unwrap(); #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] let surface = { if let Some(offscreen_canvas_setup) = &offscreen_canvas_setup { log::info!("Creating surface from OffscreenCanvas"); instance.create_surface_from_offscreen_canvas( offscreen_canvas_setup.offscreen_canvas.clone(), ) } else { instance.create_surface(&window) } } .unwrap(); (size, surface) }; let adapter = wgpu::util::initialize_adapter_from_env_or_default(&instance, Some(&surface)) .await .expect("No suitable GPU adapters found on the system!"); #[cfg(not(target_arch = "wasm32"))] { let adapter_info = adapter.get_info(); println!("Using {} ({:?})", adapter_info.name, adapter_info.backend); } let optional_features = E::optional_features(); let required_features = E::required_features(); let adapter_features = adapter.features(); assert!( adapter_features.contains(required_features), "Adapter does not support required features for this example: {:?}", required_features - adapter_features ); let required_downlevel_capabilities = E::required_downlevel_capabilities(); let downlevel_capabilities = adapter.get_downlevel_capabilities(); assert!( downlevel_capabilities.shader_model >= required_downlevel_capabilities.shader_model, "Adapter does not support the minimum shader model required to run this example: {:?}", required_downlevel_capabilities.shader_model ); assert!( downlevel_capabilities .flags .contains(required_downlevel_capabilities.flags), "Adapter does not support the downlevel capabilities required to run this example: {:?}", required_downlevel_capabilities.flags - downlevel_capabilities.flags ); // Make sure we use the texture resolution limits from the adapter, so we can support images the size of the surface. let needed_limits = E::required_limits().using_resolution(adapter.limits()); let trace_dir = std::env::var("WGPU_TRACE"); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, features: (optional_features & adapter_features) | required_features, limits: needed_limits, }, trace_dir.ok().as_ref().map(std::path::Path::new), ) .await .expect("Unable to find a suitable GPU adapter!"); Setup { window, event_loop, instance, size, surface, adapter, device, queue, #[cfg(target_arch = "wasm32")] offscreen_canvas_setup, } } fn start<E: Example>( #[cfg(not(target_arch = "wasm32"))] Setup { window, event_loop, instance, size, surface, adapter, device, queue, }: Setup, #[cfg(target_arch = "wasm32")] Setup { window, event_loop, instance, size, surface, adapter, device, queue, offscreen_canvas_setup, }: Setup, ) { let spawner = Spawner::new(); let mut config = surface .get_default_config(&adapter, size.width, size.height) .expect("Surface isn't supported by the adapter."); let surface_view_format = config.format.add_srgb_suffix(); config.view_formats.push(surface_view_format); surface.configure(&device, &config); log::info!("Initializing the example..."); let mut example = E::init(&config, &adapter, &device, &queue); #[cfg(not(target_arch = "wasm32"))] let mut last_frame_inst = Instant::now(); #[cfg(not(target_arch = "wasm32"))] let (mut frame_count, mut accum_time) = (0, 0.0); log::info!("Entering render loop..."); event_loop.run(move |event, _, control_flow| { let _ = (&instance, &adapter); // force ownership by the closure *control_flow = if cfg!(feature = "metal-auto-capture") { ControlFlow::Exit } else { ControlFlow::Poll }; match event { event::Event::RedrawEventsCleared => { #[cfg(not(target_arch = "wasm32"))] spawner.run_until_stalled(); window.request_redraw(); } event::Event::WindowEvent { event: WindowEvent::Resized(size) | WindowEvent::ScaleFactorChanged { new_inner_size: &mut size, .. }, .. } => { // Once winit is fixed, the detection conditions here can be removed. // https://github.com/rust-windowing/winit/issues/2876 let max_dimension = adapter.limits().max_texture_dimension_2d; if size.width > max_dimension || size.height > max_dimension { log::warn!( "The resizing size {:?} exceeds the limit of {}.", size, max_dimension ); } else { log::info!("Resizing to {:?}", size); config.width = size.width.max(1); config.height = size.height.max(1); example.resize(&config, &device, &queue); surface.configure(&device, &config); } } event::Event::WindowEvent { event, .. } => match event { WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::Escape), state: event::ElementState::Pressed, .. }, .. } | WindowEvent::CloseRequested => { *control_flow = ControlFlow::Exit; } #[cfg(not(target_arch = "wasm32"))] WindowEvent::KeyboardInput { input: event::KeyboardInput { virtual_keycode: Some(event::VirtualKeyCode::R), state: event::ElementState::Pressed, .. }, .. } => { println!("{:#?}", instance.generate_report()); } _ => { example.update(event); } }, event::Event::RedrawRequested(_) => { #[cfg(not(target_arch = "wasm32"))] { accum_time += last_frame_inst.elapsed().as_secs_f32(); last_frame_inst = Instant::now(); frame_count += 1; if frame_count == 100 { println!( "Avg frame time {}ms", accum_time * 1000.0 / frame_count as f32 ); accum_time = 0.0; frame_count = 0; } } let frame = match surface.get_current_texture() { Ok(frame) => frame, Err(_) => { surface.configure(&device, &config); surface .get_current_texture() .expect("Failed to acquire next surface texture!") } }; let view = frame.texture.create_view(&wgpu::TextureViewDescriptor { format: Some(surface_view_format), ..wgpu::TextureViewDescriptor::default() }); example.render(&view, &device, &queue, &spawner); frame.present(); #[cfg(target_arch = "wasm32")] { if let Some(offscreen_canvas_setup) = &offscreen_canvas_setup { let image_bitmap = offscreen_canvas_setup .offscreen_canvas .transfer_to_image_bitmap() .expect("couldn't transfer offscreen canvas to image bitmap."); offscreen_canvas_setup .bitmap_renderer .transfer_from_image_bitmap(&image_bitmap); log::info!("Transferring OffscreenCanvas to ImageBitmapRenderer"); } } } _ => {} } }); } #[cfg(not(target_arch = "wasm32"))] pub struct Spawner<'a> { executor: async_executor::LocalExecutor<'a>, } #[cfg(not(target_arch = "wasm32"))] impl<'a> Spawner<'a> { fn new() -> Self { Self { executor: async_executor::LocalExecutor::new(), } } #[allow(dead_code)] pub fn spawn_local(&self, future: impl Future<Output = ()> + 'a) { self.executor.spawn(future).detach(); } fn run_until_stalled(&self) { while self.executor.try_tick() {} } } #[cfg(target_arch = "wasm32")] pub struct Spawner {} #[cfg(target_arch = "wasm32")] impl Spawner { fn new() -> Self { Self {} } #[allow(dead_code)] pub fn spawn_local(&self, future: impl Future<Output = ()> + 'static) { wasm_bindgen_futures::spawn_local(future); } } #[cfg(not(target_arch = "wasm32"))] pub fn run<E: Example>(title: &str) { let setup = pollster::block_on(setup::<E>(title)); start::<E>(setup); } #[cfg(target_arch = "wasm32")] pub fn
run
identifier_name
main.rs
}); let server = Server::bind(&addr).serve(make_svc); // Run this server for... forever! if let Err(e) = server.await { eprintln!("server error: {}", e); } } async fn request_handler(req: Request<Body>) -> Result<Response<Body>, Box<dyn std::error::Error + Send + Sync>> { crate::github::web_hook(req).await.map_err(|err| { println!("error: {}", err); err }) } #[derive(Debug, PartialEq)] enum ReplyTo { Github { repo: String, issue_number: u64, }, ZulipPublic { stream_id: u64, subject: String, }, ZulipPrivate { user_id: u64, }, } impl ReplyTo { async fn comment(&self, body: &str) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { match *self { ReplyTo::Github { ref repo, issue_number } => { crate::github::gh_post_comment(repo, issue_number, body).await?; Ok(()) } ReplyTo::ZulipPublic { stream_id, ref subject } => { crate::zulip::zulip_post_public_message(stream_id, subject, body).await } ReplyTo::ZulipPrivate { user_id } => { crate::zulip::zulip_post_private_message(user_id, body).await } } } const COMMIT_HEADER: &'static str = "X-Bisectbot-Reply-To"; fn to_commit_header(&self) -> String { match *self { ReplyTo::Github { ref repo, issue_number } => { format!("{}: github {}#{}", Self::COMMIT_HEADER, repo, issue_number) } ReplyTo::ZulipPublic { stream_id, ref subject } => { format!("{}: zulip-public {} | {}", Self::COMMIT_HEADER, stream_id, subject) } ReplyTo::ZulipPrivate { user_id } => { format!("{}: zulip-private {}", Self::COMMIT_HEADER, user_id) } } } fn from_commit_message(message: &str) -> Result<Self, ()> { for line in message.lines() { let line = line.trim(); if !line.starts_with(Self::COMMIT_HEADER) { continue; } let header = line[Self::COMMIT_HEADER.len()+1..].trim(); let mut split = header.split(" "); let kind = split.next().ok_or(())?.trim(); let to = split.next().ok_or(())?.trim(); match kind { "github" => { if split.next().is_some() { return Err(()); } let mut split = to.split("#"); let repo = split.next().ok_or(())?.trim(); let issue_number = split.next().ok_or(())?.trim().parse().map_err(|_| ())?; if split.next().is_some() { return Err(()); } return Ok(ReplyTo::Github { repo: repo.to_string(), issue_number, }); } "zulip-public" => { let stream_id: u64 = to.parse().map_err(|_| ())?; let subject = header[header.find("|").ok_or(())?+2..].to_string(); return Ok(ReplyTo::ZulipPublic { stream_id, subject, }) } "zulip-private" => { if split.next().is_some() { return Err(()); } let user_id = to.parse().map_err(|_| ())?; return Ok(ReplyTo::ZulipPrivate { user_id, }); } _ => return Err(()), } } Err(()) } } #[test] fn test_reply_to_parsing() { assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: github a/b#5"), Ok(ReplyTo::Github { repo: "a/b".to_string(), issue_number: 5}), ); assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: zulip-public 123 | this is the #1 topic on this zulip instance!"), Ok(ReplyTo::ZulipPublic { stream_id: 123, subject: "this is the #1 topic on this zulip instance!".to_string() }), ); assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: zulip-private 123"), Ok(ReplyTo::ZulipPrivate { user_id: 123 }), ); } enum Command { Bisect { start: Option<String>, end: String, code: String, }, } impl Command { fn parse_comment(comment: &str) -> Result<Option<Command>, String> { let mut lines = comment.lines(); while let Some(line) = lines.next() { let line = line.trim(); if !line.starts_with(BOT_NAME) { continue; } let line = line[BOT_NAME.len()..].trim(); let mut parts = line.split(" ").map(|part| part.trim()); match parts.next() { Some("bisect") => { let mut start = None; let mut end = None; for part in parts { if part.starts_with("start=") { if start.is_some() { return Err(format!("start range specified twice")); } start = Some(part["start=".len()..].to_string()); } else if part.starts_with("end=") { if end.is_some() { return Err(format!("end range specified twice")); } end = Some(part["end=".len()..].to_string()); } else { return Err(format!("unknown command part {:?}", part)); } } let end = end.ok_or("missing end range")?; loop { match lines.next() { Some(line) if line.trim() == "```rust" => break, Some(_) => {} None => { return Err("didn't find repro code".to_string()); } } } let code = lines.take_while(|line| line.trim() != "```").collect::<Vec<_>>().join("\n"); return Ok(Some(Command::Bisect { start, end, code, })); } cmd => { return Err(format!("unknown command {:?}", cmd)); } } } return Ok(None); } } async fn parse_comment(reply_to: &ReplyTo, comment_id: &str, comment: &str) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { match Command::parse_comment(comment)? { Some(Command::Bisect { start, end, code, }) => { let mut cmds = Vec::new(); if let Some(start) = start { cmds.push(format!("--start={}", start));
cmds.push(format!("--end={}", end)); println!("{:?}", &cmds); push_job(&reply_to, comment_id, &cmds, &code).await?; } None => {} } Ok(()) } async fn push_job(reply_to: &ReplyTo, job_id: &str, bisect_cmds: &[String], repro: &str) -> reqwest::Result<()> { // Escape commands and join with whitespace let bisect_cmds = bisect_cmds.iter().map(|cmd| format!("{:?}", cmd)).collect::<Vec<_>>().join(" "); let src_lib = create_blob(repro).await?; let src = create_tree(&[TreeEntry { path: "lib.rs".to_string(), mode: TreeEntryMode::File, type_: TreeEntryType::Blob, sha: src_lib, }]).await?; let github_workflow_bisect = create_blob(&format!( r#" name: Bisect on: - push jobs: build: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - name: Cache cargo installed crates uses: actions/[email protected] with: path: ~/.cargo/bin key: cargo-installed-crates-2 - run: cargo install cargo-bisect-rustc || true - name: Bisect run: cargo bisect-rustc {} --access=github | grep -v "for x86_64-unknown-linux-gnu" || true "#, bisect_cmds, )).await?; let github_workflow = create_tree(&[TreeEntry { path: "bisect.yaml".to_string(), mode: TreeEntryMode::File, type_: TreeEntryType::Blob, sha: github_workflow_bisect, }]).await?; let github = create_tree(&[TreeEntry { path: "workflows".to_string(), mode: TreeEntryMode::Subdirectory, type_: TreeEntryType::Tree, sha: github_workflow, }]).await?; let cargo = create_blob(r#"[package] name = "cargo-bisect-bot-job" version = "0.0.0" edition = "20
}
random_line_split
main.rs
}); let server = Server::bind(&addr).serve(make_svc); // Run this server for... forever! if let Err(e) = server.await { eprintln!("server error: {}", e); } } async fn request_handler(req: Request<Body>) -> Result<Response<Body>, Box<dyn std::error::Error + Send + Sync>> { crate::github::web_hook(req).await.map_err(|err| { println!("error: {}", err); err }) } #[derive(Debug, PartialEq)] enum ReplyTo { Github { repo: String, issue_number: u64, }, ZulipPublic { stream_id: u64, subject: String, }, ZulipPrivate { user_id: u64, }, } impl ReplyTo { async fn comment(&self, body: &str) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { match *self { ReplyTo::Github { ref repo, issue_number } => { crate::github::gh_post_comment(repo, issue_number, body).await?; Ok(()) } ReplyTo::ZulipPublic { stream_id, ref subject } => { crate::zulip::zulip_post_public_message(stream_id, subject, body).await } ReplyTo::ZulipPrivate { user_id } => { crate::zulip::zulip_post_private_message(user_id, body).await } } } const COMMIT_HEADER: &'static str = "X-Bisectbot-Reply-To"; fn to_commit_header(&self) -> String { match *self { ReplyTo::Github { ref repo, issue_number } => { format!("{}: github {}#{}", Self::COMMIT_HEADER, repo, issue_number) } ReplyTo::ZulipPublic { stream_id, ref subject } => { format!("{}: zulip-public {} | {}", Self::COMMIT_HEADER, stream_id, subject) } ReplyTo::ZulipPrivate { user_id } => { format!("{}: zulip-private {}", Self::COMMIT_HEADER, user_id) } } } fn from_commit_message(message: &str) -> Result<Self, ()> { for line in message.lines() { let line = line.trim(); if !line.starts_with(Self::COMMIT_HEADER) { continue; } let header = line[Self::COMMIT_HEADER.len()+1..].trim(); let mut split = header.split(" "); let kind = split.next().ok_or(())?.trim(); let to = split.next().ok_or(())?.trim(); match kind { "github" => { if split.next().is_some() { return Err(()); } let mut split = to.split("#"); let repo = split.next().ok_or(())?.trim(); let issue_number = split.next().ok_or(())?.trim().parse().map_err(|_| ())?; if split.next().is_some() { return Err(()); } return Ok(ReplyTo::Github { repo: repo.to_string(), issue_number, }); } "zulip-public" => { let stream_id: u64 = to.parse().map_err(|_| ())?; let subject = header[header.find("|").ok_or(())?+2..].to_string(); return Ok(ReplyTo::ZulipPublic { stream_id, subject, }) } "zulip-private" => { if split.next().is_some() { return Err(()); } let user_id = to.parse().map_err(|_| ())?; return Ok(ReplyTo::ZulipPrivate { user_id, }); } _ => return Err(()), } } Err(()) } } #[test] fn test_reply_to_parsing() { assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: github a/b#5"), Ok(ReplyTo::Github { repo: "a/b".to_string(), issue_number: 5}), ); assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: zulip-public 123 | this is the #1 topic on this zulip instance!"), Ok(ReplyTo::ZulipPublic { stream_id: 123, subject: "this is the #1 topic on this zulip instance!".to_string() }), ); assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: zulip-private 123"), Ok(ReplyTo::ZulipPrivate { user_id: 123 }), ); } enum Command { Bisect { start: Option<String>, end: String, code: String, }, } impl Command { fn parse_comment(comment: &str) -> Result<Option<Command>, String> { let mut lines = comment.lines(); while let Some(line) = lines.next() { let line = line.trim(); if !line.starts_with(BOT_NAME) { continue; } let line = line[BOT_NAME.len()..].trim(); let mut parts = line.split(" ").map(|part| part.trim()); match parts.next() { Some("bisect") => { let mut start = None; let mut end = None; for part in parts { if part.starts_with("start=")
else if part.starts_with("end=") { if end.is_some() { return Err(format!("end range specified twice")); } end = Some(part["end=".len()..].to_string()); } else { return Err(format!("unknown command part {:?}", part)); } } let end = end.ok_or("missing end range")?; loop { match lines.next() { Some(line) if line.trim() == "```rust" => break, Some(_) => {} None => { return Err("didn't find repro code".to_string()); } } } let code = lines.take_while(|line| line.trim() != "```").collect::<Vec<_>>().join("\n"); return Ok(Some(Command::Bisect { start, end, code, })); } cmd => { return Err(format!("unknown command {:?}", cmd)); } } } return Ok(None); } } async fn parse_comment(reply_to: &ReplyTo, comment_id: &str, comment: &str) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { match Command::parse_comment(comment)? { Some(Command::Bisect { start, end, code, }) => { let mut cmds = Vec::new(); if let Some(start) = start { cmds.push(format!("--start={}", start)); } cmds.push(format!("--end={}", end)); println!("{:?}", &cmds); push_job(&reply_to, comment_id, &cmds, &code).await?; } None => {} } Ok(()) } async fn push_job(reply_to: &ReplyTo, job_id: &str, bisect_cmds: &[String], repro: &str) -> reqwest::Result<()> { // Escape commands and join with whitespace let bisect_cmds = bisect_cmds.iter().map(|cmd| format!("{:?}", cmd)).collect::<Vec<_>>().join(" "); let src_lib = create_blob(repro).await?; let src = create_tree(&[TreeEntry { path: "lib.rs".to_string(), mode: TreeEntryMode::File, type_: TreeEntryType::Blob, sha: src_lib, }]).await?; let github_workflow_bisect = create_blob(&format!( r#" name: Bisect on: - push jobs: build: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - name: Cache cargo installed crates uses: actions/[email protected] with: path: ~/.cargo/bin key: cargo-installed-crates-2 - run: cargo install cargo-bisect-rustc || true - name: Bisect run: cargo bisect-rustc {} --access=github | grep -v "for x86_64-unknown-linux-gnu" || true "#, bisect_cmds, )).await?; let github_workflow = create_tree(&[TreeEntry { path: "bisect.yaml".to_string(), mode: TreeEntryMode::File, type_: TreeEntryType::Blob, sha: github_workflow_bisect, }]).await?; let github = create_tree(&[TreeEntry { path: "workflows".to_string(), mode: TreeEntryMode::Subdirectory, type_: TreeEntryType::Tree, sha: github_workflow, }]).await?; let cargo = create_blob(r#"[package] name = "cargo-bisect-bot-job" version = "0.0.0" edition = "2
{ if start.is_some() { return Err(format!("start range specified twice")); } start = Some(part["start=".len()..].to_string()); }
conditional_block
main.rs
MIT_HEADER, user_id) } } } fn from_commit_message(message: &str) -> Result<Self, ()> { for line in message.lines() { let line = line.trim(); if !line.starts_with(Self::COMMIT_HEADER) { continue; } let header = line[Self::COMMIT_HEADER.len()+1..].trim(); let mut split = header.split(" "); let kind = split.next().ok_or(())?.trim(); let to = split.next().ok_or(())?.trim(); match kind { "github" => { if split.next().is_some() { return Err(()); } let mut split = to.split("#"); let repo = split.next().ok_or(())?.trim(); let issue_number = split.next().ok_or(())?.trim().parse().map_err(|_| ())?; if split.next().is_some() { return Err(()); } return Ok(ReplyTo::Github { repo: repo.to_string(), issue_number, }); } "zulip-public" => { let stream_id: u64 = to.parse().map_err(|_| ())?; let subject = header[header.find("|").ok_or(())?+2..].to_string(); return Ok(ReplyTo::ZulipPublic { stream_id, subject, }) } "zulip-private" => { if split.next().is_some() { return Err(()); } let user_id = to.parse().map_err(|_| ())?; return Ok(ReplyTo::ZulipPrivate { user_id, }); } _ => return Err(()), } } Err(()) } } #[test] fn test_reply_to_parsing() { assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: github a/b#5"), Ok(ReplyTo::Github { repo: "a/b".to_string(), issue_number: 5}), ); assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: zulip-public 123 | this is the #1 topic on this zulip instance!"), Ok(ReplyTo::ZulipPublic { stream_id: 123, subject: "this is the #1 topic on this zulip instance!".to_string() }), ); assert_eq!( ReplyTo::from_commit_message("X-Bisectbot-Reply-To: zulip-private 123"), Ok(ReplyTo::ZulipPrivate { user_id: 123 }), ); } enum Command { Bisect { start: Option<String>, end: String, code: String, }, } impl Command { fn parse_comment(comment: &str) -> Result<Option<Command>, String> { let mut lines = comment.lines(); while let Some(line) = lines.next() { let line = line.trim(); if !line.starts_with(BOT_NAME) { continue; } let line = line[BOT_NAME.len()..].trim(); let mut parts = line.split(" ").map(|part| part.trim()); match parts.next() { Some("bisect") => { let mut start = None; let mut end = None; for part in parts { if part.starts_with("start=") { if start.is_some() { return Err(format!("start range specified twice")); } start = Some(part["start=".len()..].to_string()); } else if part.starts_with("end=") { if end.is_some() { return Err(format!("end range specified twice")); } end = Some(part["end=".len()..].to_string()); } else { return Err(format!("unknown command part {:?}", part)); } } let end = end.ok_or("missing end range")?; loop { match lines.next() { Some(line) if line.trim() == "```rust" => break, Some(_) => {} None => { return Err("didn't find repro code".to_string()); } } } let code = lines.take_while(|line| line.trim() != "```").collect::<Vec<_>>().join("\n"); return Ok(Some(Command::Bisect { start, end, code, })); } cmd => { return Err(format!("unknown command {:?}", cmd)); } } } return Ok(None); } } async fn parse_comment(reply_to: &ReplyTo, comment_id: &str, comment: &str) -> Result<(), Box<dyn std::error::Error + Send + Sync>> { match Command::parse_comment(comment)? { Some(Command::Bisect { start, end, code, }) => { let mut cmds = Vec::new(); if let Some(start) = start { cmds.push(format!("--start={}", start)); } cmds.push(format!("--end={}", end)); println!("{:?}", &cmds); push_job(&reply_to, comment_id, &cmds, &code).await?; } None => {} } Ok(()) } async fn push_job(reply_to: &ReplyTo, job_id: &str, bisect_cmds: &[String], repro: &str) -> reqwest::Result<()> { // Escape commands and join with whitespace let bisect_cmds = bisect_cmds.iter().map(|cmd| format!("{:?}", cmd)).collect::<Vec<_>>().join(" "); let src_lib = create_blob(repro).await?; let src = create_tree(&[TreeEntry { path: "lib.rs".to_string(), mode: TreeEntryMode::File, type_: TreeEntryType::Blob, sha: src_lib, }]).await?; let github_workflow_bisect = create_blob(&format!( r#" name: Bisect on: - push jobs: build: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - name: Cache cargo installed crates uses: actions/[email protected] with: path: ~/.cargo/bin key: cargo-installed-crates-2 - run: cargo install cargo-bisect-rustc || true - name: Bisect run: cargo bisect-rustc {} --access=github | grep -v "for x86_64-unknown-linux-gnu" || true "#, bisect_cmds, )).await?; let github_workflow = create_tree(&[TreeEntry { path: "bisect.yaml".to_string(), mode: TreeEntryMode::File, type_: TreeEntryType::Blob, sha: github_workflow_bisect, }]).await?; let github = create_tree(&[TreeEntry { path: "workflows".to_string(), mode: TreeEntryMode::Subdirectory, type_: TreeEntryType::Tree, sha: github_workflow, }]).await?; let cargo = create_blob(r#"[package] name = "cargo-bisect-bot-job" version = "0.0.0" edition = "2018" publish = false [dependencies] "#).await?; let root = create_tree(&[ TreeEntry { path: "src".to_string(), mode: TreeEntryMode::Subdirectory, type_: TreeEntryType::Tree, sha: src, }, TreeEntry { path: ".github".to_string(), mode: TreeEntryMode::Subdirectory, type_: TreeEntryType::Tree, sha: github, }, TreeEntry { path: "Cargo.toml".to_string(), mode: TreeEntryMode::File, type_: TreeEntryType::Blob, sha: cargo, } ]).await?; let commit = create_commit( &format!("Bisect job for comment id {}\n\n{}", job_id, reply_to.to_commit_header()), &root, &[], ).await?; push_branch(&format!("job-{}", job_id), &commit).await?; Ok(()) } async fn create_blob(content: &str) -> reqwest::Result<String> { let res = crate::github::gh_api_post(&format!("https://api.github.com/repos/{}/git/blobs", JOB_REPO), serde_json::to_string(&serde_json::json!({ "content": content, "encoding": "utf-8", })).unwrap()).await?; let res: serde_json::Value = serde_json::from_str(&res).unwrap(); let sha = res["sha"].as_str().unwrap().to_string(); println!("created blob: {}", sha); Ok(sha) } async fn create_tree(content: &[TreeEntry]) -> reqwest::Result<String> { let res = crate::github::gh_api_post(&format!("https://api.github.com/repos/{}/git/trees", JOB_REPO), serde_json::to_string(&serde_json::json!({ "tree": content, })).unwrap()).await?; let res: serde_json::Value = serde_json::from_str(&res).unwrap(); let sha = res["sha"].as_str().unwrap().to_string(); println!("created tree: {}", sha); Ok(sha) } #[derive(serde::Serialize)] struct
TreeEntry
identifier_name
probe_bert.py
, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num of Combined examples = %d", len(train_domain_dataloader)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_domain_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_domain_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 # AfterBERT best_val_loss = 1e5 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_domain_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # tr_loss += loss.item() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss print(json.dumps({**logs, **{"step": global_step}})) # AfterBERT if args.local_rank in [-1, 0] and results["loss"] < best_val_loss: # AfterBERT train_steps = global_step / len(train_domain_dataloader) # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint".format(train_steps)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) # AfterBERT best_val_loss = results["loss"] output_ckpt_file = os.path.join(output_dir, "best_loss.txt") with open(output_ckpt_file, "w+") as writer: for key in sorted(results.keys()): writer.write("%s = %s\n" % (key, str(results[key]))) writer.write("steps = %s\n" % (str(train_steps))) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break return global_step, tr_loss / global_step def
(args, model, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_domain_examples(args, eval_task, args.aux_name, mode="dev") if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss
evaluate
identifier_name
probe_bert.py
_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num of Combined examples = %d", len(train_domain_dataloader)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_domain_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_domain_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 # AfterBERT best_val_loss = 1e5 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_domain_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # tr_loss += loss.item() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss print(json.dumps({**logs, **{"step": global_step}})) # AfterBERT if args.local_rank in [-1, 0] and results["loss"] < best_val_loss: # AfterBERT
best_val_loss = results["loss"] output_ckpt_file = os.path.join(output_dir, "best_loss.txt") with open(output_ckpt_file, "w+") as writer: for key in sorted(results.keys()): writer.write("%s = %s\n" % (key, str(results[key]))) writer.write("steps = %s\n" % (str(train_steps))) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break return global_step, tr_loss / global_step def evaluate(args, model, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_domain_examples(args, eval_task, args.aux_name, mode="dev") if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean
train_steps = global_step / len(train_domain_dataloader) # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint".format(train_steps)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) # AfterBERT
conditional_block
probe_bert.py
")[0]) epochs_trained = global_step // (len(train_domain_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_domain_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 # AfterBERT best_val_loss = 1e5 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_domain_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # tr_loss += loss.item() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss print(json.dumps({**logs, **{"step": global_step}})) # AfterBERT if args.local_rank in [-1, 0] and results["loss"] < best_val_loss: # AfterBERT train_steps = global_step / len(train_domain_dataloader) # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint".format(train_steps)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) # AfterBERT best_val_loss = results["loss"] output_ckpt_file = os.path.join(output_dir, "best_loss.txt") with open(output_ckpt_file, "w+") as writer: for key in sorted(results.keys()): writer.write("%s = %s\n" % (key, str(results[key]))) writer.write("steps = %s\n" % (str(train_steps))) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break return global_step, tr_loss / global_step def evaluate(args, model, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_domain_examples(args, eval_task, args.aux_name, mode="dev") if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics("domain", preds, out_label_ids) # AfterBERT result.update({"loss": eval_loss}) results.update(result) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "a+") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): writer.write("%s = %s\n" % (key, str(result[key]))) return results def main(args):
if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach()
identifier_body
probe_bert.py
(eval_task_names, eval_outputs_dirs): eval_dataset = load_domain_examples(args, eval_task, args.aux_name, mode="dev") if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics("domain", preds, out_label_ids) # AfterBERT result.update({"loss": eval_loss}) results.update(result) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "a+") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): writer.write("%s = %s\n" % (key, str(result[key]))) return results def main(args): if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Prepare task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) # Prepare auxiliary dataset args.aux_name = args.auxiliary_name.lower() if args.aux_name not in processors: raise ValueError("Task not found: %s" % (args.aux_name)) args.output_mode = "classification" label_list = ["0", "1"] num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, # finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.ckpt_file if args.ckpt_file else args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, # mean_pool=args.mean_pool ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.classifier.reset_parameters() model.to(args.device) for param in model.bert.parameters(): param.requires_grad = False logger.info("Training/evaluation parameters %s", args) # AfterBert cache_after_datasets(args, args.task_name, args.aux_name, tokenizer, test=False) # cache_after_datasets(args, args.task_name, args.aux_name, tokenizer, test=True) # Training if args.do_train: train_domain_dataset = load_domain_examples(args, args.task_name, args.aux_name, mode="train") global_step, tr_loss = train(args, train_domain_dataset, model, tokenizer) # logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", required=False, default='probe_bert_mrpc_pubmed.yaml', help="config file of input data") parser.add_argument("--seed", type=int, default=2319, help="random seed for initialization") parser.add_argument("--lambd", type=float, default=0.01, help="lambda hyperparameter for adversarial loss") parser.add_argument("--mean_pool", type=bool, default=False, help="Whether to use mean pooling of the output hidden states insted of CLS token for the domain classifier") parser.add_argument("--do_train", default=True, help="Whether to run training.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", type=bool, default=False, help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", )
args = parser.parse_args() config = train_options(args.input) # Merge the input arguments with the configuration yaml
random_line_split
dri.go
os.Stat(i915FramebufferFile); err != nil { return nil } return &I915Backend{} } // Round rounds up value for the Intel platforms and all codecs. func (g I915Backend) Round(value int) int { const i915Alignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + i915Alignment - 1) & ^(i915Alignment - 1) } // ReadFramebufferCount tries to open the i915FramebufferFile and count the // amount of lines of dimensions width x height, which corresponds to the amount // of framebuffers allocated in the system. // See https://dri.freedesktop.org/docs/drm/gpu/i915.html func (g I915Backend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(i915FramebufferFile) if err != nil { return framebuffers, errors.Wrap(err, "failed to open dri file") } text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "user size: 1920 x 1080,..." var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, "user size: %d x %d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GenericBackend implements Backend for the Generic case (Intel and AMD). type GenericBackend struct { // Index of the DRM card device file (X in /dev/dri/cardX). index int } func genericBackend() *GenericBackend { for i := 0; i < maxDRMDeviceNumber; i++ { if _, err := os.Stat(fmt.Sprintf(genericFramebufferFilePattern, i)); err == nil { return &GenericBackend{index: i} } } return nil } // Round rounds up value for the Generic Debugfs platforms and all codecs. func (g GenericBackend) Round(value int) int { const genericAlignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + genericAlignment - 1) & ^(genericAlignment - 1) } // ReadFramebufferCount tries to open the DRM device file and count the amount // of lines of dimensions width x height, which corresponds to the amount of // framebuffers allocated in the system. See // https://dri.freedesktop.org/docs/drm/gpu/amdgpu.html func (g GenericBackend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(fmt.Sprintf(genericFramebufferFilePattern, g.index)) if err != nil { return framebuffers, errors.Wrap(err, "failed to open dri file") } text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "...size=1920x1080" var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, " size=%dx%d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GetBackend tries to get the appropriate platform graphics debug backend and // returns it, or returns an error. func GetBackend() (Backend, error) { // TODO(mcasas): In the future we might want to support systems with several GPUs. // Prefer the genericBackend. if be := genericBackend(); be != nil { return be, nil } if be := i915Backend(); be != nil { return be, nil } return nil, errors.New("could not find any Graphics backend") } // compareGraphicsMemoryBeforeAfter compares the graphics memory consumption // before and after running the payload function, using the backend. The amount // of graphics buffer during payload execution must also be non-zero. func compareGraphicsMemoryBeforeAfter(ctx context.Context, payload func() error, backend Backend, roundedWidth, roundedHeight int) (err error) { var before, during, after int if before, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) // Note: We don't wait for the ReadFramebufferCount() to finish, just keep // measuring until we get a non-zero value in during, for further comparison // below. go func() { const pollTimeout = 10 * time.Second const pollInterval = 100 * time.Millisecond _ = testing.Poll(ctx, func(ctx context.Context) error { // TODO(crbug.com/1047514): instead of blindly sampling the amount of // objects during the test and comparing them further down, verify them // here directly. if during, _ = backend.ReadFramebufferCount(ctx, roundedWidth, roundedHeight); during == before { return errors.New("Still waiting for graphics objects") } return nil }, &testing.PollOptions{Timeout: pollTimeout, Interval: pollInterval}) }() err = <-c if err != nil { return err } if after, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } if before != after { return errors.Wrapf(err, "graphics objects of size %d x %d do not coincide: before=%d, after=%d", roundedWidth, roundedHeight, before, after) } if during == before { return errors.Wrapf(err, "graphics objects of size %d x %d did not increase during play back: before=%d, during=%d", roundedWidth, roundedHeight, before, during) } testing.ContextLogf(ctx, "Graphics objects of size %d x %d before=%d, during=%d, after=%d", roundedWidth, roundedHeight, before, during, after) return nil } // monitorGraphicsMemoryDuring verifies that the graphics memory consumption // while running the payload function, using the backend, does not spiral out // of control, by comparing it to the appropriate threshold. func monitorGraphicsMemoryDuring(ctx context.Context, payload func() error, backend Backend, roundedSizes []Size, threshold int) (err error) { testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) const pollInterval = 1 * time.Second ticker := time.NewTicker(pollInterval) for { select { case <-ctx.Done(): ticker.Stop() return errors.New("test timed out") case pErr := <-c: ticker.Stop() return pErr case <-ticker.C: for _, roundedSize := range roundedSizes { count, _ := backend.ReadFramebufferCount(ctx, roundedSize.Width, roundedSize.Height) if count > threshold { // TODO(mcasas): find a way to kill payload() at this point. ticker.Stop() err := errors.Errorf("too many objects of size %d x %d, got: %d, threshold: %d", roundedSize.Width, roundedSize.Height, count, threshold) select { case <-c: case <-ctx.Done(): } return err } } } } } // VerifyGraphicsMemory uses the backend to detect memory leaks during or after // the execution of payload. func VerifyGraphicsMemory(ctx context.Context, payload func() error, backend Backend, sizes []Size) (err error) { testing.ContextLogf(ctx, "Cooling down %v after log in", coolDownTimeAfterLogin) if err := testing.Sleep(ctx, coolDownTimeAfterLogin); err != nil { return errors.Wrap(err, "error while cooling down after log in") } var roundedSizes []Size for _, size := range sizes { roundedSizes = append(roundedSizes, Size{Width: backend.Round(size.Width), Height: backend.Round(size.Height)}) } if len(sizes) == 1 { return compareGraphicsMemoryBeforeAfter(ctx, payload, backend, roundedSizes[0].Width, roundedSizes[0].Height) } return monitorGraphicsMemoryDuring(ctx, payload, backend, roundedSizes, maxGraphicsObjects) } // readStableObjectCount waits until a given graphics object count obtained with // backend is stable, up to a certain timeout, progressively relaxing a // similarity threshold criteria. func
readStableObjectCount
identifier_name
dri.go
of framebuffers of width // and height dimensions allocated by the Backend. ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, err error) } // I915Backend implements Backend for the Intel i915 case. type I915Backend struct{} func i915Backend() *I915Backend
// Round rounds up value for the Intel platforms and all codecs. func (g I915Backend) Round(value int) int { const i915Alignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + i915Alignment - 1) & ^(i915Alignment - 1) } // ReadFramebufferCount tries to open the i915FramebufferFile and count the // amount of lines of dimensions width x height, which corresponds to the amount // of framebuffers allocated in the system. // See https://dri.freedesktop.org/docs/drm/gpu/i915.html func (g I915Backend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(i915FramebufferFile) if err != nil { return framebuffers, errors.Wrap(err, "failed to open dri file") } text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "user size: 1920 x 1080,..." var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, "user size: %d x %d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GenericBackend implements Backend for the Generic case (Intel and AMD). type GenericBackend struct { // Index of the DRM card device file (X in /dev/dri/cardX). index int } func genericBackend() *GenericBackend { for i := 0; i < maxDRMDeviceNumber; i++ { if _, err := os.Stat(fmt.Sprintf(genericFramebufferFilePattern, i)); err == nil { return &GenericBackend{index: i} } } return nil } // Round rounds up value for the Generic Debugfs platforms and all codecs. func (g GenericBackend) Round(value int) int { const genericAlignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + genericAlignment - 1) & ^(genericAlignment - 1) } // ReadFramebufferCount tries to open the DRM device file and count the amount // of lines of dimensions width x height, which corresponds to the amount of // framebuffers allocated in the system. See // https://dri.freedesktop.org/docs/drm/gpu/amdgpu.html func (g GenericBackend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(fmt.Sprintf(genericFramebufferFilePattern, g.index)) if err != nil { return framebuffers, errors.Wrap(err, "failed to open dri file") } text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "...size=1920x1080" var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, " size=%dx%d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GetBackend tries to get the appropriate platform graphics debug backend and // returns it, or returns an error. func GetBackend() (Backend, error) { // TODO(mcasas): In the future we might want to support systems with several GPUs. // Prefer the genericBackend. if be := genericBackend(); be != nil { return be, nil } if be := i915Backend(); be != nil { return be, nil } return nil, errors.New("could not find any Graphics backend") } // compareGraphicsMemoryBeforeAfter compares the graphics memory consumption // before and after running the payload function, using the backend. The amount // of graphics buffer during payload execution must also be non-zero. func compareGraphicsMemoryBeforeAfter(ctx context.Context, payload func() error, backend Backend, roundedWidth, roundedHeight int) (err error) { var before, during, after int if before, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) // Note: We don't wait for the ReadFramebufferCount() to finish, just keep // measuring until we get a non-zero value in during, for further comparison // below. go func() { const pollTimeout = 10 * time.Second const pollInterval = 100 * time.Millisecond _ = testing.Poll(ctx, func(ctx context.Context) error { // TODO(crbug.com/1047514): instead of blindly sampling the amount of // objects during the test and comparing them further down, verify them // here directly. if during, _ = backend.ReadFramebufferCount(ctx, roundedWidth, roundedHeight); during == before { return errors.New("Still waiting for graphics objects") } return nil }, &testing.PollOptions{Timeout: pollTimeout, Interval: pollInterval}) }() err = <-c if err != nil { return err } if after, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } if before != after { return errors.Wrapf(err, "graphics objects of size %d x %d do not coincide: before=%d, after=%d", roundedWidth, roundedHeight, before, after) } if during == before { return errors.Wrapf(err, "graphics objects of size %d x %d did not increase during play back: before=%d, during=%d", roundedWidth, roundedHeight, before, during) } testing.ContextLogf(ctx, "Graphics objects of size %d x %d before=%d, during=%d, after=%d", roundedWidth, roundedHeight, before, during, after) return nil } // monitorGraphicsMemoryDuring verifies that the graphics memory consumption // while running the payload function, using the backend, does not spiral out // of control, by comparing it to the appropriate threshold. func monitorGraphicsMemoryDuring(ctx context.Context, payload func() error, backend Backend, roundedSizes []Size, threshold int) (err error) { testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) const pollInterval = 1 * time.Second ticker := time.NewTicker(pollInterval) for { select { case <-ctx.Done(): ticker.Stop() return errors.New("test timed out") case pErr := <-c: ticker.Stop() return pErr case <-ticker.C: for _, roundedSize := range roundedSizes { count, _ := backend.ReadFramebufferCount(ctx, roundedSize.Width, roundedSize.Height) if count > threshold { // TODO(mcasas): find a way to kill payload() at this point. ticker.Stop() err := errors.Errorf("too many objects of size %d x %d, got: %d, threshold: %d", roundedSize.Width, roundedSize.Height, count, threshold) select { case <-c: case <-ctx.Done(): } return err } } } } } // VerifyGraphicsMemory uses the backend to detect memory leaks during or after // the execution of payload. func VerifyGraphicsMemory(ctx context.Context, payload func() error, backend Backend, sizes []Size) (err error) { testing.ContextLogf(ctx, "Cooling down %v after log in", coolDownTimeAfterLogin) if err := testing.Sleep(ctx, coolDownTimeAfterLogin); err != nil { return errors.Wrap(err, "error while cooling down after log in") } var roundedSizes []Size for _, size := range sizes { roundedSizes = append(roundedSizes, Size{Width: backend.Round(size.Width), Height: backend.Round(size.Height)}) } if len(sizes) == 1 { return compareGraphicsMemoryBeforeAfter
{ if _, err := os.Stat(i915FramebufferFile); err != nil { return nil } return &I915Backend{} }
identifier_body
dri.go
number of framebuffers of width // and height dimensions allocated by the Backend. ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, err error) } // I915Backend implements Backend for the Intel i915 case. type I915Backend struct{}
if _, err := os.Stat(i915FramebufferFile); err != nil { return nil } return &I915Backend{} } // Round rounds up value for the Intel platforms and all codecs. func (g I915Backend) Round(value int) int { const i915Alignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + i915Alignment - 1) & ^(i915Alignment - 1) } // ReadFramebufferCount tries to open the i915FramebufferFile and count the // amount of lines of dimensions width x height, which corresponds to the amount // of framebuffers allocated in the system. // See https://dri.freedesktop.org/docs/drm/gpu/i915.html func (g I915Backend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(i915FramebufferFile) if err != nil { return framebuffers, errors.Wrap(err, "failed to open dri file") } text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "user size: 1920 x 1080,..." var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, "user size: %d x %d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GenericBackend implements Backend for the Generic case (Intel and AMD). type GenericBackend struct { // Index of the DRM card device file (X in /dev/dri/cardX). index int } func genericBackend() *GenericBackend { for i := 0; i < maxDRMDeviceNumber; i++ { if _, err := os.Stat(fmt.Sprintf(genericFramebufferFilePattern, i)); err == nil { return &GenericBackend{index: i} } } return nil } // Round rounds up value for the Generic Debugfs platforms and all codecs. func (g GenericBackend) Round(value int) int { const genericAlignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + genericAlignment - 1) & ^(genericAlignment - 1) } // ReadFramebufferCount tries to open the DRM device file and count the amount // of lines of dimensions width x height, which corresponds to the amount of // framebuffers allocated in the system. See // https://dri.freedesktop.org/docs/drm/gpu/amdgpu.html func (g GenericBackend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(fmt.Sprintf(genericFramebufferFilePattern, g.index)) if err != nil { return framebuffers, errors.Wrap(err, "failed to open dri file") } text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "...size=1920x1080" var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, " size=%dx%d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GetBackend tries to get the appropriate platform graphics debug backend and // returns it, or returns an error. func GetBackend() (Backend, error) { // TODO(mcasas): In the future we might want to support systems with several GPUs. // Prefer the genericBackend. if be := genericBackend(); be != nil { return be, nil } if be := i915Backend(); be != nil { return be, nil } return nil, errors.New("could not find any Graphics backend") } // compareGraphicsMemoryBeforeAfter compares the graphics memory consumption // before and after running the payload function, using the backend. The amount // of graphics buffer during payload execution must also be non-zero. func compareGraphicsMemoryBeforeAfter(ctx context.Context, payload func() error, backend Backend, roundedWidth, roundedHeight int) (err error) { var before, during, after int if before, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) // Note: We don't wait for the ReadFramebufferCount() to finish, just keep // measuring until we get a non-zero value in during, for further comparison // below. go func() { const pollTimeout = 10 * time.Second const pollInterval = 100 * time.Millisecond _ = testing.Poll(ctx, func(ctx context.Context) error { // TODO(crbug.com/1047514): instead of blindly sampling the amount of // objects during the test and comparing them further down, verify them // here directly. if during, _ = backend.ReadFramebufferCount(ctx, roundedWidth, roundedHeight); during == before { return errors.New("Still waiting for graphics objects") } return nil }, &testing.PollOptions{Timeout: pollTimeout, Interval: pollInterval}) }() err = <-c if err != nil { return err } if after, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } if before != after { return errors.Wrapf(err, "graphics objects of size %d x %d do not coincide: before=%d, after=%d", roundedWidth, roundedHeight, before, after) } if during == before { return errors.Wrapf(err, "graphics objects of size %d x %d did not increase during play back: before=%d, during=%d", roundedWidth, roundedHeight, before, during) } testing.ContextLogf(ctx, "Graphics objects of size %d x %d before=%d, during=%d, after=%d", roundedWidth, roundedHeight, before, during, after) return nil } // monitorGraphicsMemoryDuring verifies that the graphics memory consumption // while running the payload function, using the backend, does not spiral out // of control, by comparing it to the appropriate threshold. func monitorGraphicsMemoryDuring(ctx context.Context, payload func() error, backend Backend, roundedSizes []Size, threshold int) (err error) { testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) const pollInterval = 1 * time.Second ticker := time.NewTicker(pollInterval) for { select { case <-ctx.Done(): ticker.Stop() return errors.New("test timed out") case pErr := <-c: ticker.Stop() return pErr case <-ticker.C: for _, roundedSize := range roundedSizes { count, _ := backend.ReadFramebufferCount(ctx, roundedSize.Width, roundedSize.Height) if count > threshold { // TODO(mcasas): find a way to kill payload() at this point. ticker.Stop() err := errors.Errorf("too many objects of size %d x %d, got: %d, threshold: %d", roundedSize.Width, roundedSize.Height, count, threshold) select { case <-c: case <-ctx.Done(): } return err } } } } } // VerifyGraphicsMemory uses the backend to detect memory leaks during or after // the execution of payload. func VerifyGraphicsMemory(ctx context.Context, payload func() error, backend Backend, sizes []Size) (err error) { testing.ContextLogf(ctx, "Cooling down %v after log in", coolDownTimeAfterLogin) if err := testing.Sleep(ctx, coolDownTimeAfterLogin); err != nil { return errors.Wrap(err, "error while cooling down after log in") } var roundedSizes []Size for _, size := range sizes { roundedSizes = append(roundedSizes, Size{Width: backend.Round(size.Width), Height: backend.Round(size.Height)}) } if len(sizes) == 1 { return compareGraphicsMemoryBeforeAfter(ctx
func i915Backend() *I915Backend {
random_line_split
dri.go
of framebuffers of width // and height dimensions allocated by the Backend. ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, err error) } // I915Backend implements Backend for the Intel i915 case. type I915Backend struct{} func i915Backend() *I915Backend { if _, err := os.Stat(i915FramebufferFile); err != nil { return nil } return &I915Backend{} } // Round rounds up value for the Intel platforms and all codecs. func (g I915Backend) Round(value int) int { const i915Alignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + i915Alignment - 1) & ^(i915Alignment - 1) } // ReadFramebufferCount tries to open the i915FramebufferFile and count the // amount of lines of dimensions width x height, which corresponds to the amount // of framebuffers allocated in the system. // See https://dri.freedesktop.org/docs/drm/gpu/i915.html func (g I915Backend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(i915FramebufferFile) if err != nil { return framebuffers, errors.Wrap(err, "failed to open dri file") } text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "user size: 1920 x 1080,..." var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, "user size: %d x %d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GenericBackend implements Backend for the Generic case (Intel and AMD). type GenericBackend struct { // Index of the DRM card device file (X in /dev/dri/cardX). index int } func genericBackend() *GenericBackend { for i := 0; i < maxDRMDeviceNumber; i++ { if _, err := os.Stat(fmt.Sprintf(genericFramebufferFilePattern, i)); err == nil { return &GenericBackend{index: i} } } return nil } // Round rounds up value for the Generic Debugfs platforms and all codecs. func (g GenericBackend) Round(value int) int { const genericAlignment = 16 // Inspired by Chromium's base/bits.h:Align() function. return (value + genericAlignment - 1) & ^(genericAlignment - 1) } // ReadFramebufferCount tries to open the DRM device file and count the amount // of lines of dimensions width x height, which corresponds to the amount of // framebuffers allocated in the system. See // https://dri.freedesktop.org/docs/drm/gpu/amdgpu.html func (g GenericBackend) ReadFramebufferCount(ctx context.Context, width, height int) (framebuffers int, e error) { f, err := os.Open(fmt.Sprintf(genericFramebufferFilePattern, g.index)) if err != nil
text, err := ioutil.ReadAll(f) if err != nil { return framebuffers, errors.Wrap(err, "failed to read dri file") } lines := strings.Split(string(text), "\n") for _, line := range lines { // The line we're looking for looks like "...size=1920x1080" var fbWidth, fbHeight int if _, err := fmt.Sscanf(line, " size=%dx%d", &fbWidth, &fbHeight); err != nil { continue } if fbWidth == width && fbHeight == height { framebuffers++ } } return } // GetBackend tries to get the appropriate platform graphics debug backend and // returns it, or returns an error. func GetBackend() (Backend, error) { // TODO(mcasas): In the future we might want to support systems with several GPUs. // Prefer the genericBackend. if be := genericBackend(); be != nil { return be, nil } if be := i915Backend(); be != nil { return be, nil } return nil, errors.New("could not find any Graphics backend") } // compareGraphicsMemoryBeforeAfter compares the graphics memory consumption // before and after running the payload function, using the backend. The amount // of graphics buffer during payload execution must also be non-zero. func compareGraphicsMemoryBeforeAfter(ctx context.Context, payload func() error, backend Backend, roundedWidth, roundedHeight int) (err error) { var before, during, after int if before, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) // Note: We don't wait for the ReadFramebufferCount() to finish, just keep // measuring until we get a non-zero value in during, for further comparison // below. go func() { const pollTimeout = 10 * time.Second const pollInterval = 100 * time.Millisecond _ = testing.Poll(ctx, func(ctx context.Context) error { // TODO(crbug.com/1047514): instead of blindly sampling the amount of // objects during the test and comparing them further down, verify them // here directly. if during, _ = backend.ReadFramebufferCount(ctx, roundedWidth, roundedHeight); during == before { return errors.New("Still waiting for graphics objects") } return nil }, &testing.PollOptions{Timeout: pollTimeout, Interval: pollInterval}) }() err = <-c if err != nil { return err } if after, err = readStableObjectCount(ctx, backend, roundedWidth, roundedHeight); err != nil { return errors.Wrap(err, "failed to get the framebuffer object count") } if before != after { return errors.Wrapf(err, "graphics objects of size %d x %d do not coincide: before=%d, after=%d", roundedWidth, roundedHeight, before, after) } if during == before { return errors.Wrapf(err, "graphics objects of size %d x %d did not increase during play back: before=%d, during=%d", roundedWidth, roundedHeight, before, during) } testing.ContextLogf(ctx, "Graphics objects of size %d x %d before=%d, during=%d, after=%d", roundedWidth, roundedHeight, before, during, after) return nil } // monitorGraphicsMemoryDuring verifies that the graphics memory consumption // while running the payload function, using the backend, does not spiral out // of control, by comparing it to the appropriate threshold. func monitorGraphicsMemoryDuring(ctx context.Context, payload func() error, backend Backend, roundedSizes []Size, threshold int) (err error) { testing.ContextLog(ctx, "Running the payload() and measuring the number of graphics objects during its execution") c := make(chan error) go func(c chan error) { c <- payload() }(c) const pollInterval = 1 * time.Second ticker := time.NewTicker(pollInterval) for { select { case <-ctx.Done(): ticker.Stop() return errors.New("test timed out") case pErr := <-c: ticker.Stop() return pErr case <-ticker.C: for _, roundedSize := range roundedSizes { count, _ := backend.ReadFramebufferCount(ctx, roundedSize.Width, roundedSize.Height) if count > threshold { // TODO(mcasas): find a way to kill payload() at this point. ticker.Stop() err := errors.Errorf("too many objects of size %d x %d, got: %d, threshold: %d", roundedSize.Width, roundedSize.Height, count, threshold) select { case <-c: case <-ctx.Done(): } return err } } } } } // VerifyGraphicsMemory uses the backend to detect memory leaks during or after // the execution of payload. func VerifyGraphicsMemory(ctx context.Context, payload func() error, backend Backend, sizes []Size) (err error) { testing.ContextLogf(ctx, "Cooling down %v after log in", coolDownTimeAfterLogin) if err := testing.Sleep(ctx, coolDownTimeAfterLogin); err != nil { return errors.Wrap(err, "error while cooling down after log in") } var roundedSizes []Size for _, size := range sizes { roundedSizes = append(roundedSizes, Size{Width: backend.Round(size.Width), Height: backend.Round(size.Height)}) } if len(sizes) == 1 { return compareGraphicsMemoryBeforeAfter
{ return framebuffers, errors.Wrap(err, "failed to open dri file") }
conditional_block
context.rs
(pub u64); #[derive(Copy, Clone, Debug, Hash, PartialEq)] pub struct PassHandle(pub u64); #[derive(Copy, Clone, Debug, Hash, PartialEq)] pub struct ImageHandle(pub u64); #[derive(Copy, Clone, Debug, Hash, PartialEq)] pub struct ShaderHandle(pub u64); pub struct Context { window: winit::window::Window, event_loop: winit::event_loop::EventLoop<()>, // Graph being built in the current frame pub builder_passes: Vec<(PassHandle, BuilderPass)>, pub shader_list: ShaderList, // TODO: Move these to the graph builder instead? pub image_list: ImageList, pub buffer_list: BufferList, graph_cache: Vec<(Graph, GraphHandle)>, // (graph, hash) // TODO: Make this a proper LRU and move it to its own file pub command_pool: vk::CommandPool, pub sync_idx: usize, // Index of the synchronization primitives pub swapchain_idx: usize, // Index of the swapchain frame _watcher: notify::RecommendedWatcher, // Need to keep this alive to keep the receiver alive watch_rx: std::sync::mpsc::Receiver<notify::DebouncedEvent>, pub command_buffers: Vec<vk::CommandBuffer>, pub facade: Facade, // Resolution-dependent apparatus pub debug_utils: DebugUtils, pub gpu: Gpu, pub basis: Basis, } impl Drop for Context { fn drop(&mut self) { unsafe { self.gpu .device .device_wait_idle() .expect("Failed to wait device idle!"); self.gpu .device .free_command_buffers(self.command_pool, &self.command_buffers); self.gpu .device .destroy_command_pool(self.command_pool, None); self.facade.destroy(&mut self.image_list); } } } impl Context { pub fn recreate_resolution_dependent_state(&mut self) { unsafe { self.gpu .device .device_wait_idle() .expect("Failed to wait device idle.") }; // Recreate swapchain self.facade.destroy(&mut self.image_list); self.facade = Facade::new( &self.basis, &self.gpu, &self.window, &mut self.image_list, &self.debug_utils, ); // Recreate the images which depend on the resolution of the swapchain for i in 0..self.image_list.list.len() { let (_, internal_image) = &mut self.image_list.list[i]; if let ImageKind::RelativeSized { scale } = internal_image.kind { let w = (self.facade.swapchain_width as f32 * scale) as u32; let h = (self.facade.swapchain_height as f32 * scale) as u32; internal_image.image = Image::new( &internal_image.image.name, w, h, internal_image.image.format, internal_image.image.usage, internal_image.image.aspect_flags, &self.gpu, &self.debug_utils, ); } } } pub fn new() -> Context { const APP_NAME: &str = ""; // # Init window let event_loop = EventLoop::new(); let window = { winit::window::WindowBuilder::new() .with_title(APP_NAME) .with_inner_size(winit::dpi::LogicalSize::new(800, 600)) .with_maximized(true) .build(&event_loop) .expect("Failed to create window.") }; let basis = Basis::new(APP_NAME, &window); let gpu = Gpu::new(&basis); let debug_utils = DebugUtils::new(&basis, &gpu, ENABLE_DEBUG_MESSENGER_CALLBACK); // # Create command pool let command_pool = { let info = vk::CommandPoolCreateInfo::builder() .flags(vk::CommandPoolCreateFlags::RESET_COMMAND_BUFFER) .queue_family_index(gpu.graphics_queue_idx); unsafe { gpu.device .create_command_pool(&info, None) .expect("Failed to create command pool") } }; let shader_list = ShaderList::new(gpu.device.clone()); // TODO: Move this up? let mut image_list = ImageList::new(); let facade = Facade::new(&basis, &gpu, &window, &mut image_list, &debug_utils); let buffer_list = BufferList::new(); // # Allocate command buffers let command_buffers = { let info = vk::CommandBufferAllocateInfo::builder() .command_pool(command_pool) .level(vk::CommandBufferLevel::PRIMARY) .command_buffer_count(facade.num_frames as u32); unsafe { gpu.device .allocate_command_buffers(&info) .expect("Failed to allocate command buffer.") } }; // Add expect messages to all these unwraps let (watcher, watch_rx) = { use notify::{RecommendedWatcher, RecursiveMode, Watcher}; use std::sync::mpsc::channel; use std::time::Duration; let (tx, rx) = channel(); let mut watcher: RecommendedWatcher = Watcher::new(tx, Duration::from_secs(2)).unwrap(); watcher.watch("./assets", RecursiveMode::Recursive).unwrap(); (watcher, rx) }; Context { window, event_loop, builder_passes: Vec::new(), shader_list, image_list, buffer_list, graph_cache: Vec::new(), command_pool, sync_idx: 0, swapchain_idx: 0, _watcher: watcher, watch_rx, command_buffers, facade, debug_utils, gpu, basis, } } pub fn build_graph(&mut self) -> GraphHandle { // Get the hash of the graph builder let req_hash: u64 = { let mut hasher = DefaultHasher::new(); self.builder_passes.hash(&mut hasher); hasher.finish() }; // Try finding the requested graph in the cache let opt_idx = self .graph_cache .iter() .position(|(_, cached_hash)| cached_hash.0 == req_hash); if opt_idx.is_none() { // The requested graph doesn't exist. Build it and add it to the cache. println!("Adding graph to cache"); self.graph_cache.push(( Graph::new( &self.gpu, &self.builder_passes, &self.shader_list, &self.buffer_list, &self.image_list, ), GraphHandle(req_hash), )); } GraphHandle(req_hash) } pub fn begin_frame(&mut self) -> bool { // Clear the passes of the current graph self.builder_passes.clear(); // Execute the event loop let mut is_running = true; let mut resize_needed = false; let swapchain_width = self.facade.swapchain_width; let swapchain_height = self.facade.swapchain_height; self.event_loop.run_return(|event, _, control_flow| { *control_flow = ControlFlow::Wait; match event { Event::WindowEvent { event, .. } => match event { WindowEvent::CloseRequested => is_running = false, #[allow(clippy::match_single_binding)] // TODO: Simplify this WindowEvent::KeyboardInput { input, .. } => match input { KeyboardInput { virtual_keycode, state, .. } => match (virtual_keycode, state) { (Some(VirtualKeyCode::Escape), ElementState::Pressed) | (Some(VirtualKeyCode::Return), ElementState::Pressed) => { is_running = false; } _ => {} }, }, WindowEvent::Resized(physical_size) => { if swapchain_width != physical_size.width || swapchain_height != physical_size.height { resize_needed = true; } } _ => {} }, Event::MainEventsCleared => { *control_flow = ControlFlow::Exit; } _ => (), } }); // This mechanism is need on Windows: if resize_needed { self.recreate_resolution_dependent_state(); } // This mechanism suffices on Linux: // Acquiring the swapchain image fails if the window has been resized. If this happens, we need // to loop over and recreate the resolution-dependent state, and then try again. let mut opt_frame_idx = None; loop { let wait_fences = [self.facade.command_buffer_complete_fences[self.sync_idx]]; unsafe { self.gpu .device .wait_for_fences(&wait_fences, true, std::u64::MAX) .expect("Failed to wait for Fence."); let result = self.facade.ext_swapchain.acquire_next_image( self.facade.swapchain, std::u64::MAX, self.facade.image_available_semaphores[self.sync_idx], vk::Fence::null(), ); match result { Ok((idx, _is_suboptimal)) => { opt_frame_idx = Some(idx as usize); } Err(error_code) => { match error_code { vk::
GraphHandle
identifier_name
context.rs
.expect("Failed to wait device idle.") }; // Recreate swapchain self.facade.destroy(&mut self.image_list); self.facade = Facade::new( &self.basis, &self.gpu, &self.window,
&mut self.image_list, &self.debug_utils, ); // Recreate the images which depend on the resolution of the swapchain for i in 0..self.image_list.list.len() { let (_, internal_image) = &mut self.image_list.list[i]; if let ImageKind::RelativeSized { scale } = internal_image.kind { let w = (self.facade.swapchain_width as f32 * scale) as u32; let h = (self.facade.swapchain_height as f32 * scale) as u32; internal_image.image = Image::new( &internal_image.image.name, w, h, internal_image.image.format, internal_image.image.usage, internal_image.image.aspect_flags, &self.gpu, &self.debug_utils, ); } } } pub fn new() -> Context { const APP_NAME: &str = ""; // # Init window let event_loop = EventLoop::new(); let window = { winit::window::WindowBuilder::new() .with_title(APP_NAME) .with_inner_size(winit::dpi::LogicalSize::new(800, 600)) .with_maximized(true) .build(&event_loop) .expect("Failed to create window.") }; let basis = Basis::new(APP_NAME, &window); let gpu = Gpu::new(&basis); let debug_utils = DebugUtils::new(&basis, &gpu, ENABLE_DEBUG_MESSENGER_CALLBACK); // # Create command pool let command_pool = { let info = vk::CommandPoolCreateInfo::builder() .flags(vk::CommandPoolCreateFlags::RESET_COMMAND_BUFFER) .queue_family_index(gpu.graphics_queue_idx); unsafe { gpu.device .create_command_pool(&info, None) .expect("Failed to create command pool") } }; let shader_list = ShaderList::new(gpu.device.clone()); // TODO: Move this up? let mut image_list = ImageList::new(); let facade = Facade::new(&basis, &gpu, &window, &mut image_list, &debug_utils); let buffer_list = BufferList::new(); // # Allocate command buffers let command_buffers = { let info = vk::CommandBufferAllocateInfo::builder() .command_pool(command_pool) .level(vk::CommandBufferLevel::PRIMARY) .command_buffer_count(facade.num_frames as u32); unsafe { gpu.device .allocate_command_buffers(&info) .expect("Failed to allocate command buffer.") } }; // Add expect messages to all these unwraps let (watcher, watch_rx) = { use notify::{RecommendedWatcher, RecursiveMode, Watcher}; use std::sync::mpsc::channel; use std::time::Duration; let (tx, rx) = channel(); let mut watcher: RecommendedWatcher = Watcher::new(tx, Duration::from_secs(2)).unwrap(); watcher.watch("./assets", RecursiveMode::Recursive).unwrap(); (watcher, rx) }; Context { window, event_loop, builder_passes: Vec::new(), shader_list, image_list, buffer_list, graph_cache: Vec::new(), command_pool, sync_idx: 0, swapchain_idx: 0, _watcher: watcher, watch_rx, command_buffers, facade, debug_utils, gpu, basis, } } pub fn build_graph(&mut self) -> GraphHandle { // Get the hash of the graph builder let req_hash: u64 = { let mut hasher = DefaultHasher::new(); self.builder_passes.hash(&mut hasher); hasher.finish() }; // Try finding the requested graph in the cache let opt_idx = self .graph_cache .iter() .position(|(_, cached_hash)| cached_hash.0 == req_hash); if opt_idx.is_none() { // The requested graph doesn't exist. Build it and add it to the cache. println!("Adding graph to cache"); self.graph_cache.push(( Graph::new( &self.gpu, &self.builder_passes, &self.shader_list, &self.buffer_list, &self.image_list, ), GraphHandle(req_hash), )); } GraphHandle(req_hash) } pub fn begin_frame(&mut self) -> bool { // Clear the passes of the current graph self.builder_passes.clear(); // Execute the event loop let mut is_running = true; let mut resize_needed = false; let swapchain_width = self.facade.swapchain_width; let swapchain_height = self.facade.swapchain_height; self.event_loop.run_return(|event, _, control_flow| { *control_flow = ControlFlow::Wait; match event { Event::WindowEvent { event, .. } => match event { WindowEvent::CloseRequested => is_running = false, #[allow(clippy::match_single_binding)] // TODO: Simplify this WindowEvent::KeyboardInput { input, .. } => match input { KeyboardInput { virtual_keycode, state, .. } => match (virtual_keycode, state) { (Some(VirtualKeyCode::Escape), ElementState::Pressed) | (Some(VirtualKeyCode::Return), ElementState::Pressed) => { is_running = false; } _ => {} }, }, WindowEvent::Resized(physical_size) => { if swapchain_width != physical_size.width || swapchain_height != physical_size.height { resize_needed = true; } } _ => {} }, Event::MainEventsCleared => { *control_flow = ControlFlow::Exit; } _ => (), } }); // This mechanism is need on Windows: if resize_needed { self.recreate_resolution_dependent_state(); } // This mechanism suffices on Linux: // Acquiring the swapchain image fails if the window has been resized. If this happens, we need // to loop over and recreate the resolution-dependent state, and then try again. let mut opt_frame_idx = None; loop { let wait_fences = [self.facade.command_buffer_complete_fences[self.sync_idx]]; unsafe { self.gpu .device .wait_for_fences(&wait_fences, true, std::u64::MAX) .expect("Failed to wait for Fence."); let result = self.facade.ext_swapchain.acquire_next_image( self.facade.swapchain, std::u64::MAX, self.facade.image_available_semaphores[self.sync_idx], vk::Fence::null(), ); match result { Ok((idx, _is_suboptimal)) => { opt_frame_idx = Some(idx as usize); } Err(error_code) => { match error_code { vk::Result::ERROR_OUT_OF_DATE_KHR => { // Window is resized. Recreate the swapchain // and exit early without drawing this frame. self.recreate_resolution_dependent_state(); } _ => panic!("Failed to acquire swapchain image."), } } } } if opt_frame_idx.is_some() { break; } } self.swapchain_idx = opt_frame_idx.unwrap(); let cmd_buf = self.command_buffers[self.swapchain_idx]; // Reset command buffer unsafe { self.gpu .device .reset_command_buffer(cmd_buf, vk::CommandBufferResetFlags::empty()) .unwrap(); } // Begin command buffer. TODO: Is this in the right place? let command_buffer_begin_info = vk::CommandBufferBeginInfo::builder() .flags(vk::CommandBufferUsageFlags::SIMULTANEOUS_USE); unsafe { self.gpu .device .begin_command_buffer(cmd_buf, &command_buffer_begin_info) .expect("Failed to begin recording command buffer."); } /* Naming the command buffer doesn't seem to work on creating it, so we name it on every begin frame instead.*/ self.debug_utils .set_command_buffer_name(cmd_buf, &format!("command_buffer_{}", self.swapchain_idx)); is_running } pub fn end_frame(&mut self) { // End command buffer. TODO: Is this in the right place? unsafe { self.gpu .device .end_command_buffer(self.command_buffers[self.swapchain_idx]) .expect("Failed to end recording command buffer."); } let wait_stages = [vk::PipelineStageFlags::COLOR_ATTACHMENT_OUTPUT]; let wait_semaphores = [self.facade.image_available_semaphores[self.sync_idx]]; let signal_semaphores = [self.facade.render_finished_semaphores[self.sync_idx]]; let command_buffers = [self.command_buffers[self.swapchain_idx as usize]]; let submit_infos = [vk::SubmitInfo { wait_semaphore_count: wait_semaphores.len() as u32, p_wait_semaphores: wait
random_line_split
context.rs
|| swapchain_height != physical_size.height { resize_needed = true; } } _ => {} }, Event::MainEventsCleared => { *control_flow = ControlFlow::Exit; } _ => (), } }); // This mechanism is need on Windows: if resize_needed { self.recreate_resolution_dependent_state(); } // This mechanism suffices on Linux: // Acquiring the swapchain image fails if the window has been resized. If this happens, we need // to loop over and recreate the resolution-dependent state, and then try again. let mut opt_frame_idx = None; loop { let wait_fences = [self.facade.command_buffer_complete_fences[self.sync_idx]]; unsafe { self.gpu .device .wait_for_fences(&wait_fences, true, std::u64::MAX) .expect("Failed to wait for Fence."); let result = self.facade.ext_swapchain.acquire_next_image( self.facade.swapchain, std::u64::MAX, self.facade.image_available_semaphores[self.sync_idx], vk::Fence::null(), ); match result { Ok((idx, _is_suboptimal)) => { opt_frame_idx = Some(idx as usize); } Err(error_code) => { match error_code { vk::Result::ERROR_OUT_OF_DATE_KHR => { // Window is resized. Recreate the swapchain // and exit early without drawing this frame. self.recreate_resolution_dependent_state(); } _ => panic!("Failed to acquire swapchain image."), } } } } if opt_frame_idx.is_some() { break; } } self.swapchain_idx = opt_frame_idx.unwrap(); let cmd_buf = self.command_buffers[self.swapchain_idx]; // Reset command buffer unsafe { self.gpu .device .reset_command_buffer(cmd_buf, vk::CommandBufferResetFlags::empty()) .unwrap(); } // Begin command buffer. TODO: Is this in the right place? let command_buffer_begin_info = vk::CommandBufferBeginInfo::builder() .flags(vk::CommandBufferUsageFlags::SIMULTANEOUS_USE); unsafe { self.gpu .device .begin_command_buffer(cmd_buf, &command_buffer_begin_info) .expect("Failed to begin recording command buffer."); } /* Naming the command buffer doesn't seem to work on creating it, so we name it on every begin frame instead.*/ self.debug_utils .set_command_buffer_name(cmd_buf, &format!("command_buffer_{}", self.swapchain_idx)); is_running } pub fn end_frame(&mut self) { // End command buffer. TODO: Is this in the right place? unsafe { self.gpu .device .end_command_buffer(self.command_buffers[self.swapchain_idx]) .expect("Failed to end recording command buffer."); } let wait_stages = [vk::PipelineStageFlags::COLOR_ATTACHMENT_OUTPUT]; let wait_semaphores = [self.facade.image_available_semaphores[self.sync_idx]]; let signal_semaphores = [self.facade.render_finished_semaphores[self.sync_idx]]; let command_buffers = [self.command_buffers[self.swapchain_idx as usize]]; let submit_infos = [vk::SubmitInfo { wait_semaphore_count: wait_semaphores.len() as u32, p_wait_semaphores: wait_semaphores.as_ptr(), p_wait_dst_stage_mask: wait_stages.as_ptr(), command_buffer_count: command_buffers.len() as u32, p_command_buffers: command_buffers.as_ptr(), signal_semaphore_count: signal_semaphores.len() as u32, p_signal_semaphores: signal_semaphores.as_ptr(), ..Default::default() }]; let wait_fences = [self.facade.command_buffer_complete_fences[self.sync_idx]]; unsafe { self.gpu .device .reset_fences(&wait_fences) .expect("Failed to reset fence."); self.gpu .device .queue_submit( self.gpu.graphics_queue, &submit_infos, self.facade.command_buffer_complete_fences[self.sync_idx], ) .expect("Failed to execute queue submit."); } self.sync_idx = (self.sync_idx + 1) % self.facade.num_frames; let swapchains = [self.facade.swapchain]; let image_indices = [self.swapchain_idx as u32]; let present_info = vk::PresentInfoKHR::builder() .wait_semaphores(&signal_semaphores) .swapchains(&swapchains) .image_indices(&image_indices); /* Present the queue */ // According to Vulkan spec, queue_present() can fail if a resize occurs. // We handle this in begin_frame(), so we should be able to ignore failure here, // if it does happen. This works fine, when tested on Windows and on Linux on an // integrated GPU. If this fails on some other platform, consider calling // recreate_resolution_dependent_state() on error. let _ = unsafe { self.facade .ext_swapchain .queue_present(self.gpu.present_queue, &present_info) }; for event in self.watch_rx.try_iter() { use notify::DebouncedEvent::*; match event { Write(_) | Remove(_) | Rename(_, _) => { unsafe { self.gpu .device .device_wait_idle() .expect("Failed to wait device idle!"); } self.shader_list.hot_reload(&mut self.graph_cache); } _ => (), } } } pub fn begin_pass(&self, graph_handle: GraphHandle, pass_handle: PassHandle) { let (graph, _) = self .graph_cache .iter() .find(|(_, cached_hash)| cached_hash.0 == graph_handle.0) .expect("Graph not found in cache. Have you called build_graph()?"); graph.begin_pass(pass_handle, self.command_buffers[self.swapchain_idx]) } pub fn end_pass(&self, graph_handle: GraphHandle) { let (graph, _) = self .graph_cache .iter() .find(|(_, cached_hash)| cached_hash.0 == graph_handle.0) .expect("Graph not found in cache. Have you called build_graph()?"); graph.end_pass(self.command_buffers[self.swapchain_idx]); } #[allow(clippy::too_many_arguments)] pub fn add_pass( &mut self, name: &str, vertex_shader: ShaderHandle, fragment_shader: ShaderHandle, output_images: &[ImageHandle], opt_depth_image: Option<ImageHandle>, uniform_buffer: BufferHandle, image_handle: ImageHandle, environment_sampler: &Sampler, ) -> Result<PassHandle, String> { // TODO: Assert that color and depth images have the same resolution let img = self .image_list .get_image_from_handle(image_handle) .unwrap_or_else(|| { panic!( "Image with handle `{:?}` not found in the context.", image_handle ) }); let pass = BuilderPass { name: String::from(name), vertex_shader, fragment_shader, output_images: output_images.to_owned(), input_image: (img.image.image_view, environment_sampler.vk_sampler), opt_depth_image, viewport_width: self.facade.swapchain_width, viewport_height: self.facade.swapchain_height, uniform_buffer, }; let pass_handle = { let mut hasher = DefaultHasher::new(); pass.hash(&mut hasher); PassHandle(hasher.finish()) }; self.builder_passes.push((pass_handle, pass)); Ok(pass_handle) } /* Shaders */ pub fn new_shader( &mut self, name: &str, shader_stage: ShaderStage, path: &str, ) -> Result<ShaderHandle, String> { self.shader_list.new_shader(name, shader_stage, path) } /* Buffers */ pub fn new_buffer( &mut self, name: &str, size: usize, usage: vk::BufferUsageFlags, ) -> Result<BufferHandle, String> { self.buffer_list .new_buffer(name, size, usage, &self.gpu, &self.debug_utils) } pub fn upload_data<T>(&self, buffer_handle: BufferHandle, data: &[T]) { self.buffer_list.upload_data(buffer_handle, data); } /* Images */ pub fn new_image_relative_size( &mut self, name: &str, scale: f32, format: vk::Format, usage: vk::ImageUsageFlags, aspect_flags: vk::ImageAspectFlags, ) -> Result<ImageHandle, String> { self.image_list.new_image_relative_size( name, scale, format, usage, aspect_flags, &self.facade, &self.gpu, &self.debug_utils, ) } pub fn new_image_from_file(&mut self, name: &str, path: &str) -> Result<ImageHandle, String>
{ self.image_list.new_image_from_file( name, path, &self.gpu, self.command_pool, &self.debug_utils, ) }
identifier_body
context.rs
.expect("Failed to wait device idle.") }; // Recreate swapchain self.facade.destroy(&mut self.image_list); self.facade = Facade::new( &self.basis, &self.gpu, &self.window, &mut self.image_list, &self.debug_utils, ); // Recreate the images which depend on the resolution of the swapchain for i in 0..self.image_list.list.len() { let (_, internal_image) = &mut self.image_list.list[i]; if let ImageKind::RelativeSized { scale } = internal_image.kind { let w = (self.facade.swapchain_width as f32 * scale) as u32; let h = (self.facade.swapchain_height as f32 * scale) as u32; internal_image.image = Image::new( &internal_image.image.name, w, h, internal_image.image.format, internal_image.image.usage, internal_image.image.aspect_flags, &self.gpu, &self.debug_utils, ); } } } pub fn new() -> Context { const APP_NAME: &str = ""; // # Init window let event_loop = EventLoop::new(); let window = { winit::window::WindowBuilder::new() .with_title(APP_NAME) .with_inner_size(winit::dpi::LogicalSize::new(800, 600)) .with_maximized(true) .build(&event_loop) .expect("Failed to create window.") }; let basis = Basis::new(APP_NAME, &window); let gpu = Gpu::new(&basis); let debug_utils = DebugUtils::new(&basis, &gpu, ENABLE_DEBUG_MESSENGER_CALLBACK); // # Create command pool let command_pool = { let info = vk::CommandPoolCreateInfo::builder() .flags(vk::CommandPoolCreateFlags::RESET_COMMAND_BUFFER) .queue_family_index(gpu.graphics_queue_idx); unsafe { gpu.device .create_command_pool(&info, None) .expect("Failed to create command pool") } }; let shader_list = ShaderList::new(gpu.device.clone()); // TODO: Move this up? let mut image_list = ImageList::new(); let facade = Facade::new(&basis, &gpu, &window, &mut image_list, &debug_utils); let buffer_list = BufferList::new(); // # Allocate command buffers let command_buffers = { let info = vk::CommandBufferAllocateInfo::builder() .command_pool(command_pool) .level(vk::CommandBufferLevel::PRIMARY) .command_buffer_count(facade.num_frames as u32); unsafe { gpu.device .allocate_command_buffers(&info) .expect("Failed to allocate command buffer.") } }; // Add expect messages to all these unwraps let (watcher, watch_rx) = { use notify::{RecommendedWatcher, RecursiveMode, Watcher}; use std::sync::mpsc::channel; use std::time::Duration; let (tx, rx) = channel(); let mut watcher: RecommendedWatcher = Watcher::new(tx, Duration::from_secs(2)).unwrap(); watcher.watch("./assets", RecursiveMode::Recursive).unwrap(); (watcher, rx) }; Context { window, event_loop, builder_passes: Vec::new(), shader_list, image_list, buffer_list, graph_cache: Vec::new(), command_pool, sync_idx: 0, swapchain_idx: 0, _watcher: watcher, watch_rx, command_buffers, facade, debug_utils, gpu, basis, } } pub fn build_graph(&mut self) -> GraphHandle { // Get the hash of the graph builder let req_hash: u64 = { let mut hasher = DefaultHasher::new(); self.builder_passes.hash(&mut hasher); hasher.finish() }; // Try finding the requested graph in the cache let opt_idx = self .graph_cache .iter() .position(|(_, cached_hash)| cached_hash.0 == req_hash); if opt_idx.is_none() { // The requested graph doesn't exist. Build it and add it to the cache. println!("Adding graph to cache"); self.graph_cache.push(( Graph::new( &self.gpu, &self.builder_passes, &self.shader_list, &self.buffer_list, &self.image_list, ), GraphHandle(req_hash), )); } GraphHandle(req_hash) } pub fn begin_frame(&mut self) -> bool { // Clear the passes of the current graph self.builder_passes.clear(); // Execute the event loop let mut is_running = true; let mut resize_needed = false; let swapchain_width = self.facade.swapchain_width; let swapchain_height = self.facade.swapchain_height; self.event_loop.run_return(|event, _, control_flow| { *control_flow = ControlFlow::Wait; match event { Event::WindowEvent { event, .. } => match event { WindowEvent::CloseRequested => is_running = false, #[allow(clippy::match_single_binding)] // TODO: Simplify this WindowEvent::KeyboardInput { input, .. } => match input { KeyboardInput { virtual_keycode, state, .. } => match (virtual_keycode, state) { (Some(VirtualKeyCode::Escape), ElementState::Pressed) | (Some(VirtualKeyCode::Return), ElementState::Pressed) => { is_running = false; } _ => {} }, }, WindowEvent::Resized(physical_size) => { if swapchain_width != physical_size.width || swapchain_height != physical_size.height { resize_needed = true; } } _ => {} }, Event::MainEventsCleared =>
_ => (), } }); // This mechanism is need on Windows: if resize_needed { self.recreate_resolution_dependent_state(); } // This mechanism suffices on Linux: // Acquiring the swapchain image fails if the window has been resized. If this happens, we need // to loop over and recreate the resolution-dependent state, and then try again. let mut opt_frame_idx = None; loop { let wait_fences = [self.facade.command_buffer_complete_fences[self.sync_idx]]; unsafe { self.gpu .device .wait_for_fences(&wait_fences, true, std::u64::MAX) .expect("Failed to wait for Fence."); let result = self.facade.ext_swapchain.acquire_next_image( self.facade.swapchain, std::u64::MAX, self.facade.image_available_semaphores[self.sync_idx], vk::Fence::null(), ); match result { Ok((idx, _is_suboptimal)) => { opt_frame_idx = Some(idx as usize); } Err(error_code) => { match error_code { vk::Result::ERROR_OUT_OF_DATE_KHR => { // Window is resized. Recreate the swapchain // and exit early without drawing this frame. self.recreate_resolution_dependent_state(); } _ => panic!("Failed to acquire swapchain image."), } } } } if opt_frame_idx.is_some() { break; } } self.swapchain_idx = opt_frame_idx.unwrap(); let cmd_buf = self.command_buffers[self.swapchain_idx]; // Reset command buffer unsafe { self.gpu .device .reset_command_buffer(cmd_buf, vk::CommandBufferResetFlags::empty()) .unwrap(); } // Begin command buffer. TODO: Is this in the right place? let command_buffer_begin_info = vk::CommandBufferBeginInfo::builder() .flags(vk::CommandBufferUsageFlags::SIMULTANEOUS_USE); unsafe { self.gpu .device .begin_command_buffer(cmd_buf, &command_buffer_begin_info) .expect("Failed to begin recording command buffer."); } /* Naming the command buffer doesn't seem to work on creating it, so we name it on every begin frame instead.*/ self.debug_utils .set_command_buffer_name(cmd_buf, &format!("command_buffer_{}", self.swapchain_idx)); is_running } pub fn end_frame(&mut self) { // End command buffer. TODO: Is this in the right place? unsafe { self.gpu .device .end_command_buffer(self.command_buffers[self.swapchain_idx]) .expect("Failed to end recording command buffer."); } let wait_stages = [vk::PipelineStageFlags::COLOR_ATTACHMENT_OUTPUT]; let wait_semaphores = [self.facade.image_available_semaphores[self.sync_idx]]; let signal_semaphores = [self.facade.render_finished_semaphores[self.sync_idx]]; let command_buffers = [self.command_buffers[self.swapchain_idx as usize]]; let submit_infos = [vk::SubmitInfo { wait_semaphore_count: wait_semaphores.len() as u32, p_wait_semaphores
{ *control_flow = ControlFlow::Exit; }
conditional_block
ner.rs
no_run //! use rust_bert::pipelines::common::ModelType; //! use rust_bert::pipelines::ner::NERModel; //! use rust_bert::pipelines::token_classification::TokenClassificationConfig; //! use rust_bert::resources::RemoteResource; //! use rust_bert::roberta::{ //! RobertaConfigResources, RobertaModelResources, RobertaVocabResources, //! }; //! use tch::Device; //! //! # fn main() -> anyhow::Result<()> { //! use rust_bert::pipelines::common::ModelResource; //! let ner_config = TokenClassificationConfig { //! model_type: ModelType::XLMRoberta, //! model_resource: ModelResource::Torch(Box::new(RemoteResource::from_pretrained( //! RobertaModelResources::XLM_ROBERTA_NER_DE, //! ))), //! config_resource: Box::new(RemoteResource::from_pretrained( //! RobertaConfigResources::XLM_ROBERTA_NER_DE, //! )), //! vocab_resource: Box::new(RemoteResource::from_pretrained( //! RobertaVocabResources::XLM_ROBERTA_NER_DE, //! )), //! lower_case: false, //! device: Device::cuda_if_available(), //! ..Default::default() //! }; //! //! let ner_model = NERModel::new(ner_config)?; //! //! // Define input //! let input = [ //! "Mein Name ist Amélie. Ich lebe in Paris.", //! "Paris ist eine Stadt in Frankreich.", //! ]; //! let output = ner_model.predict(&input); //! # Ok(()) //! # } //! ``` //! The XLMRoberta models for the languages are defined as follows: //! //! | **Language** |**Model name**| //! :-----:|:----: //! English| XLM_ROBERTA_NER_EN | //! German| XLM_ROBERTA_NER_DE | //! Spanish| XLM_ROBERTA_NER_ES | //! Dutch| XLM_ROBERTA_NER_NL | use crate::common::error::RustBertError; use crate::pipelines::common::TokenizerOption; use crate::pipelines::token_classification::{ Token, TokenClassificationConfig, TokenClassificationModel, }; use rust_tokenizers::Offset; use serde::{Deserialize, Serialize}; #[derive(Debug, Clone, Serialize, Deserialize)] /// # Entity generated by a `NERModel` pub struct Entity { /// String representation of the Entity pub word: String, /// Confidence score pub score: f64, /// Entity label (e.g. ORG, LOC...) pub label: String, /// Token offsets pub offset: Offset, } //type alias for some backward compatibility type NERConfig = TokenClassificationConfig; /// # NERModel to extract named entities pub struct NERModel { token_classification_model: TokenClassificationModel, } impl NERModel { /// Build a new `NERModel` /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new(ner_config: NERConfig) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new(ner_config)?; Ok(NERModel { token_classification_model: model, }) } /// Build a new `NERModel` with a provided tokenizer. /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// * `tokenizer` - `TokenizerOption` tokenizer to use for token classification /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::common::{ModelType, TokenizerOption}; /// use rust_bert::pipelines::ner::NERModel; /// let tokenizer = TokenizerOption::from_file( /// ModelType::Bert, /// "path/to/vocab.txt", /// None, /// false, /// None, /// None, /// )?; /// let ner_model = NERModel::new_with_tokenizer(Default::default(), tokenizer)?; /// # Ok(()) /// # } /// ``` pub fn new_with_tokenizer( ner_config: NERConfig, tokenizer: TokenizerOption, ) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new_with_tokenizer(ner_config, tokenizer)?; Ok(NERModel { token_classification_model: model, }) } /// Get a reference to the model tokenizer. pub fn get_tokenizer(&self) -> &TokenizerOption { self.token_classification_model.get_tokenizer() } /// Get a mutable reference to the model tokenizer. pub fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption { self.token_classification_model.get_tokenizer_mut() } /// Extract entities from a text /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Vec<Entity>>` containing extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = [ /// "My name is Amy. I live in Paris.", /// "Paris is a city in France.", /// ]; /// let output = ner_model.predict(&input); /// # Ok(()) /// # } /// ``` pub fn predict<S>(&self, input: &[S]) -> Vec<Vec<Entity>> where S: AsRef<str>, { self.token_classification_model .predict(input, true, false) .into_iter() .map(|sequence_tokens| { sequence_tokens .into_iter() .filter(|token| token.label != "O") .map(|token| Entity { offset: token.offset.unwrap(), word: token.text, score: token.score, label: token.label, }) .collect::<Vec<Entity>>() }) .collect::<Vec<Vec<Entity>>>() } /// Extract full entities from a text performing entity chunking. Follows the algorithm for entities /// chunking described in [Erik F. Tjong Kim Sang, Jorn Veenstra, Representing Text Chunks](https://www.aclweb.org/anthology/E99-1023/) /// The proposed implementation is inspired by the [Python seqeval library](https://github.com/chakki-works/seqeval) (shared under MIT license). /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Entity>` containing consolidated extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = ["Asked John Smith about Acme Corp"]; /// let output = ner_model.predict_full_entities(&input); /// # Ok(()) /// # } /// ``` /// /// Outputs: /// /// Output: \ /// ```no_run /// # use rust_bert::pipelines::question_answering::Answer; /// # use rust_bert::pipelines::ner::Entity; /// # use rust_tokenizers::Offset; /// # let output = /// [[ /// Entity { /// word: String::from("John Smith"), /// score: 0.9747, /// label: String::from("PER"), /// offset: Offset { begin: 6, end: 16 }, /// }, /// Entity { /// word: String::from("Acme Corp"), /// score: 0.8847, /// label: String::from("I-LOC"), /// offset: Offset { begin: 23, end: 32 }, /// }, /// ]] /// # ; /// ``` pub fn predict_full_entities<S>(&self, input: &[S]) -> Vec<Vec<Entity>> where S: AsRef<str>, {
let tokens = self.token_classification_model.predict(input, true, false); let mut entities: Vec<Vec<Entity>> = Vec::new(); for sequence_tokens in tokens { entities.push(Self::consolidate_entities(&sequence_tokens)); } entities }
identifier_body
ner.rs
:|:----: //! English| XLM_ROBERTA_NER_EN | //! German| XLM_ROBERTA_NER_DE | //! Spanish| XLM_ROBERTA_NER_ES | //! Dutch| XLM_ROBERTA_NER_NL | use crate::common::error::RustBertError; use crate::pipelines::common::TokenizerOption; use crate::pipelines::token_classification::{ Token, TokenClassificationConfig, TokenClassificationModel, }; use rust_tokenizers::Offset; use serde::{Deserialize, Serialize}; #[derive(Debug, Clone, Serialize, Deserialize)] /// # Entity generated by a `NERModel` pub struct Entity { /// String representation of the Entity pub word: String, /// Confidence score pub score: f64, /// Entity label (e.g. ORG, LOC...) pub label: String, /// Token offsets pub offset: Offset, } //type alias for some backward compatibility type NERConfig = TokenClassificationConfig; /// # NERModel to extract named entities pub struct NERModel { token_classification_model: TokenClassificationModel, } impl NERModel { /// Build a new `NERModel` /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new(ner_config: NERConfig) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new(ner_config)?; Ok(NERModel { token_classification_model: model, }) } /// Build a new `NERModel` with a provided tokenizer. /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// * `tokenizer` - `TokenizerOption` tokenizer to use for token classification /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::common::{ModelType, TokenizerOption}; /// use rust_bert::pipelines::ner::NERModel; /// let tokenizer = TokenizerOption::from_file( /// ModelType::Bert, /// "path/to/vocab.txt", /// None, /// false, /// None, /// None, /// )?; /// let ner_model = NERModel::new_with_tokenizer(Default::default(), tokenizer)?; /// # Ok(()) /// # } /// ``` pub fn new_with_tokenizer( ner_config: NERConfig, tokenizer: TokenizerOption, ) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new_with_tokenizer(ner_config, tokenizer)?; Ok(NERModel { token_classification_model: model, }) } /// Get a reference to the model tokenizer. pub fn get_tokenizer(&self) -> &TokenizerOption { self.token_classification_model.get_tokenizer() } /// Get a mutable reference to the model tokenizer. pub fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption { self.token_classification_model.get_tokenizer_mut() } /// Extract entities from a text /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Vec<Entity>>` containing extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = [ /// "My name is Amy. I live in Paris.", /// "Paris is a city in France.", /// ]; /// let output = ner_model.predict(&input); /// # Ok(()) /// # } /// ``` pub fn predict<S>(&self, input: &[S]) -> Vec<Vec<Entity>> where S: AsRef<str>, { self.token_classification_model .predict(input, true, false) .into_iter() .map(|sequence_tokens| { sequence_tokens .into_iter() .filter(|token| token.label != "O") .map(|token| Entity { offset: token.offset.unwrap(), word: token.text, score: token.score, label: token.label, }) .collect::<Vec<Entity>>() }) .collect::<Vec<Vec<Entity>>>() } /// Extract full entities from a text performing entity chunking. Follows the algorithm for entities /// chunking described in [Erik F. Tjong Kim Sang, Jorn Veenstra, Representing Text Chunks](https://www.aclweb.org/anthology/E99-1023/) /// The proposed implementation is inspired by the [Python seqeval library](https://github.com/chakki-works/seqeval) (shared under MIT license). /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Entity>` containing consolidated extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = ["Asked John Smith about Acme Corp"]; /// let output = ner_model.predict_full_entities(&input); /// # Ok(()) /// # } /// ``` /// /// Outputs: /// /// Output: \ /// ```no_run /// # use rust_bert::pipelines::question_answering::Answer; /// # use rust_bert::pipelines::ner::Entity; /// # use rust_tokenizers::Offset; /// # let output = /// [[ /// Entity { /// word: String::from("John Smith"), /// score: 0.9747, /// label: String::from("PER"), /// offset: Offset { begin: 6, end: 16 }, /// }, /// Entity { /// word: String::from("Acme Corp"), /// score: 0.8847, /// label: String::from("I-LOC"), /// offset: Offset { begin: 23, end: 32 }, /// }, /// ]] /// # ; /// ``` pub fn predict_full_entities<S>(&self, input: &[S]) -> Vec<Vec<Entity>> where S: AsRef<str>, { let tokens = self.token_classification_model.predict(input, true, false); let mut entities: Vec<Vec<Entity>> = Vec::new(); for sequence_tokens in tokens { entities.push(Self::consolidate_entities(&sequence_tokens)); } entities } fn consolidate_entities(tokens: &[Token]) -> Vec<Entity> { let mut entities: Vec<Entity> = Vec::new(); let mut entity_builder = EntityBuilder::new(); for (position, token) in tokens.iter().enumerate() { let tag = token.get_tag(); let label = token.get_label(); if let Some(entity) = entity_builder.handle_current_tag(tag, label, position, tokens) { entities.push(entity) } } if let Some(entity) = entity_builder.flush_and_reset(tokens.len(), tokens) { entities.push(entity); } entities } } struct EntityBuilder<'a> { previous_node: Option<(usize, Tag, &'a str)>, } impl<'a> EntityBuilder<'a> { fn new() -> Self { EntityBuilder { previous_node: None, } } fn handle_current_tag( &mut self, tag: Tag, label: &'a str, position: usize, tokens: &[Token], ) -> Option<Entity> { match tag { Tag::Outside => self.flush_and_reset(position, tokens), Tag::Begin | Tag::Single => { let entity = self.flush_and_reset(position, tokens); self.start_new(position, tag, label); entity } Tag::Inside | Tag::End => {
if let Some((_, previous_tag, previous_label)) = self.previous_node { if (previous_tag == Tag::End) | (previous_tag == Tag::Single) | (previous_label != label) { let entity = self.flush_and_reset(position, tokens); self.start_new(position, tag, label); entity } else { None } } else { self.start_new(position, tag, label); None } }
conditional_block
ner.rs
: Box::new(RemoteResource::from_pretrained( //! RobertaConfigResources::XLM_ROBERTA_NER_DE, //! )), //! vocab_resource: Box::new(RemoteResource::from_pretrained( //! RobertaVocabResources::XLM_ROBERTA_NER_DE, //! )), //! lower_case: false, //! device: Device::cuda_if_available(), //! ..Default::default() //! }; //! //! let ner_model = NERModel::new(ner_config)?; //! //! // Define input //! let input = [ //! "Mein Name ist Amélie. Ich lebe in Paris.", //! "Paris ist eine Stadt in Frankreich.", //! ]; //! let output = ner_model.predict(&input); //! # Ok(()) //! # } //! ``` //! The XLMRoberta models for the languages are defined as follows: //! //! | **Language** |**Model name**| //! :-----:|:----: //! English| XLM_ROBERTA_NER_EN | //! German| XLM_ROBERTA_NER_DE | //! Spanish| XLM_ROBERTA_NER_ES | //! Dutch| XLM_ROBERTA_NER_NL | use crate::common::error::RustBertError; use crate::pipelines::common::TokenizerOption; use crate::pipelines::token_classification::{ Token, TokenClassificationConfig, TokenClassificationModel, }; use rust_tokenizers::Offset; use serde::{Deserialize, Serialize}; #[derive(Debug, Clone, Serialize, Deserialize)] /// # Entity generated by a `NERModel` pub struct Entity { /// String representation of the Entity pub word: String, /// Confidence score pub score: f64, /// Entity label (e.g. ORG, LOC...) pub label: String, /// Token offsets pub offset: Offset, } //type alias for some backward compatibility type NERConfig = TokenClassificationConfig; /// # NERModel to extract named entities pub struct NERModel { token_classification_model: TokenClassificationModel, } impl NERModel { /// Build a new `NERModel` /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new(ner_config: NERConfig) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new(ner_config)?; Ok(NERModel { token_classification_model: model, }) } /// Build a new `NERModel` with a provided tokenizer. /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// * `tokenizer` - `TokenizerOption` tokenizer to use for token classification /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::common::{ModelType, TokenizerOption}; /// use rust_bert::pipelines::ner::NERModel; /// let tokenizer = TokenizerOption::from_file( /// ModelType::Bert, /// "path/to/vocab.txt", /// None, /// false, /// None, /// None, /// )?; /// let ner_model = NERModel::new_with_tokenizer(Default::default(), tokenizer)?; /// # Ok(()) /// # } /// ``` pub fn new_with_tokenizer( ner_config: NERConfig, tokenizer: TokenizerOption, ) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new_with_tokenizer(ner_config, tokenizer)?; Ok(NERModel { token_classification_model: model, }) } /// Get a reference to the model tokenizer. pub fn get_tokenizer(&self) -> &TokenizerOption { self.token_classification_model.get_tokenizer() } /// Get a mutable reference to the model tokenizer. pub fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption { self.token_classification_model.get_tokenizer_mut() } /// Extract entities from a text /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Vec<Entity>>` containing extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = [ /// "My name is Amy. I live in Paris.", /// "Paris is a city in France.", /// ]; /// let output = ner_model.predict(&input); /// # Ok(()) /// # } /// ``` pub fn predict<S>(&self, input: &[S]) -> Vec<Vec<Entity>> where S: AsRef<str>, { self.token_classification_model .predict(input, true, false) .into_iter() .map(|sequence_tokens| { sequence_tokens .into_iter() .filter(|token| token.label != "O") .map(|token| Entity { offset: token.offset.unwrap(), word: token.text, score: token.score, label: token.label, }) .collect::<Vec<Entity>>() }) .collect::<Vec<Vec<Entity>>>() } /// Extract full entities from a text performing entity chunking. Follows the algorithm for entities /// chunking described in [Erik F. Tjong Kim Sang, Jorn Veenstra, Representing Text Chunks](https://www.aclweb.org/anthology/E99-1023/) /// The proposed implementation is inspired by the [Python seqeval library](https://github.com/chakki-works/seqeval) (shared under MIT license). /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Entity>` containing consolidated extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = ["Asked John Smith about Acme Corp"]; /// let output = ner_model.predict_full_entities(&input); /// # Ok(()) /// # } /// ``` /// /// Outputs: /// /// Output: \ /// ```no_run /// # use rust_bert::pipelines::question_answering::Answer; /// # use rust_bert::pipelines::ner::Entity; /// # use rust_tokenizers::Offset; /// # let output = /// [[ /// Entity { /// word: String::from("John Smith"), /// score: 0.9747, /// label: String::from("PER"), /// offset: Offset { begin: 6, end: 16 }, /// }, /// Entity { /// word: String::from("Acme Corp"), /// score: 0.8847, /// label: String::from("I-LOC"), /// offset: Offset { begin: 23, end: 32 }, /// }, /// ]] /// # ; /// ``` pub fn predict_full_entities<S>(&self, input: &[S]) -> Vec<Vec<Entity>> where S: AsRef<str>, { let tokens = self.token_classification_model.predict(input, true, false); let mut entities: Vec<Vec<Entity>> = Vec::new(); for sequence_tokens in tokens { entities.push(Self::consolidate_entities(&sequence_tokens)); } entities } fn consolidate_entities(tokens: &[Token]) -> Vec<Entity> { let mut entities: Vec<Entity> = Vec::new(); let mut entity_builder = EntityBuilder::new(); for (position, token) in tokens.iter().enumerate() { let tag = token.get_tag(); let label = token.get_label(); if let Some(entity) = entity_builder.handle_current_tag(tag, label, position, tokens) { entities.push(entity) } } if let Some(entity) = entity_builder.flush_and_reset(tokens.len(), tokens) { entities.push(entity); } entities } } struct EntityBuilder<'a> { previous_node: Option<(usize, Tag, &'a str)>, } impl<'a> EntityBuilder<'a> { fn new() -> Self { EntityBuilder { previous_node: None, } } fn h
andle_current_tag(
identifier_name
ner.rs
```no_run //! # use rust_bert::pipelines::ner::Entity; //! # use rust_tokenizers::Offset; //! # let output = //! [ //! [ //! Entity { //! word: String::from("Amy"), //! score: 0.9986, //! label: String::from("I-PER"), //! offset: Offset { begin: 11, end: 14 }, //! }, //! Entity { //! word: String::from("Paris"), //! score: 0.9985, //! label: String::from("I-LOC"), //! offset: Offset { begin: 26, end: 31 }, //! }, //! ], //! [ //! Entity { //! word: String::from("Paris"), //! score: 0.9988, //! label: String::from("I-LOC"), //! offset: Offset { begin: 0, end: 5 }, //! }, //! Entity { //! word: String::from("France"), //! score: 0.9993, //! label: String::from("I-LOC"), //! offset: Offset { begin: 19, end: 25 }, //! }, //! ], //! ] //! # ; //! ``` //! //! To run the pipeline for another language, change the NERModel configuration from its default: //! //! ```no_run //! use rust_bert::pipelines::common::ModelType; //! use rust_bert::pipelines::ner::NERModel; //! use rust_bert::pipelines::token_classification::TokenClassificationConfig; //! use rust_bert::resources::RemoteResource; //! use rust_bert::roberta::{ //! RobertaConfigResources, RobertaModelResources, RobertaVocabResources, //! }; //! use tch::Device; //! //! # fn main() -> anyhow::Result<()> { //! use rust_bert::pipelines::common::ModelResource; //! let ner_config = TokenClassificationConfig { //! model_type: ModelType::XLMRoberta, //! model_resource: ModelResource::Torch(Box::new(RemoteResource::from_pretrained( //! RobertaModelResources::XLM_ROBERTA_NER_DE, //! ))), //! config_resource: Box::new(RemoteResource::from_pretrained( //! RobertaConfigResources::XLM_ROBERTA_NER_DE, //! )), //! vocab_resource: Box::new(RemoteResource::from_pretrained( //! RobertaVocabResources::XLM_ROBERTA_NER_DE, //! )),
//! device: Device::cuda_if_available(), //! ..Default::default() //! }; //! //! let ner_model = NERModel::new(ner_config)?; //! //! // Define input //! let input = [ //! "Mein Name ist Amélie. Ich lebe in Paris.", //! "Paris ist eine Stadt in Frankreich.", //! ]; //! let output = ner_model.predict(&input); //! # Ok(()) //! # } //! ``` //! The XLMRoberta models for the languages are defined as follows: //! //! | **Language** |**Model name**| //! :-----:|:----: //! English| XLM_ROBERTA_NER_EN | //! German| XLM_ROBERTA_NER_DE | //! Spanish| XLM_ROBERTA_NER_ES | //! Dutch| XLM_ROBERTA_NER_NL | use crate::common::error::RustBertError; use crate::pipelines::common::TokenizerOption; use crate::pipelines::token_classification::{ Token, TokenClassificationConfig, TokenClassificationModel, }; use rust_tokenizers::Offset; use serde::{Deserialize, Serialize}; #[derive(Debug, Clone, Serialize, Deserialize)] /// # Entity generated by a `NERModel` pub struct Entity { /// String representation of the Entity pub word: String, /// Confidence score pub score: f64, /// Entity label (e.g. ORG, LOC...) pub label: String, /// Token offsets pub offset: Offset, } //type alias for some backward compatibility type NERConfig = TokenClassificationConfig; /// # NERModel to extract named entities pub struct NERModel { token_classification_model: TokenClassificationModel, } impl NERModel { /// Build a new `NERModel` /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new(ner_config: NERConfig) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new(ner_config)?; Ok(NERModel { token_classification_model: model, }) } /// Build a new `NERModel` with a provided tokenizer. /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// * `tokenizer` - `TokenizerOption` tokenizer to use for token classification /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::common::{ModelType, TokenizerOption}; /// use rust_bert::pipelines::ner::NERModel; /// let tokenizer = TokenizerOption::from_file( /// ModelType::Bert, /// "path/to/vocab.txt", /// None, /// false, /// None, /// None, /// )?; /// let ner_model = NERModel::new_with_tokenizer(Default::default(), tokenizer)?; /// # Ok(()) /// # } /// ``` pub fn new_with_tokenizer( ner_config: NERConfig, tokenizer: TokenizerOption, ) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new_with_tokenizer(ner_config, tokenizer)?; Ok(NERModel { token_classification_model: model, }) } /// Get a reference to the model tokenizer. pub fn get_tokenizer(&self) -> &TokenizerOption { self.token_classification_model.get_tokenizer() } /// Get a mutable reference to the model tokenizer. pub fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption { self.token_classification_model.get_tokenizer_mut() } /// Extract entities from a text /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Vec<Entity>>` containing extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = [ /// "My name is Amy. I live in Paris.", /// "Paris is a city in France.", /// ]; /// let output = ner_model.predict(&input); /// # Ok(()) /// # } /// ``` pub fn predict<S>(&self, input: &[S]) -> Vec<Vec<Entity>> where S: AsRef<str>, { self.token_classification_model .predict(input, true, false) .into_iter() .map(|sequence_tokens| { sequence_tokens .into_iter() .filter(|token| token.label != "O") .map(|token| Entity { offset: token.offset.unwrap(), word: token.text, score: token.score, label: token.label, }) .collect::<Vec<Entity>>() }) .collect::<Vec<Vec<Entity>>>() } /// Extract full entities from a text performing entity chunking. Follows the algorithm for entities /// chunking described in [Erik F. Tjong Kim Sang, Jorn Veenstra, Representing Text Chunks](https://www.aclweb.org/anthology/E99-1023/) /// The proposed implementation is inspired by the [Python seqeval library](https://github.com/chakki-works/seqeval) (shared under MIT license). /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Entity>` containing consolidated extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = ["Asked John Smith about Acme Corp"]; /// let output = ner_model.predict_full_entities(&input); /// #
//! lower_case: false,
random_line_split
membership.go
} else { continue } } currentHeartbeat++ logfTrace("%d - hosts=%d (announce=%d forward=%d)", currentHeartbeat, len(randomAllNodes), emitCount(), pingRequestCount()) PingNode(node) pingCounter++ time.Sleep(time.Millisecond * time.Duration(GetHeartbeatMillis())) if knownNodesModifiedFlag { knownNodesModifiedFlag = false break } } if pingCounter == 0 { logDebug("No nodes to ping. So lonely. :(") time.Sleep(time.Millisecond * time.Duration(GetHeartbeatMillis())) } } } // PingNode can be used to explicitly ping a node. Calls the low-level // doPingNode(), and outputs a message (and returns an error) if it fails. func PingNode(node *Node) error { err := transmitVerbPingUDP(node, currentHeartbeat) if err != nil { logInfo("Failure to ping", node, "->", err) } return err } /****************************************************************************** * Private functions (for internal use only) *****************************************************************************/ // Multicast announcements are constructed as: // Byte 0 - 1 byte character byte length N // Bytes 1 to N - Cluster name bytes // Bytes N+1... - A message (without members) func decodeMulticastAnnounceBytes(bytes []byte) (string, []byte, error) { nameBytesLen := int(bytes[0]) if nameBytesLen+1 > len(bytes) { return "", nil, errors.New("Invalid multicast message received") } nameBytes := bytes[1 : nameBytesLen+1] name := string(nameBytes) msgBytes := bytes[nameBytesLen+1 : len(bytes)] return name, msgBytes, nil } func doForwardOnTimeout(pack *pendingAck) { filteredNodes := getTargetNodes(pingRequestCount(), thisHost, pack.node) if len(filteredNodes) == 0 { logDebug(thisHost.Address(), "Cannot forward ping request: no more nodes") updateNodeStatus(pack.node, StatusDead, currentHeartbeat, thisHost) } else { for i, n := range filteredNodes { logfDebug("(%d/%d) Requesting indirect ping of %s via %s", i+1, len(filteredNodes), pack.node.Address(), n.Address()) transmitVerbForwardUDP(n, pack.node, currentHeartbeat) } } } // The number of times any node's new status should be emitted after changes. // Currently set to (lambda * log(node count)). func emitCount() int { logn := math.Log(float64(knownNodes.length())) mult := (lambda * logn) + 0.5 return int(mult) } // Multicast announcements are constructed as: // Byte 0 - 1 byte character byte length N // Bytes 1 to N - Cluster name bytes // Bytes N+1... - A message (without members) func encodeMulticastAnnounceBytes() []byte { nameBytes := []byte(GetClusterName()) nameBytesLen := len(nameBytes) if nameBytesLen > 0xFF { panic("Cluster name too long: " + strconv.FormatInt(int64(nameBytesLen), 10) + " bytes (max 254)") } msg := newMessage(verbPing, thisHost, currentHeartbeat) msgBytes := msg.encode() msgBytesLen := len(msgBytes) totalByteCount := 1 + nameBytesLen + msgBytesLen bytes := make([]byte, totalByteCount, totalByteCount) // Add name length byte bytes[0] = byte(nameBytesLen) // Copy the name bytes copy(bytes[1:nameBytesLen+1], nameBytes) // Copy the message proper copy(bytes[nameBytesLen+1:totalByteCount], msgBytes) return bytes } func guessMulticastAddress() string { if multicastAddress == "" { if ipLen == net.IPv6len { multicastAddress = defaultIPv6MulticastAddress } else if ipLen == net.IPv4len { multicastAddress = defaultIPv4MulticastAddress } else { logFatal("Failed to determine IPv4/IPv6") } } return multicastAddress } // getListenInterface gets the network interface for the listen IP func getListenInterface() (*net.Interface, error) { ifaces, err := net.Interfaces() if err == nil { for _, iface := range ifaces { addrs, err := iface.Addrs() if err != nil { logfWarn("Can not get addresses of interface %s", iface.Name) continue } for _, addr := range addrs { ip, _, err := net.ParseCIDR(addr.String()) if err != nil { continue } if ip.String() == GetListenIP().String() { logfInfo("Found interface with listen IP: %s", iface.Name) return &iface, nil } } } } return nil, errors.New("Could not determine the interface of the listen IP address") } // Returns a random slice of valid ping/forward request targets; i.e., not // this node, and not dead. func getTargetNodes(count int, exclude ...*Node) []*Node { randomNodes := knownNodes.getRandomNodes(0, exclude...) filteredNodes := make([]*Node, 0, count) for _, n := range randomNodes { if len(filteredNodes) >= count { break } if n.status == StatusDead { continue } filteredNodes = append(filteredNodes, n) } return filteredNodes } func listenUDP(port int) error { listenAddress, err := net.ResolveUDPAddr("udp", ":"+strconv.FormatInt(int64(port), 10)) if err != nil { return err } /* Now listen at selected port */ c, err := net.ListenUDP("udp", listenAddress) if err != nil { return err } defer c.Close() for { buf := make([]byte, 2048) // big enough to fit 1280 IPv6 UDP message n, addr, err := c.ReadFromUDP(buf) if err != nil { logError("UDP read error: ", err) } go func(addr *net.UDPAddr, msg []byte) { err = receiveMessageUDP(addr, buf[0:n]) if err != nil { logError(err) } }(addr, buf[0:n]) } } func listenUDPMulticast(port int) error { addr := GetMulticastAddress() if addr == "" { addr = guessMulticastAddress() } listenAddress, err := net.ResolveUDPAddr("udp", addr+":"+strconv.FormatInt(int64(port), 10)) if err != nil { return err } /* Now listen at selected port */ iface, err := getListenInterface() if err != nil { return err } c, err := net.ListenMulticastUDP("udp", iface, listenAddress) if err != nil { return err } defer c.Close() for { buf := make([]byte, 2048) // big enough to fit 1280 IPv6 UDP message n, addr, err := c.ReadFromUDP(buf) if err != nil { logError("UDP read error:", err) } go func(addr *net.UDPAddr, bytes []byte) { name, msgBytes, err := decodeMulticastAnnounceBytes(bytes) if err != nil { logDebug("Ignoring unexpected multicast message.") } else { if GetClusterName() == name { msg, err := decodeMessage(addr.IP, msgBytes) if err == nil { logfTrace("Got multicast %v from %v code=%d", msg.verb, msg.sender.Address(), msg.senderHeartbeat) // Update statuses of the sender. updateStatusesFromMessage(msg) } else { logError(err) } } } }(addr, buf[0:n]) } } // multicastAnnounce is called when the server first starts to broadcast its // presence to all listening servers within the specified subnet and continues // to broadcast its presence every multicastAnnounceIntervalSeconds in case // this value is larger than zero. func multicastAnnounce(addr string) error { if addr == "" { addr = guessMulticastAddress() } fullAddr := addr + ":" + strconv.FormatInt(int64(GetMulticastPort()), 10) logInfo("Announcing presence on", fullAddr) address, err := net.ResolveUDPAddr("udp", fullAddr) if err != nil { logError(err) return err } laddr := &net.UDPAddr{ IP: GetListenIP(), Port: 0, } for { c, err := net.DialUDP("udp", laddr, address) if err != nil { logError(err) return err
{ logDebug("Forgetting dead node", node.Address()) deadNodeRetries.Lock() delete(deadNodeRetries.m, node.Address()) deadNodeRetries.Unlock() RemoveNode(node) continue }
conditional_block
membership.go
} for { c, err := net.DialUDP("udp", laddr, address) if err != nil { logError(err) return err } // Compose and send the multicast announcement msgBytes := encodeMulticastAnnounceBytes() _, err = c.Write(msgBytes) if err != nil { logError(err) return err } logfTrace("Sent announcement multicast from %v to %v", laddr, fullAddr) if GetMulticastAnnounceIntervalSeconds() > 0 { time.Sleep(time.Second * time.Duration(GetMulticastAnnounceIntervalSeconds())) } else { return nil } } } // The number of nodes to send a PINGREQ to when a PING times out. // Currently set to (lambda * log(node count)). func pingRequestCount() int { logn := math.Log(float64(knownNodes.length())) mult := (lambda * logn) + 0.5 return int(mult) } func receiveMessageUDP(addr *net.UDPAddr, msgBytes []byte) error { msg, err := decodeMessage(addr.IP, msgBytes) if err != nil { return err } logfTrace("Got %v from %v code=%d", msg.verb, msg.sender.Address(), msg.senderHeartbeat) // Synchronize heartbeats if msg.senderHeartbeat > 0 && msg.senderHeartbeat-1 > currentHeartbeat { logfTrace("Heartbeat advanced from %d to %d", currentHeartbeat, msg.senderHeartbeat-1) currentHeartbeat = msg.senderHeartbeat - 1 } // Update statuses of the sender and any members the message includes. updateStatusesFromMessage(msg) // If there are broadcast bytes in the message, handle them here. receiveBroadcast(msg.broadcast) // Handle the verb. switch msg.verb { case verbPing: err = receiveVerbPingUDP(msg) case verbAck: err = receiveVerbAckUDP(msg) case verbPingRequest: err = receiveVerbForwardUDP(msg) case verbNonForwardingPing: err = receiveVerbNonForwardPingUDP(msg) } if err != nil { return err } return nil } func receiveVerbAckUDP(msg message) error { key := msg.sender.Address() + ":" + strconv.FormatInt(int64(msg.senderHeartbeat), 10) pendingAcks.RLock() _, ok := pendingAcks.m[key] pendingAcks.RUnlock() if ok { msg.sender.Touch() pendingAcks.Lock() if pack, ok := pendingAcks.m[key]; ok { // If this is a response to a requested ping, respond to the // callback node if pack.callback != nil { go transmitVerbAckUDP(pack.callback, pack.callbackCode) } else { // Note the ping response time. notePingResponseTime(pack) } } delete(pendingAcks.m, key) pendingAcks.Unlock() } return nil } func notePingResponseTime(pack *pendingAck) { // Note the elapsed time elapsedMillis := pack.elapsed() pack.node.pingMillis = int(elapsedMillis) // For the purposes of timeout tolerance, we treat all pings less than // the ping lower bound as that lower bound. minMillis := uint32(GetMinPingTime()) if elapsedMillis < minMillis { elapsedMillis = minMillis } pingdata.add(elapsedMillis) mean, stddev := pingdata.data() sigmas := pingdata.nSigma(timeoutToleranceSigmas) logfTrace("Got ACK in %dms (mean=%.02f stddev=%.02f sigmas=%.02f)", elapsedMillis, mean, stddev, sigmas) } func receiveVerbForwardUDP(msg message) error { // We don't forward to a node that we don't know. if len(msg.members) >= 0 && msg.members[0].status == StatusForwardTo { member := msg.members[0] node := member.node code := member.heartbeat key := node.Address() + ":" + strconv.FormatInt(int64(code), 10) pack := pendingAck{ node: node, startTime: GetNowInMillis(), callback: msg.sender, callbackCode: code, packType: packNFP} pendingAcks.Lock() pendingAcks.m[key] = &pack pendingAcks.Unlock() return transmitVerbGenericUDP(node, nil, verbNonForwardingPing, code) } return nil } func receiveVerbPingUDP(msg message) error { return transmitVerbAckUDP(msg.sender, msg.senderHeartbeat) } func receiveVerbNonForwardPingUDP(msg message) error { return transmitVerbAckUDP(msg.sender, msg.senderHeartbeat) } func startTimeoutCheckLoop() { for { pendingAcks.Lock() for k, pack := range pendingAcks.m { elapsed := pack.elapsed() timeoutMillis := uint32(pingdata.nSigma(timeoutToleranceSigmas)) // Ping requests are expected to take quite a bit longer. // Just call it 2x for now. if pack.packType == packPingReq { timeoutMillis *= 2 } // This pending ACK has taken longer than expected. Mark it as // timed out. if elapsed > timeoutMillis { switch pack.packType { case packPing: go doForwardOnTimeout(pack) case packPingReq: logDebug(k, "timed out after", timeoutMillis, "milliseconds (dropped PINGREQ)") if knownNodes.contains(pack.callback) { switch pack.callback.Status() { case StatusDead: break case StatusSuspected: updateNodeStatus(pack.callback, StatusDead, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut default: updateNodeStatus(pack.callback, StatusSuspected, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut } } case packNFP: logDebug(k, "timed out after", timeoutMillis, "milliseconds (dropped NFP)") if knownNodes.contains(pack.node) { switch pack.node.Status() { case StatusDead: break case StatusSuspected: updateNodeStatus(pack.node, StatusDead, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut default: updateNodeStatus(pack.node, StatusSuspected, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut } } } delete(pendingAcks.m, k) } } pendingAcks.Unlock() time.Sleep(time.Millisecond * 100) } } func transmitVerbGenericUDP(node *Node, forwardTo *Node, verb messageVerb, code uint32) error { // Transmit the ACK remoteAddr, err := net.ResolveUDPAddr("udp", node.Address()) c, err := net.DialUDP("udp", nil, remoteAddr) if err != nil { return err } defer c.Close() msg := newMessage(verb, thisHost, code) if forwardTo != nil { msg.addMember(forwardTo, StatusForwardTo, code, forwardTo.statusSource) } // Add members for update. nodes := getRandomUpdatedNodes(pingRequestCount(), node, thisHost) // No updates to distribute? Send out a few updates on other known nodes. if len(nodes) == 0 { nodes = knownNodes.getRandomNodes(pingRequestCount(), node, thisHost) } for _, n := range nodes { err = msg.addMember(n, n.status, n.heartbeat, n.statusSource) if err != nil { return err } n.emitCounter-- } // Emit counters for broadcasts can be less than 0. We transmit positive // numbers, and decrement all the others. At some value < 0, the broadcast // is removed from the map all together. broadcast := getBroadcastToEmit() if broadcast != nil { if broadcast.emitCounter > 0 { msg.addBroadcast(broadcast) } broadcast.emitCounter-- } _, err = c.Write(msg.encode()) if err != nil { return err } // Decrement the update counters on those nodes for _, m := range msg.members { m.node.emitCounter-- } logfTrace("Sent %v to %v", verb, node.Address()) return nil } func transmitVerbForwardUDP(node *Node, downstream *Node, code uint32) error { key := node.Address() + ":" + strconv.FormatInt(int64(code), 10) pack := pendingAck{ node: node, startTime: GetNowInMillis(), callback: downstream, packType: packPingReq} pendingAcks.Lock() pendingAcks.m[key] = &pack pendingAcks.Unlock() return transmitVerbGenericUDP(node, downstream, verbPingRequest, code) } func transmitVerbAckUDP(node *Node, code uint32) error
{ return transmitVerbGenericUDP(node, nil, verbAck, code) }
identifier_body
membership.go
time.Duration(GetHeartbeatMillis())) if knownNodesModifiedFlag { knownNodesModifiedFlag = false break } } if pingCounter == 0 { logDebug("No nodes to ping. So lonely. :(") time.Sleep(time.Millisecond * time.Duration(GetHeartbeatMillis())) } } } // PingNode can be used to explicitly ping a node. Calls the low-level // doPingNode(), and outputs a message (and returns an error) if it fails. func PingNode(node *Node) error { err := transmitVerbPingUDP(node, currentHeartbeat) if err != nil { logInfo("Failure to ping", node, "->", err) } return err } /****************************************************************************** * Private functions (for internal use only) *****************************************************************************/ // Multicast announcements are constructed as: // Byte 0 - 1 byte character byte length N // Bytes 1 to N - Cluster name bytes // Bytes N+1... - A message (without members) func decodeMulticastAnnounceBytes(bytes []byte) (string, []byte, error) { nameBytesLen := int(bytes[0]) if nameBytesLen+1 > len(bytes) { return "", nil, errors.New("Invalid multicast message received") } nameBytes := bytes[1 : nameBytesLen+1] name := string(nameBytes) msgBytes := bytes[nameBytesLen+1 : len(bytes)]
filteredNodes := getTargetNodes(pingRequestCount(), thisHost, pack.node) if len(filteredNodes) == 0 { logDebug(thisHost.Address(), "Cannot forward ping request: no more nodes") updateNodeStatus(pack.node, StatusDead, currentHeartbeat, thisHost) } else { for i, n := range filteredNodes { logfDebug("(%d/%d) Requesting indirect ping of %s via %s", i+1, len(filteredNodes), pack.node.Address(), n.Address()) transmitVerbForwardUDP(n, pack.node, currentHeartbeat) } } } // The number of times any node's new status should be emitted after changes. // Currently set to (lambda * log(node count)). func emitCount() int { logn := math.Log(float64(knownNodes.length())) mult := (lambda * logn) + 0.5 return int(mult) } // Multicast announcements are constructed as: // Byte 0 - 1 byte character byte length N // Bytes 1 to N - Cluster name bytes // Bytes N+1... - A message (without members) func encodeMulticastAnnounceBytes() []byte { nameBytes := []byte(GetClusterName()) nameBytesLen := len(nameBytes) if nameBytesLen > 0xFF { panic("Cluster name too long: " + strconv.FormatInt(int64(nameBytesLen), 10) + " bytes (max 254)") } msg := newMessage(verbPing, thisHost, currentHeartbeat) msgBytes := msg.encode() msgBytesLen := len(msgBytes) totalByteCount := 1 + nameBytesLen + msgBytesLen bytes := make([]byte, totalByteCount, totalByteCount) // Add name length byte bytes[0] = byte(nameBytesLen) // Copy the name bytes copy(bytes[1:nameBytesLen+1], nameBytes) // Copy the message proper copy(bytes[nameBytesLen+1:totalByteCount], msgBytes) return bytes } func guessMulticastAddress() string { if multicastAddress == "" { if ipLen == net.IPv6len { multicastAddress = defaultIPv6MulticastAddress } else if ipLen == net.IPv4len { multicastAddress = defaultIPv4MulticastAddress } else { logFatal("Failed to determine IPv4/IPv6") } } return multicastAddress } // getListenInterface gets the network interface for the listen IP func getListenInterface() (*net.Interface, error) { ifaces, err := net.Interfaces() if err == nil { for _, iface := range ifaces { addrs, err := iface.Addrs() if err != nil { logfWarn("Can not get addresses of interface %s", iface.Name) continue } for _, addr := range addrs { ip, _, err := net.ParseCIDR(addr.String()) if err != nil { continue } if ip.String() == GetListenIP().String() { logfInfo("Found interface with listen IP: %s", iface.Name) return &iface, nil } } } } return nil, errors.New("Could not determine the interface of the listen IP address") } // Returns a random slice of valid ping/forward request targets; i.e., not // this node, and not dead. func getTargetNodes(count int, exclude ...*Node) []*Node { randomNodes := knownNodes.getRandomNodes(0, exclude...) filteredNodes := make([]*Node, 0, count) for _, n := range randomNodes { if len(filteredNodes) >= count { break } if n.status == StatusDead { continue } filteredNodes = append(filteredNodes, n) } return filteredNodes } func listenUDP(port int) error { listenAddress, err := net.ResolveUDPAddr("udp", ":"+strconv.FormatInt(int64(port), 10)) if err != nil { return err } /* Now listen at selected port */ c, err := net.ListenUDP("udp", listenAddress) if err != nil { return err } defer c.Close() for { buf := make([]byte, 2048) // big enough to fit 1280 IPv6 UDP message n, addr, err := c.ReadFromUDP(buf) if err != nil { logError("UDP read error: ", err) } go func(addr *net.UDPAddr, msg []byte) { err = receiveMessageUDP(addr, buf[0:n]) if err != nil { logError(err) } }(addr, buf[0:n]) } } func listenUDPMulticast(port int) error { addr := GetMulticastAddress() if addr == "" { addr = guessMulticastAddress() } listenAddress, err := net.ResolveUDPAddr("udp", addr+":"+strconv.FormatInt(int64(port), 10)) if err != nil { return err } /* Now listen at selected port */ iface, err := getListenInterface() if err != nil { return err } c, err := net.ListenMulticastUDP("udp", iface, listenAddress) if err != nil { return err } defer c.Close() for { buf := make([]byte, 2048) // big enough to fit 1280 IPv6 UDP message n, addr, err := c.ReadFromUDP(buf) if err != nil { logError("UDP read error:", err) } go func(addr *net.UDPAddr, bytes []byte) { name, msgBytes, err := decodeMulticastAnnounceBytes(bytes) if err != nil { logDebug("Ignoring unexpected multicast message.") } else { if GetClusterName() == name { msg, err := decodeMessage(addr.IP, msgBytes) if err == nil { logfTrace("Got multicast %v from %v code=%d", msg.verb, msg.sender.Address(), msg.senderHeartbeat) // Update statuses of the sender. updateStatusesFromMessage(msg) } else { logError(err) } } } }(addr, buf[0:n]) } } // multicastAnnounce is called when the server first starts to broadcast its // presence to all listening servers within the specified subnet and continues // to broadcast its presence every multicastAnnounceIntervalSeconds in case // this value is larger than zero. func multicastAnnounce(addr string) error { if addr == "" { addr = guessMulticastAddress() } fullAddr := addr + ":" + strconv.FormatInt(int64(GetMulticastPort()), 10) logInfo("Announcing presence on", fullAddr) address, err := net.ResolveUDPAddr("udp", fullAddr) if err != nil { logError(err) return err } laddr := &net.UDPAddr{ IP: GetListenIP(), Port: 0, } for { c, err := net.DialUDP("udp", laddr, address) if err != nil { logError(err) return err } // Compose and send the multicast announcement msgBytes := encodeMulticastAnnounceBytes() _, err = c.Write(msgBytes) if err != nil { logError(err) return err } logfTrace("Sent announcement multicast from %v to %v", laddr, fullAddr) if GetMulticastAnnounceIntervalSeconds() > 0 { time.Sleep(time.Second * time.Duration(GetMulticastAnnounceIntervalSeconds())) } else { return nil } } } // The number of nodes to send a
return name, msgBytes, nil } func doForwardOnTimeout(pack *pendingAck) {
random_line_split
membership.go
buf[0:n]) } } func listenUDPMulticast(port int) error { addr := GetMulticastAddress() if addr == "" { addr = guessMulticastAddress() } listenAddress, err := net.ResolveUDPAddr("udp", addr+":"+strconv.FormatInt(int64(port), 10)) if err != nil { return err } /* Now listen at selected port */ iface, err := getListenInterface() if err != nil { return err } c, err := net.ListenMulticastUDP("udp", iface, listenAddress) if err != nil { return err } defer c.Close() for { buf := make([]byte, 2048) // big enough to fit 1280 IPv6 UDP message n, addr, err := c.ReadFromUDP(buf) if err != nil { logError("UDP read error:", err) } go func(addr *net.UDPAddr, bytes []byte) { name, msgBytes, err := decodeMulticastAnnounceBytes(bytes) if err != nil { logDebug("Ignoring unexpected multicast message.") } else { if GetClusterName() == name { msg, err := decodeMessage(addr.IP, msgBytes) if err == nil { logfTrace("Got multicast %v from %v code=%d", msg.verb, msg.sender.Address(), msg.senderHeartbeat) // Update statuses of the sender. updateStatusesFromMessage(msg) } else { logError(err) } } } }(addr, buf[0:n]) } } // multicastAnnounce is called when the server first starts to broadcast its // presence to all listening servers within the specified subnet and continues // to broadcast its presence every multicastAnnounceIntervalSeconds in case // this value is larger than zero. func multicastAnnounce(addr string) error { if addr == "" { addr = guessMulticastAddress() } fullAddr := addr + ":" + strconv.FormatInt(int64(GetMulticastPort()), 10) logInfo("Announcing presence on", fullAddr) address, err := net.ResolveUDPAddr("udp", fullAddr) if err != nil { logError(err) return err } laddr := &net.UDPAddr{ IP: GetListenIP(), Port: 0, } for { c, err := net.DialUDP("udp", laddr, address) if err != nil { logError(err) return err } // Compose and send the multicast announcement msgBytes := encodeMulticastAnnounceBytes() _, err = c.Write(msgBytes) if err != nil { logError(err) return err } logfTrace("Sent announcement multicast from %v to %v", laddr, fullAddr) if GetMulticastAnnounceIntervalSeconds() > 0 { time.Sleep(time.Second * time.Duration(GetMulticastAnnounceIntervalSeconds())) } else { return nil } } } // The number of nodes to send a PINGREQ to when a PING times out. // Currently set to (lambda * log(node count)). func pingRequestCount() int { logn := math.Log(float64(knownNodes.length())) mult := (lambda * logn) + 0.5 return int(mult) } func receiveMessageUDP(addr *net.UDPAddr, msgBytes []byte) error { msg, err := decodeMessage(addr.IP, msgBytes) if err != nil { return err } logfTrace("Got %v from %v code=%d", msg.verb, msg.sender.Address(), msg.senderHeartbeat) // Synchronize heartbeats if msg.senderHeartbeat > 0 && msg.senderHeartbeat-1 > currentHeartbeat { logfTrace("Heartbeat advanced from %d to %d", currentHeartbeat, msg.senderHeartbeat-1) currentHeartbeat = msg.senderHeartbeat - 1 } // Update statuses of the sender and any members the message includes. updateStatusesFromMessage(msg) // If there are broadcast bytes in the message, handle them here. receiveBroadcast(msg.broadcast) // Handle the verb. switch msg.verb { case verbPing: err = receiveVerbPingUDP(msg) case verbAck: err = receiveVerbAckUDP(msg) case verbPingRequest: err = receiveVerbForwardUDP(msg) case verbNonForwardingPing: err = receiveVerbNonForwardPingUDP(msg) } if err != nil { return err } return nil } func receiveVerbAckUDP(msg message) error { key := msg.sender.Address() + ":" + strconv.FormatInt(int64(msg.senderHeartbeat), 10) pendingAcks.RLock() _, ok := pendingAcks.m[key] pendingAcks.RUnlock() if ok { msg.sender.Touch() pendingAcks.Lock() if pack, ok := pendingAcks.m[key]; ok { // If this is a response to a requested ping, respond to the // callback node if pack.callback != nil { go transmitVerbAckUDP(pack.callback, pack.callbackCode) } else { // Note the ping response time. notePingResponseTime(pack) } } delete(pendingAcks.m, key) pendingAcks.Unlock() } return nil } func notePingResponseTime(pack *pendingAck) { // Note the elapsed time elapsedMillis := pack.elapsed() pack.node.pingMillis = int(elapsedMillis) // For the purposes of timeout tolerance, we treat all pings less than // the ping lower bound as that lower bound. minMillis := uint32(GetMinPingTime()) if elapsedMillis < minMillis { elapsedMillis = minMillis } pingdata.add(elapsedMillis) mean, stddev := pingdata.data() sigmas := pingdata.nSigma(timeoutToleranceSigmas) logfTrace("Got ACK in %dms (mean=%.02f stddev=%.02f sigmas=%.02f)", elapsedMillis, mean, stddev, sigmas) } func receiveVerbForwardUDP(msg message) error { // We don't forward to a node that we don't know. if len(msg.members) >= 0 && msg.members[0].status == StatusForwardTo { member := msg.members[0] node := member.node code := member.heartbeat key := node.Address() + ":" + strconv.FormatInt(int64(code), 10) pack := pendingAck{ node: node, startTime: GetNowInMillis(), callback: msg.sender, callbackCode: code, packType: packNFP} pendingAcks.Lock() pendingAcks.m[key] = &pack pendingAcks.Unlock() return transmitVerbGenericUDP(node, nil, verbNonForwardingPing, code) } return nil } func receiveVerbPingUDP(msg message) error { return transmitVerbAckUDP(msg.sender, msg.senderHeartbeat) } func receiveVerbNonForwardPingUDP(msg message) error { return transmitVerbAckUDP(msg.sender, msg.senderHeartbeat) } func startTimeoutCheckLoop() { for { pendingAcks.Lock() for k, pack := range pendingAcks.m { elapsed := pack.elapsed() timeoutMillis := uint32(pingdata.nSigma(timeoutToleranceSigmas)) // Ping requests are expected to take quite a bit longer. // Just call it 2x for now. if pack.packType == packPingReq { timeoutMillis *= 2 } // This pending ACK has taken longer than expected. Mark it as // timed out. if elapsed > timeoutMillis { switch pack.packType { case packPing: go doForwardOnTimeout(pack) case packPingReq: logDebug(k, "timed out after", timeoutMillis, "milliseconds (dropped PINGREQ)") if knownNodes.contains(pack.callback) { switch pack.callback.Status() { case StatusDead: break case StatusSuspected: updateNodeStatus(pack.callback, StatusDead, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut default: updateNodeStatus(pack.callback, StatusSuspected, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut } } case packNFP: logDebug(k, "timed out after", timeoutMillis, "milliseconds (dropped NFP)") if knownNodes.contains(pack.node) { switch pack.node.Status() { case StatusDead: break case StatusSuspected: updateNodeStatus(pack.node, StatusDead, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut default: updateNodeStatus(pack.node, StatusSuspected, currentHeartbeat, thisHost) pack.callback.pingMillis = PingTimedOut } } } delete(pendingAcks.m, k) } } pendingAcks.Unlock() time.Sleep(time.Millisecond * 100) } } func
transmitVerbGenericUDP
identifier_name
connection.go
c.SendJSON(msg); err != nil { return err } return nil } // reason の長さが不十分そうな場合は CloseMessage ではなく TextMessage を使用するように変更する func (c *connection) sendCloseMessage(code int, reason string) error { deadline := time.Now().Add(writeWait) closeMessage := websocket.FormatCloseMessage(code, reason) return c.wsConn.WriteControl(websocket.CloseMessage, closeMessage, deadline) } func (c *connection) sendAcceptMessage(isExistClient bool, iceServers *[]iceServer, authzMetadata *interface{}) error { msg := &acceptMessage{ Type: "accept", ConnectionID: c.ID, IsExistClient: isExistClient, // 下位互換性 IsExistUser: isExistClient, AuthzMetadata: authzMetadata, IceServers: iceServers, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendRejectMessage(reason string) error { msg := &rejectMessage{ Type: "reject", Reason: reason, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendByeMessage() error { msg := &byeMessage{ Type: "bye", } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) closeWs() { c.wsConn.Close() c.debugLog().Msg("CLOSED-WS") } func (c *connection) register() int { resultChannel := make(chan int) registerChannel <- &register{ connection: c, resultChannel: resultChannel, } // ここはブロックする candidate とかを並列で来てるかもしれないが知らん result := <-resultChannel // もう server で触ることはないのでここで閉じる close(resultChannel) return result } func (c *connection) unregister() { if c.registered { unregisterChannel <- &unregister{ connection: c, } } } func (c *connection) forward(msg []byte) { // グローバルにあるチャンネルに対して投げ込む forwardChannel <- forward{ connection: c, rawMessage: msg, } } func (c *connection) main(cancel context.CancelFunc, messageChannel chan []byte) { pongTimeoutTimer := time.NewTimer(pongTimeout * time.Second) pingTimer := time.NewTimer(pingInterval * time.Second) defer func() { timerStop(pongTimeoutTimer) timerStop(pingTimer) // キャンセルを呼ぶ cancel() c.debugLog().Msg("CANCEL") // アンレジはここでやる c.unregister() c.debugLog().Msg("UNREGISTER") c.debugLog().Msg("EXIT-MAIN") }() loop: for { select { case <-pingTimer.C: if !c.standalone { if err := c.sendPingMessage(); err != nil { break loop } } pingTimer.Reset(pingInterval * time.Second) case <-pongTimeoutTimer.C: if !c.standalone { // タイマーが発火してしまったので切断する c.errLog().Msg("PongTimeout") break loop } case rawMessage, ok := <-messageChannel: // message チャンネルが閉じられた、main 終了待ち if !ok { c.debugLog().Msg("CLOSED-MESSAGE-CHANNEL") // メッセージチャネルが閉じてるので return でもう抜けてしまう return } if err := c.handleWsMessage(rawMessage, pongTimeoutTimer); err != nil { // ここのエラーのログはすでに handleWsMessage でとってあるので不要 // エラーになったら抜ける break loop } case forward, ok := <-c.forwardChannel: if !ok { // server 側で forwardChannel を閉じた c.debugLog().Msg("UNREGISTERED") if !c.standalone { if err := c.sendByeMessage(); err != nil { c.errLog().Err(err).Msg("FailedSendByeMessage") // 送れなかったら閉じるメッセージも送れないので return return } c.debugLog().Msg("SENT-BYE-MESSAGE") } break loop } if err := c.wsConn.WriteMessage(websocket.TextMessage, forward.rawMessage); err != nil { c.errLog().Err(err).Msg("FailedWriteMessage") // 送れなかったら閉じるメッセージも送れないので return return } } } // こちらの都合で終了するので Websocket 終了のお知らせを送る if err := c.sendCloseMessage(websocket.CloseNormalClosure, ""); err != nil { c.debugLog().Err(err).Msg("FAILED-SEND-CLOSE-MESSAGE") // 送れなかったら return する return } c.debugLog().Msg("SENT-CLOSE-MESSAGE") } func (c *connection) wsRecv(ctx context.Context, messageChannel chan []byte) { loop: for { readDeadline := time.Now().Add(time.Duration(readTimeout) * time.Second) if err := c.wsConn.SetReadDeadline(readDeadline); err != nil { c.errLog().Err(err).Msg("FailedSetReadDeadLine") break loop } _, rawMessage, err := c.wsConn.ReadMessage() if err != nil { // ここに来るのはほぼ WebSocket が切断されたとき c.debugLog().Err(err).Msg("WS-READ-MESSAGE-ERROR") break loop } messageChannel <- rawMessage } close(messageChannel) c.debugLog().Msg("CLOSE-MESSAGE-CHANNEL") // メインが死ぬまで待つ <-ctx.Done() c.debugLog().Msg("EXITED-MAIN") if !c.standalone { c.closeWs() } c.debugLog().Msg("EXIT-WS-RECV") if err := c.disconnectWebhook(); err != nil { c.errLog().Err(err).Caller().Msg("DisconnectWebhookError") return } } // メッセージ系のエラーログはここですべて取る func (c *connection) handleWsMessage(rawMessage []byte, pongTimeoutTimer *time.Timer) error { message := &message{} if err := json.Unmarshal(rawMessage, &message); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidJSON") return errInvalidJSON } if message == nil { c.errLog().Bytes("rawMessage", rawMessage).Msg("UnexpectedJSON") return errUnexpectedJSON } // 受信したメッセージで message type がパースできたものをログとして保存する c.signalingLog(*message, rawMessage) switch message.Type { case "pong": timerStop(pongTimeoutTimer) pongTimeoutTimer.Reset(pongTimeout * time.Second) case "register": // すでに登録されているのにもう一度登録しに来た if c.registered { c.errLog().Bytes("rawMessage", rawMessage).Msg("InternalServer") return errInternalServer } c.ID = getULID() registerMessage := &registerMessage{} if err := json.Unmarshal(rawMessage, &registerMessage); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidRegisterMessageJSON") return errInvalidJSON } if registerMessage.RoomID == "" { c.errLog().Bytes("rawMessage", rawMessage).Msg("MissingRoomID") return errMissingRoomID } c.roomID = registerMessage.RoomID c.clientID = registerMessage.ClientID if registerMessage.ClientID == "" { c.clientID = c.ID } // 下位互換性 if registerMessage.Key != nil { c.signalingKey = registerMessage.Key } if registerMessage.SignalingKey != nil { c.signalingKey = registerMessage.SignalingKey } c.authnMetadata = registerMessage.AuthnMetadata c.standalone = registerMessage.Standalone // クライアント情報の登録 c.ayameClient = registerMessage.AyameClient c.environment = registerMessage.Environment c.libwebrtc = registerMessage.Libwebrtc // Webhook 系のエラーログは Caller をつける resp, err := c.authnWebhook() if err != nil { c.errLog().Err(err).Caller().Msg("AuthnWebhookError") if err := c.sendRejectMessage("InternalServerError"); err != nil {
c.errLog().Err(err).Caller().Msg("FailedSendRejectMessage") return err } return err
random_line_split
connection.go
} return nil } func (c *connection) sendPingMessage() error { msg := &pingMessage{ Type: "ping", } if err := c.SendJSON(msg); err != nil { return err } return nil } // reason の長さが不十分そうな場合は CloseMessage ではなく TextMessage を使用するように変更する func (c *connection) sendCloseMessage(code int, reason string) error { deadline := time.Now().Add(writeWait) closeMessage := websocket.FormatCloseMessage(code, reason) return c.wsConn.WriteControl(websocket.CloseMessage, closeMessage, deadline) } func (c *connection) sendAcceptMessage(isExistClient bool, iceServers *[]iceServer, authzMetadata *interface{}) error { msg := &acceptMessage{ Type: "accept", ConnectionID: c.ID, IsExistClient: isExistClient, // 下位互換性 IsExistUser: isExistClient, AuthzMetadata: authzMetadata, IceServers: iceServers, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendRejectMessage(reason string) error { msg := &rejectMessage{ Type: "reject", Reason: reason, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendByeMessage() error { msg := &byeMessage{ Type: "bye", } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) closeWs() { c.wsConn.Close() c.debugLog().Msg("CLOSED-WS") } func (c *connection) register() int { resultChannel := make(chan int) registerChannel <- &register{ connection: c, resultChannel: resultChannel, } // ここはブロックする candidate とかを並列で来てるかもしれないが知らん result := <-resultChannel // もう server で触ることはないのでここで閉じる close(resultChannel) return result } func (c *connection) unregister() { if c.registered { unregisterChannel <- &unregister{ connection: c, } } } func (c *connection) forward(msg []byte) { // グローバルにあるチャンネルに対して投げ込む forwardChannel <- forward{ connection: c, rawMessage: msg, } } func (c *connection) main(cancel context.CancelFunc, messageChannel chan []byte) { pongTimeoutTimer := time.NewTimer(pongTimeout * time.Second) pingTimer := time.NewTimer(pingInterval * time.Second) defer func() { timerStop(pongTimeoutTimer) timerStop(pingTimer) // キャンセルを呼ぶ cancel() c.debugLog().Msg("CANCEL") // アンレジはここでやる c.unregister() c.debugLog().Msg("UNREGISTER") c.debugLog().Msg("EXIT-MAIN") }() loop: for { select { case <-pingTimer.C: if !c.standalone { if err := c.sendPingMessage(); err != nil { break loop } } pingTimer.Reset(pingInterval * time.Second) case <-pongTimeoutTimer.C: if !c.standalone { // タイマーが発火してしまったので切断する c.errLog().Msg("PongTimeout") break loop } case rawMessage, ok := <-messageChannel: // message チャンネルが閉じられた、main 終了待ち if !ok { c.debugLog().Msg("CLOSED-MESSAGE-CHANNEL") // メッセージチャネルが閉じてるので return でもう抜けてしまう return } if err := c.handleWsMessage(rawMessage, pongTimeoutTimer); err != nil { // ここのエラーのログはすでに handleWsMessage でとってあるので不要 // エラーになったら抜ける break loop } case forward, ok := <-c.forwardChannel: if !ok { // server 側で forwardChannel を閉じた c.debugLog().Msg("UNREGISTERED") if !c.standalone { if err := c.sendByeMessage(); err != nil { c.errLog().Err(err).Msg("FailedSendByeMessage") // 送れなかったら閉じるメッセージも送れないので return return } c.debugLog().Msg("SENT-BYE-MESSAGE") } break loop } if err := c.wsConn.WriteMessage(websocket.TextMessage, forward.rawMessage); err != nil { c.errLog().Err(err).Msg("FailedWriteMessage") // 送れなかったら閉じるメッセージも送れないので return return } } } // こちらの都合で終了するので Websocket 終了のお知らせを送る if err := c.sendCloseMessage(websocket.CloseNormalClosure, ""); err != nil { c.debugLog().Err(err).Msg("FAILED-SEND-CLOSE-MESSAGE") // 送れなかったら return する return } c.debugLog().Msg("SENT-CLOSE-MESSAGE") } func (c *connection) wsRecv(ctx context.Context, messageChannel chan []byte) { loop: for { readDeadline := time.Now().Add(time.Duration(readTimeout) * time.Second) if err := c.wsConn.SetReadDeadline(readDeadline); err != nil { c.errLog().Err(err).Msg("FailedSetReadDeadLine") break loop } _, rawMessage, err := c.wsConn.ReadMessage() if err != nil { // ここに来るのはほぼ WebSocket が切断されたとき c.debugLog().Err(err).Msg("WS-READ-MESSAGE-ERROR") break loop } messageChannel <- rawMessage } close(messageChannel) c.debugLog().Msg("CLOSE-MESSAGE-CHANNEL") // メインが死ぬまで待つ <-ctx.Done() c.debugLog().Msg("EXITED-MAIN") if !c.standalone { c.closeWs() } c.debugLog().Msg("EXIT-WS-RECV") if err := c.disconnectWebhook(); err != nil { c.errLog().Err(err).Caller().Msg("DisconnectWebhookError") return } } // メッセージ系のエラーログはここですべて取る func (c *connection) handleWsMessage(rawMessage []byte, pongTimeoutTimer *time.Timer) error { message := &message{} if err := json.Unmarshal(rawMessage, &message); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidJSON") return errInvalidJSON } if message == nil { c.errLog().Bytes("rawMessage", rawMessage).Msg("UnexpectedJSON") return errUnexpectedJSON } // 受信したメッセージで message type がパースできたものをログとして保存する c.signalingLog(*message, rawMessage) switch message.Type { case "pong": timerStop(pongTimeoutTimer) pongTimeoutTimer.Reset(pongTimeout * time.Second) case "register": // すでに登録されているのにもう一度登録しに来た if c.registered { c.errLog().Bytes("rawMessage", rawMessage).Msg("InternalServer") return errInternalServer } c.ID = getULID() registerMessage := &registerMessage{} if err := json.Unmarshal(rawMessage, &registerMessage); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidRegisterMessageJSON") return errInvalidJSON } if registerMessage.RoomID == "" { c.errLog().Bytes("rawMessage", rawMessage).Msg("MissingRoomID") return errMissingRoomID } c.roomID = registerMessage.RoomID c.clientID = registerMessage.ClientID if registerMessage.ClientID == "" { c.clientID = c.ID } // 下位互換性 if registerMessage.Key != nil { c.signalingKey = registerMessage.Key } if registerMessage.SignalingKey != nil { c.signalingKey = registerMessage.SignalingKey } c.authnMetadata = registerMessage.AuthnMetadata c.standalone = registerMessage.Standalone // クライアント情報の登録 c.ayameClient = registerMessage.AyameClient c.environment = registerMessage.Environment c.libwebrtc = registerMessage.Libwebrtc // Webhook 系のエラーログは Caller をつける resp, err := c.authnWebhook() if err != nil { c.errLog().Err(err).Caller().Msg("AuthnWebhookError") if err :=
turn err
identifier_name
connection.go
return nil } // reason の長さが不十分そうな場合は CloseMessage ではなく TextMessage を使用するように変更する func (c *connection) sendCloseMessage(code int, reason string) error { deadline := time.Now().Add(writeWait) closeMessage := websocket.FormatCloseMessage(code, reason) return c.wsConn.WriteControl(websocket.CloseMessage, closeMessage, deadline) } func (c *connection) sendAcceptMessage(isExistClient bool, iceServers *[]iceServer, authzMetadata *interface{}) error { msg := &acceptMessage{ Type: "accept", ConnectionID: c.ID, IsExistClient: isExistClient, // 下位互換性 IsExistUser: isExistClient, AuthzMetadata: authzMetadata, IceServers: iceServers, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendRejectMessage(reason string) error { msg := &rejectMessage{ Type: "reject", Reason: reason, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendByeMessage() error { msg := &byeMessage{ Type: "bye", } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) closeWs() { c.wsConn.Close() c.debugLog().Msg("CLOSED-WS") } func (c *connection) register() int { resultChannel := make(chan int) registerChannel <- &register{ connection: c, resultChannel: resultChannel, } // ここはブロックする candidate とかを並列で来てるかもしれないが知らん result := <-resultChannel // もう server で触ることはないのでここで閉じる close(resultChannel) return result } func (c *connection) unregister() { if c.registered { unregisterChannel <- &unregister{ connection: c, } } } func (c *connection) forward(msg []byte) { // グローバルにあるチャンネルに対して投げ込む forwardChannel <- forward{ connection: c, rawMessage: msg, } } func (c *connection) main(cancel context.CancelFunc, messageChannel chan []byte) { pongTimeoutTimer := time.NewTimer(pongTimeout * time.Second) pingTimer := time.NewTimer(pingInterval * time.Second) defer func() { timerStop(pongTimeoutTimer) timerStop(pingTimer) // キャンセルを呼ぶ cancel() c.debugLog().Msg("CANCEL") // アンレジはここでやる c.unregister() c.debugLog().Msg("UNREGISTER") c.debugLog().Msg("EXIT-MAIN") }() loop: for { select { case <-pingTimer.C: if !c.standalone { if err := c.sendPingMessage(); err != nil { break loop } } pingTimer.Reset(pingInterval * time.Second) case <-pongTimeoutTimer.C: if !c.standalone { // タイマーが発火してしまったので切断する c.errLog().Msg("PongTimeout") break loop } case rawMessage, ok := <-messageChannel: // message チャンネルが閉じられた、main 終了待ち if !ok { c.debugLog().Msg("CLOSED-MESSAGE-CHANNEL") // メッセージチャネルが閉じてるので return でもう抜けてしまう return } if err := c.handleWsMessage(rawMessage, pongTimeoutTimer); err != nil { // ここのエラーのログはすでに handleWsMessage でとってあるので不要 // エラーになったら抜ける break loop } case forward, ok := <-c.forwardChannel: if !ok { // server 側で forwardChannel を閉じた c.debugLog().Msg("UNREGISTERED") if !c.standalone { if err := c.sendByeMessage(); err != nil { c.errLog().Err(err).Msg("FailedSendByeMessage") // 送れなかったら閉じるメッセージも送れないので return return } c.debugLog().Msg("SENT-BYE-MESSAGE") } break loop } if err := c.wsConn.WriteMessage(websocket.TextMessage, forward.rawMessage); err != nil { c.errLog().Err(err).Msg("FailedWriteMessage") // 送れなかったら閉じるメッセージも送れないので return return } } } // こちらの都合で終了するので Websocket 終了のお知らせを送る if err := c.sendCloseMessage(websocket.CloseNormalClosure, ""); err != nil { c.debugLog().Err(err).Msg("FAILED-SEND-CLOSE-MESSAGE") // 送れなかったら return する return } c.debugLog().Msg("SENT-CLOSE-MESSAGE") } func (c *connection) wsRecv(ctx context.Context, messageChannel chan []byte) { loop: for { readDeadline := time.Now().Add(time.Duration(readTimeout) * time.Second) if err := c.wsConn.SetReadDeadline(readDeadline); err != nil { c.errLog().Err(err).Msg("FailedSetReadDeadLine") break loop } _, rawMessage, err := c.wsConn.ReadMessage() if err != nil { // ここに来るのはほぼ WebSocket が切断されたとき c.debugLog().Err(err).Msg("WS-READ-MESSAGE-ERROR") break loop } messageChannel <- rawMessage } close(messageChannel) c.debugLog().Msg("CLOSE-MESSAGE-CHANNEL") // メインが死ぬまで待つ <-ctx.Done() c.debugLog().Msg("EXITED-MAIN") if !c.standalone { c.closeWs() } c.debugLog().Msg("EXIT-WS-RECV") if err := c.disconnectWebhook(); err != nil { c.errLog().Err(err).Caller().Msg("DisconnectWebhookError") return } } // メッセージ系のエラーログはここですべて取る func (c *connection) handleWsMessage(rawMessage []byte, pongTimeoutTimer *time.Timer) error { message := &message{} if err := json.Unmarshal(rawMessage, &message); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidJSON") return errInvalidJSON } if message == nil { c.errLog().Bytes("rawMessage", rawMessage).Msg("UnexpectedJSON") return errUnexpectedJSON } // 受信したメッセージで message type がパースできたものをログとして保存する c.signalingLog(*message, rawMessage) switch message.Type { case "pong": timerStop(pongTimeoutTimer) pongTimeoutTimer.Reset(pongTimeout * time.Second) case "register": // すでに登録されているのにもう一度登録しに来た if c.registered { c.errLog().Bytes("rawMessage", rawMessage).Msg("InternalServer") return errInternalServer } c.ID = getULID() registerMessage := &registerMessage{} if err := json.Unmarshal(rawMessage, &registerMessage); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidRegisterMessageJSON") return errInvalidJSON } if registerMessage.RoomID == "" { c.errLog().Bytes("rawMessage", rawMessage).Msg("MissingRoomID") return errMissingRoomID } c.roomID = registerMessage.RoomID c.clientID = registerMessage.ClientID if registerMessage.ClientID == "" { c.clientID = c.ID } // 下位互換性 if registerMessage.Key != nil { c.signalingKey = registerMessage.Key } if registerMessage.SignalingKey != nil { c.signalingKey = registerMessage.SignalingKey } c.authnMetadata = registerMessage.AuthnMetadata c.standalone = registerMessage.Standalone // クライアント情報の登録 c.ayameClient = registerMessage.AyameClient c.environment = registerMessage.Environment c.libwebrtc = registerMessage.Libwebrtc // Webhook 系のエラーログは Caller をつける resp, err := c.authnWebhook() if err != nil { c.errLog().Err(err).Caller().Msg("AuthnWebhookError") if err := c.sendRejectMessage("InternalServerError"); err
c (c *connection) sendPingMessage() error { msg := &pingMessage{ Type: "ping", } if err := c.SendJSON(msg); err != nil { return err }
identifier_body
connection.go
err := c.SendJSON(msg); err != nil { return err } return nil } // reason の長さが不十分そうな場合は CloseMessage ではなく TextMessage を使用するように変更する func (c *connection) sendCloseMessage(code int, reason string) error { deadline := time.Now().Add(writeWait) closeMessage := websocket.FormatCloseMessage(code, reason) return c.wsConn.WriteControl(websocket.CloseMessage, closeMessage, deadline) } func (c *connection) sendAcceptMessage(isExistClient bool, iceServers *[]iceServer, authzMetadata *interface{}) error { msg := &acceptMessage{ Type: "accept", ConnectionID: c.ID, IsExistClient: isExistClient, // 下位互換性 IsExistUser: isExistClient, AuthzMetadata: authzMetadata, IceServers: iceServers, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendRejectMessage(reason string) error { msg := &rejectMessage{ Type: "reject", Reason: reason, } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) sendByeMessage() error { msg := &byeMessage{ Type: "bye", } if err := c.SendJSON(msg); err != nil { return err } return nil } func (c *connection) closeWs() { c.wsConn.Close() c.debugLog().Msg("CLOSED-WS") } func (c *connection) register() int { resultChannel := make(chan int) registerChannel <- &register{ connection: c, resultChannel: resultChannel, } // ここはブロックする candidate とかを並列で来てるかもしれないが知らん result := <-resultChannel // もう server で触ることはないのでここで閉じる close(resultChannel) return result } func (c *connection) unregister() { if c.registered { unregisterChannel <- &unregister{ connection: c, } } } func (c *connection) forward(msg []byte) { // グローバルにあるチャンネルに対して投げ込む forwardChannel <- forward{ connection: c, rawMessage: msg, } } func (c *connection) main(cancel context.CancelFunc, messageChannel chan []byte) { pongTimeoutTimer := time.NewTimer(pongTimeout * time.Second) pingTimer := time.NewTimer(pingInterval * time.Second) defer func() { timerStop(pongTimeoutTimer) timerStop(pingTimer) // キャンセルを呼ぶ cancel() c.debugLog().Msg("CANCEL") // アンレジはここでやる c.unregister() c.debugLog().Msg("UNREGISTER") c.debugLog().Msg("EXIT-MAIN") }() loop: for { select { case <-pingTimer.C: if !c.standalone { if err := c.sendPingMessage(); err != nil { break loop } } pingTimer.Reset(pingInterval * time.Second) case <-pongTimeoutTimer.C: if !c.standalone { // タイマーが発火してしまったので切断する c.errLog().Msg("PongTimeout") break loop } case rawMessage, ok := <-messageChannel: // message チャンネルが閉じられた、main 終了待ち if !ok { c.debugLog().Msg("CLOSED-MESSAGE-CHANNEL") // メッセージチャネルが閉じてるので return でもう抜けてしまう return } if err := c.handleWsMessage(rawMessage, pongTimeoutTimer); err != nil { // ここのエラーのログはすでに handleWsMessage でとってあるので不要 // エラーになったら抜ける break loop } case forward, ok := <-c.forwardChannel: if !ok { // server 側で forwardChannel を閉じた c.debugLog().Msg("UNREGISTERED") if !c.standalone { if err := c.sendByeMessage(); er
-MESSAGE") } break loop } if err := c.wsConn.WriteMessage(websocket.TextMessage, forward.rawMessage); err != nil { c.errLog().Err(err).Msg("FailedWriteMessage") // 送れなかったら閉じるメッセージも送れないので return return } } } // こちらの都合で終了するので Websocket 終了のお知らせを送る if err := c.sendCloseMessage(websocket.CloseNormalClosure, ""); err != nil { c.debugLog().Err(err).Msg("FAILED-SEND-CLOSE-MESSAGE") // 送れなかったら return する return } c.debugLog().Msg("SENT-CLOSE-MESSAGE") } func (c *connection) wsRecv(ctx context.Context, messageChannel chan []byte) { loop: for { readDeadline := time.Now().Add(time.Duration(readTimeout) * time.Second) if err := c.wsConn.SetReadDeadline(readDeadline); err != nil { c.errLog().Err(err).Msg("FailedSetReadDeadLine") break loop } _, rawMessage, err := c.wsConn.ReadMessage() if err != nil { // ここに来るのはほぼ WebSocket が切断されたとき c.debugLog().Err(err).Msg("WS-READ-MESSAGE-ERROR") break loop } messageChannel <- rawMessage } close(messageChannel) c.debugLog().Msg("CLOSE-MESSAGE-CHANNEL") // メインが死ぬまで待つ <-ctx.Done() c.debugLog().Msg("EXITED-MAIN") if !c.standalone { c.closeWs() } c.debugLog().Msg("EXIT-WS-RECV") if err := c.disconnectWebhook(); err != nil { c.errLog().Err(err).Caller().Msg("DisconnectWebhookError") return } } // メッセージ系のエラーログはここですべて取る func (c *connection) handleWsMessage(rawMessage []byte, pongTimeoutTimer *time.Timer) error { message := &message{} if err := json.Unmarshal(rawMessage, &message); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidJSON") return errInvalidJSON } if message == nil { c.errLog().Bytes("rawMessage", rawMessage).Msg("UnexpectedJSON") return errUnexpectedJSON } // 受信したメッセージで message type がパースできたものをログとして保存する c.signalingLog(*message, rawMessage) switch message.Type { case "pong": timerStop(pongTimeoutTimer) pongTimeoutTimer.Reset(pongTimeout * time.Second) case "register": // すでに登録されているのにもう一度登録しに来た if c.registered { c.errLog().Bytes("rawMessage", rawMessage).Msg("InternalServer") return errInternalServer } c.ID = getULID() registerMessage := &registerMessage{} if err := json.Unmarshal(rawMessage, &registerMessage); err != nil { c.errLog().Err(err).Bytes("rawMessage", rawMessage).Msg("InvalidRegisterMessageJSON") return errInvalidJSON } if registerMessage.RoomID == "" { c.errLog().Bytes("rawMessage", rawMessage).Msg("MissingRoomID") return errMissingRoomID } c.roomID = registerMessage.RoomID c.clientID = registerMessage.ClientID if registerMessage.ClientID == "" { c.clientID = c.ID } // 下位互換性 if registerMessage.Key != nil { c.signalingKey = registerMessage.Key } if registerMessage.SignalingKey != nil { c.signalingKey = registerMessage.SignalingKey } c.authnMetadata = registerMessage.AuthnMetadata c.standalone = registerMessage.Standalone // クライアント情報の登録 c.ayameClient = registerMessage.AyameClient c.environment = registerMessage.Environment c.libwebrtc = registerMessage.Libwebrtc // Webhook 系のエラーログは Caller をつける resp, err := c.authnWebhook() if err != nil { c.errLog().Err(err).Caller().Msg("AuthnWebhookError") if err := c.sendRejectMessage("InternalServerError"); err != nil { c.errLog().Err(err).Caller().Msg("FailedSendRejectMessage") return err }
r != nil { c.errLog().Err(err).Msg("FailedSendByeMessage") // 送れなかったら閉じるメッセージも送れないので return return } c.debugLog().Msg("SENT-BYE
conditional_block
images.go
Returns image ID and nil on success. func (i *ImagesModel) CreateImage( metaConstructor *images.SoftwareImageMetaConstructor, imageReader io.Reader) (string, error) { if metaConstructor == nil { return "", controller.ErrModelMissingInputMetadata } if imageReader == nil { return "", controller.ErrModelMissingInputArtifact } artifactID, err := i.handleArtifact(metaConstructor, imageReader) // try to remove artifact file from file storage on error if err != nil { if cleanupErr := i.fileStorage.Delete(artifactID); cleanupErr != nil { return "", errors.Wrap(err, cleanupErr.Error()) } } return artifactID, err } // handleArtifact parses artifact and uploads artifact file to the file storage - in parallel, // and creates image structure in the system. // Returns image ID, artifact file ID and nil on success. func (i *ImagesModel) handleArtifact( metaConstructor *images.SoftwareImageMetaConstructor, imageReader io.Reader) (string, error) { // limit just for safety // max image size - 10G const MaxImageSize = 1024 * 1024 * 1024 * 10 // create pipe pR, pW := io.Pipe() // limit reader to max image size lr := io.LimitReader(imageReader, MaxImageSize) tee := io.TeeReader(lr, pW) artifactID := uuid.NewV4().String() ch := make(chan error) // create goroutine for artifact upload // // reading from the pipe (which is done in UploadArtifact method) is a blocking operation // and cannot be done in the same goroutine as writing to the pipe // // uploading and parsing artifact in the same process will cause in a deadlock! go func() { err := i.fileStorage.UploadArtifact(artifactID, pR, ImageContentType) if err != nil { pR.CloseWithError(err) } ch <- err }() // parse artifact // artifact library reads all the data from the given reader metaArtifactConstructor, err := getMetaFromArchive(&tee, MaxImageSize) if err != nil { pW.Close() if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", controller.ErrModelArtifactUploadFailed } return "", controller.ErrModelInvalidMetadata } // read the rest of the data, // just in case the artifact library did not read all the data from the reader _, err = io.Copy(ioutil.Discard, tee) if err != nil { pW.Close() _ = <-ch return "", err } // close the pipe pW.Close() // collect output from the goroutine if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", uploadResponseErr } // validate artifact metadata if err = metaArtifactConstructor.Validate(); err != nil { return "", controller.ErrModelInvalidMetadata } // check if artifact is unique // artifact is considered to be unique if there is no artifact with the same name // and supporing the same platform in the system isArtifactUnique, err := i.imagesStorage.IsArtifactUnique( metaArtifactConstructor.ArtifactName, metaArtifactConstructor.DeviceTypesCompatible) if err != nil { return "", errors.Wrap(err, "Fail to check if artifact is unique") } if !isArtifactUnique { return "", controller.ErrModelArtifactNotUnique } image := images.NewSoftwareImage(artifactID, metaConstructor, metaArtifactConstructor) // save image structure in the system if err = i.imagesStorage.Insert(image); err != nil { return "", errors.Wrap(err, "Fail to store the metadata") } return artifactID, nil } // GetImage allows to fetch image obeject with specified id // Nil if not found func (i *ImagesModel) GetImage(id string) (*images.SoftwareImage, error) { image, err := i.imagesStorage.FindByID(id) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if image == nil { return nil, nil } return image, nil } // DeleteImage removes metadata and image file // Noop for not exisitng images // Allowed to remove image only if image is not scheduled or in progress for an updates - then image file is needed // In case of already finished updates only image file is not needed, metadata is attached directly to device deployment // therefore we still have some information about image that have been used (but not the file) func (i *ImagesModel) DeleteImage(imageID string) error { found, err := i.GetImage(imageID) if err != nil { return errors.Wrap(err, "Getting image metadata") } if found == nil { return controller.ErrImageMetaNotFound } inUse, err := i.deployments.ImageUsedInActiveDeployment(imageID) if err != nil { return errors.Wrap(err, "Checking if image is used in active deployment") } // Image is in use, not allowed to delete if inUse { return controller.ErrModelImageInActiveDeployment } // Delete image file (call to external service) // Noop for not existing file if err := i.fileStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image file") } // Delete metadata if err := i.imagesStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image metadata") } return nil } // ListImages according to specified filers. func (i *ImagesModel) ListImages(filters map[string]string) ([]*images.SoftwareImage, error) { imageList, err := i.imagesStorage.FindAll() if err != nil { return nil, errors.Wrap(err, "Searching for image metadata") } if imageList == nil { return make([]*images.SoftwareImage, 0), nil } return imageList, nil } // EditObject allows editing only if image have not been used yet in any deployment. func (i *ImagesModel) EditImage(imageID string, constructor *images.SoftwareImageMetaConstructor) (bool, error) { if err := constructor.Validate(); err != nil { return false, errors.Wrap(err, "Validating image metadata") } found, err := i.deployments.ImageUsedInDeployment(imageID) if err != nil { return false, errors.Wrap(err, "Searching for usage of the image among deployments") } if found { return false, controller.ErrModelImageUsedInAnyDeployment } foundImage, err := i.imagesStorage.FindByID(imageID) if err != nil { return false, errors.Wrap(err, "Searching for image with specified ID") } if foundImage == nil { return false, nil } foundImage.SetModified(time.Now()) _, err = i.imagesStorage.Update(foundImage) if err != nil { return false, errors.Wrap(err, "Updating image matadata") } return true, nil } // DownloadLink presigned GET link to download image file. // Returns error if image have not been uploaded. func (i *ImagesModel) DownloadLink(imageID string, expire time.Duration) (*images.Link, error) { found, err := i.imagesStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if !found { return nil, nil } found, err = i.fileStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image file") } if !found { return nil, nil } link, err := i.fileStorage.GetRequest(imageID, expire, ImageContentType) if err != nil { return nil, errors.Wrap(err, "Generating download link") } return link, nil } func getArtifactInfo(info metadata.Info) *images.ArtifactInfo { return &images.ArtifactInfo{ Format: info.Format, Version: uint(info.Version), } } func getUpdateFiles(maxImageSize int64, uFiles map[string]parser.UpdateFile) ([]images.UpdateFile, error) { var files []images.UpdateFile for _, u := range uFiles { if u.Size > maxImageSize { return nil, errors.New("Image too large") } files = append(files, images.UpdateFile{ Name: u.Name, Size: u.Size, Signature: string(u.Signature), Date: &u.Date, Checksum: string(u.Checksum), }) } return files, nil } func getMetaFromArchive( r *io.Reader, maxImageSize int64) (*images.SoftwareImageMetaArtifactConstructor, error) { metaArtifact := images.NewSoftwareImageMetaArtifactConstructor() aReader := areader.NewReader(*r) defer aReader.Close() data, err := aReader.Read() if err != nil { return nil, errors.Wrap(err, "reading artifact error") } metaArtifact.Info = getArtifactInfo(aReader.GetInfo()) metaArtifact.DeviceTypesCompatible = aReader.GetCompatibleDevices() metaArtifact.ArtifactName = aReader.GetArtifactName() for _, p := range data { uFiles, err := getUpdateFiles(maxImageSize, p.GetUpdateFiles()) if err != nil
{ return nil, errors.Wrap(err, "Cannot get update files:") }
conditional_block
images.go
governing permissions and // limitations under the License. package model import ( "io" "io/ioutil" "time" "github.com/mendersoftware/deployments/resources/images" "github.com/mendersoftware/deployments/resources/images/controller" "github.com/mendersoftware/mender-artifact/metadata" "github.com/mendersoftware/mender-artifact/parser" "github.com/mendersoftware/mender-artifact/reader" "github.com/pkg/errors" "github.com/satori/go.uuid" ) const ( ImageContentType = "application/vnd.mender-artifact" ) type ImagesModel struct { fileStorage FileStorage deployments ImageUsedIn imagesStorage SoftwareImagesStorage } func NewImagesModel( fileStorage FileStorage, checker ImageUsedIn, imagesStorage SoftwareImagesStorage, ) *ImagesModel { return &ImagesModel{ fileStorage: fileStorage, deployments: checker, imagesStorage: imagesStorage, } } // CreateImage parses artifact and uploads artifact file to the file storage - in parallel, // and creates image structure in the system. // Returns image ID and nil on success. func (i *ImagesModel) CreateImage( metaConstructor *images.SoftwareImageMetaConstructor, imageReader io.Reader) (string, error) { if metaConstructor == nil { return "", controller.ErrModelMissingInputMetadata } if imageReader == nil { return "", controller.ErrModelMissingInputArtifact } artifactID, err := i.handleArtifact(metaConstructor, imageReader) // try to remove artifact file from file storage on error if err != nil { if cleanupErr := i.fileStorage.Delete(artifactID); cleanupErr != nil { return "", errors.Wrap(err, cleanupErr.Error()) } } return artifactID, err } // handleArtifact parses artifact and uploads artifact file to the file storage - in parallel, // and creates image structure in the system. // Returns image ID, artifact file ID and nil on success. func (i *ImagesModel) handleArtifact( metaConstructor *images.SoftwareImageMetaConstructor, imageReader io.Reader) (string, error) { // limit just for safety // max image size - 10G const MaxImageSize = 1024 * 1024 * 1024 * 10 // create pipe pR, pW := io.Pipe() // limit reader to max image size lr := io.LimitReader(imageReader, MaxImageSize) tee := io.TeeReader(lr, pW) artifactID := uuid.NewV4().String() ch := make(chan error) // create goroutine for artifact upload // // reading from the pipe (which is done in UploadArtifact method) is a blocking operation // and cannot be done in the same goroutine as writing to the pipe // // uploading and parsing artifact in the same process will cause in a deadlock! go func() { err := i.fileStorage.UploadArtifact(artifactID, pR, ImageContentType) if err != nil { pR.CloseWithError(err) } ch <- err }() // parse artifact // artifact library reads all the data from the given reader metaArtifactConstructor, err := getMetaFromArchive(&tee, MaxImageSize) if err != nil { pW.Close() if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", controller.ErrModelArtifactUploadFailed } return "", controller.ErrModelInvalidMetadata } // read the rest of the data, // just in case the artifact library did not read all the data from the reader _, err = io.Copy(ioutil.Discard, tee) if err != nil { pW.Close() _ = <-ch return "", err } // close the pipe pW.Close() // collect output from the goroutine if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", uploadResponseErr } // validate artifact metadata if err = metaArtifactConstructor.Validate(); err != nil { return "", controller.ErrModelInvalidMetadata } // check if artifact is unique // artifact is considered to be unique if there is no artifact with the same name // and supporing the same platform in the system isArtifactUnique, err := i.imagesStorage.IsArtifactUnique( metaArtifactConstructor.ArtifactName, metaArtifactConstructor.DeviceTypesCompatible) if err != nil { return "", errors.Wrap(err, "Fail to check if artifact is unique") } if !isArtifactUnique { return "", controller.ErrModelArtifactNotUnique } image := images.NewSoftwareImage(artifactID, metaConstructor, metaArtifactConstructor) // save image structure in the system if err = i.imagesStorage.Insert(image); err != nil { return "", errors.Wrap(err, "Fail to store the metadata") } return artifactID, nil } // GetImage allows to fetch image obeject with specified id // Nil if not found func (i *ImagesModel) GetImage(id string) (*images.SoftwareImage, error)
// DeleteImage removes metadata and image file // Noop for not exisitng images // Allowed to remove image only if image is not scheduled or in progress for an updates - then image file is needed // In case of already finished updates only image file is not needed, metadata is attached directly to device deployment // therefore we still have some information about image that have been used (but not the file) func (i *ImagesModel) DeleteImage(imageID string) error { found, err := i.GetImage(imageID) if err != nil { return errors.Wrap(err, "Getting image metadata") } if found == nil { return controller.ErrImageMetaNotFound } inUse, err := i.deployments.ImageUsedInActiveDeployment(imageID) if err != nil { return errors.Wrap(err, "Checking if image is used in active deployment") } // Image is in use, not allowed to delete if inUse { return controller.ErrModelImageInActiveDeployment } // Delete image file (call to external service) // Noop for not existing file if err := i.fileStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image file") } // Delete metadata if err := i.imagesStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image metadata") } return nil } // ListImages according to specified filers. func (i *ImagesModel) ListImages(filters map[string]string) ([]*images.SoftwareImage, error) { imageList, err := i.imagesStorage.FindAll() if err != nil { return nil, errors.Wrap(err, "Searching for image metadata") } if imageList == nil { return make([]*images.SoftwareImage, 0), nil } return imageList, nil } // EditObject allows editing only if image have not been used yet in any deployment. func (i *ImagesModel) EditImage(imageID string, constructor *images.SoftwareImageMetaConstructor) (bool, error) { if err := constructor.Validate(); err != nil { return false, errors.Wrap(err, "Validating image metadata") } found, err := i.deployments.ImageUsedInDeployment(imageID) if err != nil { return false, errors.Wrap(err, "Searching for usage of the image among deployments") } if found { return false, controller.ErrModelImageUsedInAnyDeployment } foundImage, err := i.imagesStorage.FindByID(imageID) if err != nil { return false, errors.Wrap(err, "Searching for image with specified ID") } if foundImage == nil { return false, nil } foundImage.SetModified(time.Now()) _, err = i.imagesStorage.Update(foundImage) if err != nil { return false, errors.Wrap(err, "Updating image matadata") } return true, nil } // DownloadLink presigned GET link to download image file. // Returns error if image have not been uploaded. func (i *ImagesModel) DownloadLink(imageID string, expire time.Duration) (*images.Link, error) { found, err := i.imagesStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if !found { return nil, nil } found, err = i.fileStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image file") } if !found { return nil, nil } link, err := i.fileStorage.GetRequest(imageID, expire, ImageContentType) if err != nil { return nil, errors.Wrap(err, "Generating download link") } return link, nil } func getArtifactInfo(info metadata.Info) *images.ArtifactInfo { return &images.ArtifactInfo{ Format: info.Format, Version: uint(info.Version), } } func getUpdateFiles(maxImageSize int64, uFiles map[string]parser.UpdateFile) ([]images.UpdateFile, error) { var files []images.UpdateFile for _, u := range uFiles { if u.Size > maxImageSize { return nil, errors.New("Image too large
{ image, err := i.imagesStorage.FindByID(id) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if image == nil { return nil, nil } return image, nil }
identifier_body
images.go
return "", controller.ErrModelMissingInputArtifact } artifactID, err := i.handleArtifact(metaConstructor, imageReader) // try to remove artifact file from file storage on error if err != nil { if cleanupErr := i.fileStorage.Delete(artifactID); cleanupErr != nil { return "", errors.Wrap(err, cleanupErr.Error()) } } return artifactID, err } // handleArtifact parses artifact and uploads artifact file to the file storage - in parallel, // and creates image structure in the system. // Returns image ID, artifact file ID and nil on success. func (i *ImagesModel) handleArtifact( metaConstructor *images.SoftwareImageMetaConstructor, imageReader io.Reader) (string, error) { // limit just for safety // max image size - 10G const MaxImageSize = 1024 * 1024 * 1024 * 10 // create pipe pR, pW := io.Pipe() // limit reader to max image size lr := io.LimitReader(imageReader, MaxImageSize) tee := io.TeeReader(lr, pW) artifactID := uuid.NewV4().String() ch := make(chan error) // create goroutine for artifact upload // // reading from the pipe (which is done in UploadArtifact method) is a blocking operation // and cannot be done in the same goroutine as writing to the pipe // // uploading and parsing artifact in the same process will cause in a deadlock! go func() { err := i.fileStorage.UploadArtifact(artifactID, pR, ImageContentType) if err != nil { pR.CloseWithError(err) } ch <- err }() // parse artifact // artifact library reads all the data from the given reader metaArtifactConstructor, err := getMetaFromArchive(&tee, MaxImageSize) if err != nil { pW.Close() if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", controller.ErrModelArtifactUploadFailed } return "", controller.ErrModelInvalidMetadata } // read the rest of the data, // just in case the artifact library did not read all the data from the reader _, err = io.Copy(ioutil.Discard, tee) if err != nil { pW.Close() _ = <-ch return "", err } // close the pipe pW.Close() // collect output from the goroutine if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", uploadResponseErr } // validate artifact metadata if err = metaArtifactConstructor.Validate(); err != nil { return "", controller.ErrModelInvalidMetadata } // check if artifact is unique // artifact is considered to be unique if there is no artifact with the same name // and supporing the same platform in the system isArtifactUnique, err := i.imagesStorage.IsArtifactUnique( metaArtifactConstructor.ArtifactName, metaArtifactConstructor.DeviceTypesCompatible) if err != nil { return "", errors.Wrap(err, "Fail to check if artifact is unique") } if !isArtifactUnique { return "", controller.ErrModelArtifactNotUnique } image := images.NewSoftwareImage(artifactID, metaConstructor, metaArtifactConstructor) // save image structure in the system if err = i.imagesStorage.Insert(image); err != nil { return "", errors.Wrap(err, "Fail to store the metadata") } return artifactID, nil } // GetImage allows to fetch image obeject with specified id // Nil if not found func (i *ImagesModel) GetImage(id string) (*images.SoftwareImage, error) { image, err := i.imagesStorage.FindByID(id) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if image == nil { return nil, nil } return image, nil } // DeleteImage removes metadata and image file // Noop for not exisitng images // Allowed to remove image only if image is not scheduled or in progress for an updates - then image file is needed // In case of already finished updates only image file is not needed, metadata is attached directly to device deployment // therefore we still have some information about image that have been used (but not the file) func (i *ImagesModel) DeleteImage(imageID string) error { found, err := i.GetImage(imageID) if err != nil { return errors.Wrap(err, "Getting image metadata") } if found == nil { return controller.ErrImageMetaNotFound } inUse, err := i.deployments.ImageUsedInActiveDeployment(imageID) if err != nil { return errors.Wrap(err, "Checking if image is used in active deployment") } // Image is in use, not allowed to delete if inUse { return controller.ErrModelImageInActiveDeployment } // Delete image file (call to external service) // Noop for not existing file if err := i.fileStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image file") } // Delete metadata if err := i.imagesStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image metadata") } return nil } // ListImages according to specified filers. func (i *ImagesModel) ListImages(filters map[string]string) ([]*images.SoftwareImage, error) { imageList, err := i.imagesStorage.FindAll() if err != nil { return nil, errors.Wrap(err, "Searching for image metadata") } if imageList == nil { return make([]*images.SoftwareImage, 0), nil } return imageList, nil } // EditObject allows editing only if image have not been used yet in any deployment. func (i *ImagesModel) EditImage(imageID string, constructor *images.SoftwareImageMetaConstructor) (bool, error) { if err := constructor.Validate(); err != nil { return false, errors.Wrap(err, "Validating image metadata") } found, err := i.deployments.ImageUsedInDeployment(imageID) if err != nil { return false, errors.Wrap(err, "Searching for usage of the image among deployments") } if found { return false, controller.ErrModelImageUsedInAnyDeployment } foundImage, err := i.imagesStorage.FindByID(imageID) if err != nil { return false, errors.Wrap(err, "Searching for image with specified ID") } if foundImage == nil { return false, nil } foundImage.SetModified(time.Now()) _, err = i.imagesStorage.Update(foundImage) if err != nil { return false, errors.Wrap(err, "Updating image matadata") } return true, nil } // DownloadLink presigned GET link to download image file. // Returns error if image have not been uploaded. func (i *ImagesModel) DownloadLink(imageID string, expire time.Duration) (*images.Link, error) { found, err := i.imagesStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if !found { return nil, nil } found, err = i.fileStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image file") } if !found { return nil, nil } link, err := i.fileStorage.GetRequest(imageID, expire, ImageContentType) if err != nil { return nil, errors.Wrap(err, "Generating download link") } return link, nil } func getArtifactInfo(info metadata.Info) *images.ArtifactInfo { return &images.ArtifactInfo{ Format: info.Format, Version: uint(info.Version), } } func getUpdateFiles(maxImageSize int64, uFiles map[string]parser.UpdateFile) ([]images.UpdateFile, error) { var files []images.UpdateFile for _, u := range uFiles { if u.Size > maxImageSize { return nil, errors.New("Image too large") } files = append(files, images.UpdateFile{ Name: u.Name, Size: u.Size, Signature: string(u.Signature), Date: &u.Date, Checksum: string(u.Checksum), }) } return files, nil } func getMetaFromArchive( r *io.Reader, maxImageSize int64) (*images.SoftwareImageMetaArtifactConstructor, error) { metaArtifact := images.NewSoftwareImageMetaArtifactConstructor() aReader := areader.NewReader(*r) defer aReader.Close() data, err := aReader.Read() if err != nil { return nil, errors.Wrap(err, "reading artifact error") } metaArtifact.Info = getArtifactInfo(aReader.GetInfo()) metaArtifact.DeviceTypesCompatible = aReader.GetCompatibleDevices() metaArtifact.ArtifactName = aReader.GetArtifactName() for _, p := range data { uFiles, err := getUpdateFiles(maxImageSize, p.GetUpdateFiles()) if err != nil { return nil, errors.Wrap(err, "Cannot get update files:") } metaArtifact.Updates = append( metaArtifact.Updates, images.Update{ TypeInfo: images.ArtifactUpdateTypeInfo{ Type: p.GetUpdateType().Type, }, MetaData: p.GetMetadata(), Files: uFiles, }) }
random_line_split
images.go
governing permissions and // limitations under the License. package model import ( "io" "io/ioutil" "time" "github.com/mendersoftware/deployments/resources/images" "github.com/mendersoftware/deployments/resources/images/controller" "github.com/mendersoftware/mender-artifact/metadata" "github.com/mendersoftware/mender-artifact/parser" "github.com/mendersoftware/mender-artifact/reader" "github.com/pkg/errors" "github.com/satori/go.uuid" ) const ( ImageContentType = "application/vnd.mender-artifact" ) type ImagesModel struct { fileStorage FileStorage deployments ImageUsedIn imagesStorage SoftwareImagesStorage } func NewImagesModel( fileStorage FileStorage, checker ImageUsedIn, imagesStorage SoftwareImagesStorage, ) *ImagesModel { return &ImagesModel{ fileStorage: fileStorage, deployments: checker, imagesStorage: imagesStorage, } } // CreateImage parses artifact and uploads artifact file to the file storage - in parallel, // and creates image structure in the system. // Returns image ID and nil on success. func (i *ImagesModel) CreateImage( metaConstructor *images.SoftwareImageMetaConstructor, imageReader io.Reader) (string, error) { if metaConstructor == nil { return "", controller.ErrModelMissingInputMetadata } if imageReader == nil { return "", controller.ErrModelMissingInputArtifact } artifactID, err := i.handleArtifact(metaConstructor, imageReader) // try to remove artifact file from file storage on error if err != nil { if cleanupErr := i.fileStorage.Delete(artifactID); cleanupErr != nil { return "", errors.Wrap(err, cleanupErr.Error()) } } return artifactID, err } // handleArtifact parses artifact and uploads artifact file to the file storage - in parallel, // and creates image structure in the system. // Returns image ID, artifact file ID and nil on success. func (i *ImagesModel) handleArtifact( metaConstructor *images.SoftwareImageMetaConstructor, imageReader io.Reader) (string, error) { // limit just for safety // max image size - 10G const MaxImageSize = 1024 * 1024 * 1024 * 10 // create pipe pR, pW := io.Pipe() // limit reader to max image size lr := io.LimitReader(imageReader, MaxImageSize) tee := io.TeeReader(lr, pW) artifactID := uuid.NewV4().String() ch := make(chan error) // create goroutine for artifact upload // // reading from the pipe (which is done in UploadArtifact method) is a blocking operation // and cannot be done in the same goroutine as writing to the pipe // // uploading and parsing artifact in the same process will cause in a deadlock! go func() { err := i.fileStorage.UploadArtifact(artifactID, pR, ImageContentType) if err != nil { pR.CloseWithError(err) } ch <- err }() // parse artifact // artifact library reads all the data from the given reader metaArtifactConstructor, err := getMetaFromArchive(&tee, MaxImageSize) if err != nil { pW.Close() if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", controller.ErrModelArtifactUploadFailed } return "", controller.ErrModelInvalidMetadata } // read the rest of the data, // just in case the artifact library did not read all the data from the reader _, err = io.Copy(ioutil.Discard, tee) if err != nil { pW.Close() _ = <-ch return "", err } // close the pipe pW.Close() // collect output from the goroutine if uploadResponseErr := <-ch; uploadResponseErr != nil { return "", uploadResponseErr } // validate artifact metadata if err = metaArtifactConstructor.Validate(); err != nil { return "", controller.ErrModelInvalidMetadata } // check if artifact is unique // artifact is considered to be unique if there is no artifact with the same name // and supporing the same platform in the system isArtifactUnique, err := i.imagesStorage.IsArtifactUnique( metaArtifactConstructor.ArtifactName, metaArtifactConstructor.DeviceTypesCompatible) if err != nil { return "", errors.Wrap(err, "Fail to check if artifact is unique") } if !isArtifactUnique { return "", controller.ErrModelArtifactNotUnique } image := images.NewSoftwareImage(artifactID, metaConstructor, metaArtifactConstructor) // save image structure in the system if err = i.imagesStorage.Insert(image); err != nil { return "", errors.Wrap(err, "Fail to store the metadata") } return artifactID, nil } // GetImage allows to fetch image obeject with specified id // Nil if not found func (i *ImagesModel) GetImage(id string) (*images.SoftwareImage, error) { image, err := i.imagesStorage.FindByID(id) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if image == nil { return nil, nil } return image, nil } // DeleteImage removes metadata and image file // Noop for not exisitng images // Allowed to remove image only if image is not scheduled or in progress for an updates - then image file is needed // In case of already finished updates only image file is not needed, metadata is attached directly to device deployment // therefore we still have some information about image that have been used (but not the file) func (i *ImagesModel) DeleteImage(imageID string) error { found, err := i.GetImage(imageID) if err != nil { return errors.Wrap(err, "Getting image metadata") } if found == nil { return controller.ErrImageMetaNotFound } inUse, err := i.deployments.ImageUsedInActiveDeployment(imageID) if err != nil { return errors.Wrap(err, "Checking if image is used in active deployment") } // Image is in use, not allowed to delete if inUse { return controller.ErrModelImageInActiveDeployment } // Delete image file (call to external service) // Noop for not existing file if err := i.fileStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image file") } // Delete metadata if err := i.imagesStorage.Delete(imageID); err != nil { return errors.Wrap(err, "Deleting image metadata") } return nil } // ListImages according to specified filers. func (i *ImagesModel) ListImages(filters map[string]string) ([]*images.SoftwareImage, error) { imageList, err := i.imagesStorage.FindAll() if err != nil { return nil, errors.Wrap(err, "Searching for image metadata") } if imageList == nil { return make([]*images.SoftwareImage, 0), nil } return imageList, nil } // EditObject allows editing only if image have not been used yet in any deployment. func (i *ImagesModel) EditImage(imageID string, constructor *images.SoftwareImageMetaConstructor) (bool, error) { if err := constructor.Validate(); err != nil { return false, errors.Wrap(err, "Validating image metadata") } found, err := i.deployments.ImageUsedInDeployment(imageID) if err != nil { return false, errors.Wrap(err, "Searching for usage of the image among deployments") } if found { return false, controller.ErrModelImageUsedInAnyDeployment } foundImage, err := i.imagesStorage.FindByID(imageID) if err != nil { return false, errors.Wrap(err, "Searching for image with specified ID") } if foundImage == nil { return false, nil } foundImage.SetModified(time.Now()) _, err = i.imagesStorage.Update(foundImage) if err != nil { return false, errors.Wrap(err, "Updating image matadata") } return true, nil } // DownloadLink presigned GET link to download image file. // Returns error if image have not been uploaded. func (i *ImagesModel)
(imageID string, expire time.Duration) (*images.Link, error) { found, err := i.imagesStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image with specified ID") } if !found { return nil, nil } found, err = i.fileStorage.Exists(imageID) if err != nil { return nil, errors.Wrap(err, "Searching for image file") } if !found { return nil, nil } link, err := i.fileStorage.GetRequest(imageID, expire, ImageContentType) if err != nil { return nil, errors.Wrap(err, "Generating download link") } return link, nil } func getArtifactInfo(info metadata.Info) *images.ArtifactInfo { return &images.ArtifactInfo{ Format: info.Format, Version: uint(info.Version), } } func getUpdateFiles(maxImageSize int64, uFiles map[string]parser.UpdateFile) ([]images.UpdateFile, error) { var files []images.UpdateFile for _, u := range uFiles { if u.Size > maxImageSize { return nil, errors.New("Image too large")
DownloadLink
identifier_name
file.go
name, link := logName(prefix, t) fname := filepath.Join(dir, name) // Open the file os.O_APPEND|os.O_CREATE rather than use os.Create. // Append is almost always more efficient than O_RDRW on most modern file systems. f, err = os.OpenFile(fname, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0664) if err == nil { symlink := filepath.Join(dir, link) // Symlinks are best-effort. if err := os.Remove(symlink); err != nil && !os.IsNotExist(err) { fmt.Fprintf(OrigStderr, "log: failed to remove symlink %s: %s", symlink, err) } if err := os.Symlink(filepath.Base(fname), symlink); err != nil { // On Windows, this will be the common case, as symlink creation // requires special privileges. // See: https://docs.microsoft.com/en-us/windows/device-security/security-policy-settings/create-symbolic-links if runtime.GOOS != "windows" { fmt.Fprintf(OrigStderr, "log: failed to create symlink %s: %s", symlink, err) } } } return f, updatedRotation, fname, errors.Wrapf(err, "log: cannot create log") } // ListLogFiles returns a slice of FileInfo structs for each log file // on the local node, in any of the configured log directories. func ListLogFiles() ([]FileInfo, error) { return logging.listLogFiles() } func (l *loggingT) listLogFiles() ([]FileInfo, error) { var results []FileInfo dir, err := logging.logDir.get() if err != nil { // No log directory configured: simply indicate that there are no // log files. return nil, nil } infos, err := ioutil.ReadDir(dir) if err != nil { return results, err } // The file names have a fixed structure with fields delimited by // periods. create() for new files removes the periods from the // provided prefix; do the same here to filter out selected names // below. programPrefix := removePeriods(l.prefix) for _, info := range infos { if info.Mode().IsRegular() { details, err := parseLogFilename(info.Name()) if err == nil && details.Program == programPrefix { results = append(results, FileInfo{ Name: info.Name(), SizeBytes: info.Size(), ModTimeNanos: info.ModTime().UnixNano(), Details: details, }) } } } return results, nil } // GetLogReader returns a reader for the specified filename. In // restricted mode, the filename must be the base name of a file in // this process's log directory (this is safe for cases when the // filename comes from external sources, such as the admin UI via // HTTP). In unrestricted mode any path is allowed, relative to the // current directory, with the added feature that simple (base name) // file names will be searched in this process's log directory if not // found in the current directory. func GetLogReader(filename string, restricted bool) (io.ReadCloser, error) { dir, err := logging.logDir.get() if err != nil { return nil, err } switch restricted { case true: // Verify there are no path separators in a restricted-mode pathname. if filepath.Base(filename) != filename { return nil, errors.Errorf("pathnames must be basenames only: %s", filename) } filename = filepath.Join(dir, filename) // Symlinks are not followed in restricted mode. info, err := os.Lstat(filename) if err != nil { if os.IsNotExist(err) { return nil, errors.Errorf("no such file %s in the log directory", filename) } return nil, errors.Wrapf(err, "Lstat: %s", filename) } mode := info.Mode() if mode&os.ModeSymlink != 0 { return nil, errors.Errorf("symlinks are not allowed") } if !mode.IsRegular() { return nil, errors.Errorf("not a regular file") } case false: info, err := osStat(filename) if err != nil { if !os.IsNotExist(err) { return nil, errors.Wrapf(err, "Stat: %s", filename) } // The absolute filename didn't work, so try within the log // directory if the filename isn't a path. if filepath.IsAbs(filename) { return nil, errors.Errorf("no such file %s", filename) } filenameAttempt := filepath.Join(dir, filename) info, err = osStat(filenameAttempt) if err != nil { if os.IsNotExist(err) { return nil, errors.Errorf("no such file %s either in current directory or in %s", filename, dir) } return nil, errors.Wrapf(err, "Stat: %s", filename) } filename = filenameAttempt } filename, err = filepath.EvalSymlinks(filename) if err != nil { return nil, err } if !info.Mode().IsRegular() { return nil, errors.Errorf("not a regular file") } } // Check that the file name is valid. if _, err := parseLogFilename(filepath.Base(filename)); err != nil { return nil, err } return os.Open(filename) } // TODO(bram): remove when Go1.9 is required. // // See https://github.com/golang/go/issues/19870. func osStat(path string) (os.FileInfo, error) { path, err := filepath.EvalSymlinks(path) if err != nil { return nil, err } return os.Lstat(path) } // sortableFileInfoSlice is required so we can sort FileInfos. type sortableFileInfoSlice []FileInfo func (a sortableFileInfoSlice) Len() int { return len(a) } func (a sortableFileInfoSlice) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a sortableFileInfoSlice) Less(i, j int) bool { return a[i].Details.Time < a[j].Details.Time } // selectFiles selects all log files that have an timestamp before the // endTime. It then sorts them in decreasing order, with the most // recent as the first one. func selectFiles(logFiles []FileInfo, endTimestamp int64) []FileInfo { files := sortableFileInfoSlice{} for _, logFile := range logFiles { if logFile.Details.Time <= endTimestamp { files = append(files, logFile) } } // Sort the files in reverse order so we will fetch the newest first. sort.Sort(sort.Reverse(files)) return files } // FetchEntriesFromFiles fetches all available log entries on disk // that are between the 'startTimestamp' and 'endTimestamp'. It will // stop reading new files if the number of entries exceeds // 'maxEntries'. Log entries are further filtered by the regexp // 'pattern' if provided. The logs entries are returned in reverse // chronological order. func FetchEntriesFromFiles( startTimestamp, endTimestamp int64, maxEntries int, pattern *regexp.Regexp, ) ([]Entry, error) { logFiles, err := ListLogFiles() if err != nil { return nil, err } selectedFiles := selectFiles(logFiles, endTimestamp) entries := []Entry{} for _, file := range selectedFiles { newEntries, entryBeforeStart, err := readAllEntriesFromFile( file, startTimestamp, endTimestamp, maxEntries-len(entries), pattern) if err != nil { return nil, err } entries = append(entries, newEntries...) if len(entries) >= maxEntries { break } if entryBeforeStart { // Stop processing files that won't have any timestamps after // startTime. break } } return entries, nil } // readAllEntriesFromFile reads in all log entries from a given file that are // between the 'startTimestamp' and 'endTimestamp' and match the 'pattern' if it // exists. It returns the entries in the reverse chronological order. It also // returns a flag that denotes if any timestamp occurred before the // 'startTimestamp' to inform the caller that no more log files need to be // processed. If the number of entries returned exceeds 'maxEntries' then // processing of new entries is stopped immediately. func readAllEntriesFromFile( file FileInfo, startTimestamp, endTimestamp int64, maxEntries int, pattern *regexp.Regexp, ) ([]Entry, bool, error) { reader, err := GetLogReader(file.Name, true /* restricted */) if reader == nil || err != nil { return nil, false, err } defer reader.Close() entries := []Entry{} decoder := NewEntryDecoder(reader) entryBeforeStart := false for { entry := Entry{} if err := decoder.Decode(&entry); err != nil { if err == io.EOF { break } return nil, false, err } var match bool if pattern == nil
{ match = true }
conditional_block
file.go
dir = absDir } l.Lock() defer l.Unlock() l.name = dir return nil } // Type implements the flag.Value interface. func (l *DirName) Type() string { return "string" } // String implements the flag.Value interface. func (l *DirName) String() string { l.Lock() defer l.Unlock() return l.name } func (l *DirName) get() (string, error) { l.Lock() defer l.Unlock() if len(l.name) == 0 { return "", errDirectoryNotSet } return l.name, nil } // IsSet returns true iff the directory name is set. func (l *DirName) IsSet() bool { l.Lock() res := l.name != "" l.Unlock() return res } // DirSet returns true of the log directory has been changed from its default. func DirSet() bool { return logging.logDir.IsSet() } // logFileRE matches log files to avoid exposing non-log files accidentally // and it splits the details of the filename into groups for easy parsing. // The log file format is {process}.{host}.{username}.{timestamp}.{pid}.log // cockroach.Brams-MacBook-Pro.bram.2015-06-09T16-10-48Z.30209.log // All underscore in process, host and username are escaped to double // underscores and all periods are escaped to an underscore. // For compatibility with Windows filenames, all colons from the timestamp // (RFC3339) are converted from underscores. var logFileRE = regexp.MustCompile(`^(?:.*/)?([^/.]+)\.([^/\.]+)\.([^/\.]+)\.([^/\.]+)\.(\d+)\.log$`) var ( pid = os.Getpid() program = filepath.Base(os.Args[0]) host = "unknownhost" userName = "unknownuser" ) func init() { h, err := os.Hostname() if err == nil { host = shortHostname(h) } current, err := user.Current() if err == nil { userName = current.Username } // Sanitize userName since it may contain filepath separators on Windows. userName = strings.Replace(userName, `\`, "_", -1) } // shortHostname returns its argument, truncating at the first period. // For instance, given "www.google.com" it returns "www". func shortHostname(hostname string) string { if i := strings.Index(hostname, "."); i >= 0 { return hostname[:i] } return hostname } // removePeriods removes all extraneous periods. This is required to ensure that // the only periods in the filename are the ones added by logName so it can // be easily parsed. func removePeriods(s string) string { return strings.Replace(s, ".", "", -1) } // logName returns a new log file name with start time t, and the name // for the symlink. func logName(prefix string, t time.Time) (name, link string) { // Replace the ':'s in the time format with '_'s to allow for log files in // Windows. tFormatted := strings.Replace(t.Format(time.RFC3339), ":", "_", -1) name = fmt.Sprintf("%s.%s.%s.%s.%06d.log", removePeriods(prefix), removePeriods(host), removePeriods(userName), tFormatted, pid) return name, removePeriods(prefix) + ".log" } var errMalformedName = errors.New("malformed log filename") func parseLogFilename(filename string) (FileDetails, error) { matches := logFileRE.FindStringSubmatch(filename) if matches == nil || len(matches) != 6 { return FileDetails{}, errMalformedName } // Replace the '_'s with ':'s to restore the correct time format. fixTime := strings.Replace(matches[4], "_", ":", -1) time, err := time.Parse(time.RFC3339, fixTime) if err != nil { return FileDetails{}, err } pid, err := strconv.ParseInt(matches[5], 10, 0) if err != nil { return FileDetails{}, err } return FileDetails{ Program: matches[1], Host: matches[2], UserName: matches[3], Time: time.UnixNano(), PID: pid, }, nil } var errDirectoryNotSet = errors.New("log: log directory not set") // create creates a new log file and returns the file and its // filename. If the file is created successfully, create also attempts // to update the symlink for that tag, ignoring errors. func create( logDir *DirName, prefix string, t time.Time, lastRotation int64, ) (f *os.File, updatedRotation int64, filename string, err error) { dir, err := logDir.get() if err != nil { return nil, lastRotation, "", err } // Ensure that the timestamp of the new file name is greater than // the timestamp of the previous generated file name. unix := t.Unix() if unix <= lastRotation { unix = lastRotation + 1 } updatedRotation = unix t = timeutil.Unix(unix, 0) // Generate the file name. name, link := logName(prefix, t) fname := filepath.Join(dir, name) // Open the file os.O_APPEND|os.O_CREATE rather than use os.Create. // Append is almost always more efficient than O_RDRW on most modern file systems. f, err = os.OpenFile(fname, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0664) if err == nil { symlink := filepath.Join(dir, link) // Symlinks are best-effort. if err := os.Remove(symlink); err != nil && !os.IsNotExist(err) { fmt.Fprintf(OrigStderr, "log: failed to remove symlink %s: %s", symlink, err) } if err := os.Symlink(filepath.Base(fname), symlink); err != nil { // On Windows, this will be the common case, as symlink creation // requires special privileges. // See: https://docs.microsoft.com/en-us/windows/device-security/security-policy-settings/create-symbolic-links if runtime.GOOS != "windows" { fmt.Fprintf(OrigStderr, "log: failed to create symlink %s: %s", symlink, err) } } } return f, updatedRotation, fname, errors.Wrapf(err, "log: cannot create log") } // ListLogFiles returns a slice of FileInfo structs for each log file // on the local node, in any of the configured log directories. func ListLogFiles() ([]FileInfo, error)
func (l *loggingT) listLogFiles() ([]FileInfo, error) { var results []FileInfo dir, err := logging.logDir.get() if err != nil { // No log directory configured: simply indicate that there are no // log files. return nil, nil } infos, err := ioutil.ReadDir(dir) if err != nil { return results, err } // The file names have a fixed structure with fields delimited by // periods. create() for new files removes the periods from the // provided prefix; do the same here to filter out selected names // below. programPrefix := removePeriods(l.prefix) for _, info := range infos { if info.Mode().IsRegular() { details, err := parseLogFilename(info.Name()) if err == nil && details.Program == programPrefix { results = append(results, FileInfo{ Name: info.Name(), SizeBytes: info.Size(), ModTimeNanos: info.ModTime().UnixNano(), Details: details, }) } } } return results, nil } // GetLogReader returns a reader for the specified filename. In // restricted mode, the filename must be the base name of a file in // this process's log directory (this is safe for cases when the // filename comes from external sources, such as the admin UI via // HTTP). In unrestricted mode any path is allowed, relative to the // current directory, with the added feature that simple (base name) // file names will be searched in this process's log directory if not // found in the current directory. func GetLogReader(filename string, restricted bool) (io.ReadCloser, error) { dir, err := logging.logDir.get() if err != nil { return nil, err } switch restricted { case true: // Verify there are no path separators in a restricted-mode pathname. if filepath.Base(filename) != filename { return nil, errors.Errorf("pathnames must be basenames only: %s", filename) } filename = filepath.Join(dir, filename) // Symlinks are not followed in restricted mode. info, err := os.Lstat(filename) if err != nil { if os.IsNotExist(err) { return nil, errors.Errorf("no such file %s in the log directory", filename) } return nil, errors.Wrapf(err, "Lstat: %s", filename) } mode := info
{ return logging.listLogFiles() }
identifier_body
file.go
dir = absDir } l.Lock() defer l.Unlock() l.name = dir return nil } // Type implements the flag.Value interface. func (l *DirName) Type() string { return "string" } // String implements the flag.Value interface. func (l *DirName) String() string { l.Lock() defer l.Unlock() return l.name } func (l *DirName) get() (string, error) { l.Lock() defer l.Unlock() if len(l.name) == 0 { return "", errDirectoryNotSet } return l.name, nil } // IsSet returns true iff the directory name is set. func (l *DirName) IsSet() bool { l.Lock() res := l.name != "" l.Unlock() return res } // DirSet returns true of the log directory has been changed from its default. func DirSet() bool { return logging.logDir.IsSet() } // logFileRE matches log files to avoid exposing non-log files accidentally // and it splits the details of the filename into groups for easy parsing. // The log file format is {process}.{host}.{username}.{timestamp}.{pid}.log // cockroach.Brams-MacBook-Pro.bram.2015-06-09T16-10-48Z.30209.log // All underscore in process, host and username are escaped to double // underscores and all periods are escaped to an underscore. // For compatibility with Windows filenames, all colons from the timestamp // (RFC3339) are converted from underscores. var logFileRE = regexp.MustCompile(`^(?:.*/)?([^/.]+)\.([^/\.]+)\.([^/\.]+)\.([^/\.]+)\.(\d+)\.log$`) var ( pid = os.Getpid() program = filepath.Base(os.Args[0]) host = "unknownhost" userName = "unknownuser" ) func init() { h, err := os.Hostname() if err == nil { host = shortHostname(h) } current, err := user.Current() if err == nil { userName = current.Username } // Sanitize userName since it may contain filepath separators on Windows. userName = strings.Replace(userName, `\`, "_", -1) } // shortHostname returns its argument, truncating at the first period. // For instance, given "www.google.com" it returns "www". func shortHostname(hostname string) string { if i := strings.Index(hostname, "."); i >= 0 { return hostname[:i] } return hostname } // removePeriods removes all extraneous periods. This is required to ensure that // the only periods in the filename are the ones added by logName so it can // be easily parsed. func removePeriods(s string) string { return strings.Replace(s, ".", "", -1) } // logName returns a new log file name with start time t, and the name // for the symlink. func
(prefix string, t time.Time) (name, link string) { // Replace the ':'s in the time format with '_'s to allow for log files in // Windows. tFormatted := strings.Replace(t.Format(time.RFC3339), ":", "_", -1) name = fmt.Sprintf("%s.%s.%s.%s.%06d.log", removePeriods(prefix), removePeriods(host), removePeriods(userName), tFormatted, pid) return name, removePeriods(prefix) + ".log" } var errMalformedName = errors.New("malformed log filename") func parseLogFilename(filename string) (FileDetails, error) { matches := logFileRE.FindStringSubmatch(filename) if matches == nil || len(matches) != 6 { return FileDetails{}, errMalformedName } // Replace the '_'s with ':'s to restore the correct time format. fixTime := strings.Replace(matches[4], "_", ":", -1) time, err := time.Parse(time.RFC3339, fixTime) if err != nil { return FileDetails{}, err } pid, err := strconv.ParseInt(matches[5], 10, 0) if err != nil { return FileDetails{}, err } return FileDetails{ Program: matches[1], Host: matches[2], UserName: matches[3], Time: time.UnixNano(), PID: pid, }, nil } var errDirectoryNotSet = errors.New("log: log directory not set") // create creates a new log file and returns the file and its // filename. If the file is created successfully, create also attempts // to update the symlink for that tag, ignoring errors. func create( logDir *DirName, prefix string, t time.Time, lastRotation int64, ) (f *os.File, updatedRotation int64, filename string, err error) { dir, err := logDir.get() if err != nil { return nil, lastRotation, "", err } // Ensure that the timestamp of the new file name is greater than // the timestamp of the previous generated file name. unix := t.Unix() if unix <= lastRotation { unix = lastRotation + 1 } updatedRotation = unix t = timeutil.Unix(unix, 0) // Generate the file name. name, link := logName(prefix, t) fname := filepath.Join(dir, name) // Open the file os.O_APPEND|os.O_CREATE rather than use os.Create. // Append is almost always more efficient than O_RDRW on most modern file systems. f, err = os.OpenFile(fname, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0664) if err == nil { symlink := filepath.Join(dir, link) // Symlinks are best-effort. if err := os.Remove(symlink); err != nil && !os.IsNotExist(err) { fmt.Fprintf(OrigStderr, "log: failed to remove symlink %s: %s", symlink, err) } if err := os.Symlink(filepath.Base(fname), symlink); err != nil { // On Windows, this will be the common case, as symlink creation // requires special privileges. // See: https://docs.microsoft.com/en-us/windows/device-security/security-policy-settings/create-symbolic-links if runtime.GOOS != "windows" { fmt.Fprintf(OrigStderr, "log: failed to create symlink %s: %s", symlink, err) } } } return f, updatedRotation, fname, errors.Wrapf(err, "log: cannot create log") } // ListLogFiles returns a slice of FileInfo structs for each log file // on the local node, in any of the configured log directories. func ListLogFiles() ([]FileInfo, error) { return logging.listLogFiles() } func (l *loggingT) listLogFiles() ([]FileInfo, error) { var results []FileInfo dir, err := logging.logDir.get() if err != nil { // No log directory configured: simply indicate that there are no // log files. return nil, nil } infos, err := ioutil.ReadDir(dir) if err != nil { return results, err } // The file names have a fixed structure with fields delimited by // periods. create() for new files removes the periods from the // provided prefix; do the same here to filter out selected names // below. programPrefix := removePeriods(l.prefix) for _, info := range infos { if info.Mode().IsRegular() { details, err := parseLogFilename(info.Name()) if err == nil && details.Program == programPrefix { results = append(results, FileInfo{ Name: info.Name(), SizeBytes: info.Size(), ModTimeNanos: info.ModTime().UnixNano(), Details: details, }) } } } return results, nil } // GetLogReader returns a reader for the specified filename. In // restricted mode, the filename must be the base name of a file in // this process's log directory (this is safe for cases when the // filename comes from external sources, such as the admin UI via // HTTP). In unrestricted mode any path is allowed, relative to the // current directory, with the added feature that simple (base name) // file names will be searched in this process's log directory if not // found in the current directory. func GetLogReader(filename string, restricted bool) (io.ReadCloser, error) { dir, err := logging.logDir.get() if err != nil { return nil, err } switch restricted { case true: // Verify there are no path separators in a restricted-mode pathname. if filepath.Base(filename) != filename { return nil, errors.Errorf("pathnames must be basenames only: %s", filename) } filename = filepath.Join(dir, filename) // Symlinks are not followed in restricted mode. info, err := os.Lstat(filename) if err != nil { if os.IsNotExist(err) { return nil, errors.Errorf("no such file %s in the log directory", filename) } return nil, errors.Wrapf(err, "Lstat: %s", filename) } mode := info
logName
identifier_name
file.go
// LogFileMaxSize is the maximum size of a log file in bytes. var LogFileMaxSize int64 = 10 << 20 // 10MiB // LogFilesCombinedMaxSize is the maximum total size in bytes for log // files. Note that this is only checked when log files are created, // so the total size of log files per severity might temporarily be up // to LogFileMaxSize larger. var LogFilesCombinedMaxSize = LogFileMaxSize * 10 // 100MiB // DirName overrides (if non-empty) the choice of directory in // which to write logs. See createLogDirs for the full list of // possible destinations. Note that the default is to log to stderr // independent of this setting. See --logtostderr. type DirName struct { syncutil.Mutex name string } var _ flag.Value = &DirName{} // Set implements the flag.Value interface. func (l *DirName) Set(dir string) error { if len(dir) > 0 && dir[0] == '~' { return fmt.Errorf("log directory cannot start with '~': %s", dir) } if len(dir) > 0 { absDir, err := filepath.Abs(dir) if err != nil { return err } dir = absDir } l.Lock() defer l.Unlock() l.name = dir return nil } // Type implements the flag.Value interface. func (l *DirName) Type() string { return "string" } // String implements the flag.Value interface. func (l *DirName) String() string { l.Lock() defer l.Unlock() return l.name } func (l *DirName) get() (string, error) { l.Lock() defer l.Unlock() if len(l.name) == 0 { return "", errDirectoryNotSet } return l.name, nil } // IsSet returns true iff the directory name is set. func (l *DirName) IsSet() bool { l.Lock() res := l.name != "" l.Unlock() return res } // DirSet returns true of the log directory has been changed from its default. func DirSet() bool { return logging.logDir.IsSet() } // logFileRE matches log files to avoid exposing non-log files accidentally // and it splits the details of the filename into groups for easy parsing. // The log file format is {process}.{host}.{username}.{timestamp}.{pid}.log // cockroach.Brams-MacBook-Pro.bram.2015-06-09T16-10-48Z.30209.log // All underscore in process, host and username are escaped to double // underscores and all periods are escaped to an underscore. // For compatibility with Windows filenames, all colons from the timestamp // (RFC3339) are converted from underscores. var logFileRE = regexp.MustCompile(`^(?:.*/)?([^/.]+)\.([^/\.]+)\.([^/\.]+)\.([^/\.]+)\.(\d+)\.log$`) var ( pid = os.Getpid() program = filepath.Base(os.Args[0]) host = "unknownhost" userName = "unknownuser" ) func init() { h, err := os.Hostname() if err == nil { host = shortHostname(h) } current, err := user.Current() if err == nil { userName = current.Username } // Sanitize userName since it may contain filepath separators on Windows. userName = strings.Replace(userName, `\`, "_", -1) } // shortHostname returns its argument, truncating at the first period. // For instance, given "www.google.com" it returns "www". func shortHostname(hostname string) string { if i := strings.Index(hostname, "."); i >= 0 { return hostname[:i] } return hostname } // removePeriods removes all extraneous periods. This is required to ensure that // the only periods in the filename are the ones added by logName so it can // be easily parsed. func removePeriods(s string) string { return strings.Replace(s, ".", "", -1) } // logName returns a new log file name with start time t, and the name // for the symlink. func logName(prefix string, t time.Time) (name, link string) { // Replace the ':'s in the time format with '_'s to allow for log files in // Windows. tFormatted := strings.Replace(t.Format(time.RFC3339), ":", "_", -1) name = fmt.Sprintf("%s.%s.%s.%s.%06d.log", removePeriods(prefix), removePeriods(host), removePeriods(userName), tFormatted, pid) return name, removePeriods(prefix) + ".log" } var errMalformedName = errors.New("malformed log filename") func parseLogFilename(filename string) (FileDetails, error) { matches := logFileRE.FindStringSubmatch(filename) if matches == nil || len(matches) != 6 { return FileDetails{}, errMalformedName } // Replace the '_'s with ':'s to restore the correct time format. fixTime := strings.Replace(matches[4], "_", ":", -1) time, err := time.Parse(time.RFC3339, fixTime) if err != nil { return FileDetails{}, err } pid, err := strconv.ParseInt(matches[5], 10, 0) if err != nil { return FileDetails{}, err } return FileDetails{ Program: matches[1], Host: matches[2], UserName: matches[3], Time: time.UnixNano(), PID: pid, }, nil } var errDirectoryNotSet = errors.New("log: log directory not set") // create creates a new log file and returns the file and its // filename. If the file is created successfully, create also attempts // to update the symlink for that tag, ignoring errors. func create( logDir *DirName, prefix string, t time.Time, lastRotation int64, ) (f *os.File, updatedRotation int64, filename string, err error) { dir, err := logDir.get() if err != nil { return nil, lastRotation, "", err } // Ensure that the timestamp of the new file name is greater than // the timestamp of the previous generated file name. unix := t.Unix() if unix <= lastRotation { unix = lastRotation + 1 } updatedRotation = unix t = timeutil.Unix(unix, 0) // Generate the file name. name, link := logName(prefix, t) fname := filepath.Join(dir, name) // Open the file os.O_APPEND|os.O_CREATE rather than use os.Create. // Append is almost always more efficient than O_RDRW on most modern file systems. f, err = os.OpenFile(fname, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0664) if err == nil { symlink := filepath.Join(dir, link) // Symlinks are best-effort. if err := os.Remove(symlink); err != nil && !os.IsNotExist(err) { fmt.Fprintf(OrigStderr, "log: failed to remove symlink %s: %s", symlink, err) } if err := os.Symlink(filepath.Base(fname), symlink); err != nil { // On Windows, this will be the common case, as symlink creation // requires special privileges. // See: https://docs.microsoft.com/en-us/windows/device-security/security-policy-settings/create-symbolic-links if runtime.GOOS != "windows" { fmt.Fprintf(OrigStderr, "log: failed to create symlink %s: %s", symlink, err) } } } return f, updatedRotation, fname, errors.Wrapf(err, "log: cannot create log") } // ListLogFiles returns a slice of FileInfo structs for each log file // on the local node, in any of the configured log directories. func ListLogFiles() ([]FileInfo, error) { return logging.listLogFiles() } func (l *loggingT) listLogFiles() ([]FileInfo, error) { var results []FileInfo dir, err := logging.logDir.get() if err != nil { // No log directory configured: simply indicate that there are no // log files. return nil, nil } infos, err := ioutil.ReadDir(dir) if err != nil { return results, err } // The file names have a fixed structure with fields delimited by // periods. create() for new files removes the periods from the // provided prefix; do the same here to filter out selected names // below. programPrefix := removePeriods(l.prefix) for _, info := range infos { if info.Mode().IsRegular() { details, err := parseLogFilename(info.Name()) if err == nil && details.Program == programPrefix { results = append(results, FileInfo{ Name: info.Name(), SizeBytes: info.Size(), ModTimeNanos: info.ModTime().UnixNano(), Details
"github.com/cockroachdb/cockroach/pkg/util/syncutil" "github.com/cockroachdb/cockroach/pkg/util/timeutil" )
random_line_split
guidestar.py
) return target def set_geometry(self,healpix=True): from astropy_healpix import HEALPix from astropy.coordinates import SkyCoord import astropy.coordinates as cc from numpy import unique if self.lifu: self.g_dx = 3.75 self.g_dy = 4.0 #testing - let's make it bigger # self.g_dx = 17.0 # self.g_dy = 20.0 #needs to be about 20x larger in area # self.g_dx = 16.8 # self.g_dy = 17.9 self.ra_max = self.ra + ((27.7+(0.5*self.g_dx))/60.0) self.ra_min = self.ra + ((27.7-(0.5*self.g_dx))/60.0) self.dec_max = self.dec + ((0.5*self.g_dy)/60.0) self.dec_min = self.dec - ((0.5*self.g_dy)/60.0) self.ra_gc0 = self.ra + (27.7/60.0) self.dec_gc0 = self.dec else: self.ra_min = self.ra - 1.0 self.ra_max = self.ra + 1.0 self.dec_min = self.dec - 1.0 self.dec_max = self.dec + 1.0 if healpix: hp = HEALPix(nside=self.nside, order='nested', frame=cc.ICRS()) self.healpix_indices = [] ra = [self.ra_min,self.ra_min,self.ra_max,self.ra_max] dec = [self.dec_min,self.dec_max,self.dec_min,self.dec_max] dx = self.ra_max - self.ra_min dy = self.dec_max - self.dec_min for i in arange(500): ra.append(self.ra_min+(random.random()*dx)) dec.append(self.dec_min+(random.random()*dy)) for r,d in zip(ra,dec): self.healpix_indices.append(hp.skycoord_to_healpix(SkyCoord(r,d,unit='deg'))) self.healpix_indices = unique(self.healpix_indices) return def retrieve_guidecats(self,clobber=False): from astropy.table import Table import astropy.io.fits as pyfits if len(self.healpix_indices) == 0: self.set_geometry() self.guide_files = [] for hp in self.healpix_indices: fn = self.guide_filename.replace('<HEALPIX>',str(hp)) url = self.guide_url+fn fn = self.cache_dir+fn if os.path.isfile(fn): if clobber == False: print 'Using existing file %s'%(fn) self.guide_files.append(fn) continue print url self.wget(url,outname=fn) self.guide_files.append(fn) #self.guide_files = ['/scratch/Guides_S4_cname.fits'] tabs = [] for cat in self.guide_files: fits = pyfits.open(cat) tabs.append(Table(fits[1].data)) if len(tabs) == 1: self.guides = tabs[0] else: t0 = tabs[0] for t in tabs[1:]: for g in t: t0.add_row(g) self.guides = t0 return def select_target(self,annular=False): import numpy from operator import indexOf from astropy.table import Table self.ra_g = self.guides['GAIA_RA'] self.dec_g = self.guides['GAIA_DEC'] if (not self.lifu): annular = True #fig = plt.figure(); sp = plt.subplot(aspect='equal'); plt.plot(self.ra_g,self.dec_g,'ko'); cir = plt.Circle((gs.ra,gs.dec),radius=1.0,lw=2.0,color='red'); sp.add_patch(cir); plt.show() if annular ==False: filter1 = (self.ra_g > self.ra_min) & (self.ra_g < self.ra_max) filter2 = (self.dec_g > self.dec_min) & (self.dec_g < self.dec_max) filter = filter1 & filter2 if (True in filter) == False: print 'No guide stars within the GC FOV!!' return None self.guides_filter = self.guides[where(filter)[0]] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] self.dist = [((abs(r-self.ra_gc0)**2)+(abs(d-self.dec_gc0)**2))**0.5 for r,d in zip(self.ra_g,self.dec_g)] else: if self.lifu: #in annulus, want closest to the central radius of the annulus r_min = self.ra_min-self.ra r_max = self.ra_max-self.ra else: r_min = 0.95 r_max = 1.0 self.radii = numpy.array([(((_ra-self.ra)**2)+((_dec-self.dec)**2))**0.5 for _ra,_dec in zip(self.ra_g,self.dec_g)]) filter = (self.radii > r_min) & (self.radii < r_max) self.guides_filter = self.guides[filter] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] radii = self.radii[filter] if self.lifu: r0 = r_min + (0.5*(r_max-r_min)) self.dist = [abs(d-r0) for d in radii] else: self.dist = radii minval = min(self.dist) g_index = indexOf(self.dist,minval) guide_sel = self.guides_filter[g_index] if (annular == False): if (guide_sel['GAIA_RA'] > self.ra_min) and (guide_sel['GAIA_RA'] < self.ra_max) and (guide_sel['GAIA_DEC'] > self.dec_min) and (guide_sel['GAIA_DEC'] < self.dec_max): print 'Guidestar candidate is %f arcmin from GC centre'%(minval*60.0) print self.guides[g_index] self.guide_sel = self.guides[g_index] else: print 'Closest candidate still lies outside of the GC FOV!!' self.guide_sel = self.guides[g_index] return None else: #do a quick report from copy import deepcopy dist_sort = deepcopy(self.dist) dist_sort.sort() if self.lifu: print 'Annular search summary (selected closest to centre of a rotated guidecam):' else: print 'Annular search summary:' print "#\t Dist (') CNAME\t\t RA\t Dec\t angle\t Gaia_G mag" i = 0 self.guides_filter['dist'] = self.dist angles = [] for d in dist_sort: i = i + 1 sel = '' if (i == 1) and (self.lifu): sel = ' <-----' index = indexOf(self.dist,d) guide_candidate = self.guides_filter[index] ra_trans = self.ra - guide_candidate['GAIA_RA'] dec_trans = self.dec - guide_candidate['GAIA_DEC'] ang = numpy.arctan2(dec_trans,ra_trans) ang = (ang*180.0) / numpy.pi if ang < 0: ang += 360.0 angles.append(ang) print '#%d\t %1.2f\t %s\t %1.4f %1.4f %1.3f\t %1.3f%s'%(i,d*60.0,guide_candidate['CNAME'],guide_candidate['GAIA_RA'],guide_candidate['GAIA_DEC'],ang,guide_candidate['GAIA_MAG_GG'],sel) self.guides_filter['ANGLE'] = angles self.guides_filter.sort('dist') if self.lifu: return guide_sel return self.guides_filter def ingest_xml(self,dom): self.dom = dom self.root = dom.childNodes[0] self.programme = self.root.childNodes[3] self.observation = self.root.childNodes[5] self.configure = dom.getElementsByTagName('configure')[0] self.field = dom.getElementsByTagName('field')[0] self.base_target = self.field.getElementsByTagName('target')[0] self.offset = self.observation.getElementsByTagName('offsets')[0] self.targets_base = self.field.getElementsByTagName('target') def new_xml(self): #init the new XML try: dom = xml.dom.minidom.parse(self.xml_template) except xml.parsers.expat.ExpatError: print("File {0} would not parse".format(self.xml_template)) raise SystemExit(0) self.ingest_xml(dom) def
to_xml
identifier_name
guidestar.py
'%(self.cache_dir) os.system(cmd) if not os.path.isfile(self.xml_template): self.wget(self.xml_template_url) def get_guide(self,annular_fail=True,as_xml=True,print_xml=False): """ Master function to return a guide star once the object is instantiated. Parameters ---------- annular_fail : bool, optional If there is no guidestar in GC FOV, search an annulus and define the PA required to get a guidestar. Return most centralised candidate. as_xml : bool, optional Returns the result as an XML <target> element that can be added to a <field> element. print_xml : bool, optional Prints the XML results if as_xml=True. Returns ------- guide : astropy.Table or xml.dom.minidom.Element Row from the Guide star catalogue. If as_xml is True, XML <target> element that can be inserted into a field XML. """ self.set_geometry() self.retrieve_guidecats() guides = self.select_target() if (type(guides) == type(None)) and (annular_fail == True): print 'No guide(s) found at fixed position - performing annular search' guides = self.annular_search() if type(guides) == type(None): print 'No guide star(s) found...' return None if as_xml: if self.lifu: return self.to_xml(guides) else: xmls = [self.to_xml(guide) for guide in guides] if print_xml: for x in xmls: print x.toxml() return xmls else: return guides def wget(self,url,outname=None): import os import time cmd = 'wget -q -t 1 -T 5 %s'%(url) if outname != None: print 'Downloading URL %s to %s'%(url,outname) cmd += ' -O %s'%(outname) os.system(cmd) return def annular_search(self): from astropy_healpix import HEALPix from astropy.coordinates import SkyCoord import astropy.coordinates as cc hp = HEALPix(nside=self.nside, order='nested', frame=cc.ICRS()) self.set_geometry(healpix=False) r_min = self.ra_min-self.ra r_max = self.ra_max-self.ra radius = self.ra_max-self.ra #get the healpix IDs covering an annulus centred on self.ra,dec in_annulus = [] self.healpix_indices = [] print 'Populating annulus and determining HEALPix coverage...' while(len(in_annulus)) < 500: rnd_ra = self.ra+(2*(random.random()-0.5)*radius) rnd_dec = self.dec+(2*(random.random()-0.5)*radius) rnd_dist = (((rnd_ra-self.ra)**2)+((rnd_dec-self.dec)**2))**0.5 if rnd_dist > r_min: if rnd_dist < r_max: self.healpix_indices.append(hp.skycoord_to_healpix(SkyCoord(rnd_ra,rnd_dec,unit='deg'))) in_annulus.append([rnd_ra,rnd_dec]) #print len(in_annulus) print '....done' self.healpix_indices = unique(self.healpix_indices) print self.healpix_indices self.retrieve_guidecats() target = self.select_target(annular=True) return target def set_geometry(self,healpix=True): from astropy_healpix import HEALPix from astropy.coordinates import SkyCoord import astropy.coordinates as cc from numpy import unique if self.lifu: self.g_dx = 3.75 self.g_dy = 4.0 #testing - let's make it bigger # self.g_dx = 17.0 # self.g_dy = 20.0 #needs to be about 20x larger in area # self.g_dx = 16.8 # self.g_dy = 17.9 self.ra_max = self.ra + ((27.7+(0.5*self.g_dx))/60.0) self.ra_min = self.ra + ((27.7-(0.5*self.g_dx))/60.0) self.dec_max = self.dec + ((0.5*self.g_dy)/60.0) self.dec_min = self.dec - ((0.5*self.g_dy)/60.0) self.ra_gc0 = self.ra + (27.7/60.0) self.dec_gc0 = self.dec else: self.ra_min = self.ra - 1.0 self.ra_max = self.ra + 1.0 self.dec_min = self.dec - 1.0 self.dec_max = self.dec + 1.0 if healpix: hp = HEALPix(nside=self.nside, order='nested', frame=cc.ICRS()) self.healpix_indices = [] ra = [self.ra_min,self.ra_min,self.ra_max,self.ra_max] dec = [self.dec_min,self.dec_max,self.dec_min,self.dec_max] dx = self.ra_max - self.ra_min dy = self.dec_max - self.dec_min for i in arange(500): ra.append(self.ra_min+(random.random()*dx)) dec.append(self.dec_min+(random.random()*dy)) for r,d in zip(ra,dec): self.healpix_indices.append(hp.skycoord_to_healpix(SkyCoord(r,d,unit='deg'))) self.healpix_indices = unique(self.healpix_indices) return def retrieve_guidecats(self,clobber=False): from astropy.table import Table import astropy.io.fits as pyfits if len(self.healpix_indices) == 0: self.set_geometry() self.guide_files = [] for hp in self.healpix_indices: fn = self.guide_filename.replace('<HEALPIX>',str(hp)) url = self.guide_url+fn fn = self.cache_dir+fn if os.path.isfile(fn): if clobber == False: print 'Using existing file %s'%(fn) self.guide_files.append(fn) continue print url self.wget(url,outname=fn) self.guide_files.append(fn) #self.guide_files = ['/scratch/Guides_S4_cname.fits'] tabs = [] for cat in self.guide_files: fits = pyfits.open(cat) tabs.append(Table(fits[1].data)) if len(tabs) == 1:
else: t0 = tabs[0] for t in tabs[1:]: for g in t: t0.add_row(g) self.guides = t0 return def select_target(self,annular=False): import numpy from operator import indexOf from astropy.table import Table self.ra_g = self.guides['GAIA_RA'] self.dec_g = self.guides['GAIA_DEC'] if (not self.lifu): annular = True #fig = plt.figure(); sp = plt.subplot(aspect='equal'); plt.plot(self.ra_g,self.dec_g,'ko'); cir = plt.Circle((gs.ra,gs.dec),radius=1.0,lw=2.0,color='red'); sp.add_patch(cir); plt.show() if annular ==False: filter1 = (self.ra_g > self.ra_min) & (self.ra_g < self.ra_max) filter2 = (self.dec_g > self.dec_min) & (self.dec_g < self.dec_max) filter = filter1 & filter2 if (True in filter) == False: print 'No guide stars within the GC FOV!!' return None self.guides_filter = self.guides[where(filter)[0]] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] self.dist = [((abs(r-self.ra_gc0)**2)+(abs(d-self.dec_gc0)**2))**0.5 for r,d in zip(self.ra_g,self.dec_g)] else: if self.lifu: #in annulus, want closest to the central radius of the annulus r_min = self.ra_min-self.ra r_max = self.ra_max-self.ra else: r_min = 0.95 r_max = 1.0 self.radii = numpy.array([(((_ra-self.ra)**2)+((_dec-self.dec)**2))**0.5 for _ra,_dec in zip(self.ra_g,self.dec_g)]) filter = (self.radii > r_min) & (self.radii < r_max) self.guides_filter = self.guides[filter] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] radi
self.guides = tabs[0]
conditional_block
guidestar.py
= self.dec + ((0.5*self.g_dy)/60.0) self.dec_min = self.dec - ((0.5*self.g_dy)/60.0) self.ra_gc0 = self.ra + (27.7/60.0) self.dec_gc0 = self.dec else: self.ra_min = self.ra - 1.0 self.ra_max = self.ra + 1.0 self.dec_min = self.dec - 1.0 self.dec_max = self.dec + 1.0 if healpix: hp = HEALPix(nside=self.nside, order='nested', frame=cc.ICRS()) self.healpix_indices = [] ra = [self.ra_min,self.ra_min,self.ra_max,self.ra_max] dec = [self.dec_min,self.dec_max,self.dec_min,self.dec_max] dx = self.ra_max - self.ra_min dy = self.dec_max - self.dec_min for i in arange(500): ra.append(self.ra_min+(random.random()*dx)) dec.append(self.dec_min+(random.random()*dy)) for r,d in zip(ra,dec): self.healpix_indices.append(hp.skycoord_to_healpix(SkyCoord(r,d,unit='deg'))) self.healpix_indices = unique(self.healpix_indices) return def retrieve_guidecats(self,clobber=False): from astropy.table import Table import astropy.io.fits as pyfits if len(self.healpix_indices) == 0: self.set_geometry() self.guide_files = [] for hp in self.healpix_indices: fn = self.guide_filename.replace('<HEALPIX>',str(hp)) url = self.guide_url+fn fn = self.cache_dir+fn if os.path.isfile(fn): if clobber == False: print 'Using existing file %s'%(fn) self.guide_files.append(fn) continue print url self.wget(url,outname=fn) self.guide_files.append(fn) #self.guide_files = ['/scratch/Guides_S4_cname.fits'] tabs = [] for cat in self.guide_files: fits = pyfits.open(cat) tabs.append(Table(fits[1].data)) if len(tabs) == 1: self.guides = tabs[0] else: t0 = tabs[0] for t in tabs[1:]: for g in t: t0.add_row(g) self.guides = t0 return def select_target(self,annular=False): import numpy from operator import indexOf from astropy.table import Table self.ra_g = self.guides['GAIA_RA'] self.dec_g = self.guides['GAIA_DEC'] if (not self.lifu): annular = True #fig = plt.figure(); sp = plt.subplot(aspect='equal'); plt.plot(self.ra_g,self.dec_g,'ko'); cir = plt.Circle((gs.ra,gs.dec),radius=1.0,lw=2.0,color='red'); sp.add_patch(cir); plt.show() if annular ==False: filter1 = (self.ra_g > self.ra_min) & (self.ra_g < self.ra_max) filter2 = (self.dec_g > self.dec_min) & (self.dec_g < self.dec_max) filter = filter1 & filter2 if (True in filter) == False: print 'No guide stars within the GC FOV!!' return None self.guides_filter = self.guides[where(filter)[0]] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] self.dist = [((abs(r-self.ra_gc0)**2)+(abs(d-self.dec_gc0)**2))**0.5 for r,d in zip(self.ra_g,self.dec_g)] else: if self.lifu: #in annulus, want closest to the central radius of the annulus r_min = self.ra_min-self.ra r_max = self.ra_max-self.ra else: r_min = 0.95 r_max = 1.0 self.radii = numpy.array([(((_ra-self.ra)**2)+((_dec-self.dec)**2))**0.5 for _ra,_dec in zip(self.ra_g,self.dec_g)]) filter = (self.radii > r_min) & (self.radii < r_max) self.guides_filter = self.guides[filter] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] radii = self.radii[filter] if self.lifu: r0 = r_min + (0.5*(r_max-r_min)) self.dist = [abs(d-r0) for d in radii] else: self.dist = radii minval = min(self.dist) g_index = indexOf(self.dist,minval) guide_sel = self.guides_filter[g_index] if (annular == False): if (guide_sel['GAIA_RA'] > self.ra_min) and (guide_sel['GAIA_RA'] < self.ra_max) and (guide_sel['GAIA_DEC'] > self.dec_min) and (guide_sel['GAIA_DEC'] < self.dec_max): print 'Guidestar candidate is %f arcmin from GC centre'%(minval*60.0) print self.guides[g_index] self.guide_sel = self.guides[g_index] else: print 'Closest candidate still lies outside of the GC FOV!!' self.guide_sel = self.guides[g_index] return None else: #do a quick report from copy import deepcopy dist_sort = deepcopy(self.dist) dist_sort.sort() if self.lifu: print 'Annular search summary (selected closest to centre of a rotated guidecam):' else: print 'Annular search summary:' print "#\t Dist (') CNAME\t\t RA\t Dec\t angle\t Gaia_G mag" i = 0 self.guides_filter['dist'] = self.dist angles = [] for d in dist_sort: i = i + 1 sel = '' if (i == 1) and (self.lifu): sel = ' <-----' index = indexOf(self.dist,d) guide_candidate = self.guides_filter[index] ra_trans = self.ra - guide_candidate['GAIA_RA'] dec_trans = self.dec - guide_candidate['GAIA_DEC'] ang = numpy.arctan2(dec_trans,ra_trans) ang = (ang*180.0) / numpy.pi if ang < 0: ang += 360.0 angles.append(ang) print '#%d\t %1.2f\t %s\t %1.4f %1.4f %1.3f\t %1.3f%s'%(i,d*60.0,guide_candidate['CNAME'],guide_candidate['GAIA_RA'],guide_candidate['GAIA_DEC'],ang,guide_candidate['GAIA_MAG_GG'],sel) self.guides_filter['ANGLE'] = angles self.guides_filter.sort('dist') if self.lifu: return guide_sel return self.guides_filter def ingest_xml(self,dom): self.dom = dom self.root = dom.childNodes[0] self.programme = self.root.childNodes[3] self.observation = self.root.childNodes[5] self.configure = dom.getElementsByTagName('configure')[0] self.field = dom.getElementsByTagName('field')[0] self.base_target = self.field.getElementsByTagName('target')[0] self.offset = self.observation.getElementsByTagName('offsets')[0] self.targets_base = self.field.getElementsByTagName('target') def new_xml(self): #init the new XML try: dom = xml.dom.minidom.parse(self.xml_template) except xml.parsers.expat.ExpatError: print("File {0} would not parse".format(self.xml_template)) raise SystemExit(0) self.ingest_xml(dom) def to_xml(self,guide):
self.new_xml() xml_target = self.targets_base[0].cloneNode(True) guide_ra = guide['GAIA_RA'] guide_dec = guide['GAIA_DEC'] dx = (self.ra - guide_ra)*self.plate_scale dy = (self.dec - guide_dec)*self.plate_scale xml_target.setAttribute('targx',str(dx)) xml_target.setAttribute('targy',str(dy)) # print 'WARNING - overriding targx, targy for now!' #manual override for the moment, position of targx,y # guide_targ.setAttribute('targx',"-110.0") # guide_targ.setAttribute('targy',"-500.55") #xml_target.setAttribute('fibreid',"9999") #xml_target.setAttribute('configid',"9999") xml_target.setAttribute('fibreid',"") xml_target.setAttribute('configid',"")
identifier_body
guidestar.py
s'%(self.cache_dir) os.system(cmd) if not os.path.isfile(self.xml_template): self.wget(self.xml_template_url) def get_guide(self,annular_fail=True,as_xml=True,print_xml=False): """ Master function to return a guide star once the object is instantiated. Parameters ---------- annular_fail : bool, optional If there is no guidestar in GC FOV, search an annulus and define the PA required to get a guidestar. Return most centralised candidate. as_xml : bool, optional Returns the result as an XML <target> element that can be added to a <field> element. print_xml : bool, optional Prints the XML results if as_xml=True. Returns ------- guide : astropy.Table or xml.dom.minidom.Element Row from the Guide star catalogue. If as_xml is True, XML <target> element that can be inserted into a field XML. """ self.set_geometry() self.retrieve_guidecats() guides = self.select_target() if (type(guides) == type(None)) and (annular_fail == True): print 'No guide(s) found at fixed position - performing annular search' guides = self.annular_search() if type(guides) == type(None): print 'No guide star(s) found...' return None if as_xml: if self.lifu: return self.to_xml(guides) else: xmls = [self.to_xml(guide) for guide in guides] if print_xml: for x in xmls: print x.toxml() return xmls else: return guides def wget(self,url,outname=None): import os import time cmd = 'wget -q -t 1 -T 5 %s'%(url) if outname != None: print 'Downloading URL %s to %s'%(url,outname) cmd += ' -O %s'%(outname) os.system(cmd) return def annular_search(self): from astropy_healpix import HEALPix from astropy.coordinates import SkyCoord import astropy.coordinates as cc hp = HEALPix(nside=self.nside, order='nested', frame=cc.ICRS()) self.set_geometry(healpix=False) r_min = self.ra_min-self.ra r_max = self.ra_max-self.ra radius = self.ra_max-self.ra #get the healpix IDs covering an annulus centred on self.ra,dec in_annulus = [] self.healpix_indices = [] print 'Populating annulus and determining HEALPix coverage...' while(len(in_annulus)) < 500:
if rnd_dist > r_min: if rnd_dist < r_max: self.healpix_indices.append(hp.skycoord_to_healpix(SkyCoord(rnd_ra,rnd_dec,unit='deg'))) in_annulus.append([rnd_ra,rnd_dec]) #print len(in_annulus) print '....done' self.healpix_indices = unique(self.healpix_indices) print self.healpix_indices self.retrieve_guidecats() target = self.select_target(annular=True) return target def set_geometry(self,healpix=True): from astropy_healpix import HEALPix from astropy.coordinates import SkyCoord import astropy.coordinates as cc from numpy import unique if self.lifu: self.g_dx = 3.75 self.g_dy = 4.0 #testing - let's make it bigger # self.g_dx = 17.0 # self.g_dy = 20.0 #needs to be about 20x larger in area # self.g_dx = 16.8 # self.g_dy = 17.9 self.ra_max = self.ra + ((27.7+(0.5*self.g_dx))/60.0) self.ra_min = self.ra + ((27.7-(0.5*self.g_dx))/60.0) self.dec_max = self.dec + ((0.5*self.g_dy)/60.0) self.dec_min = self.dec - ((0.5*self.g_dy)/60.0) self.ra_gc0 = self.ra + (27.7/60.0) self.dec_gc0 = self.dec else: self.ra_min = self.ra - 1.0 self.ra_max = self.ra + 1.0 self.dec_min = self.dec - 1.0 self.dec_max = self.dec + 1.0 if healpix: hp = HEALPix(nside=self.nside, order='nested', frame=cc.ICRS()) self.healpix_indices = [] ra = [self.ra_min,self.ra_min,self.ra_max,self.ra_max] dec = [self.dec_min,self.dec_max,self.dec_min,self.dec_max] dx = self.ra_max - self.ra_min dy = self.dec_max - self.dec_min for i in arange(500): ra.append(self.ra_min+(random.random()*dx)) dec.append(self.dec_min+(random.random()*dy)) for r,d in zip(ra,dec): self.healpix_indices.append(hp.skycoord_to_healpix(SkyCoord(r,d,unit='deg'))) self.healpix_indices = unique(self.healpix_indices) return def retrieve_guidecats(self,clobber=False): from astropy.table import Table import astropy.io.fits as pyfits if len(self.healpix_indices) == 0: self.set_geometry() self.guide_files = [] for hp in self.healpix_indices: fn = self.guide_filename.replace('<HEALPIX>',str(hp)) url = self.guide_url+fn fn = self.cache_dir+fn if os.path.isfile(fn): if clobber == False: print 'Using existing file %s'%(fn) self.guide_files.append(fn) continue print url self.wget(url,outname=fn) self.guide_files.append(fn) #self.guide_files = ['/scratch/Guides_S4_cname.fits'] tabs = [] for cat in self.guide_files: fits = pyfits.open(cat) tabs.append(Table(fits[1].data)) if len(tabs) == 1: self.guides = tabs[0] else: t0 = tabs[0] for t in tabs[1:]: for g in t: t0.add_row(g) self.guides = t0 return def select_target(self,annular=False): import numpy from operator import indexOf from astropy.table import Table self.ra_g = self.guides['GAIA_RA'] self.dec_g = self.guides['GAIA_DEC'] if (not self.lifu): annular = True #fig = plt.figure(); sp = plt.subplot(aspect='equal'); plt.plot(self.ra_g,self.dec_g,'ko'); cir = plt.Circle((gs.ra,gs.dec),radius=1.0,lw=2.0,color='red'); sp.add_patch(cir); plt.show() if annular ==False: filter1 = (self.ra_g > self.ra_min) & (self.ra_g < self.ra_max) filter2 = (self.dec_g > self.dec_min) & (self.dec_g < self.dec_max) filter = filter1 & filter2 if (True in filter) == False: print 'No guide stars within the GC FOV!!' return None self.guides_filter = self.guides[where(filter)[0]] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] self.dist = [((abs(r-self.ra_gc0)**2)+(abs(d-self.dec_gc0)**2))**0.5 for r,d in zip(self.ra_g,self.dec_g)] else: if self.lifu: #in annulus, want closest to the central radius of the annulus r_min = self.ra_min-self.ra r_max = self.ra_max-self.ra else: r_min = 0.95 r_max = 1.0 self.radii = numpy.array([(((_ra-self.ra)**2)+((_dec-self.dec)**2))**0.5 for _ra,_dec in zip(self.ra_g,self.dec_g)]) filter = (self.radii > r_min) & (self.radii < r_max) self.guides_filter = self.guides[filter] self.ra_g = self.guides_filter['GAIA_RA'] self.dec_g = self.guides_filter['GAIA_DEC'] radi
rnd_ra = self.ra+(2*(random.random()-0.5)*radius) rnd_dec = self.dec+(2*(random.random()-0.5)*radius) rnd_dist = (((rnd_ra-self.ra)**2)+((rnd_dec-self.dec)**2))**0.5
random_line_split
detours.rs
::once; use std::ffi::OsStr; use std::os::windows::ffi::OsStrExt; // Copied from winapi-rs since we are having issues with macro-use macro_rules! DEF_STRUCT { {$(#[$attrs:meta])* nodebug struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; {$(#[$attrs:meta])* struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] #[derive(Debug)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; } DEF_STRUCT!{struct IMAGE_DOS_HEADER { e_magic: WORD, e_cblp: WORD, e_cp: WORD, e_crlc: WORD, e_cparhdr: WORD, e_minalloc: WORD, e_maxalloc: WORD, e_ss: WORD, e_sp: WORD, e_csum: WORD, e_ip: WORD, e_cs: WORD, e_lfarlc: WORD, e_ovno: WORD, e_res: [WORD; 4], e_oemid: WORD, e_oeminfo: WORD, e_res2: [WORD; 10], e_lfanew: LONG, }} pub type PIMAGE_DOS_HEADER = *mut IMAGE_DOS_HEADER; DEF_STRUCT!{struct IMAGE_IMPORT_DESCRIPTOR { OriginalFirstThunk: DWORD, TimeDateStamp: DWORD, ForwarderChain: DWORD, Name: DWORD, FirstThunk: DWORD, }} pub type PIMAGE_IMPORT_DESCRIPTOR = *mut IMAGE_IMPORT_DESCRIPTOR; DEF_STRUCT!{struct IMAGE_THUNK_DATA32 { u1: DWORD, }} pub type PIMAGE_THUNK_DATA32 = *mut IMAGE_THUNK_DATA32; DEF_STRUCT!{struct IMAGE_IMPORT_BY_NAME { Hint: WORD, Name: BYTE, }} pub type PIMAGE_IMPORT_BY_NAME = *mut IMAGE_IMPORT_BY_NAME; const IMAGE_DOS_SIGNATURE: WORD = 0x5a4d; const IMAGE_NT_SIGNATURE: DWORD = 0x4550; const IMAGE_ORDINAL_FLAG: DWORD = 0x80000000; struct MemoryWriteLock { addr: LPVOID, size: SIZE_T, old_protect: DWORD, } impl MemoryWriteLock { pub fn new(addr: LPVOID, size: SIZE_T) -> Option<MemoryWriteLock> { let mut lock = MemoryWriteLock { addr: addr, size: size, old_protect: 0 as DWORD, }; if unsafe { kernel32::VirtualProtect(addr, size, PAGE_READWRITE, &mut lock.old_protect) } == 0 { return None; } Some(lock) } } impl Drop for MemoryWriteLock { fn drop(&mut self) { let mut old_protect: DWORD = 0 as DWORD; unsafe { kernel32::VirtualProtect(self.addr, self.size, self.old_protect, &mut old_protect) }; } } #[cfg(test)] fn assert_mem_protect(addr: LPVOID, size: SIZE_T, protect: DWORD) { let mut mbi: MEMORY_BASIC_INFORMATION = unsafe { mem::zeroed() }; assert!(unsafe { kernel32::VirtualQuery(addr, &mut mbi, size) } != 0); assert_eq!(mbi.Protect, protect); } #[test] fn test_memorywritelock() { let size = 0x1000; let addr = unsafe { kernel32::VirtualAlloc(null_mut(), size, MEM_COMMIT, PAGE_READONLY) }; assert!(addr != 0 as LPVOID); assert_mem_protect(addr, size, PAGE_READONLY); { let lock = MemoryWriteLock::new(addr, size); assert!(lock.is_some()); assert_mem_protect(addr, size, PAGE_READWRITE); } assert_mem_protect(addr, size, PAGE_READONLY); } pub struct
{ module: HMODULE, } impl Module { #[allow(dead_code)] pub fn target(moduleName: &str) -> Option<Module> { let mut library = Module { module: 0 as HMODULE }; let wModuleName: Vec<u16> = OsStr::new(moduleName) .encode_wide() .chain(once(0)) .collect(); library.module = unsafe { kernel32::GetModuleHandleW(wModuleName.as_ptr()) }; if library.module == 0 as HMODULE { return None; } Some(library) } #[allow(dead_code)] pub fn self_target() -> Module { Module { module: unsafe { kernel32::GetModuleHandleW(null_mut()) } } } pub fn intercept(&self, targetModule: &str, funcName: &str, replaceFuncPtr: LPVOID) -> Option<LPVOID> { let base_addr: PBYTE = unsafe { mem::transmute::<HMODULE, PBYTE>(self.module) }; let dos_hdr: PIMAGE_DOS_HEADER = unsafe { mem::transmute::<HMODULE, PIMAGE_DOS_HEADER>(self.module) }; if unsafe { (*dos_hdr).e_magic } != IMAGE_DOS_SIGNATURE { return None; } let nt_hdr: PIMAGE_NT_HEADERS32 = unsafe { mem::transmute::<PBYTE, PIMAGE_NT_HEADERS32>(base_addr.offset((*dos_hdr).e_lfanew as isize)) }; if unsafe { (*nt_hdr).Signature } != IMAGE_NT_SIGNATURE { return None; } if unsafe { (*nt_hdr).FileHeader.Machine } != IMAGE_FILE_MACHINE_I386 { // TODO: Think about adding support for IMAGE_FILE_MACHINE_AMD64 later return None; } let import_desc_array: PIMAGE_IMPORT_DESCRIPTOR = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_DESCRIPTOR>( base_addr.offset((*nt_hdr).OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT as usize].VirtualAddress as isize) ) }; let mut i = 0; loop { let import_desc = unsafe { (*import_desc_array.offset(i)) }; if import_desc.OriginalFirstThunk == 0 { break; } let dll_name = unsafe { CStr::from_ptr(base_addr.offset(import_desc.Name as isize) as *const i8) } .to_string_lossy(); if targetModule.to_string().to_lowercase() == dll_name.to_lowercase() { if import_desc.FirstThunk == 0 || import_desc.OriginalFirstThunk == 0 { return None; } let thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.FirstThunk as isize)) }; let orig_thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.OriginalFirstThunk as isize)) }; let mut j = 0; loop { let orig_thunk = unsafe { *orig_thunk_ptr.offset(j) }; if orig_thunk.u1 == 0 { break; } if (orig_thunk.u1 & IMAGE_ORDINAL_FLAG) != 0 { continue; } let import: PIMAGE_IMPORT_BY_NAME = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_BY_NAME>(base_addr .offset(orig_thunk.u1 as isize)) }; let name_field = offset_of!(IMAGE_IMPORT_BY_NAME => Name); let func_name = unsafe { CStr::from_ptr(name_field.apply_ptr(import) as *const i8) } .to_string_lossy(); if funcName == func_name { let old_func_ptr: LONG; let iat_ptr_field = offset_of!(IMAGE_THUNK_DATA32 => u1); { #[allow(unused_variables)] let lock = MemoryWriteLock::new(iat_ptr_field.apply_ptr(unsafe { thunk_ptr.offset(j) }) as LPVOID, mem::size_of::<LPVOID>() as u32); old_func_ptr = unsafe { kernel32::InterlockedExchange( iat_ptr_field.apply_ptr_mut(thunk_ptr.offset(j)) as *mut LONG, replaceFuncPtr as LONG) }; } return Some(old_func_ptr as LPVOID); } j += 1; } } i += 1; } None } } #[allow(unused_variables)] #[cfg(test)] extern "system" fn myCreatePipe(hReadPipe: PHANDLE, hWritePipe: PHANDLE, lpPipeAttributes: LPVOID, nSize: DWORD) -> BOOL { 0x31337 } #[test
Module
identifier_name
detours.rs
::once; use std::ffi::OsStr; use std::os::windows::ffi::OsStrExt; // Copied from winapi-rs since we are having issues with macro-use macro_rules! DEF_STRUCT { {$(#[$attrs:meta])* nodebug struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; {$(#[$attrs:meta])* struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] #[derive(Debug)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; } DEF_STRUCT!{struct IMAGE_DOS_HEADER { e_magic: WORD, e_cblp: WORD, e_cp: WORD, e_crlc: WORD, e_cparhdr: WORD, e_minalloc: WORD, e_maxalloc: WORD, e_ss: WORD, e_sp: WORD, e_csum: WORD, e_ip: WORD, e_cs: WORD, e_lfarlc: WORD, e_ovno: WORD, e_res: [WORD; 4], e_oemid: WORD, e_oeminfo: WORD, e_res2: [WORD; 10], e_lfanew: LONG, }} pub type PIMAGE_DOS_HEADER = *mut IMAGE_DOS_HEADER; DEF_STRUCT!{struct IMAGE_IMPORT_DESCRIPTOR { OriginalFirstThunk: DWORD, TimeDateStamp: DWORD, ForwarderChain: DWORD, Name: DWORD, FirstThunk: DWORD, }} pub type PIMAGE_IMPORT_DESCRIPTOR = *mut IMAGE_IMPORT_DESCRIPTOR; DEF_STRUCT!{struct IMAGE_THUNK_DATA32 { u1: DWORD, }} pub type PIMAGE_THUNK_DATA32 = *mut IMAGE_THUNK_DATA32; DEF_STRUCT!{struct IMAGE_IMPORT_BY_NAME { Hint: WORD, Name: BYTE, }} pub type PIMAGE_IMPORT_BY_NAME = *mut IMAGE_IMPORT_BY_NAME; const IMAGE_DOS_SIGNATURE: WORD = 0x5a4d; const IMAGE_NT_SIGNATURE: DWORD = 0x4550; const IMAGE_ORDINAL_FLAG: DWORD = 0x80000000; struct MemoryWriteLock { addr: LPVOID, size: SIZE_T, old_protect: DWORD, } impl MemoryWriteLock { pub fn new(addr: LPVOID, size: SIZE_T) -> Option<MemoryWriteLock> { let mut lock = MemoryWriteLock { addr: addr, size: size, old_protect: 0 as DWORD, }; if unsafe { kernel32::VirtualProtect(addr, size, PAGE_READWRITE, &mut lock.old_protect) } == 0 { return None; } Some(lock) } } impl Drop for MemoryWriteLock { fn drop(&mut self) { let mut old_protect: DWORD = 0 as DWORD; unsafe { kernel32::VirtualProtect(self.addr, self.size, self.old_protect, &mut old_protect) }; } } #[cfg(test)] fn assert_mem_protect(addr: LPVOID, size: SIZE_T, protect: DWORD) { let mut mbi: MEMORY_BASIC_INFORMATION = unsafe { mem::zeroed() }; assert!(unsafe { kernel32::VirtualQuery(addr, &mut mbi, size) } != 0); assert_eq!(mbi.Protect, protect); } #[test] fn test_memorywritelock() { let size = 0x1000; let addr = unsafe { kernel32::VirtualAlloc(null_mut(), size, MEM_COMMIT, PAGE_READONLY) }; assert!(addr != 0 as LPVOID); assert_mem_protect(addr, size, PAGE_READONLY); { let lock = MemoryWriteLock::new(addr, size); assert!(lock.is_some()); assert_mem_protect(addr, size, PAGE_READWRITE); } assert_mem_protect(addr, size, PAGE_READONLY); } pub struct Module { module: HMODULE, } impl Module { #[allow(dead_code)] pub fn target(moduleName: &str) -> Option<Module> { let mut library = Module { module: 0 as HMODULE }; let wModuleName: Vec<u16> = OsStr::new(moduleName) .encode_wide() .chain(once(0)) .collect(); library.module = unsafe { kernel32::GetModuleHandleW(wModuleName.as_ptr()) }; if library.module == 0 as HMODULE { return None; } Some(library) } #[allow(dead_code)] pub fn self_target() -> Module { Module { module: unsafe { kernel32::GetModuleHandleW(null_mut()) } } } pub fn intercept(&self, targetModule: &str, funcName: &str, replaceFuncPtr: LPVOID) -> Option<LPVOID>
// TODO: Think about adding support for IMAGE_FILE_MACHINE_AMD64 later return None; } let import_desc_array: PIMAGE_IMPORT_DESCRIPTOR = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_DESCRIPTOR>( base_addr.offset((*nt_hdr).OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT as usize].VirtualAddress as isize) ) }; let mut i = 0; loop { let import_desc = unsafe { (*import_desc_array.offset(i)) }; if import_desc.OriginalFirstThunk == 0 { break; } let dll_name = unsafe { CStr::from_ptr(base_addr.offset(import_desc.Name as isize) as *const i8) } .to_string_lossy(); if targetModule.to_string().to_lowercase() == dll_name.to_lowercase() { if import_desc.FirstThunk == 0 || import_desc.OriginalFirstThunk == 0 { return None; } let thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.FirstThunk as isize)) }; let orig_thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.OriginalFirstThunk as isize)) }; let mut j = 0; loop { let orig_thunk = unsafe { *orig_thunk_ptr.offset(j) }; if orig_thunk.u1 == 0 { break; } if (orig_thunk.u1 & IMAGE_ORDINAL_FLAG) != 0 { continue; } let import: PIMAGE_IMPORT_BY_NAME = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_BY_NAME>(base_addr .offset(orig_thunk.u1 as isize)) }; let name_field = offset_of!(IMAGE_IMPORT_BY_NAME => Name); let func_name = unsafe { CStr::from_ptr(name_field.apply_ptr(import) as *const i8) } .to_string_lossy(); if funcName == func_name { let old_func_ptr: LONG; let iat_ptr_field = offset_of!(IMAGE_THUNK_DATA32 => u1); { #[allow(unused_variables)] let lock = MemoryWriteLock::new(iat_ptr_field.apply_ptr(unsafe { thunk_ptr.offset(j) }) as LPVOID, mem::size_of::<LPVOID>() as u32); old_func_ptr = unsafe { kernel32::InterlockedExchange( iat_ptr_field.apply_ptr_mut(thunk_ptr.offset(j)) as *mut LONG, replaceFuncPtr as LONG) }; } return Some(old_func_ptr as LPVOID); } j += 1; } } i += 1; } None } } #[allow(unused_variables)] #[cfg(test)] extern "system" fn myCreatePipe(hReadPipe: PHANDLE, hWritePipe: PHANDLE, lpPipeAttributes: LPVOID, nSize: DWORD) -> BOOL { 0x31337 } #[test
{ let base_addr: PBYTE = unsafe { mem::transmute::<HMODULE, PBYTE>(self.module) }; let dos_hdr: PIMAGE_DOS_HEADER = unsafe { mem::transmute::<HMODULE, PIMAGE_DOS_HEADER>(self.module) }; if unsafe { (*dos_hdr).e_magic } != IMAGE_DOS_SIGNATURE { return None; } let nt_hdr: PIMAGE_NT_HEADERS32 = unsafe { mem::transmute::<PBYTE, PIMAGE_NT_HEADERS32>(base_addr.offset((*dos_hdr).e_lfanew as isize)) }; if unsafe { (*nt_hdr).Signature } != IMAGE_NT_SIGNATURE { return None; } if unsafe { (*nt_hdr).FileHeader.Machine } != IMAGE_FILE_MACHINE_I386 {
identifier_body
detours.rs
::once; use std::ffi::OsStr; use std::os::windows::ffi::OsStrExt; // Copied from winapi-rs since we are having issues with macro-use macro_rules! DEF_STRUCT { {$(#[$attrs:meta])* nodebug struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; {$(#[$attrs:meta])* struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] #[derive(Debug)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; } DEF_STRUCT!{struct IMAGE_DOS_HEADER { e_magic: WORD, e_cblp: WORD, e_cp: WORD, e_crlc: WORD, e_cparhdr: WORD, e_minalloc: WORD, e_maxalloc: WORD, e_ss: WORD, e_sp: WORD, e_csum: WORD, e_ip: WORD, e_cs: WORD, e_lfarlc: WORD, e_ovno: WORD, e_res: [WORD; 4], e_oemid: WORD, e_oeminfo: WORD, e_res2: [WORD; 10], e_lfanew: LONG, }} pub type PIMAGE_DOS_HEADER = *mut IMAGE_DOS_HEADER; DEF_STRUCT!{struct IMAGE_IMPORT_DESCRIPTOR { OriginalFirstThunk: DWORD, TimeDateStamp: DWORD, ForwarderChain: DWORD, Name: DWORD, FirstThunk: DWORD, }} pub type PIMAGE_IMPORT_DESCRIPTOR = *mut IMAGE_IMPORT_DESCRIPTOR; DEF_STRUCT!{struct IMAGE_THUNK_DATA32 { u1: DWORD, }} pub type PIMAGE_THUNK_DATA32 = *mut IMAGE_THUNK_DATA32; DEF_STRUCT!{struct IMAGE_IMPORT_BY_NAME { Hint: WORD, Name: BYTE, }} pub type PIMAGE_IMPORT_BY_NAME = *mut IMAGE_IMPORT_BY_NAME; const IMAGE_DOS_SIGNATURE: WORD = 0x5a4d; const IMAGE_NT_SIGNATURE: DWORD = 0x4550; const IMAGE_ORDINAL_FLAG: DWORD = 0x80000000; struct MemoryWriteLock { addr: LPVOID, size: SIZE_T, old_protect: DWORD, } impl MemoryWriteLock { pub fn new(addr: LPVOID, size: SIZE_T) -> Option<MemoryWriteLock> { let mut lock = MemoryWriteLock { addr: addr, size: size, old_protect: 0 as DWORD, }; if unsafe { kernel32::VirtualProtect(addr, size, PAGE_READWRITE, &mut lock.old_protect) } == 0 { return None; } Some(lock) } } impl Drop for MemoryWriteLock { fn drop(&mut self) { let mut old_protect: DWORD = 0 as DWORD; unsafe { kernel32::VirtualProtect(self.addr, self.size, self.old_protect, &mut old_protect) }; } } #[cfg(test)] fn assert_mem_protect(addr: LPVOID, size: SIZE_T, protect: DWORD) { let mut mbi: MEMORY_BASIC_INFORMATION = unsafe { mem::zeroed() }; assert!(unsafe { kernel32::VirtualQuery(addr, &mut mbi, size) } != 0); assert_eq!(mbi.Protect, protect); } #[test] fn test_memorywritelock() { let size = 0x1000; let addr = unsafe { kernel32::VirtualAlloc(null_mut(), size, MEM_COMMIT, PAGE_READONLY) }; assert!(addr != 0 as LPVOID); assert_mem_protect(addr, size, PAGE_READONLY); { let lock = MemoryWriteLock::new(addr, size); assert!(lock.is_some()); assert_mem_protect(addr, size, PAGE_READWRITE); } assert_mem_protect(addr, size, PAGE_READONLY); } pub struct Module { module: HMODULE, } impl Module { #[allow(dead_code)] pub fn target(moduleName: &str) -> Option<Module> { let mut library = Module { module: 0 as HMODULE }; let wModuleName: Vec<u16> = OsStr::new(moduleName) .encode_wide() .chain(once(0)) .collect(); library.module = unsafe { kernel32::GetModuleHandleW(wModuleName.as_ptr()) }; if library.module == 0 as HMODULE { return None; } Some(library) } #[allow(dead_code)] pub fn self_target() -> Module { Module { module: unsafe { kernel32::GetModuleHandleW(null_mut()) } } } pub fn intercept(&self, targetModule: &str, funcName: &str, replaceFuncPtr: LPVOID) -> Option<LPVOID> { let base_addr: PBYTE = unsafe { mem::transmute::<HMODULE, PBYTE>(self.module) }; let dos_hdr: PIMAGE_DOS_HEADER = unsafe { mem::transmute::<HMODULE, PIMAGE_DOS_HEADER>(self.module) }; if unsafe { (*dos_hdr).e_magic } != IMAGE_DOS_SIGNATURE { return None; } let nt_hdr: PIMAGE_NT_HEADERS32 = unsafe { mem::transmute::<PBYTE, PIMAGE_NT_HEADERS32>(base_addr.offset((*dos_hdr).e_lfanew as isize)) }; if unsafe { (*nt_hdr).Signature } != IMAGE_NT_SIGNATURE { return None; } if unsafe { (*nt_hdr).FileHeader.Machine } != IMAGE_FILE_MACHINE_I386 { // TODO: Think about adding support for IMAGE_FILE_MACHINE_AMD64 later return None; } let import_desc_array: PIMAGE_IMPORT_DESCRIPTOR = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_DESCRIPTOR>( base_addr.offset((*nt_hdr).OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT as usize].VirtualAddress as isize) ) }; let mut i = 0; loop { let import_desc = unsafe { (*import_desc_array.offset(i)) }; if import_desc.OriginalFirstThunk == 0 { break; } let dll_name = unsafe { CStr::from_ptr(base_addr.offset(import_desc.Name as isize) as *const i8) } .to_string_lossy(); if targetModule.to_string().to_lowercase() == dll_name.to_lowercase() { if import_desc.FirstThunk == 0 || import_desc.OriginalFirstThunk == 0 { return None; } let thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.FirstThunk as isize)) }; let orig_thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.OriginalFirstThunk as isize)) }; let mut j = 0; loop { let orig_thunk = unsafe { *orig_thunk_ptr.offset(j) }; if orig_thunk.u1 == 0
if (orig_thunk.u1 & IMAGE_ORDINAL_FLAG) != 0 { continue; } let import: PIMAGE_IMPORT_BY_NAME = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_BY_NAME>(base_addr .offset(orig_thunk.u1 as isize)) }; let name_field = offset_of!(IMAGE_IMPORT_BY_NAME => Name); let func_name = unsafe { CStr::from_ptr(name_field.apply_ptr(import) as *const i8) } .to_string_lossy(); if funcName == func_name { let old_func_ptr: LONG; let iat_ptr_field = offset_of!(IMAGE_THUNK_DATA32 => u1); { #[allow(unused_variables)] let lock = MemoryWriteLock::new(iat_ptr_field.apply_ptr(unsafe { thunk_ptr.offset(j) }) as LPVOID, mem::size_of::<LPVOID>() as u32); old_func_ptr = unsafe { kernel32::InterlockedExchange( iat_ptr_field.apply_ptr_mut(thunk_ptr.offset(j)) as *mut LONG, replaceFuncPtr as LONG) }; } return Some(old_func_ptr as LPVOID); } j += 1; } } i += 1; } None } } #[allow(unused_variables)] #[cfg(test)] extern "system" fn myCreatePipe(hReadPipe: PHANDLE, hWritePipe: PHANDLE, lpPipeAttributes: LPVOID, nSize: DWORD) -> BOOL { 0x31337 } #[
{ break; }
conditional_block
detours.rs
windows::ffi::OsStrExt; // Copied from winapi-rs since we are having issues with macro-use macro_rules! DEF_STRUCT { {$(#[$attrs:meta])* nodebug struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; {$(#[$attrs:meta])* struct $name:ident { $($field:ident: $ftype:ty,)+ }} => { #[repr(C)] #[derive(Debug)] $(#[$attrs])* pub struct $name { $(pub $field: $ftype,)+ } impl Copy for $name {} impl Clone for $name { fn clone(&self) -> $name { *self } } }; } DEF_STRUCT!{struct IMAGE_DOS_HEADER { e_magic: WORD, e_cblp: WORD, e_cp: WORD, e_crlc: WORD, e_cparhdr: WORD, e_minalloc: WORD, e_maxalloc: WORD, e_ss: WORD, e_sp: WORD, e_csum: WORD, e_ip: WORD, e_cs: WORD, e_lfarlc: WORD, e_ovno: WORD, e_res: [WORD; 4], e_oemid: WORD, e_oeminfo: WORD, e_res2: [WORD; 10], e_lfanew: LONG, }} pub type PIMAGE_DOS_HEADER = *mut IMAGE_DOS_HEADER; DEF_STRUCT!{struct IMAGE_IMPORT_DESCRIPTOR { OriginalFirstThunk: DWORD, TimeDateStamp: DWORD, ForwarderChain: DWORD, Name: DWORD, FirstThunk: DWORD, }} pub type PIMAGE_IMPORT_DESCRIPTOR = *mut IMAGE_IMPORT_DESCRIPTOR; DEF_STRUCT!{struct IMAGE_THUNK_DATA32 { u1: DWORD, }} pub type PIMAGE_THUNK_DATA32 = *mut IMAGE_THUNK_DATA32; DEF_STRUCT!{struct IMAGE_IMPORT_BY_NAME { Hint: WORD, Name: BYTE, }} pub type PIMAGE_IMPORT_BY_NAME = *mut IMAGE_IMPORT_BY_NAME; const IMAGE_DOS_SIGNATURE: WORD = 0x5a4d; const IMAGE_NT_SIGNATURE: DWORD = 0x4550; const IMAGE_ORDINAL_FLAG: DWORD = 0x80000000; struct MemoryWriteLock { addr: LPVOID, size: SIZE_T, old_protect: DWORD, } impl MemoryWriteLock { pub fn new(addr: LPVOID, size: SIZE_T) -> Option<MemoryWriteLock> { let mut lock = MemoryWriteLock { addr: addr, size: size, old_protect: 0 as DWORD, }; if unsafe { kernel32::VirtualProtect(addr, size, PAGE_READWRITE, &mut lock.old_protect) } == 0 { return None; } Some(lock) } } impl Drop for MemoryWriteLock { fn drop(&mut self) { let mut old_protect: DWORD = 0 as DWORD; unsafe { kernel32::VirtualProtect(self.addr, self.size, self.old_protect, &mut old_protect) }; } } #[cfg(test)] fn assert_mem_protect(addr: LPVOID, size: SIZE_T, protect: DWORD) { let mut mbi: MEMORY_BASIC_INFORMATION = unsafe { mem::zeroed() }; assert!(unsafe { kernel32::VirtualQuery(addr, &mut mbi, size) } != 0); assert_eq!(mbi.Protect, protect); } #[test] fn test_memorywritelock() { let size = 0x1000; let addr = unsafe { kernel32::VirtualAlloc(null_mut(), size, MEM_COMMIT, PAGE_READONLY) }; assert!(addr != 0 as LPVOID); assert_mem_protect(addr, size, PAGE_READONLY); { let lock = MemoryWriteLock::new(addr, size); assert!(lock.is_some()); assert_mem_protect(addr, size, PAGE_READWRITE); } assert_mem_protect(addr, size, PAGE_READONLY); } pub struct Module { module: HMODULE, } impl Module { #[allow(dead_code)] pub fn target(moduleName: &str) -> Option<Module> { let mut library = Module { module: 0 as HMODULE }; let wModuleName: Vec<u16> = OsStr::new(moduleName) .encode_wide() .chain(once(0)) .collect(); library.module = unsafe { kernel32::GetModuleHandleW(wModuleName.as_ptr()) }; if library.module == 0 as HMODULE { return None; } Some(library) } #[allow(dead_code)] pub fn self_target() -> Module { Module { module: unsafe { kernel32::GetModuleHandleW(null_mut()) } } } pub fn intercept(&self, targetModule: &str, funcName: &str, replaceFuncPtr: LPVOID) -> Option<LPVOID> { let base_addr: PBYTE = unsafe { mem::transmute::<HMODULE, PBYTE>(self.module) }; let dos_hdr: PIMAGE_DOS_HEADER = unsafe { mem::transmute::<HMODULE, PIMAGE_DOS_HEADER>(self.module) }; if unsafe { (*dos_hdr).e_magic } != IMAGE_DOS_SIGNATURE { return None; } let nt_hdr: PIMAGE_NT_HEADERS32 = unsafe { mem::transmute::<PBYTE, PIMAGE_NT_HEADERS32>(base_addr.offset((*dos_hdr).e_lfanew as isize)) }; if unsafe { (*nt_hdr).Signature } != IMAGE_NT_SIGNATURE { return None; } if unsafe { (*nt_hdr).FileHeader.Machine } != IMAGE_FILE_MACHINE_I386 { // TODO: Think about adding support for IMAGE_FILE_MACHINE_AMD64 later return None; } let import_desc_array: PIMAGE_IMPORT_DESCRIPTOR = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_DESCRIPTOR>( base_addr.offset((*nt_hdr).OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT as usize].VirtualAddress as isize) ) }; let mut i = 0; loop { let import_desc = unsafe { (*import_desc_array.offset(i)) }; if import_desc.OriginalFirstThunk == 0 { break; } let dll_name = unsafe { CStr::from_ptr(base_addr.offset(import_desc.Name as isize) as *const i8) } .to_string_lossy(); if targetModule.to_string().to_lowercase() == dll_name.to_lowercase() { if import_desc.FirstThunk == 0 || import_desc.OriginalFirstThunk == 0 { return None; } let thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.FirstThunk as isize)) }; let orig_thunk_ptr: PIMAGE_THUNK_DATA32 = unsafe { mem::transmute::<PBYTE, PIMAGE_THUNK_DATA32>(base_addr .offset(import_desc.OriginalFirstThunk as isize)) }; let mut j = 0; loop { let orig_thunk = unsafe { *orig_thunk_ptr.offset(j) }; if orig_thunk.u1 == 0 { break; } if (orig_thunk.u1 & IMAGE_ORDINAL_FLAG) != 0 { continue; } let import: PIMAGE_IMPORT_BY_NAME = unsafe { mem::transmute::<PBYTE, PIMAGE_IMPORT_BY_NAME>(base_addr .offset(orig_thunk.u1 as isize)) }; let name_field = offset_of!(IMAGE_IMPORT_BY_NAME => Name); let func_name = unsafe { CStr::from_ptr(name_field.apply_ptr(import) as *const i8) } .to_string_lossy(); if funcName == func_name { let old_func_ptr: LONG; let iat_ptr_field = offset_of!(IMAGE_THUNK_DATA32 => u1); { #[allow(unused_variables)] let lock = MemoryWriteLock::new(iat_ptr_field.apply_ptr(unsafe { thunk_ptr.offset(j) }) as LPVOID, mem::size_of::<LPVOID>() as u32); old_func_ptr = unsafe { kernel32::InterlockedExchange( iat_ptr_field.apply_ptr_mut(thunk_ptr.offset(j)) as *mut LONG, replaceFuncPtr as LONG) }; } return Some(old_func_ptr as LPVOID); } j += 1; } } i += 1; } None } } #[allow(unused_variables)] #[cfg(test)] extern "system" fn myCreatePipe(hReadPipe: PHANDLE, hWritePipe: PHANDLE, lpPipeAttributes: LPVOID, nSize: DWORD) -> BOOL { 0x31337 }
#[test] fn test_intercept() { let target = Module::self_target();
random_line_split
amap.go
"` Pname string `json:"pname"` Poiweight []interface{} `json:"poiweight"` Postcode []interface{} `json:"postcode"` Recommend string `json:"recommend"` Shopid []interface{} `json:"shopid"` Shopinfo string `json:"shopinfo"` Tag []interface{} `json:"tag"` Tel string `json:"tel"` Timestamp []interface{} `json:"timestamp"` Type string `json:"type"` Typecode string `json:"typecode"` Website []interface{} `json:"website"` } func (p Poi) String() string { return fmt.Sprintln(spaceD(p.ID), spaceD(p.Name), spaceD(p.Type), spaceD(p.Typecode), spaceD(p.Address), spaceD(p.Cityname), spaceD(p.Adname), spaceD(p.Location), spaceD(p.Alias)) } func spaceD(s string) string { return strings.Join(strings.Fields(s), "") } // Point Point type Point struct { Lng float64 Lat float64 } // Rectangle Rectangle type Rectangle struct { PointLT Point PointRB Point } func (r Rectangle) check() bool { return r.PointLT.Lng < r.PointRB.Lng && r.PointLT.Lat > r.PointRB.Lat } func (r Rectangle) polygon() string { return fmt.Sprintf("%f,%f|%f,%f", r.PointLT.Lng, r.PointLT.Lat, r.PointRB.Lng, r.PointRB.Lat) } func (r Rectangle) quadtree() []Rectangle { halflng, halflat := math.Abs(r.PointRB.Lng-r.PointLT.Lng)/2, math.Abs(r.PointLT.Lat-r.PointRB.Lat)/2 return []Rectangle{ {r.PointLT, Point{round(r.PointLT.Lng + halflng), round(r.PointLT.Lat - halflat)}}, {Point{round(r.PointLT.Lng + halflng), r.PointLT.Lat}, Point{r.PointRB.Lng, round(r.PointLT.Lat - halflat)}}, {Point{r.PointLT.Lng, round(r.PointLT.Lat - halflat)}, Point{round(r.PointLT.Lng + halflng), r.PointRB.Lat}}, {Point{round(r.PointLT.Lng + halflng), round(r.PointLT.Lat - halflat)}, r.PointRB}} } type minRec struct { Rec Rectangle Types string Count int Err error } type minRecPage struct { Rec Rectangle Types string Page string } func round(f float64) float64 { n10 := math.Pow10(6) return math.Trunc(f*n10) / n10 } var gaoDePolygonURL = "https://restapi.amap.com/v3/place/polygon" var gaoDeDetailURL = "https://www.amap.com/detail/get/detail" var key = "aaa8abdaf05433e3702eae99964cc8c6" // var key = "935c7385f239000f98ade53bbbc002e7" func cutRec(rec Rectangle, types string) (recCutresult []minRec) { count, err := recCount(rec, types) if err != nil { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count <= 800 && count > 0 { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count > 800 { // fmt.Println("cuting:", rec, types, count, err) rec4s := rec.quadtree() for _, rec4 := range rec4s { recCutresult = append(recCutresult, cutRec(rec4, types)...) } } return } func recCount(rec Rectangle, types string) (count int, err error) { para := map[string]string{ "types": types, "offset": "1", "polygon": rec.polygon(), } poiResult1, err := recRequest(para) if err != nil { return } count, err = strconv.Atoi(poiResult1.Count) if err != nil { return } return } func minRecPagePois(minRecPage minRecPage) (pois []Poi, err error) { para := map[string]string{ "types": minRecPage.Types, "offset": "20", "polygon": minRecPage.Rec.polygon(), "page": minRecPage.Page, } result, err := recRequest(para) if err != nil
pois = result.Pois return } func minRecPagesPois(minRecPages []minRecPage) (pois []Poi) { for _, minRecPage := range minRecPages { pagePois, err := minRecPagePois(minRecPage) if err == nil { pois = append(pois, pagePois...) } else { fmt.Println(minRecPages, err) } } return } func minRecPages(mRec minRec) (minRecPages []minRecPage) { for page := int(math.Ceil(float64(mRec.Count) / 20)); page > 0; page-- { minRecPages = append(minRecPages, minRecPage{mRec.Rec, mRec.Types, strconv.Itoa(page)}) } return } func minRecsPages(mRecs []minRec) (mrp []minRecPage) { for _, mRec := range mRecs { mrp = append(mrp, minRecPages(mRec)...) } return } func recTypePages(rec Rectangle, types string) (mrp []minRecPage) { cutrec := cutRec(rec, types) mrp = minRecsPages(cutrec) return } // RecTypePois RecTypePois func RecTypePois(rec Rectangle, types string) (pois []Poi) { pages := recTypePages(rec, types) pois = minRecPagesPois(pages) return } func recRequest(para map[string]string) (result PoiResult, err error) { para["key"] = key resp, err := resty. SetTimeout(10 * time.Second). SetRetryCount(5). SetRetryWaitTime(10 * time.Second). SetRetryMaxWaitTime(65 * time.Second). R(). SetQueryParams(para). Get(gaoDePolygonURL) if err != nil { return } json.Unmarshal(resp.Body(), &result) if err != nil { return } if result.Status != "1" || result.Infocode != "10000" { err = fmt.Errorf(result.Status, result.Infocode, result.Info) return } return } // Detail Detail type Detail struct { Status string `json:"status"` Data struct { Base struct { PoiTag string `json:"poi_tag"` Code string `json:"code"` ImportanceVipFlag int `json:"importance_vip_flag"` CityAdcode string `json:"city_adcode"` Telephone string `json:"telephone"` NewType string `json:"new_type"` CityName string `json:"city_name"` NewKeytype string `json:"new_keytype"` Checked string `json:"checked"` Title string `json:"title"` CreFlag int `json:"cre_flag"` StdTTag0V string `json:"std_t_tag_0_v"` NaviGeometry string `json:"navi_geometry"` Classify string `json:"classify"` Business string `json:"business"` ShopInfo struct { Claim int `json:"claim"` } `json:"shop_info"` PoiTagHasTTag int `json:"poi_tag_has_t_tag"` Pixelx string `json:"pixelx"` Pixely string `json:"pixely"` Geodata struct { Aoi []struct { Name string `json:"name"` Mainpoi string `json:"mainpoi"` Area float64 `json:"area"` } `json:"aoi"` } `json:"geodata"` Poiid string `json:"poiid"` Distance int `json:"distance"` Name string `json:"name"` StdVTag0V string `json:"std_v_tag_0_v"` EndPoiExtension string `json:"end_poi_extension"` Y string `json:"y"` X string `json:"x"` Address string `json:"address"` Bcs string `json:"bcs"` Tag string `json:"tag"` } `json:"base"` Spec struct { Mining
{ return }
conditional_block
amap.go
"` Pname string `json:"pname"` Poiweight []interface{} `json:"poiweight"` Postcode []interface{} `json:"postcode"` Recommend string `json:"recommend"` Shopid []interface{} `json:"shopid"` Shopinfo string `json:"shopinfo"` Tag []interface{} `json:"tag"` Tel string `json:"tel"` Timestamp []interface{} `json:"timestamp"` Type string `json:"type"` Typecode string `json:"typecode"` Website []interface{} `json:"website"` } func (p Poi) String() string { return fmt.Sprintln(spaceD(p.ID), spaceD(p.Name), spaceD(p.Type), spaceD(p.Typecode), spaceD(p.Address), spaceD(p.Cityname), spaceD(p.Adname), spaceD(p.Location), spaceD(p.Alias)) } func spaceD(s string) string { return strings.Join(strings.Fields(s), "") } // Point Point type Point struct { Lng float64 Lat float64 } // Rectangle Rectangle type Rectangle struct { PointLT Point PointRB Point } func (r Rectangle) check() bool { return r.PointLT.Lng < r.PointRB.Lng && r.PointLT.Lat > r.PointRB.Lat } func (r Rectangle) polygon() string { return fmt.Sprintf("%f,%f|%f,%f", r.PointLT.Lng, r.PointLT.Lat, r.PointRB.Lng, r.PointRB.Lat) } func (r Rectangle) quadtree() []Rectangle { halflng, halflat := math.Abs(r.PointRB.Lng-r.PointLT.Lng)/2, math.Abs(r.PointLT.Lat-r.PointRB.Lat)/2 return []Rectangle{ {r.PointLT, Point{round(r.PointLT.Lng + halflng), round(r.PointLT.Lat - halflat)}}, {Point{round(r.PointLT.Lng + halflng), r.PointLT.Lat}, Point{r.PointRB.Lng, round(r.PointLT.Lat - halflat)}}, {Point{r.PointLT.Lng, round(r.PointLT.Lat - halflat)}, Point{round(r.PointLT.Lng + halflng), r.PointRB.Lat}}, {Point{round(r.PointLT.Lng + halflng), round(r.PointLT.Lat - halflat)}, r.PointRB}} } type minRec struct { Rec Rectangle Types string Count int Err error } type minRecPage struct { Rec Rectangle Types string Page string } func round(f float64) float64 { n10 := math.Pow10(6) return math.Trunc(f*n10) / n10 } var gaoDePolygonURL = "https://restapi.amap.com/v3/place/polygon" var gaoDeDetailURL = "https://www.amap.com/detail/get/detail" var key = "aaa8abdaf05433e3702eae99964cc8c6" // var key = "935c7385f239000f98ade53bbbc002e7" func cutRec(rec Rectangle, types string) (recCutresult []minRec) { count, err := recCount(rec, types) if err != nil { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count <= 800 && count > 0 { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count > 800 { // fmt.Println("cuting:", rec, types, count, err) rec4s := rec.quadtree() for _, rec4 := range rec4s { recCutresult = append(recCutresult, cutRec(rec4, types)...) } } return } func recCount(rec Rectangle, types string) (count int, err error) { para := map[string]string{ "types": types, "offset": "1", "polygon": rec.polygon(), } poiResult1, err := recRequest(para) if err != nil { return } count, err = strconv.Atoi(poiResult1.Count) if err != nil { return } return } func minRecPagePois(minRecPage minRecPage) (pois []Poi, err error) { para := map[string]string{ "types": minRecPage.Types, "offset": "20", "polygon": minRecPage.Rec.polygon(), "page": minRecPage.Page, } result, err := recRequest(para) if err != nil { return } pois = result.Pois return } func minRecPagesPois(minRecPages []minRecPage) (pois []Poi) { for _, minRecPage := range minRecPages { pagePois, err := minRecPagePois(minRecPage) if err == nil { pois = append(pois, pagePois...) } else { fmt.Println(minRecPages, err) } } return } func minRecPages(mRec minRec) (minRecPages []minRecPage) { for page := int(math.Ceil(float64(mRec.Count) / 20)); page > 0; page-- { minRecPages = append(minRecPages, minRecPage{mRec.Rec, mRec.Types, strconv.Itoa(page)}) } return } func minRecsPages(mRecs []minRec) (mrp []minRecPage) { for _, mRec := range mRecs { mrp = append(mrp, minRecPages(mRec)...) } return } func recTypePages(rec Rectangle, types string) (mrp []minRecPage) { cutrec := cutRec(rec, types) mrp = minRecsPages(cutrec) return } // RecTypePois RecTypePois func RecTypePois(rec Rectangle, types string) (pois []Poi)
func recRequest(para map[string]string) (result PoiResult, err error) { para["key"] = key resp, err := resty. SetTimeout(10 * time.Second). SetRetryCount(5). SetRetryWaitTime(10 * time.Second). SetRetryMaxWaitTime(65 * time.Second). R(). SetQueryParams(para). Get(gaoDePolygonURL) if err != nil { return } json.Unmarshal(resp.Body(), &result) if err != nil { return } if result.Status != "1" || result.Infocode != "10000" { err = fmt.Errorf(result.Status, result.Infocode, result.Info) return } return } // Detail Detail type Detail struct { Status string `json:"status"` Data struct { Base struct { PoiTag string `json:"poi_tag"` Code string `json:"code"` ImportanceVipFlag int `json:"importance_vip_flag"` CityAdcode string `json:"city_adcode"` Telephone string `json:"telephone"` NewType string `json:"new_type"` CityName string `json:"city_name"` NewKeytype string `json:"new_keytype"` Checked string `json:"checked"` Title string `json:"title"` CreFlag int `json:"cre_flag"` StdTTag0V string `json:"std_t_tag_0_v"` NaviGeometry string `json:"navi_geometry"` Classify string `json:"classify"` Business string `json:"business"` ShopInfo struct { Claim int `json:"claim"` } `json:"shop_info"` PoiTagHasTTag int `json:"poi_tag_has_t_tag"` Pixelx string `json:"pixelx"` Pixely string `json:"pixely"` Geodata struct { Aoi []struct { Name string `json:"name"` Mainpoi string `json:"mainpoi"` Area float64 `json:"area"` } `json:"aoi"` } `json:"geodata"` Poiid string `json:"poiid"` Distance int `json:"distance"` Name string `json:"name"` StdVTag0V string `json:"std_v_tag_0_v"` EndPoiExtension string `json:"end_poi_extension"` Y string `json:"y"` X string `json:"x"` Address string `json:"address"` Bcs string `json:"bcs"` Tag string `json:"tag"` } `json:"base"` Spec struct { Mining
{ pages := recTypePages(rec, types) pois = minRecPagesPois(pages) return }
identifier_body
amap.go
/detail/get/detail" var key = "aaa8abdaf05433e3702eae99964cc8c6" // var key = "935c7385f239000f98ade53bbbc002e7" func cutRec(rec Rectangle, types string) (recCutresult []minRec) { count, err := recCount(rec, types) if err != nil { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count <= 800 && count > 0 { fmt.Println(rec, types, count, err) recCutresult = append(recCutresult, minRec{rec, types, count, err}) } else if count > 800 { // fmt.Println("cuting:", rec, types, count, err) rec4s := rec.quadtree() for _, rec4 := range rec4s { recCutresult = append(recCutresult, cutRec(rec4, types)...) } } return } func recCount(rec Rectangle, types string) (count int, err error) { para := map[string]string{ "types": types, "offset": "1", "polygon": rec.polygon(), } poiResult1, err := recRequest(para) if err != nil { return } count, err = strconv.Atoi(poiResult1.Count) if err != nil { return } return } func minRecPagePois(minRecPage minRecPage) (pois []Poi, err error) { para := map[string]string{ "types": minRecPage.Types, "offset": "20", "polygon": minRecPage.Rec.polygon(), "page": minRecPage.Page, } result, err := recRequest(para) if err != nil { return } pois = result.Pois return } func minRecPagesPois(minRecPages []minRecPage) (pois []Poi) { for _, minRecPage := range minRecPages { pagePois, err := minRecPagePois(minRecPage) if err == nil { pois = append(pois, pagePois...) } else { fmt.Println(minRecPages, err) } } return } func minRecPages(mRec minRec) (minRecPages []minRecPage) { for page := int(math.Ceil(float64(mRec.Count) / 20)); page > 0; page-- { minRecPages = append(minRecPages, minRecPage{mRec.Rec, mRec.Types, strconv.Itoa(page)}) } return } func minRecsPages(mRecs []minRec) (mrp []minRecPage) { for _, mRec := range mRecs { mrp = append(mrp, minRecPages(mRec)...) } return } func recTypePages(rec Rectangle, types string) (mrp []minRecPage) { cutrec := cutRec(rec, types) mrp = minRecsPages(cutrec) return } // RecTypePois RecTypePois func RecTypePois(rec Rectangle, types string) (pois []Poi) { pages := recTypePages(rec, types) pois = minRecPagesPois(pages) return } func recRequest(para map[string]string) (result PoiResult, err error) { para["key"] = key resp, err := resty. SetTimeout(10 * time.Second). SetRetryCount(5). SetRetryWaitTime(10 * time.Second). SetRetryMaxWaitTime(65 * time.Second). R(). SetQueryParams(para). Get(gaoDePolygonURL) if err != nil { return } json.Unmarshal(resp.Body(), &result) if err != nil { return } if result.Status != "1" || result.Infocode != "10000" { err = fmt.Errorf(result.Status, result.Infocode, result.Info) return } return } // Detail Detail type Detail struct { Status string `json:"status"` Data struct { Base struct { PoiTag string `json:"poi_tag"` Code string `json:"code"` ImportanceVipFlag int `json:"importance_vip_flag"` CityAdcode string `json:"city_adcode"` Telephone string `json:"telephone"` NewType string `json:"new_type"` CityName string `json:"city_name"` NewKeytype string `json:"new_keytype"` Checked string `json:"checked"` Title string `json:"title"` CreFlag int `json:"cre_flag"` StdTTag0V string `json:"std_t_tag_0_v"` NaviGeometry string `json:"navi_geometry"` Classify string `json:"classify"` Business string `json:"business"` ShopInfo struct { Claim int `json:"claim"` } `json:"shop_info"` PoiTagHasTTag int `json:"poi_tag_has_t_tag"` Pixelx string `json:"pixelx"` Pixely string `json:"pixely"` Geodata struct { Aoi []struct { Name string `json:"name"` Mainpoi string `json:"mainpoi"` Area float64 `json:"area"` } `json:"aoi"` } `json:"geodata"` Poiid string `json:"poiid"` Distance int `json:"distance"` Name string `json:"name"` StdVTag0V string `json:"std_v_tag_0_v"` EndPoiExtension string `json:"end_poi_extension"` Y string `json:"y"` X string `json:"x"` Address string `json:"address"` Bcs string `json:"bcs"` Tag string `json:"tag"` } `json:"base"` Spec struct { MiningShape struct { Aoiid string `json:"aoiid"` Center string `json:"center"` Level int `json:"level"` SpType string `json:"sp_type"` Area string `json:"area"` Shape string `json:"shape"` Type int `json:"type"` } `json:"mining_shape"` SpPic []interface{} `json:"sp_pic"` } `json:"spec"` Residential struct { BuildingTypes string `json:"building_types"` SrcTypeMix string `json:"src_type_mix"` SrcID string `json:"src_id"` IsCommunity int `json:"is_community"` Business string `json:"business"` Price string `json:"price"` HaveSchDistrict int `json:"have_sch_district"` PropertyFee string `json:"property_fee"` AreaTotal string `json:"area_total"` PropertyCompany string `json:"property_company"` VolumeRate float64 `json:"volume_rate"` GreenRate string `json:"green_rate"` SrcType string `json:"src_type"` Intro string `json:"intro"` HxpicInfo []interface{} `json:"hxpic_info"` Developer string `json:"developer"` } `json:"residential"` Deep struct { BuildingTypes string `json:"building_types"` SrcTypeMix string `json:"src_type_mix"` SrcID string `json:"src_id"` IsCommunity int `json:"is_community"` Business string `json:"business"` Price string `json:"price"` HaveSchDistrict int `json:"have_sch_district"` PropertyFee string `json:"property_fee"` AreaTotal string `json:"area_total"` PropertyCompany string `json:"property_company"` VolumeRate float64 `json:"volume_rate"` GreenRate string `json:"green_rate"` SrcType string `json:"src_type"` Intro string `json:"intro"` HxpicInfo []interface{} `json:"hxpic_info"` Developer string `json:"developer"` } `json:"deep"` Rti struct { ReviewEntrance int `json:"review_entrance"` ReviewSummary string `json:"review_summary"` ReviewCount int `json:"review_count"` HasDiscountFlag int `json:"has_discount_flag"` ReviewLabels []interface{} `json:"review_labels"` } `json:"rti"` Review struct { Comment []struct {
random_line_split