Dataset Viewer
Auto-converted to Parquet
file_name
large_stringlengths
4
140
prefix
large_stringlengths
0
12.1k
suffix
large_stringlengths
0
12k
middle
large_stringlengths
0
7.51k
fim_type
large_stringclasses
4 values
main.rs
c| match c { Self::And(es) => es, x => vec![x], }) .collect(), ) } /// convert the expression into disjunctive normal form /// /// careful, for some expressions this can have exponential runtime. E.g. the disjunctive normal form /// of `(a | b) & (c | d) & (e | f) & ...` will be very complex. pub fn dnf(self) -> Dnf { match self { Expression::Literal(x) => Dnf::literal(x), Expression::Or(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitor).unwrap(), Expression::And(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitand).unwrap(), } } } impl BitOr for Expression { type Output = Expression; fn bitor(self, that: Self) -> Self { Expression::or(vec![self, that]) } } impl BitAnd for Expression { type Output = Expression; fn bitand(self, that: Self) -> Self { Expression::and(vec![self, that]) } } fn insert_unless_redundant(aa: &mut BTreeSet<BTreeSet<String>>, b: BTreeSet<String>) { let mut to_remove = None; for a in aa.iter() { if a.is_subset(&b) { // a is larger than b. E.g. x | x&y // keep a, b is redundant return; } else if a.is_superset(&b) { // a is smaller than b, E.g. x&y | x // remove a, keep b to_remove = Some(a.clone()); } } if let Some(r) = to_remove { aa.remove(&r); } aa.insert(b); } impl From<Expression> for Dnf { fn from(value: Expression) -> Self { value.dnf() } } impl From<Dnf> for Expression { fn from(value: Dnf) -> Self { value.expression() } } impl BitAnd for Dnf { type Output = Dnf; fn bitand(self, that: Self) -> Self { let mut rs = BTreeSet::new(); for a in self.0.iter() { for b in that.0.iter() { let mut r = BTreeSet::new(); r.extend(a.iter().cloned()); r.extend(b.iter().cloned()); insert_unless_redundant(&mut rs, r); } } Dnf(rs) } } impl BitOr for Dnf { type Output = Dnf; fn bitor(self, that: Self) -> Self { let mut rs = self.0; for b in that.0 { insert_unless_redundant(&mut rs, b); } Dnf(rs) } } fn l(x: &str) -> Expression { Expression::literal(x.into()) } #[cfg(test)] mod tests { use super::*; use quickcheck::{quickcheck, Arbitrary, Gen}; use rand::seq::SliceRandom; #[test] fn test_dnf_intersection_1() { let a = l("a"); let b = l("b"); let c = l("c"); let expr = c & (a | b); let c = expr.dnf().expression().to_string(); assert_eq!(c, "a&c|b&c"); } #[test] fn test_dnf_intersection_2() { let a = l("a"); let b = l("b"); let c = l("c"); let d = l("d"); let expr = (d | c) & (b | a); let c = expr.dnf().expression().to_string(); assert_eq!(c, "a&c|a&d|b&c|b&d"); } #[test] fn test_dnf_simplify_1() { let a = l("a"); let b = l("b"); let expr = (a.clone() | b) & a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a"); } #[test] fn test_dnf_simplify_2() { let a = l("a"); let b = l("b"); let expr = (a.clone() & b) | a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a"); } #[test] fn test_dnf_simplify_3() { let a = l("a"); let b = l("b"); let expr = (a.clone() | b) | a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a|b"); } #[test] fn test_matching_1() { let index = Index::from_elements(&vec![ btreeset! {"a"}, btreeset! {"a", "b"}, btreeset! {"a"}, btreeset! {"a", "b"}, ]); let expr = l("a") | l("b"); assert_eq!(index.matching(expr.dnf()), vec![0,1,2,3]); let expr = l("a") & l("b"); assert_eq!(index.matching(expr.dnf()), vec![1,3]); let expr = l("c") & l("d"); assert!(index.matching(expr.dnf()).is_empty()); } #[test] fn test_matching_2() { let index = Index::from_elements(&vec![ btreeset! {"a", "b"}, btreeset! {"b", "c"}, btreeset! {"c", "a"}, btreeset! {"a", "b"}, ]); let expr = l("a") | l("b") | l("c"); assert_eq!(index.matching(expr.dnf()), vec![0,1,2,3]); let expr = l("a") & l("b"); assert_eq!(index.matching(expr.dnf()), vec![0,3]); let expr = l("a") & l("b") & l("c"); assert!(index.matching(expr.dnf()).is_empty()); } #[test] fn test_deser_error() { // negative index - serde should catch this let e1 = r#"[["a","b"],[[0],[0,1],[0],[0,-1]]]"#; let x: std::result::Result<Index,_> = serde_json::from_str(e1); assert!(x.is_err()); // index too large - we must catch this in order to uphold the invariants of the index let e1 = r#"[["a","b"],[[0],[0,1],[0],[0,2]]]"#; let x: std::result::Result<Index,_> = serde_json::from_str(e1); assert!(x.is_err()); } const STRINGS: &'static [&'static str] = &["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]; #[derive(Clone, PartialOrd, Ord, PartialEq, Eq)] struct IndexString(&'static str); impl Arbitrary for IndexString { fn arbitrary<G: Gen>(g: &mut G) -> Self { IndexString(STRINGS.choose(g).unwrap()) } } impl Arbitrary for Index { fn arbitrary<G: Gen>(g: &mut G) -> Self { let xs: Vec<BTreeSet<IndexString>> = Arbitrary::arbitrary(g); let xs: Vec<BTreeSet<&str>> = xs.iter().map(|e| e.iter().map(|x| x.0).collect()).collect(); Index::from_elements(&xs) } } quickcheck! { fn serde_json_roundtrip(index: Index) -> bool { let json = serde_json::to_string(&index).unwrap(); let index2: Index = serde_json::from_str(&json).unwrap(); index == index2 } } } fn compresss_zstd_cbor<T: Serialize>(value: &T) -> std::result::Result<Vec<u8>, Box<dyn std::error::Error>> { let cbor = serde_cbor::to_vec(&value)?; let mut compressed: Vec<u8> = Vec::new(); zstd::stream::copy_encode(std::io::Cursor::new(cbor), &mut compressed, 10)?; Ok(compressed) } fn decompress_zstd_cbor<T: DeserializeOwned>(compressed: &[u8]) -> std::result::Result<T, Box<dyn std::error::Error>> { let mut decompressed: Vec<u8> = Vec::new(); zstd::stream::copy_decode(compressed, &mut decompressed)?;
Ok(serde_cbor::from_slice(&decompressed)?) } fn borrow_inner(elements: &[BTreeSet<String>]) -> Vec<BTreeSet<&str>> { elements.iter().map(|x| x.iter().map(|e| e.as_ref()).collect()).collect()
random_line_split
main.rs
<_>>(); // not a single query can possibly match, no need to iterate. if query.is_empty() { return Vec::new(); } // check the remaining queries self.elements .iter() .enumerate() .filter_map(|(i, e)| { if query.iter().any(|x| x.is_subset(e)) { Some(i) } else { None } }) .collect() } pub fn as_elements<'a>(&'a self) -> Vec<BTreeSet<&'a str>> { let strings = self.strings.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); self .elements .iter() .map(|is| { is.iter() .map(|i| strings[*i as usize]) .collect::<BTreeSet<_>>() }) .collect() } pub fn from_elements(e: &[BTreeSet<&str>]) -> Index { let mut strings = BTreeSet::new(); for a in e.iter() { strings.extend(a.iter().cloned()); } let indices = strings .iter() .cloned() .enumerate() .map(|(i, e)| (e, i as u32)) .collect::<BTreeMap<_, _>>(); let elements = e .iter() .map(|a| a.iter().map(|e| indices[e]).collect::<BTreeSet<u32>>()) .collect::<Vec<_>>(); let strings = strings.into_iter().map(|x| x.to_owned()).collect(); Index { strings, elements } } } /// a boolean expression, consisting of literals, union and intersection. /// /// no attempt of simplification is made, except flattening identical operators. /// /// `And([And([a,b]),c])` will be flattened to `And([a,b,c])`. #[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)] pub enum Expression { Literal(String), And(Vec<Expression>), Or(Vec<Expression>), } /// prints the expression with a minimum of brackets impl std::fmt::Display for Expression { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { fn child_to_string(x: &Expression) -> String { if let Expression::Or(_) = x { format!("({})", x) } else { x.to_string() } } write!( f, "{}", match self { Expression::Literal(text) => text.clone(), Expression::And(es) => es.iter().map(child_to_string).collect::<Vec<_>>().join("&"), Expression::Or(es) => es.iter().map(child_to_string).collect::<Vec<_>>().join("|"), } ) } } /// Disjunctive normal form of a boolean query expression /// /// https://en.wikipedia.org/wiki/Disjunctive_normal_form /// /// This is an unique represenation of a query using literals, union and intersection. #[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)] pub struct Dnf(BTreeSet<BTreeSet<String>>); impl Dnf { fn literal(text: String) -> Self { Self(btreeset![btreeset![text]]) } /// converts the disjunctive normal form back to an expression pub fn expression(self) -> Expression { self.0 .into_iter() .map(Dnf::and_expr) .reduce(Expression::bitor) .unwrap() } fn and_expr(v: BTreeSet<String>) -> Expression { v.into_iter() .map(Expression::literal) .reduce(Expression::bitand) .unwrap() } } impl Expression { pub fn literal(text: String) -> Self { Self::Literal(text) } fn or(e: Vec<Expression>) -> Self
fn and(e: Vec<Expression>) -> Self { Self::And( e.into_iter() .flat_map(|c| match c { Self::And(es) => es, x => vec![x], }) .collect(), ) } /// convert the expression into disjunctive normal form /// /// careful, for some expressions this can have exponential runtime. E.g. the disjunctive normal form /// of `(a | b) & (c | d) & (e | f) & ...` will be very complex. pub fn dnf(self) -> Dnf { match self { Expression::Literal(x) => Dnf::literal(x), Expression::Or(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitor).unwrap(), Expression::And(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitand).unwrap(), } } } impl BitOr for Expression { type Output = Expression; fn bitor(self, that: Self) -> Self { Expression::or(vec![self, that]) } } impl BitAnd for Expression { type Output = Expression; fn bitand(self, that: Self) -> Self { Expression::and(vec![self, that]) } } fn insert_unless_redundant(aa: &mut BTreeSet<BTreeSet<String>>, b: BTreeSet<String>) { let mut to_remove = None; for a in aa.iter() { if a.is_subset(&b) { // a is larger than b. E.g. x | x&y // keep a, b is redundant return; } else if a.is_superset(&b) { // a is smaller than b, E.g. x&y | x // remove a, keep b to_remove = Some(a.clone()); } } if let Some(r) = to_remove { aa.remove(&r); } aa.insert(b); } impl From<Expression> for Dnf { fn from(value: Expression) -> Self { value.dnf() } } impl From<Dnf> for Expression { fn from(value: Dnf) -> Self { value.expression() } } impl BitAnd for Dnf { type Output = Dnf; fn bitand(self, that: Self) -> Self { let mut rs = BTreeSet::new(); for a in self.0.iter() { for b in that.0.iter() { let mut r = BTreeSet::new(); r.extend(a.iter().cloned()); r.extend(b.iter().cloned()); insert_unless_redundant(&mut rs, r); } } Dnf(rs) } } impl BitOr for Dnf { type Output = Dnf; fn bitor(self, that: Self) -> Self { let mut rs = self.0; for b in that.0 { insert_unless_redundant(&mut rs, b); } Dnf(rs) } } fn l(x: &str) -> Expression { Expression::literal(x.into()) } #[cfg(test)] mod tests { use super::*; use quickcheck::{quickcheck, Arbitrary, Gen}; use rand::seq::SliceRandom; #[test] fn test_dnf_intersection_1() { let a = l("a"); let b = l("b"); let c = l("c"); let expr = c & (a | b); let c = expr.dnf().expression().to_string(); assert_eq!(c, "a&c|b&c"); } #[test] fn test_dnf_intersection_2() { let a = l("a"); let b = l("b"); let c = l("c"); let d = l("d"); let expr = (d | c) & (b | a); let c = expr.dnf().expression().to_string(); assert_eq!(c, "a&c|a&d|b&c|b&d"); } #[test] fn test_dnf_simplify_1() { let a = l("a"); let b = l("b"); let expr = (a.clone() | b) & a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a"); } #[test] fn test_dnf_simplify_2() { let a = l("a"); let b = l("b"); let expr = (a.clone() & b) | a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a"); } #[test] fn test_dnf_simplify_3() { let a = l("a"); let b = l("b"); let expr = (a.clone() | b) | a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a|b"); } #[test] fn test_matching_1() { let index = Index::from_elements(&vec![ btreeset! {"a"}, btreeset!
{ Self::Or( e.into_iter() .flat_map(|c| match c { Self::Or(es) => es, x => vec![x], }) .collect(), ) }
identifier_body
main.rs
<_>>(); // not a single query can possibly match, no need to iterate. if query.is_empty() { return Vec::new(); } // check the remaining queries self.elements .iter() .enumerate() .filter_map(|(i, e)| { if query.iter().any(|x| x.is_subset(e)) { Some(i) } else { None } }) .collect() } pub fn as_elements<'a>(&'a self) -> Vec<BTreeSet<&'a str>> { let strings = self.strings.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); self .elements .iter() .map(|is| { is.iter() .map(|i| strings[*i as usize]) .collect::<BTreeSet<_>>() }) .collect() } pub fn from_elements(e: &[BTreeSet<&str>]) -> Index { let mut strings = BTreeSet::new(); for a in e.iter() { strings.extend(a.iter().cloned()); } let indices = strings .iter() .cloned() .enumerate() .map(|(i, e)| (e, i as u32)) .collect::<BTreeMap<_, _>>(); let elements = e .iter() .map(|a| a.iter().map(|e| indices[e]).collect::<BTreeSet<u32>>()) .collect::<Vec<_>>(); let strings = strings.into_iter().map(|x| x.to_owned()).collect(); Index { strings, elements } } } /// a boolean expression, consisting of literals, union and intersection. /// /// no attempt of simplification is made, except flattening identical operators. /// /// `And([And([a,b]),c])` will be flattened to `And([a,b,c])`. #[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)] pub enum Expression { Literal(String), And(Vec<Expression>), Or(Vec<Expression>), } /// prints the expression with a minimum of brackets impl std::fmt::Display for Expression { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { fn child_to_string(x: &Expression) -> String { if let Expression::Or(_) = x { format!("({})", x) } else { x.to_string() } } write!( f, "{}", match self { Expression::Literal(text) => text.clone(), Expression::And(es) => es.iter().map(child_to_string).collect::<Vec<_>>().join("&"), Expression::Or(es) => es.iter().map(child_to_string).collect::<Vec<_>>().join("|"), } ) } } /// Disjunctive normal form of a boolean query expression /// /// https://en.wikipedia.org/wiki/Disjunctive_normal_form /// /// This is an unique represenation of a query using literals, union and intersection. #[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)] pub struct Dnf(BTreeSet<BTreeSet<String>>); impl Dnf { fn literal(text: String) -> Self { Self(btreeset![btreeset![text]]) } /// converts the disjunctive normal form back to an expression pub fn expression(self) -> Expression { self.0 .into_iter() .map(Dnf::and_expr) .reduce(Expression::bitor) .unwrap() } fn and_expr(v: BTreeSet<String>) -> Expression { v.into_iter() .map(Expression::literal) .reduce(Expression::bitand) .unwrap() } } impl Expression { pub fn literal(text: String) -> Self { Self::Literal(text) } fn
(e: Vec<Expression>) -> Self { Self::Or( e.into_iter() .flat_map(|c| match c { Self::Or(es) => es, x => vec![x], }) .collect(), ) } fn and(e: Vec<Expression>) -> Self { Self::And( e.into_iter() .flat_map(|c| match c { Self::And(es) => es, x => vec![x], }) .collect(), ) } /// convert the expression into disjunctive normal form /// /// careful, for some expressions this can have exponential runtime. E.g. the disjunctive normal form /// of `(a | b) & (c | d) & (e | f) & ...` will be very complex. pub fn dnf(self) -> Dnf { match self { Expression::Literal(x) => Dnf::literal(x), Expression::Or(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitor).unwrap(), Expression::And(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitand).unwrap(), } } } impl BitOr for Expression { type Output = Expression; fn bitor(self, that: Self) -> Self { Expression::or(vec![self, that]) } } impl BitAnd for Expression { type Output = Expression; fn bitand(self, that: Self) -> Self { Expression::and(vec![self, that]) } } fn insert_unless_redundant(aa: &mut BTreeSet<BTreeSet<String>>, b: BTreeSet<String>) { let mut to_remove = None; for a in aa.iter() { if a.is_subset(&b) { // a is larger than b. E.g. x | x&y // keep a, b is redundant return; } else if a.is_superset(&b) { // a is smaller than b, E.g. x&y | x // remove a, keep b to_remove = Some(a.clone()); } } if let Some(r) = to_remove { aa.remove(&r); } aa.insert(b); } impl From<Expression> for Dnf { fn from(value: Expression) -> Self { value.dnf() } } impl From<Dnf> for Expression { fn from(value: Dnf) -> Self { value.expression() } } impl BitAnd for Dnf { type Output = Dnf; fn bitand(self, that: Self) -> Self { let mut rs = BTreeSet::new(); for a in self.0.iter() { for b in that.0.iter() { let mut r = BTreeSet::new(); r.extend(a.iter().cloned()); r.extend(b.iter().cloned()); insert_unless_redundant(&mut rs, r); } } Dnf(rs) } } impl BitOr for Dnf { type Output = Dnf; fn bitor(self, that: Self) -> Self { let mut rs = self.0; for b in that.0 { insert_unless_redundant(&mut rs, b); } Dnf(rs) } } fn l(x: &str) -> Expression { Expression::literal(x.into()) } #[cfg(test)] mod tests { use super::*; use quickcheck::{quickcheck, Arbitrary, Gen}; use rand::seq::SliceRandom; #[test] fn test_dnf_intersection_1() { let a = l("a"); let b = l("b"); let c = l("c"); let expr = c & (a | b); let c = expr.dnf().expression().to_string(); assert_eq!(c, "a&c|b&c"); } #[test] fn test_dnf_intersection_2() { let a = l("a"); let b = l("b"); let c = l("c"); let d = l("d"); let expr = (d | c) & (b | a); let c = expr.dnf().expression().to_string(); assert_eq!(c, "a&c|a&d|b&c|b&d"); } #[test] fn test_dnf_simplify_1() { let a = l("a"); let b = l("b"); let expr = (a.clone() | b) & a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a"); } #[test] fn test_dnf_simplify_2() { let a = l("a"); let b = l("b"); let expr = (a.clone() & b) | a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a"); } #[test] fn test_dnf_simplify_3() { let a = l("a"); let b = l("b"); let expr = (a.clone() | b) | a; let c = expr.dnf().expression().to_string(); assert_eq!(c, "a|b"); } #[test] fn test_matching_1() { let index = Index::from_elements(&vec![ btreeset! {"a"}, btreeset! {"
or
identifier_name
main.rs
} } Ok(Index { strings: strings.into_iter().collect(), elements, }) } } impl Index { /// given a query expression in Dnf form, returns all matching indices pub fn matching(&self, query: Dnf) -> Vec<usize> { // lookup all strings and translate them into indices. // if a single index does not match, the query can not match at all. fn lookup(s: &BTreeSet<String>, t: &BTreeMap<&str, u32>) -> Option<BTreeSet<u32>> { s.iter() .map(|x| t.get(&x.as_ref()).cloned()) .collect::<Option<_>>() } // mapping from strings to indices let strings = self .strings .iter() .enumerate() .map(|(i, s)| (s.as_ref(), i as u32)) .collect::<BTreeMap<&str, u32>>(); // translate the query from strings to indices let query = query .0 .iter() .filter_map(|s| lookup(s, &strings)) .collect::<Vec<_>>(); // not a single query can possibly match, no need to iterate. if query.is_empty() { return Vec::new(); } // check the remaining queries self.elements .iter() .enumerate() .filter_map(|(i, e)| { if query.iter().any(|x| x.is_subset(e)) { Some(i) } else { None } }) .collect() } pub fn as_elements<'a>(&'a self) -> Vec<BTreeSet<&'a str>> { let strings = self.strings.iter().map(|x| x.as_ref()).collect::<Vec<_>>(); self .elements .iter() .map(|is| { is.iter() .map(|i| strings[*i as usize]) .collect::<BTreeSet<_>>() }) .collect() } pub fn from_elements(e: &[BTreeSet<&str>]) -> Index { let mut strings = BTreeSet::new(); for a in e.iter() { strings.extend(a.iter().cloned()); } let indices = strings .iter() .cloned() .enumerate() .map(|(i, e)| (e, i as u32)) .collect::<BTreeMap<_, _>>(); let elements = e .iter() .map(|a| a.iter().map(|e| indices[e]).collect::<BTreeSet<u32>>()) .collect::<Vec<_>>(); let strings = strings.into_iter().map(|x| x.to_owned()).collect(); Index { strings, elements } } } /// a boolean expression, consisting of literals, union and intersection. /// /// no attempt of simplification is made, except flattening identical operators. /// /// `And([And([a,b]),c])` will be flattened to `And([a,b,c])`. #[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)] pub enum Expression { Literal(String), And(Vec<Expression>), Or(Vec<Expression>), } /// prints the expression with a minimum of brackets impl std::fmt::Display for Expression { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { fn child_to_string(x: &Expression) -> String { if let Expression::Or(_) = x { format!("({})", x) } else { x.to_string() } } write!( f, "{}", match self { Expression::Literal(text) => text.clone(), Expression::And(es) => es.iter().map(child_to_string).collect::<Vec<_>>().join("&"), Expression::Or(es) => es.iter().map(child_to_string).collect::<Vec<_>>().join("|"), } ) } } /// Disjunctive normal form of a boolean query expression /// /// https://en.wikipedia.org/wiki/Disjunctive_normal_form /// /// This is an unique represenation of a query using literals, union and intersection. #[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)] pub struct Dnf(BTreeSet<BTreeSet<String>>); impl Dnf { fn literal(text: String) -> Self { Self(btreeset![btreeset![text]]) } /// converts the disjunctive normal form back to an expression pub fn expression(self) -> Expression { self.0 .into_iter() .map(Dnf::and_expr) .reduce(Expression::bitor) .unwrap() } fn and_expr(v: BTreeSet<String>) -> Expression { v.into_iter() .map(Expression::literal) .reduce(Expression::bitand) .unwrap() } } impl Expression { pub fn literal(text: String) -> Self { Self::Literal(text) } fn or(e: Vec<Expression>) -> Self { Self::Or( e.into_iter() .flat_map(|c| match c { Self::Or(es) => es, x => vec![x], }) .collect(), ) } fn and(e: Vec<Expression>) -> Self { Self::And( e.into_iter() .flat_map(|c| match c { Self::And(es) => es, x => vec![x], }) .collect(), ) } /// convert the expression into disjunctive normal form /// /// careful, for some expressions this can have exponential runtime. E.g. the disjunctive normal form /// of `(a | b) & (c | d) & (e | f) & ...` will be very complex. pub fn dnf(self) -> Dnf { match self { Expression::Literal(x) => Dnf::literal(x), Expression::Or(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitor).unwrap(), Expression::And(es) => es.into_iter().map(|x| x.dnf()).reduce(Dnf::bitand).unwrap(), } } } impl BitOr for Expression { type Output = Expression; fn bitor(self, that: Self) -> Self { Expression::or(vec![self, that]) } } impl BitAnd for Expression { type Output = Expression; fn bitand(self, that: Self) -> Self { Expression::and(vec![self, that]) } } fn insert_unless_redundant(aa: &mut BTreeSet<BTreeSet<String>>, b: BTreeSet<String>) { let mut to_remove = None; for a in aa.iter() { if a.is_subset(&b) { // a is larger than b. E.g. x | x&y // keep a, b is redundant return; } else if a.is_superset(&b) { // a is smaller than b, E.g. x&y | x // remove a, keep b to_remove = Some(a.clone()); } } if let Some(r) = to_remove { aa.remove(&r); } aa.insert(b); } impl From<Expression> for Dnf { fn from(value: Expression) -> Self { value.dnf() } } impl From<Dnf> for Expression { fn from(value: Dnf) -> Self { value.expression() } } impl BitAnd for Dnf { type Output = Dnf; fn bitand(self, that: Self) -> Self { let mut rs = BTreeSet::new(); for a in self.0.iter() { for b in that.0.iter() { let mut r = BTreeSet::new(); r.extend(a.iter().cloned()); r.extend(b.iter().cloned()); insert_unless_redundant(&mut rs, r); } } Dnf(rs) } } impl BitOr for Dnf { type Output = Dnf; fn bitor(self, that: Self) -> Self { let mut rs = self.0; for b in that.0 { insert_unless_redundant(&mut rs, b); } Dnf(rs) } } fn l(x: &str) -> Expression { Expression::literal(x.into()) } #[cfg(test)] mod tests { use super::*; use quickcheck::{quickcheck, Arbitrary, Gen}; use rand::seq::SliceRandom; #[test] fn test_dnf_intersection_1() { let a = l("a"); let b = l("b"); let c = l("c"); let expr = c & (a | b); let c = expr.dnf().expression().to_string(); assert_eq!(c, "a&c|b&c"); } #[test] fn test_dnf_intersection_2() { let a = l("a"); let b = l("b"); let c = l("c"); let d = l("d"); let expr = (d | c) & (b | a); let c = expr.dnf().expression
{ return Err(serde::de::Error::custom("invalid string index")); }
conditional_block
xterm.rs
fn from(color: XtermColors) -> Self { match color { $( XtermColors::$name => $xterm_num, )* } } } } $( #[allow(missing_docs)] pub struct $name; impl crate::Color for $name { const ANSI_FG: &'static str = concat!("\x1b[38;5;", stringify!($xterm_num), "m"); const ANSI_BG: &'static str = concat!("\x1b[48;5;", stringify!($xterm_num), "m"); const RAW_ANSI_BG: &'static str = concat!("48;5;", stringify!($xterm_num)); const RAW_ANSI_FG: &'static str = concat!("48;5;", stringify!($xterm_num)); #[doc(hidden)] type DynEquivelant = dynamic::XtermColors; #[doc(hidden)] const DYN_EQUIVELANT: Self::DynEquivelant = dynamic::XtermColors::$name; #[doc(hidden)] fn into_dyncolors() -> crate::DynColors { crate::DynColors::Xterm(dynamic::XtermColors::$name) } } )* }; } xterm_colors! { 0 UserBlack (0,0,0) 1 UserRed (128,0,0) 2 UserGreen (0,128,0) 3 UserYellow (128,128,0) 4 UserBlue (0,0,128) 5 UserMagenta (128,0,128) 6 UserCyan (0,128,128) 7 UserWhite (192,192,192) 8 UserBrightBlack (128,128,128) 9 UserBrightRed (255,0,0) 10 UserBrightGreen (0,255,0) 11 UserBrightYellow (255,255,0) 12 UserBrightBlue (0,0,255) 13 UserBrightMagenta (255,0,255) 14 UserBrightCyan (0,255,255) 15 UserBrightWhite (255,255,255) 16 Black (0,0,0) 17 StratosBlue (0,0,95) 18 NavyBlue (0,0,135) 19 MidnightBlue (0,0,175) 20 DarkBlue (0,0,215) 21 Blue (0,0,255) 22 CamaroneGreen (0,95,0) 23 BlueStone (0,95,95) 24 OrientBlue (0,95,135) 25 EndeavourBlue (0,95,175) 26 ScienceBlue (0,95,215) 27 BlueRibbon (0,95,255) 28 JapaneseLaurel (0,135,0) 29 DeepSeaGreen (0,135,95) 30 Teal (0,135,135) 31 DeepCerulean (0,135,175) 32 LochmaraBlue (0,135,215) 33 AzureRadiance (0,135,255) 34 LightJapaneseLaurel (0,175,0) 35 Jade (0,175,95) 36 PersianGreen (0,175,135) 37 BondiBlue (0,175,175) 38 Cerulean (0,175,215) 39 LightAzureRadiance (0,175,255) 40 DarkGreen (0,215,0) 41 Malachite (0,215,95) 42 CaribbeanGreen (0,215,135) 43 LightCaribbeanGreen (0,215,175) 44 RobinEggBlue (0,215,215) 45 Aqua (0,215,255) 46 Green (0,255,0) 47 DarkSpringGreen (0,255,95) 48 SpringGreen (0,255,135) 49 LightSpringGreen (0,255,175) 50 BrightTurquoise (0,255,215) 51 Cyan (0,255,255) 52 Rosewood (95,0,0) 53 PompadourMagenta (95,0,95) 54 PigmentIndigo (95,0,135) 55 DarkPurple (95,0,175) 56 ElectricIndigo (95,0,215) 57 ElectricPurple (95,0,255) 58 VerdunGreen (95,95,0) 59 ScorpionOlive (95,95,95) 60 Lilac (95,95,135) 61 ScampiIndigo (95,95,175) 62 Indigo (95,95,215) 63 DarkCornflowerBlue (95,95,255) 64 DarkLimeade (95,135,0) 65 GladeGreen (95,135,95) 66 JuniperGreen (95,135,135) 67 HippieBlue (95,135,175) 68 HavelockBlue (95,135,215) 69 CornflowerBlue (95,135,255) 70 Limeade (95,175,0) 71 FernGreen (95,175,95) 72 SilverTree (95,175,135) 73 Tradewind (95,175,175) 74 ShakespeareBlue (95,175,215) 75 DarkMalibuBlue (95,175,255) 76 DarkBrightGreen (95,215,0) 77 DarkPastelGreen (95,215,95) 78 PastelGreen (95,215,135) 79 DownyTeal (95,215,175) 80 Viking (95,215,215) 81 MalibuBlue (95,215,255) 82 BrightGreen (95,255,0) 83 DarkScreaminGreen (95,255,95) 84 ScreaminGreen (95,255,135) 85 DarkAquamarine (95,255,175) 86 Aquamarine (95,255,215) 87 LightAquamarine (95,255,255) 88 Maroon (135,0,0) 89 DarkFreshEggplant (135,0,95) 90 LightFreshEggplant (135,0,135) 91 Purple (135,0,175) 92 ElectricViolet (135,0,215) 93 LightElectricViolet (135,0,255) 94 Brown (135,95,0) 95 CopperRose (135,95,95) 96 Strikemaster
impl From<XtermColors> for u8 {
random_line_split
gtmaps.py
_z = min(reach_z) nav_grid = np.zeros((c_x,c_z)) for i in range(nav_grid.shape[0]): for j in range(nav_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords: nav_grid[i,j] = 1 else: nav_grid[i,j] = 0 #print("nav_grid after disabling every object ") #print(nav_grid) #sys.exit(0) #print("Got nav_grid on empty room ",nav_grid) obj_grids = {} obj_grids['fixed_obstructions'] = nav_grid #flr_grid = np.zeros_like(nav_grid) for n in range(len(names)): obj_grid = copy.copy(nav_grid) #now enable just the object you want to map print("Now enabling ",names[n], " back ") event = env.step(dict({"action":"EnableObject", "objectId": names[n]})) #getting reachable positions again event = env.step(dict(action = 'GetReachablePositions')) reach_pos = event.metadata['actionReturn'] #stores all reachable positions for the current scene reach_x = [i['x'] for i in reach_pos] reach_z = [i['z'] for i in reach_pos] coords = [[i['x'],i['z']] for i in reach_pos] obj_center = [centers[n]['x'], centers[n]['z'] ] for i in range(obj_grid.shape[0]): for j in range(obj_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords and obj_grid[i,j] == 1: obj_grid[i,j] = 0 ''' if int(m_x + i*0.25) == int(obj_center[0]) and int(m_z + j*0.25) == int(obj_center[1]): print("object center matched for object ",names[n]) obj_grid[i,j] == 1 ''' obj_grids[names[n]] = obj_grid #flr_grid = flr_grid + obj_grid print("Disabling the object") event = env.step(dict({"action":"DisableObject", "objectId": names[n]})) for n in names: print("Now enabling ",n, " back ") event = env.step(dict({"action":"EnableObject", "objectId": n})) event = env.step(dict(action = 'GetReachablePositions')) reach_pos = event.metadata['actionReturn'] #stores all reachable positions for the current scene reach_x = [i['x'] for i in reach_pos] reach_z = [i['z'] for i in reach_pos] coords = [[i['x'],i['z']] for i in reach_pos] flr_grid = np.zeros((c_x,c_z)) for i in range(flr_grid.shape[0]): for j in range(flr_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords: flr_grid[i,j] = 1 obj_grids['nav_space'] = flr_grid #x = event.metadata['agent']['position']['x'] #y = event.metadata['agent']['position']['y'] #z = event.metadata['agent']['position']['z'] #obj_grids['agent_pos'] = {'x':x,'y':y,'z':z} obj_grids['min_pos'] = {'mx':m_x,'mz':m_z} return obj_grids def prettyprint(mat,argmax = False, locator = [-1,-1,-1]):
d = '>' #"\u2192" #right arrow if locator[2]==270: d = '^' #"\u2191" #up arrow if locator[2]==90: d = 'v' #"\u2193" #down arrow if locator[2]==180: d = '<' #"\u2190" #left arrow print(d,end = '') print(" ",end = '') print(" --",repr(i)) #print(" ") def surrounding_patch(agentloc, labeled_grid, R = 16, unreach_value = -1): #returns a visibility patch centered around the agent with radius R #unreach_value = -1 mat = labeled_grid position = agentloc r=copy.copy(R) init_shape = copy.copy(mat.shape) p = copy.copy(position) while position[0]-r<0: #append black columns to the left of agent position #print("Increasing columns to left ") mat = np.insert(mat,0, unreach_value,axis=1) r-=1 p[0]+=1 r=copy.copy(R) while position[0]+r>init_shape[1]-1: #append blank columns to the right of the agent position #print("Increasing columns to right") mat = np.insert(mat,mat.shape[1], unreach_value,axis=1) r-=1 r=copy.copy(R) while position[1]-r<0: #print("Increasing rows above") mat = np.insert(mat,0, unreach_value,axis=0) #append blank rows to the top of the agent position r-=1 p[1]+=1 r=copy.copy(R) while position[1]+r>init_shape[0]-1: #print("Increasing rows below") mat = np.insert(mat,mat.shape[0], unreach_value,axis=0) #append blank columns to the bottom of the agent position r-=1 #print("mat shape ",mat.shape) #outputs (33x33) return mat[p[1]-R:p[1]+R+1, p[0]-R:p[0]+R+1] def target_navigation_map(o_grids, obj, agentloc, grid_size = 32, unk_id = 0,flr_id = 1, tar_id = 2, obs_id = 3, verbose = False): m = o_grids['nav_space'] m = np.where(m==0,m,flr_id) #just to reinforce that the navigable spaces have the specified flr_id #========================== #if only asking about navigable space and not interested to navigate to a specific target object if obj=="nav_space": #print("Got nav_space in gtmaps line 200") ''' for n in o_grids.keys(): if n!="nav_space": m = np.where(o_grids[n]==0,m,obs_id) ''' m = np.where(m!=0,m,obs_id) agentloc = [int((agentloc['z']-o_grids['min_pos']['mz'])/0.25), int((agentloc['x']-o_grids['min_pos']['mx'])/0.25)] if verbose: print("Got grid agent location from agentloc ",agentloc) m = surrounding_patch(agentloc, m, R=int(grid_size/2), unreach_value = unk_id) return m #two different modes of searching (if exact id is passed it is sometimes helpful if multiple objects of same type- ex- multiple chairs) if '|' not in obj: searchkey = obj+'|' else: searchkey = obj #========================== #if only asking about navigating to a specific target object for n in o_grids.keys(): if searchkey in n: if verbose: print("Got exact objectid ",n) t = tar_id*o_grids[n] m = np.where(t==0,m,tar_id) ''' else: o = obs_id*o_grids[n] m = np.where(o==0,m,obs_id) ''' #identify obstacle locations m = np.where(m!=0,m,obs_id) #center the map according to agent location - agentloc #3d position supplied by simulator need to be swapped in grid order - z gets first position and x gets 2nd position agentloc = [int((agentloc['z']-o_grids['min_pos']['mz'])/0.25), int((agentloc['x']-o_grids['min_pos']['mx'])/0.25)] if verbose: print("Got grid agent location from agentloc ",agentloc)
for j in range(mat.shape[1]): d = repr(j) if j<10: d = '0'+d print(d,end = '') print(" ",end = '') print(" ") print(" ") for i in range(mat.shape[0]): for j in range(mat.shape[1]): d = 0 if argmax: d = np.argmax(mat[i,j,:]) #d = np.max(mat[i,j,:]) else: d = repr(int(mat[i,j])) if locator[0]==i and locator[1]==j: if locator[2]==0:
identifier_body
gtmaps.py
m_z = min(reach_z) nav_grid = np.zeros((c_x,c_z)) for i in range(nav_grid.shape[0]): for j in range(nav_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords: nav_grid[i,j] = 1 else: nav_grid[i,j] = 0 #print("nav_grid after disabling every object ") #print(nav_grid) #sys.exit(0) #print("Got nav_grid on empty room ",nav_grid) obj_grids = {} obj_grids['fixed_obstructions'] = nav_grid #flr_grid = np.zeros_like(nav_grid) for n in range(len(names)): obj_grid = copy.copy(nav_grid) #now enable just the object you want to map print("Now enabling ",names[n], " back ") event = env.step(dict({"action":"EnableObject", "objectId": names[n]})) #getting reachable positions again event = env.step(dict(action = 'GetReachablePositions')) reach_pos = event.metadata['actionReturn'] #stores all reachable positions for the current scene reach_x = [i['x'] for i in reach_pos] reach_z = [i['z'] for i in reach_pos] coords = [[i['x'],i['z']] for i in reach_pos] obj_center = [centers[n]['x'], centers[n]['z'] ] for i in range(obj_grid.shape[0]): for j in range(obj_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords and obj_grid[i,j] == 1: obj_grid[i,j] = 0 ''' if int(m_x + i*0.25) == int(obj_center[0]) and int(m_z + j*0.25) == int(obj_center[1]): print("object center matched for object ",names[n]) obj_grid[i,j] == 1 ''' obj_grids[names[n]] = obj_grid #flr_grid = flr_grid + obj_grid print("Disabling the object") event = env.step(dict({"action":"DisableObject", "objectId": names[n]})) for n in names: print("Now enabling ",n, " back ") event = env.step(dict({"action":"EnableObject", "objectId": n})) event = env.step(dict(action = 'GetReachablePositions')) reach_pos = event.metadata['actionReturn'] #stores all reachable positions for the current scene reach_x = [i['x'] for i in reach_pos] reach_z = [i['z'] for i in reach_pos] coords = [[i['x'],i['z']] for i in reach_pos] flr_grid = np.zeros((c_x,c_z)) for i in range(flr_grid.shape[0]): for j in range(flr_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords: flr_grid[i,j] = 1 obj_grids['nav_space'] = flr_grid #x = event.metadata['agent']['position']['x'] #y = event.metadata['agent']['position']['y'] #z = event.metadata['agent']['position']['z'] #obj_grids['agent_pos'] = {'x':x,'y':y,'z':z} obj_grids['min_pos'] = {'mx':m_x,'mz':m_z} return obj_grids def prettyprint(mat,argmax = False, locator = [-1,-1,-1]): for j in range(mat.shape[1]): d = repr(j) if j<10: d = '0'+d print(d,end = '') print(" ",end = '') print(" ") print(" ") for i in range(mat.shape[0]): for j in range(mat.shape[1]): d = 0 if argmax: d = np.argmax(mat[i,j,:]) #d = np.max(mat[i,j,:]) else: d = repr(int(mat[i,j])) if locator[0]==i and locator[1]==j: if locator[2]==0: d = '>' #"\u2192" #right arrow if locator[2]==270: d = '^' #"\u2191" #up arrow if locator[2]==90: d = 'v' #"\u2193" #down arrow
print(" ",end = '') print(" --",repr(i)) #print(" ") def surrounding_patch(agentloc, labeled_grid, R = 16, unreach_value = -1): #returns a visibility patch centered around the agent with radius R #unreach_value = -1 mat = labeled_grid position = agentloc r=copy.copy(R) init_shape = copy.copy(mat.shape) p = copy.copy(position) while position[0]-r<0: #append black columns to the left of agent position #print("Increasing columns to left ") mat = np.insert(mat,0, unreach_value,axis=1) r-=1 p[0]+=1 r=copy.copy(R) while position[0]+r>init_shape[1]-1: #append blank columns to the right of the agent position #print("Increasing columns to right") mat = np.insert(mat,mat.shape[1], unreach_value,axis=1) r-=1 r=copy.copy(R) while position[1]-r<0: #print("Increasing rows above") mat = np.insert(mat,0, unreach_value,axis=0) #append blank rows to the top of the agent position r-=1 p[1]+=1 r=copy.copy(R) while position[1]+r>init_shape[0]-1: #print("Increasing rows below") mat = np.insert(mat,mat.shape[0], unreach_value,axis=0) #append blank columns to the bottom of the agent position r-=1 #print("mat shape ",mat.shape) #outputs (33x33) return mat[p[1]-R:p[1]+R+1, p[0]-R:p[0]+R+1] def target_navigation_map(o_grids, obj, agentloc, grid_size = 32, unk_id = 0,flr_id = 1, tar_id = 2, obs_id = 3, verbose = False): m = o_grids['nav_space'] m = np.where(m==0,m,flr_id) #just to reinforce that the navigable spaces have the specified flr_id #========================== #if only asking about navigable space and not interested to navigate to a specific target object if obj=="nav_space": #print("Got nav_space in gtmaps line 200") ''' for n in o_grids.keys(): if n!="nav_space": m = np.where(o_grids[n]==0,m,obs_id) ''' m = np.where(m!=0,m,obs_id) agentloc = [int((agentloc['z']-o_grids['min_pos']['mz'])/0.25), int((agentloc['x']-o_grids['min_pos']['mx'])/0.25)] if verbose: print("Got grid agent location from agentloc ",agentloc) m = surrounding_patch(agentloc, m, R=int(grid_size/2), unreach_value = unk_id) return m #two different modes of searching (if exact id is passed it is sometimes helpful if multiple objects of same type- ex- multiple chairs) if '|' not in obj: searchkey = obj+'|' else: searchkey = obj #========================== #if only asking about navigating to a specific target object for n in o_grids.keys(): if searchkey in n: if verbose: print("Got exact objectid ",n) t = tar_id*o_grids[n] m = np.where(t==0,m,tar_id) ''' else: o = obs_id*o_grids[n] m = np.where(o==0,m,obs_id) ''' #identify obstacle locations m = np.where(m!=0,m,obs_id) #center the map according to agent location - agentloc #3d position supplied by simulator need to be swapped in grid order - z gets first position and x gets 2nd position agentloc = [int((agentloc['z']-o_grids['min_pos']['mz'])/0.25), int((agentloc['x']-o_grids['min_pos']['mx'])/0.25)] if verbose: print("Got grid agent location from agentloc ",agentloc)
if locator[2]==180: d = '<' #"\u2190" #left arrow print(d,end = '')
random_line_split
gtmaps.py
append black columns to the left of agent position #print("Increasing columns to left ") mat = np.insert(mat,0, unreach_value,axis=1) r-=1 p[0]+=1 r=copy.copy(R) while position[0]+r>init_shape[1]-1: #append blank columns to the right of the agent position #print("Increasing columns to right") mat = np.insert(mat,mat.shape[1], unreach_value,axis=1) r-=1 r=copy.copy(R) while position[1]-r<0: #print("Increasing rows above") mat = np.insert(mat,0, unreach_value,axis=0) #append blank rows to the top of the agent position r-=1 p[1]+=1 r=copy.copy(R) while position[1]+r>init_shape[0]-1: #print("Increasing rows below") mat = np.insert(mat,mat.shape[0], unreach_value,axis=0) #append blank columns to the bottom of the agent position r-=1 #print("mat shape ",mat.shape) #outputs (33x33) return mat[p[1]-R:p[1]+R+1, p[0]-R:p[0]+R+1] def target_navigation_map(o_grids, obj, agentloc, grid_size = 32, unk_id = 0,flr_id = 1, tar_id = 2, obs_id = 3, verbose = False): m = o_grids['nav_space'] m = np.where(m==0,m,flr_id) #just to reinforce that the navigable spaces have the specified flr_id #========================== #if only asking about navigable space and not interested to navigate to a specific target object if obj=="nav_space": #print("Got nav_space in gtmaps line 200") ''' for n in o_grids.keys(): if n!="nav_space": m = np.where(o_grids[n]==0,m,obs_id) ''' m = np.where(m!=0,m,obs_id) agentloc = [int((agentloc['z']-o_grids['min_pos']['mz'])/0.25), int((agentloc['x']-o_grids['min_pos']['mx'])/0.25)] if verbose: print("Got grid agent location from agentloc ",agentloc) m = surrounding_patch(agentloc, m, R=int(grid_size/2), unreach_value = unk_id) return m #two different modes of searching (if exact id is passed it is sometimes helpful if multiple objects of same type- ex- multiple chairs) if '|' not in obj: searchkey = obj+'|' else: searchkey = obj #========================== #if only asking about navigating to a specific target object for n in o_grids.keys(): if searchkey in n: if verbose: print("Got exact objectid ",n) t = tar_id*o_grids[n] m = np.where(t==0,m,tar_id) ''' else: o = obs_id*o_grids[n] m = np.where(o==0,m,obs_id) ''' #identify obstacle locations m = np.where(m!=0,m,obs_id) #center the map according to agent location - agentloc #3d position supplied by simulator need to be swapped in grid order - z gets first position and x gets 2nd position agentloc = [int((agentloc['z']-o_grids['min_pos']['mz'])/0.25), int((agentloc['x']-o_grids['min_pos']['mx'])/0.25)] if verbose: print("Got grid agent location from agentloc ",agentloc) m = surrounding_patch(agentloc, m, R=int(grid_size/2), unreach_value = unk_id) return m def manual_label(room): #function for manually correcting wrong maps (computed automatically) #fname = '/home/hom/Desktop/ai2thor/mapping/gcdata/'+repr(room)+'.npy' fname = '/ai2thor/mapper/data/targets/'+repr(room)+'.npy' o_grids = np.load(fname,allow_pickle = 'TRUE').item() print("The fixed obstructions map") prettyprint(o_grids['fixed_obstructions']) #grid with 0s and 1s showing navigable spaces with all objects in the room removed def exists(o_grids,obj): for n in o_grids.keys(): if obj+'|' in n: return True return False obj = "" while True: obj = input("Enter the name of the object you want to insert ") if obj=='space': p = input("Space on top(t),bottom(b),left(l) or right (r) ?") num = input("Number of tiles (eg-1,2,3) ? ") unreach_value = 0 m_x,m_z = o_grids['min_pos']['mx'], o_grids['min_pos']['mz'] for n in o_grids.keys(): mat = o_grids[n] try: isarray = mat.shape except: #the final element in the dictionary is not a numpy array its stores the min and max grid position in the map #so skip this continue for _ in range(int(num)): if p=='t': mat = np.insert(mat,0, unreach_value,axis=0) #append blank rows to the top of the agent position if p=='b': mat = np.insert(mat,mat.shape[0], unreach_value,axis=0) #append blank columns to the bottom of the agent position if p=='l': mat = np.insert(mat,0, unreach_value,axis=1) #append blank columns to left of agent position if p=='r': mat = np.insert(mat,mat.shape[1], unreach_value,axis=1) #append blank columns to the right of the agent position o_grids[n] = mat if p=='t': o_grids['min_pos'] = {'mx':m_x-int(num)*0.25,'mz':m_z} if p=='l': o_grids['min_pos'] = {'mx':m_x,'mz':m_z-int(num)*0.25} if p=='b': o_grids['min_pos'] = {'mx':m_x,'mz':m_z} if p=='r': o_grids['min_pos'] = {'mx':m_x,'mz':m_z} save = input("Save data ? (y/n)") if save=='y': np.save(fname,o_grids) #overwrites the existing one continue if obj=='bye': break if obj!='space' or obj!='bye': if exists(o_grids,obj): overwrite = input("This name is already taken want to overwrite ? (y/n) ") mat = np.zeros_like(o_grids['fixed_obstructions']) for n in o_grids.keys(): if obj+'|' in n: print("Found ",n) mat+=o_grids[n] prettyprint(mat) if overwrite=='n': continue if overwrite=='y': obj = input("In that case enter the exact objectid by searching from above ") else: o_grids[obj+'|'] = np.zeros_like(o_grids['fixed_obstructions']) print("You can enter the corners like this ...") print("<top left corner column number, top left corner row number _ bottom right corner column number, bottom right corner row number>") corners = input("Enter the corners (eg- 0,0_7,8) ") c1,c2 = corners.split('_') [c1x,c1y], [c2x,c2y] = c1.split(','), c2.split(',') print("Got coordinates ",c1x,c1y,c2x,c2y) try: if '|' in obj: o_grids[obj][int(c1y):int(c2y)+1,int(c1x):int(c2x)+1] = 1.0 else: o_grids[obj+'|'][int(c1y):int(c2y)+1,int(c1x):int(c2x)+1] = 1.0 except: print("Error occured with accessing key") if '|' in obj: o_grids[obj] = np.zeros_like(o_grids['fixed_obstructions']) o_grids[obj][int(c1y):int(c2y)+1,int(c1x):int(c2x)+1] = 1.0 else: o_grids[obj+'|'] = np.zeros_like(o_grids['fixed_obstructions']) o_grids[obj+'|'][int(c1y):int(c2y)+1,int(c1x):int(c2x)+1] = 1.0 print("Modified ",obj) if '|' in obj:
prettyprint(o_grids[obj])
conditional_block
gtmaps.py
(env,event): #sometimes in a room there are fixed objects which cannot be removed from scene using disable command #so need to go near them to check distance and then map them return def gtmap(env,event): objs = event.metadata['objects'] print("There are a total of ",len(objs)," objects in the scene") names = [o['objectId'] for o in objs] centers = [o['position'] for o in objs] print("Now disabling every object in the scene ") for n in names: event = env.step(dict({"action":"DisableObject", "objectId": n})) #getting reachable positions for the empty room event = env.step(dict(action = 'GetReachablePositions')) reach_pos = event.metadata['actionReturn'] #stores all reachable positions for the current scene #print("got reachable positions ",reach_pos) reach_x = [i['x'] for i in reach_pos] reach_z = [i['z'] for i in reach_pos] coords = [[i['x'],i['z']] for i in reach_pos] #getting navigable spaces in the empty room (only walls should be blocking now) c_x = int(math.fabs((max(reach_x)-min(reach_x))/0.25))+1 #0.25 is the grid movement size c_z = int(math.fabs((max(reach_z)-min(reach_z))/0.25))+1 print("c_x ",c_x," c_z ",c_z) m_x = min(reach_x) m_z = min(reach_z) nav_grid = np.zeros((c_x,c_z)) for i in range(nav_grid.shape[0]): for j in range(nav_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords: nav_grid[i,j] = 1 else: nav_grid[i,j] = 0 #print("nav_grid after disabling every object ") #print(nav_grid) #sys.exit(0) #print("Got nav_grid on empty room ",nav_grid) obj_grids = {} obj_grids['fixed_obstructions'] = nav_grid #flr_grid = np.zeros_like(nav_grid) for n in range(len(names)): obj_grid = copy.copy(nav_grid) #now enable just the object you want to map print("Now enabling ",names[n], " back ") event = env.step(dict({"action":"EnableObject", "objectId": names[n]})) #getting reachable positions again event = env.step(dict(action = 'GetReachablePositions')) reach_pos = event.metadata['actionReturn'] #stores all reachable positions for the current scene reach_x = [i['x'] for i in reach_pos] reach_z = [i['z'] for i in reach_pos] coords = [[i['x'],i['z']] for i in reach_pos] obj_center = [centers[n]['x'], centers[n]['z'] ] for i in range(obj_grid.shape[0]): for j in range(obj_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords and obj_grid[i,j] == 1: obj_grid[i,j] = 0 ''' if int(m_x + i*0.25) == int(obj_center[0]) and int(m_z + j*0.25) == int(obj_center[1]): print("object center matched for object ",names[n]) obj_grid[i,j] == 1 ''' obj_grids[names[n]] = obj_grid #flr_grid = flr_grid + obj_grid print("Disabling the object") event = env.step(dict({"action":"DisableObject", "objectId": names[n]})) for n in names: print("Now enabling ",n, " back ") event = env.step(dict({"action":"EnableObject", "objectId": n})) event = env.step(dict(action = 'GetReachablePositions')) reach_pos = event.metadata['actionReturn'] #stores all reachable positions for the current scene reach_x = [i['x'] for i in reach_pos] reach_z = [i['z'] for i in reach_pos] coords = [[i['x'],i['z']] for i in reach_pos] flr_grid = np.zeros((c_x,c_z)) for i in range(flr_grid.shape[0]): for j in range(flr_grid.shape[1]): if [m_x + i*0.25, m_z + j*0.25] in coords: flr_grid[i,j] = 1 obj_grids['nav_space'] = flr_grid #x = event.metadata['agent']['position']['x'] #y = event.metadata['agent']['position']['y'] #z = event.metadata['agent']['position']['z'] #obj_grids['agent_pos'] = {'x':x,'y':y,'z':z} obj_grids['min_pos'] = {'mx':m_x,'mz':m_z} return obj_grids def prettyprint(mat,argmax = False, locator = [-1,-1,-1]): for j in range(mat.shape[1]): d = repr(j) if j<10: d = '0'+d print(d,end = '') print(" ",end = '') print(" ") print(" ") for i in range(mat.shape[0]): for j in range(mat.shape[1]): d = 0 if argmax: d = np.argmax(mat[i,j,:]) #d = np.max(mat[i,j,:]) else: d = repr(int(mat[i,j])) if locator[0]==i and locator[1]==j: if locator[2]==0: d = '>' #"\u2192" #right arrow if locator[2]==270: d = '^' #"\u2191" #up arrow if locator[2]==90: d = 'v' #"\u2193" #down arrow if locator[2]==180: d = '<' #"\u2190" #left arrow print(d,end = '') print(" ",end = '') print(" --",repr(i)) #print(" ") def surrounding_patch(agentloc, labeled_grid, R = 16, unreach_value = -1): #returns a visibility patch centered around the agent with radius R #unreach_value = -1 mat = labeled_grid position = agentloc r=copy.copy(R) init_shape = copy.copy(mat.shape) p = copy.copy(position) while position[0]-r<0: #append black columns to the left of agent position #print("Increasing columns to left ") mat = np.insert(mat,0, unreach_value,axis=1) r-=1 p[0]+=1 r=copy.copy(R) while position[0]+r>init_shape[1]-1: #append blank columns to the right of the agent position #print("Increasing columns to right") mat = np.insert(mat,mat.shape[1], unreach_value,axis=1) r-=1 r=copy.copy(R) while position[1]-r<0: #print("Increasing rows above") mat = np.insert(mat,0, unreach_value,axis=0) #append blank rows to the top of the agent position r-=1 p[1]+=1 r=copy.copy(R) while position[1]+r>init_shape[0]-1: #print("Increasing rows below") mat = np.insert(mat,mat.shape[0], unreach_value,axis=0) #append blank columns to the bottom of the agent position r-=1 #print("mat shape ",mat.shape) #outputs (33x33) return mat[p[1]-R:p[1]+R+1, p[0]-R:p[0]+R+1] def target_navigation_map(o_grids, obj, agentloc, grid_size = 32, unk_id = 0,flr_id = 1, tar_id = 2, obs_id = 3, verbose = False): m = o_grids['nav_space'] m = np.where(m==0,m,flr_id) #just to reinforce that the navigable spaces have the specified flr_id #========================== #if only asking about navigable space and not interested to navigate to a specific target object if obj=="nav_space": #print("Got nav_space in gtmaps line 200") ''' for n in o_grids.keys(): if n!="nav_space": m = np.where(o_grids[n]==0,m,obs_id) ''' m = np.where(m!=0,m,obs_id) agentloc = [int((agentloc['z']-o_grids['min_pos']['mz'])/0.25), int((agentloc['x']-o_grids
touchmap
identifier_name
corpus_wikipedia.py
', #'/home/arne/devel/ML/data/corpora/WIKIPEDIA/wikipedia-23886057.csv',#'/home/arne/devel/ML/data/corpora/WIKIPEDIA/documents_utf8_filtered_20pageviews.csv', # '/home/arne/devel/ML/data/corpora/SICK/sick_train/SICK_train.txt', 'The path to the SICK train data file.') #tf.flags.DEFINE_string( # 'corpus_data_input_test', '/home/arne/devel/ML/data/corpora/SICK/sick_test_annotated/SICK_test_annotated.txt', # 'The path to the SICK test data file.') tf.flags.DEFINE_string( 'corpus_data_output_dir', '/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia',#'data/corpora/wikipedia', 'The path to the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'corpus_data_output_fn', 'WIKIPEDIA', 'Base filename of the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'init_dict_filename', None, #'/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia/process_sentence7/WIKIPEDIA_articles1000_maxdepth10',#None, #'data/nlp/spacy/dict', 'The path to embedding and mapping files (without extension) to reuse them for the new corpus.') tf.flags.DEFINE_integer( 'max_articles', 10000, 'How many articles to read.') tf.flags.DEFINE_integer( 'article_batch_size', 250, 'How many articles to process in one batch.') tf.flags.DEFINE_integer( 'max_depth', 10, 'The maximal depth of the sequence trees.') tf.flags.DEFINE_integer( 'count_threshold', 2, 'Change data types which occur less then count_threshold times to UNKNOWN') #tf.flags.DEFINE_integer( # 'sample_count', 14, # 'Amount of samples per tree. This excludes the correct tree.') tf.flags.DEFINE_string( 'sentence_processor', 'process_sentence7', #'process_sentence8',#'process_sentence3', 'Defines which NLP features are taken into the embedding trees.') tf.flags.DEFINE_string( 'tree_mode', None, #'aggregate', #'sequence', 'How to structure the tree. ' + '"sequence" -> parents point to next token, ' + '"aggregate" -> parents point to an added, artificial token (TERMINATOR) in the end of the token sequence,' + 'None -> use parsed dependency tree') FLAGS = tf.flags.FLAGS def articles_from_csv_reader(filename, max_articles=100, skip=0): csv.field_size_limit(maxsize) print('parse', max_articles, 'articles...') with open(filename, 'rb') as csvfile: reader = csv.DictReader(csvfile, fieldnames=['article-id', 'content']) i = 0 for row in reader: if skip > 0: skip -= 1 continue if i >= max_articles: break if (i * 10) % max_articles == 0: # sys.stdout.write("progress: %d%% \r" % (i * 100 / max_rows)) # sys.stdout.flush() print('read article:', row['article-id'], '... ', i * 100 / max_articles, '%') i += 1 content = row['content'].decode('utf-8') # cut the title (is separated by two spaces from main content) yield content.split(' ', 1)[1] @tools.fn_timer def convert_wikipedia(in_filename, out_filename, init_dict_filename, sentence_processor, parser, #mapping, vecs, max_articles=10000, max_depth=10, batch_size=100, tree_mode=None): parent_dir = os.path.abspath(os.path.join(out_filename, os.pardir)) out_base_name = ntpath.basename(out_filename) if not os.path.isfile(out_filename+'.data') \ or not os.path.isfile(out_filename + '.parent')\ or not os.path.isfile(out_filename + '.mapping')\ or not os.path.isfile(out_filename + '.vecs') \ or not os.path.isfile(out_filename + '.depth') \ or not os.path.isfile(out_filename + '.count'): if parser is None: print('load spacy ...') parser = spacy.load('en') parser.pipeline = [parser.tagger, parser.entity, parser.parser] if init_dict_filename is not None: print('initialize vecs and mapping from files ...') vecs, mapping = corpus.create_or_read_dict(init_dict_filename, parser.vocab) print('dump embeddings to: ' + out_filename + '.vecs ...') vecs.dump(out_filename + '.vecs') else: vecs, mapping = corpus.create_or_read_dict(out_filename, parser.vocab) # parse seq_data, seq_parents, seq_depths, mapping = parse_articles(out_filename, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode) # sort and filter vecs/mappings by counts seq_data, mapping, vecs, counts = preprocessing.sort_embeddings(seq_data, mapping, vecs, count_threshold=FLAGS.count_threshold) # write out vecs, mapping and tsv containing strings corpus.write_dict(out_path, mapping, vecs, parser.vocab, constants.vocab_manual) print('dump data to: ' + out_path + '.data ...') seq_data.dump(out_path + '.data') print('dump counts to: ' + out_path + '.count ...') counts.dump(out_path + '.count') else: print('load depths from file: ' + out_filename + '.depth ...') seq_depths = np.load(out_filename+'.depth') preprocessing.calc_depths_collected(out_filename, parent_dir, max_depth, seq_depths) preprocessing.rearrange_children_indices(out_filename, parent_dir, max_depth, max_articles, batch_size) #preprocessing.concat_children_indices(out_filename, parent_dir, max_depth) print('load and concatenate child indices batches ...') for current_depth in range(1, max_depth + 1): if not os.path.isfile(out_filename + '.children.depth' + str(current_depth)): preprocessing.merge_numpy_batch_files(out_base_name + '.children.depth' + str(current_depth), parent_dir) return parser def parse_articles(out_path, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode):
tree_mode=tree_mode, child_idx_offset=child_idx_offset) print('dump data, parents, depths and child indices for offset=' + str(offset) + ' ...') current_seq_data.dump(out_path + '.data.batch' + str(offset)) current_seq_parents.dump(out_path + '.parent.batch' + str(offset)) current_seq_depths.dump(out_path + '.depth.batch' + str(offset)) current_idx_tuples.dump(out_path + '.children.batch' + str(offset)) child_idx_offset += len(current_seq_data) #if careful: # print('dump mappings to: ' + out_path + '.mapping ...') # with open(out_path + '.mapping', "wb") as f: # pickle.dump(mapping, f) #else: # current_seq_data = np.load(out_path + '.data.batch' + str(offset)) # child_idx_offset += len(current_seq_data) seq_data = preprocessing.merge_numpy_batch_files(out_fn+'.data', parent_dir) seq_parents = preprocessing.merge_numpy_batch_files(out_fn + '.parent', parent_dir) seq_depths = preprocessing.merge_numpy_batch_files(out_fn + '.depth', parent_dir) print('parsed data size: '+str(len(seq_data))) return seq_data, seq_parents, seq_depths, mapping if __name__ == '__main__': sentence_processor = getattr(preprocessing, FLAGS.sentence_processor) out_dir = os.path.abspath(os.path.join(FLAGS.corpus_data_output_dir, sentence_processor.func_name)) if not os.path.isdir(out_dir): os.makedirs(out_dir) out_path = os.path.join(out_dir, FLAGS.corpus_data_output_fn) if FLAGS.tree_mode is not None: out_path =
out_fn = ntpath.basename(out_path) print('parse articles ...') child_idx_offset = 0 for offset in range(0, max_articles, batch_size): # all or none: otherwise the mapping lacks entries! #if not careful or not os.path.isfile(out_path + '.data.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.parent.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.depth.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.children.batch' + str(offset)): current_seq_data, current_seq_parents, current_idx_tuples, current_seq_depths = preprocessing.read_data_2( articles_from_csv_reader, sentence_processor, parser, mapping, args={ 'filename': in_filename, 'max_articles': min(batch_size, max_articles), 'skip': offset }, max_depth=max_depth, batch_size=batch_size,
identifier_body
corpus_wikipedia.py
', #'/home/arne/devel/ML/data/corpora/WIKIPEDIA/wikipedia-23886057.csv',#'/home/arne/devel/ML/data/corpora/WIKIPEDIA/documents_utf8_filtered_20pageviews.csv', # '/home/arne/devel/ML/data/corpora/SICK/sick_train/SICK_train.txt', 'The path to the SICK train data file.') #tf.flags.DEFINE_string( # 'corpus_data_input_test', '/home/arne/devel/ML/data/corpora/SICK/sick_test_annotated/SICK_test_annotated.txt', # 'The path to the SICK test data file.') tf.flags.DEFINE_string( 'corpus_data_output_dir', '/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia',#'data/corpora/wikipedia', 'The path to the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'corpus_data_output_fn', 'WIKIPEDIA', 'Base filename of the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'init_dict_filename', None, #'/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia/process_sentence7/WIKIPEDIA_articles1000_maxdepth10',#None, #'data/nlp/spacy/dict', 'The path to embedding and mapping files (without extension) to reuse them for the new corpus.') tf.flags.DEFINE_integer( 'max_articles', 10000, 'How many articles to read.') tf.flags.DEFINE_integer( 'article_batch_size', 250, 'How many articles to process in one batch.') tf.flags.DEFINE_integer( 'max_depth', 10, 'The maximal depth of the sequence trees.') tf.flags.DEFINE_integer( 'count_threshold', 2, 'Change data types which occur less then count_threshold times to UNKNOWN') #tf.flags.DEFINE_integer( # 'sample_count', 14, # 'Amount of samples per tree. This excludes the correct tree.') tf.flags.DEFINE_string( 'sentence_processor', 'process_sentence7', #'process_sentence8',#'process_sentence3', 'Defines which NLP features are taken into the embedding trees.') tf.flags.DEFINE_string( 'tree_mode', None, #'aggregate', #'sequence', 'How to structure the tree. ' + '"sequence" -> parents point to next token, ' + '"aggregate" -> parents point to an added, artificial token (TERMINATOR) in the end of the token sequence,' + 'None -> use parsed dependency tree') FLAGS = tf.flags.FLAGS def articles_from_csv_reader(filename, max_articles=100, skip=0): csv.field_size_limit(maxsize) print('parse', max_articles, 'articles...') with open(filename, 'rb') as csvfile: reader = csv.DictReader(csvfile, fieldnames=['article-id', 'content']) i = 0 for row in reader: if skip > 0: skip -= 1 continue if i >= max_articles: break if (i * 10) % max_articles == 0: # sys.stdout.write("progress: %d%% \r" % (i * 100 / max_rows)) # sys.stdout.flush() print('read article:', row['article-id'], '... ', i * 100 / max_articles, '%') i += 1 content = row['content'].decode('utf-8') # cut the title (is separated by two spaces from main content) yield content.split(' ', 1)[1] @tools.fn_timer def convert_wikipedia(in_filename, out_filename, init_dict_filename, sentence_processor, parser, #mapping, vecs, max_articles=10000, max_depth=10, batch_size=100, tree_mode=None): parent_dir = os.path.abspath(os.path.join(out_filename, os.pardir)) out_base_name = ntpath.basename(out_filename) if not os.path.isfile(out_filename+'.data') \ or not os.path.isfile(out_filename + '.parent')\ or not os.path.isfile(out_filename + '.mapping')\ or not os.path.isfile(out_filename + '.vecs') \ or not os.path.isfile(out_filename + '.depth') \ or not os.path.isfile(out_filename + '.count'): if parser is None: print('load spacy ...') parser = spacy.load('en') parser.pipeline = [parser.tagger, parser.entity, parser.parser] if init_dict_filename is not None: print('initialize vecs and mapping from files ...') vecs, mapping = corpus.create_or_read_dict(init_dict_filename, parser.vocab) print('dump embeddings to: ' + out_filename + '.vecs ...') vecs.dump(out_filename + '.vecs') else: vecs, mapping = corpus.create_or_read_dict(out_filename, parser.vocab) # parse seq_data, seq_parents, seq_depths, mapping = parse_articles(out_filename, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode) # sort and filter vecs/mappings by counts seq_data, mapping, vecs, counts = preprocessing.sort_embeddings(seq_data, mapping, vecs, count_threshold=FLAGS.count_threshold) # write out vecs, mapping and tsv containing strings corpus.write_dict(out_path, mapping, vecs, parser.vocab, constants.vocab_manual) print('dump data to: ' + out_path + '.data ...') seq_data.dump(out_path + '.data') print('dump counts to: ' + out_path + '.count ...') counts.dump(out_path + '.count') else: print('load depths from file: ' + out_filename + '.depth ...') seq_depths = np.load(out_filename+'.depth') preprocessing.calc_depths_collected(out_filename, parent_dir, max_depth, seq_depths) preprocessing.rearrange_children_indices(out_filename, parent_dir, max_depth, max_articles, batch_size) #preprocessing.concat_children_indices(out_filename, parent_dir, max_depth) print('load and concatenate child indices batches ...') for current_depth in range(1, max_depth + 1):
return parser def parse_articles(out_path, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode): out_fn = ntpath.basename(out_path) print('parse articles ...') child_idx_offset = 0 for offset in range(0, max_articles, batch_size): # all or none: otherwise the mapping lacks entries! #if not careful or not os.path.isfile(out_path + '.data.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.parent.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.depth.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.children.batch' + str(offset)): current_seq_data, current_seq_parents, current_idx_tuples, current_seq_depths = preprocessing.read_data_2( articles_from_csv_reader, sentence_processor, parser, mapping, args={ 'filename': in_filename, 'max_articles': min(batch_size, max_articles), 'skip': offset }, max_depth=max_depth, batch_size=batch_size, tree_mode=tree_mode, child_idx_offset=child_idx_offset) print('dump data, parents, depths and child indices for offset=' + str(offset) + ' ...') current_seq_data.dump(out_path + '.data.batch' + str(offset)) current_seq_parents.dump(out_path + '.parent.batch' + str(offset)) current_seq_depths.dump(out_path + '.depth.batch' + str(offset)) current_idx_tuples.dump(out_path + '.children.batch' + str(offset)) child_idx_offset += len(current_seq_data) #if careful: # print('dump mappings to: ' + out_path + '.mapping ...') # with open(out_path + '.mapping', "wb") as f: # pickle.dump(mapping, f) #else: # current_seq_data = np.load(out_path + '.data.batch' + str(offset)) # child_idx_offset += len(current_seq_data) seq_data = preprocessing.merge_numpy_batch_files(out_fn+'.data', parent_dir) seq_parents = preprocessing.merge_numpy_batch_files(out_fn + '.parent', parent_dir) seq_depths = preprocessing.merge_numpy_batch_files(out_fn + '.depth', parent_dir) print('parsed data size: '+str(len(seq_data))) return seq_data, seq_parents, seq_depths, mapping if __name__ == '__main__': sentence_processor = getattr(preprocessing, FLAGS.sentence_processor) out_dir = os.path.abspath(os.path.join(FLAGS.corpus_data_output_dir, sentence_processor.func_name)) if not os.path.isdir(out_dir): os.makedirs(out_dir) out_path = os.path.join(out_dir, FLAGS.corpus_data_output_fn) if FLAGS.tree_mode is not None: out_path
if not os.path.isfile(out_filename + '.children.depth' + str(current_depth)): preprocessing.merge_numpy_batch_files(out_base_name + '.children.depth' + str(current_depth), parent_dir)
conditional_block
corpus_wikipedia.py
', #'/home/arne/devel/ML/data/corpora/WIKIPEDIA/wikipedia-23886057.csv',#'/home/arne/devel/ML/data/corpora/WIKIPEDIA/documents_utf8_filtered_20pageviews.csv', # '/home/arne/devel/ML/data/corpora/SICK/sick_train/SICK_train.txt', 'The path to the SICK train data file.') #tf.flags.DEFINE_string( # 'corpus_data_input_test', '/home/arne/devel/ML/data/corpora/SICK/sick_test_annotated/SICK_test_annotated.txt', # 'The path to the SICK test data file.') tf.flags.DEFINE_string( 'corpus_data_output_dir', '/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia',#'data/corpora/wikipedia', 'The path to the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'corpus_data_output_fn', 'WIKIPEDIA', 'Base filename of the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'init_dict_filename', None, #'/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia/process_sentence7/WIKIPEDIA_articles1000_maxdepth10',#None, #'data/nlp/spacy/dict', 'The path to embedding and mapping files (without extension) to reuse them for the new corpus.') tf.flags.DEFINE_integer( 'max_articles', 10000, 'How many articles to read.') tf.flags.DEFINE_integer( 'article_batch_size', 250, 'How many articles to process in one batch.') tf.flags.DEFINE_integer( 'max_depth', 10, 'The maximal depth of the sequence trees.') tf.flags.DEFINE_integer( 'count_threshold', 2, 'Change data types which occur less then count_threshold times to UNKNOWN') #tf.flags.DEFINE_integer( # 'sample_count', 14, # 'Amount of samples per tree. This excludes the correct tree.') tf.flags.DEFINE_string( 'sentence_processor', 'process_sentence7', #'process_sentence8',#'process_sentence3', 'Defines which NLP features are taken into the embedding trees.') tf.flags.DEFINE_string( 'tree_mode', None, #'aggregate', #'sequence', 'How to structure the tree. ' + '"sequence" -> parents point to next token, ' + '"aggregate" -> parents point to an added, artificial token (TERMINATOR) in the end of the token sequence,' + 'None -> use parsed dependency tree') FLAGS = tf.flags.FLAGS def articles_from_csv_reader(filename, max_articles=100, skip=0): csv.field_size_limit(maxsize) print('parse', max_articles, 'articles...') with open(filename, 'rb') as csvfile: reader = csv.DictReader(csvfile, fieldnames=['article-id', 'content']) i = 0 for row in reader: if skip > 0: skip -= 1 continue if i >= max_articles: break if (i * 10) % max_articles == 0: # sys.stdout.write("progress: %d%% \r" % (i * 100 / max_rows)) # sys.stdout.flush() print('read article:', row['article-id'], '... ', i * 100 / max_articles, '%') i += 1 content = row['content'].decode('utf-8') # cut the title (is separated by two spaces from main content) yield content.split(' ', 1)[1] @tools.fn_timer def convert_wikipedia(in_filename, out_filename, init_dict_filename, sentence_processor, parser, #mapping, vecs, max_articles=10000, max_depth=10, batch_size=100, tree_mode=None): parent_dir = os.path.abspath(os.path.join(out_filename, os.pardir)) out_base_name = ntpath.basename(out_filename) if not os.path.isfile(out_filename+'.data') \ or not os.path.isfile(out_filename + '.parent')\ or not os.path.isfile(out_filename + '.mapping')\ or not os.path.isfile(out_filename + '.vecs') \ or not os.path.isfile(out_filename + '.depth') \ or not os.path.isfile(out_filename + '.count'): if parser is None: print('load spacy ...') parser = spacy.load('en') parser.pipeline = [parser.tagger, parser.entity, parser.parser] if init_dict_filename is not None: print('initialize vecs and mapping from files ...') vecs, mapping = corpus.create_or_read_dict(init_dict_filename, parser.vocab) print('dump embeddings to: ' + out_filename + '.vecs ...') vecs.dump(out_filename + '.vecs') else: vecs, mapping = corpus.create_or_read_dict(out_filename, parser.vocab) # parse seq_data, seq_parents, seq_depths, mapping = parse_articles(out_filename, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode) # sort and filter vecs/mappings by counts seq_data, mapping, vecs, counts = preprocessing.sort_embeddings(seq_data, mapping, vecs, count_threshold=FLAGS.count_threshold) # write out vecs, mapping and tsv containing strings corpus.write_dict(out_path, mapping, vecs, parser.vocab, constants.vocab_manual) print('dump data to: ' + out_path + '.data ...') seq_data.dump(out_path + '.data') print('dump counts to: ' + out_path + '.count ...') counts.dump(out_path + '.count') else: print('load depths from file: ' + out_filename + '.depth ...') seq_depths = np.load(out_filename+'.depth') preprocessing.calc_depths_collected(out_filename, parent_dir, max_depth, seq_depths) preprocessing.rearrange_children_indices(out_filename, parent_dir, max_depth, max_articles, batch_size) #preprocessing.concat_children_indices(out_filename, parent_dir, max_depth) print('load and concatenate child indices batches ...') for current_depth in range(1, max_depth + 1): if not os.path.isfile(out_filename + '.children.depth' + str(current_depth)): preprocessing.merge_numpy_batch_files(out_base_name + '.children.depth' + str(current_depth), parent_dir) return parser def parse_articles(out_path, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode): out_fn = ntpath.basename(out_path) print('parse articles ...') child_idx_offset = 0 for offset in range(0, max_articles, batch_size): # all or none: otherwise the mapping lacks entries!
articles_from_csv_reader, sentence_processor, parser, mapping, args={ 'filename': in_filename, 'max_articles': min(batch_size, max_articles), 'skip': offset }, max_depth=max_depth, batch_size=batch_size, tree_mode=tree_mode, child_idx_offset=child_idx_offset) print('dump data, parents, depths and child indices for offset=' + str(offset) + ' ...') current_seq_data.dump(out_path + '.data.batch' + str(offset)) current_seq_parents.dump(out_path + '.parent.batch' + str(offset)) current_seq_depths.dump(out_path + '.depth.batch' + str(offset)) current_idx_tuples.dump(out_path + '.children.batch' + str(offset)) child_idx_offset += len(current_seq_data) #if careful: # print('dump mappings to: ' + out_path + '.mapping ...') # with open(out_path + '.mapping', "wb") as f: # pickle.dump(mapping, f) #else: # current_seq_data = np.load(out_path + '.data.batch' + str(offset)) # child_idx_offset += len(current_seq_data) seq_data = preprocessing.merge_numpy_batch_files(out_fn+'.data', parent_dir) seq_parents = preprocessing.merge_numpy_batch_files(out_fn + '.parent', parent_dir) seq_depths = preprocessing.merge_numpy_batch_files(out_fn + '.depth', parent_dir) print('parsed data size: '+str(len(seq_data))) return seq_data, seq_parents, seq_depths, mapping if __name__ == '__main__': sentence_processor = getattr(preprocessing, FLAGS.sentence_processor) out_dir = os.path.abspath(os.path.join(FLAGS.corpus_data_output_dir, sentence_processor.func_name)) if not os.path.isdir(out_dir): os.makedirs(out_dir) out_path = os.path.join(out_dir, FLAGS.corpus_data_output_fn) if FLAGS.tree_mode is not None: out_path =
#if not careful or not os.path.isfile(out_path + '.data.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.parent.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.depth.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.children.batch' + str(offset)): current_seq_data, current_seq_parents, current_idx_tuples, current_seq_depths = preprocessing.read_data_2(
random_line_split
corpus_wikipedia.py
', #'/home/arne/devel/ML/data/corpora/WIKIPEDIA/wikipedia-23886057.csv',#'/home/arne/devel/ML/data/corpora/WIKIPEDIA/documents_utf8_filtered_20pageviews.csv', # '/home/arne/devel/ML/data/corpora/SICK/sick_train/SICK_train.txt', 'The path to the SICK train data file.') #tf.flags.DEFINE_string( # 'corpus_data_input_test', '/home/arne/devel/ML/data/corpora/SICK/sick_test_annotated/SICK_test_annotated.txt', # 'The path to the SICK test data file.') tf.flags.DEFINE_string( 'corpus_data_output_dir', '/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia',#'data/corpora/wikipedia', 'The path to the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'corpus_data_output_fn', 'WIKIPEDIA', 'Base filename of the output data files (samples, embedding vectors, mappings).') tf.flags.DEFINE_string( 'init_dict_filename', None, #'/media/arne/WIN/Users/Arne/ML/data/corpora/wikipedia/process_sentence7/WIKIPEDIA_articles1000_maxdepth10',#None, #'data/nlp/spacy/dict', 'The path to embedding and mapping files (without extension) to reuse them for the new corpus.') tf.flags.DEFINE_integer( 'max_articles', 10000, 'How many articles to read.') tf.flags.DEFINE_integer( 'article_batch_size', 250, 'How many articles to process in one batch.') tf.flags.DEFINE_integer( 'max_depth', 10, 'The maximal depth of the sequence trees.') tf.flags.DEFINE_integer( 'count_threshold', 2, 'Change data types which occur less then count_threshold times to UNKNOWN') #tf.flags.DEFINE_integer( # 'sample_count', 14, # 'Amount of samples per tree. This excludes the correct tree.') tf.flags.DEFINE_string( 'sentence_processor', 'process_sentence7', #'process_sentence8',#'process_sentence3', 'Defines which NLP features are taken into the embedding trees.') tf.flags.DEFINE_string( 'tree_mode', None, #'aggregate', #'sequence', 'How to structure the tree. ' + '"sequence" -> parents point to next token, ' + '"aggregate" -> parents point to an added, artificial token (TERMINATOR) in the end of the token sequence,' + 'None -> use parsed dependency tree') FLAGS = tf.flags.FLAGS def articles_from_csv_reader(filename, max_articles=100, skip=0): csv.field_size_limit(maxsize) print('parse', max_articles, 'articles...') with open(filename, 'rb') as csvfile: reader = csv.DictReader(csvfile, fieldnames=['article-id', 'content']) i = 0 for row in reader: if skip > 0: skip -= 1 continue if i >= max_articles: break if (i * 10) % max_articles == 0: # sys.stdout.write("progress: %d%% \r" % (i * 100 / max_rows)) # sys.stdout.flush() print('read article:', row['article-id'], '... ', i * 100 / max_articles, '%') i += 1 content = row['content'].decode('utf-8') # cut the title (is separated by two spaces from main content) yield content.split(' ', 1)[1] @tools.fn_timer def convert_wikipedia(in_filename, out_filename, init_dict_filename, sentence_processor, parser, #mapping, vecs, max_articles=10000, max_depth=10, batch_size=100, tree_mode=None): parent_dir = os.path.abspath(os.path.join(out_filename, os.pardir)) out_base_name = ntpath.basename(out_filename) if not os.path.isfile(out_filename+'.data') \ or not os.path.isfile(out_filename + '.parent')\ or not os.path.isfile(out_filename + '.mapping')\ or not os.path.isfile(out_filename + '.vecs') \ or not os.path.isfile(out_filename + '.depth') \ or not os.path.isfile(out_filename + '.count'): if parser is None: print('load spacy ...') parser = spacy.load('en') parser.pipeline = [parser.tagger, parser.entity, parser.parser] if init_dict_filename is not None: print('initialize vecs and mapping from files ...') vecs, mapping = corpus.create_or_read_dict(init_dict_filename, parser.vocab) print('dump embeddings to: ' + out_filename + '.vecs ...') vecs.dump(out_filename + '.vecs') else: vecs, mapping = corpus.create_or_read_dict(out_filename, parser.vocab) # parse seq_data, seq_parents, seq_depths, mapping = parse_articles(out_filename, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode) # sort and filter vecs/mappings by counts seq_data, mapping, vecs, counts = preprocessing.sort_embeddings(seq_data, mapping, vecs, count_threshold=FLAGS.count_threshold) # write out vecs, mapping and tsv containing strings corpus.write_dict(out_path, mapping, vecs, parser.vocab, constants.vocab_manual) print('dump data to: ' + out_path + '.data ...') seq_data.dump(out_path + '.data') print('dump counts to: ' + out_path + '.count ...') counts.dump(out_path + '.count') else: print('load depths from file: ' + out_filename + '.depth ...') seq_depths = np.load(out_filename+'.depth') preprocessing.calc_depths_collected(out_filename, parent_dir, max_depth, seq_depths) preprocessing.rearrange_children_indices(out_filename, parent_dir, max_depth, max_articles, batch_size) #preprocessing.concat_children_indices(out_filename, parent_dir, max_depth) print('load and concatenate child indices batches ...') for current_depth in range(1, max_depth + 1): if not os.path.isfile(out_filename + '.children.depth' + str(current_depth)): preprocessing.merge_numpy_batch_files(out_base_name + '.children.depth' + str(current_depth), parent_dir) return parser def
(out_path, parent_dir, in_filename, parser, mapping, sentence_processor, max_depth, max_articles, batch_size, tree_mode): out_fn = ntpath.basename(out_path) print('parse articles ...') child_idx_offset = 0 for offset in range(0, max_articles, batch_size): # all or none: otherwise the mapping lacks entries! #if not careful or not os.path.isfile(out_path + '.data.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.parent.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.depth.batch' + str(offset)) \ # or not os.path.isfile(out_path + '.children.batch' + str(offset)): current_seq_data, current_seq_parents, current_idx_tuples, current_seq_depths = preprocessing.read_data_2( articles_from_csv_reader, sentence_processor, parser, mapping, args={ 'filename': in_filename, 'max_articles': min(batch_size, max_articles), 'skip': offset }, max_depth=max_depth, batch_size=batch_size, tree_mode=tree_mode, child_idx_offset=child_idx_offset) print('dump data, parents, depths and child indices for offset=' + str(offset) + ' ...') current_seq_data.dump(out_path + '.data.batch' + str(offset)) current_seq_parents.dump(out_path + '.parent.batch' + str(offset)) current_seq_depths.dump(out_path + '.depth.batch' + str(offset)) current_idx_tuples.dump(out_path + '.children.batch' + str(offset)) child_idx_offset += len(current_seq_data) #if careful: # print('dump mappings to: ' + out_path + '.mapping ...') # with open(out_path + '.mapping', "wb") as f: # pickle.dump(mapping, f) #else: # current_seq_data = np.load(out_path + '.data.batch' + str(offset)) # child_idx_offset += len(current_seq_data) seq_data = preprocessing.merge_numpy_batch_files(out_fn+'.data', parent_dir) seq_parents = preprocessing.merge_numpy_batch_files(out_fn + '.parent', parent_dir) seq_depths = preprocessing.merge_numpy_batch_files(out_fn + '.depth', parent_dir) print('parsed data size: '+str(len(seq_data))) return seq_data, seq_parents, seq_depths, mapping if __name__ == '__main__': sentence_processor = getattr(preprocessing, FLAGS.sentence_processor) out_dir = os.path.abspath(os.path.join(FLAGS.corpus_data_output_dir, sentence_processor.func_name)) if not os.path.isdir(out_dir): os.makedirs(out_dir) out_path = os.path.join(out_dir, FLAGS.corpus_data_output_fn) if FLAGS.tree_mode is not None: out_path
parse_articles
identifier_name
sync.go
() error { if w.holeSize > 0 { err := w.writer.PunchHole(w.offset, w.holeSize) if err == nil { w.offset += w.holeSize w.holeSize = 0 } return err } if len(w.buf) == 0 { return nil } n, err := w.writer.WriteAt(w.buf, w.offset) if err != nil { return err } w.buf = w.buf[:0] w.offset += int64(n) return nil } func (w *batchingWriter) prepareWrite() error { if w.holeSize > 0 { err := w.Flush() if err != nil { return err } } if cap(w.buf) < w.maxSize { buf := make([]byte, w.maxSize) copy(buf, w.buf) w.buf = buf[:len(w.buf)] } return nil } func (w *batchingWriter) Write(p []byte) (int, error) { if err := w.prepareWrite(); err != nil { return 0, err } written := 0 for len(p) > 0 { if len(p) >= w.maxSize && len(w.buf) == 0 { residue := len(p) % w.maxSize n, err := w.writer.WriteAt(p[:len(p)-residue], w.offset) written += n w.offset += int64(n) if err != nil { return written, err } p = p[n:] } else { n := copy(w.buf[len(w.buf):w.maxSize], p) w.buf = w.buf[:len(w.buf)+n] if len(w.buf) == w.maxSize { n1, err := w.writer.WriteAt(w.buf, w.offset) w.offset += int64(n1) n2 := n1 - (len(w.buf) - n) w.buf = w.buf[:0] if n2 < 0 { n2 = 0 } written += n2 if err != nil { return written, err } } else { written += n } p = p[n:] } } return written, nil } func (w *batchingWriter) ReadFrom(src io.Reader) (int64, error) { if err := w.prepareWrite(); err != nil { return 0, err } var read int64 for { n, err := src.Read(w.buf[len(w.buf):w.maxSize]) read += int64(n) w.buf = w.buf[:len(w.buf)+n] if err == io.EOF { return read, nil } if err != nil { return read, err } if len(w.buf) == w.maxSize { err = w.Flush() if err != nil { return read, err } } } } func (w *batchingWriter) WriteHole(size int64) error { if w.holeSize == 0 { err := w.Flush() if err != nil { return err } } w.holeSize += size return nil } func (w *batchingWriter) Seek(offset int64, whence int) (int64, error) { var o int64 if w.holeSize > 0 { o = w.offset + w.holeSize } else { o = w.offset + int64(len(w.buf)) } switch whence { case io.SeekStart: // no-op case io.SeekCurrent: offset = o + offset case io.SeekEnd: var err error offset, err = w.writer.Seek(offset, whence) if err != nil { return offset, err } } if offset != o { err := w.Flush() w.offset = offset if err != nil { return offset, err } } return offset, nil } type counting struct { count int64 } type CountingReader struct { io.Reader counting } type CountingWriteCloser struct { io.WriteCloser counting } func (p *hashPool) get() (h hash.Hash) { l := len(*p) if l > 0 { l-- h = (*p)[l] (*p)[l] = nil *p = (*p)[:l] h.Reset() } else { h, _ = blake2b.New512(nil) } return } func (p *hashPool) put(h hash.Hash) { *p = append(*p, h) } func (c *counting) Count() int64 { return c.count } func (r *CountingReader) Read(buf []byte) (n int, err error) { n, err = r.Reader.Read(buf) r.count += int64(n) return } func (r *CountingWriteCloser) Write(buf []byte) (n int, err error) { n, err = r.WriteCloser.Write(buf) r.count += int64(n) return } func (n *node) next() *node { if n.parent != nil { if n.idx < len(n.parent.children)-1 { return n.parent.children[n.idx+1] } nn := n.parent.next() if nn != nil { return nn.children[0] } } return nil } func (n *node) childReady(child *node, pool *hashPool, h hash.Hash) { if n.hash == nil { if h != nil { h.Reset() n.hash = h } else { n.hash = pool.get() } } else { if h != nil { pool.put(h) } } n.hash.Write(child.sum) if child.idx == len(n.children)-1 { n.sum = n.hash.Sum(n.buf[:0]) if n.parent != nil { n.parent.childReady(n, pool, n.hash) } n.hash = nil } } func (b *base) buffer(size int64) []byte { if int64(cap(b.buf)) < size { b.buf = make([]byte, size+1) } return b.buf[:size] } func (t *tree) build(offset, length int64, order, level int) *node { n := &node{} level-- if level > 0 { n.children = make([]*node, order) b := offset for i := 0; i < order; i++ { l := offset + (length * int64(i+1) / int64(order)) - b child := t.build(b, l, order, level) child.parent = n child.idx = i n.children[i] = child b += l } } else { n.size = int(length) } return n } func (t *tree) first(n *node) *node { if len(n.children) > 0 { return t.first(n.children[0]) } return n } func (t *tree) calc(verbose bool, progressListener ProgressListener) error { var targetBlockSize int64 = DefTargetBlockSize for t.size/targetBlockSize > 1048576 { targetBlockSize <<= 1 } blocks := t.size / targetBlockSize levels := 8 order := 1 if blocks > 0 { var d int64 = -1 for { b := int64(math.Pow(float64(order+1), 7)) bs := t.size / b if bs < targetBlockSize/2 { break } nd := targetBlockSize - bs if nd < 0 { nd = -nd } // log.Printf("b: %d, d: %d\n", b, nd) if d != -1 && nd > d { break } d = nd order++ } if order < 2 { order = 2 levels = int(math.Log2(float64(blocks))) + 1 } } else { levels = 1 order = 1 } bs := int(float64(t.size) / math.Pow(float64(order), float64(levels-1))) if verbose { log.Printf("Levels: %d, order: %d, target block size: %d, block size: %d\n", levels, order, targetBlockSize, bs) } t.root = t.build(0, t.size, order, levels) rr := int64(0) var reader io.Reader if t.useBuffer { var bufSize int for bufSize = DefTargetBlockSize; bufSize < bs; bufSize <<= 1 { } reader = bufio.NewReaderSize(t.reader, bufSize) } else { reader = t.reader } var pool hashPool = make([]hash.Hash, 0, levels) workItems := make([]*workCtx, 2) for i := range workItems { workItems[i
Flush
identifier_name
sync.go
} written += n2 if err != nil { return written, err } } else { written += n } p = p[n:] } } return written, nil } func (w *batchingWriter) ReadFrom(src io.Reader) (int64, error) { if err := w.prepareWrite(); err != nil { return 0, err } var read int64 for { n, err := src.Read(w.buf[len(w.buf):w.maxSize]) read += int64(n) w.buf = w.buf[:len(w.buf)+n] if err == io.EOF { return read, nil } if err != nil { return read, err } if len(w.buf) == w.maxSize { err = w.Flush() if err != nil { return read, err } } } } func (w *batchingWriter) WriteHole(size int64) error { if w.holeSize == 0 { err := w.Flush() if err != nil { return err } } w.holeSize += size return nil } func (w *batchingWriter) Seek(offset int64, whence int) (int64, error) { var o int64 if w.holeSize > 0 { o = w.offset + w.holeSize } else { o = w.offset + int64(len(w.buf)) } switch whence { case io.SeekStart: // no-op case io.SeekCurrent: offset = o + offset case io.SeekEnd: var err error offset, err = w.writer.Seek(offset, whence) if err != nil { return offset, err } } if offset != o { err := w.Flush() w.offset = offset if err != nil { return offset, err } } return offset, nil } type counting struct { count int64 } type CountingReader struct { io.Reader counting } type CountingWriteCloser struct { io.WriteCloser counting } func (p *hashPool) get() (h hash.Hash) { l := len(*p) if l > 0 { l-- h = (*p)[l] (*p)[l] = nil *p = (*p)[:l] h.Reset() } else { h, _ = blake2b.New512(nil) } return } func (p *hashPool) put(h hash.Hash) { *p = append(*p, h) } func (c *counting) Count() int64 { return c.count } func (r *CountingReader) Read(buf []byte) (n int, err error) { n, err = r.Reader.Read(buf) r.count += int64(n) return } func (r *CountingWriteCloser) Write(buf []byte) (n int, err error) { n, err = r.WriteCloser.Write(buf) r.count += int64(n) return } func (n *node) next() *node { if n.parent != nil { if n.idx < len(n.parent.children)-1 { return n.parent.children[n.idx+1] } nn := n.parent.next() if nn != nil { return nn.children[0] } } return nil } func (n *node) childReady(child *node, pool *hashPool, h hash.Hash) { if n.hash == nil { if h != nil { h.Reset() n.hash = h } else { n.hash = pool.get() } } else { if h != nil { pool.put(h) } } n.hash.Write(child.sum) if child.idx == len(n.children)-1 { n.sum = n.hash.Sum(n.buf[:0]) if n.parent != nil { n.parent.childReady(n, pool, n.hash) } n.hash = nil } } func (b *base) buffer(size int64) []byte { if int64(cap(b.buf)) < size { b.buf = make([]byte, size+1) } return b.buf[:size] } func (t *tree) build(offset, length int64, order, level int) *node { n := &node{} level-- if level > 0 { n.children = make([]*node, order) b := offset for i := 0; i < order; i++ { l := offset + (length * int64(i+1) / int64(order)) - b child := t.build(b, l, order, level) child.parent = n child.idx = i n.children[i] = child b += l } } else { n.size = int(length) } return n } func (t *tree) first(n *node) *node { if len(n.children) > 0 { return t.first(n.children[0]) } return n } func (t *tree) calc(verbose bool, progressListener ProgressListener) error { var targetBlockSize int64 = DefTargetBlockSize for t.size/targetBlockSize > 1048576 { targetBlockSize <<= 1 } blocks := t.size / targetBlockSize levels := 8 order := 1 if blocks > 0 { var d int64 = -1 for { b := int64(math.Pow(float64(order+1), 7)) bs := t.size / b if bs < targetBlockSize/2 { break } nd := targetBlockSize - bs if nd < 0 { nd = -nd } // log.Printf("b: %d, d: %d\n", b, nd) if d != -1 && nd > d { break } d = nd order++ } if order < 2 { order = 2 levels = int(math.Log2(float64(blocks))) + 1 } } else { levels = 1 order = 1 } bs := int(float64(t.size) / math.Pow(float64(order), float64(levels-1))) if verbose { log.Printf("Levels: %d, order: %d, target block size: %d, block size: %d\n", levels, order, targetBlockSize, bs) } t.root = t.build(0, t.size, order, levels) rr := int64(0) var reader io.Reader if t.useBuffer { var bufSize int for bufSize = DefTargetBlockSize; bufSize < bs; bufSize <<= 1 { } reader = bufio.NewReaderSize(t.reader, bufSize) } else { reader = t.reader } var pool hashPool = make([]hash.Hash, 0, levels) workItems := make([]*workCtx, 2) for i := range workItems { workItems[i] = &workCtx{ buf: make([]byte, bs+1), avail: make(chan struct{}, 1), hashReady: make(chan struct{}, 1), } workItems[i].hash, _ = blake2b.New512(nil) workItems[i].avail <- struct{}{} } go func() { idx := 0 for { wi := workItems[idx] <-wi.hashReady if wi.n == nil { break } if wi.n.parent != nil { wi.n.parent.childReady(wi.n, &pool, nil) } wi.avail <- struct{}{} idx++ if idx >= len(workItems) { idx = 0 } } }() workIdx := 0 if progressListener != nil { progressListener.Start(t.size) } for n := t.first(t.root); n != nil; n = n.next() { if n.size == 0 { panic("Leaf node size is zero") } wi := workItems[workIdx] <-wi.avail b := wi.buf[:n.size] r, err := io.ReadFull(reader, b) if err != nil { return fmt.Errorf("in calc at %d (expected %d, read %d): %w", rr, len(b), r, err) } rr += int64(r) if progressListener != nil { progressListener.Update(rr) } wi.n = n go func() { wi.hash.Write(b) wi.n.sum = wi.hash.Sum(wi.n.buf[:0]) wi.hash.Reset() wi.hashReady <- struct{}{} }() workIdx++ if workIdx >= len(workItems) { workIdx = 0 } } // wait until fully processed for i := range workItems { <-workItems[i].avail } // finish the goroutine workItems
n2 = 0
random_line_split
sync.go
, error)
err := w.Flush() w.offset = offset if err != nil { return offset, err } } return offset, nil } type counting struct { count int64 } type CountingReader struct { io.Reader counting } type CountingWriteCloser struct { io.WriteCloser counting } func (p *hashPool) get() (h hash.Hash) { l := len(*p) if l > 0 { l-- h = (*p)[l] (*p)[l] = nil *p = (*p)[:l] h.Reset() } else { h, _ = blake2b.New512(nil) } return } func (p *hashPool) put(h hash.Hash) { *p = append(*p, h) } func (c *counting) Count() int64 { return c.count } func (r *CountingReader) Read(buf []byte) (n int, err error) { n, err = r.Reader.Read(buf) r.count += int64(n) return } func (r *CountingWriteCloser) Write(buf []byte) (n int, err error) { n, err = r.WriteCloser.Write(buf) r.count += int64(n) return } func (n *node) next() *node { if n.parent != nil { if n.idx < len(n.parent.children)-1 { return n.parent.children[n.idx+1] } nn := n.parent.next() if nn != nil { return nn.children[0] } } return nil } func (n *node) childReady(child *node, pool *hashPool, h hash.Hash) { if n.hash == nil { if h != nil { h.Reset() n.hash = h } else { n.hash = pool.get() } } else { if h != nil { pool.put(h) } } n.hash.Write(child.sum) if child.idx == len(n.children)-1 { n.sum = n.hash.Sum(n.buf[:0]) if n.parent != nil { n.parent.childReady(n, pool, n.hash) } n.hash = nil } } func (b *base) buffer(size int64) []byte { if int64(cap(b.buf)) < size { b.buf = make([]byte, size+1) } return b.buf[:size] } func (t *tree) build(offset, length int64, order, level int) *node { n := &node{} level-- if level > 0 { n.children = make([]*node, order) b := offset for i := 0; i < order; i++ { l := offset + (length * int64(i+1) / int64(order)) - b child := t.build(b, l, order, level) child.parent = n child.idx = i n.children[i] = child b += l } } else { n.size = int(length) } return n } func (t *tree) first(n *node) *node { if len(n.children) > 0 { return t.first(n.children[0]) } return n } func (t *tree) calc(verbose bool, progressListener ProgressListener) error { var targetBlockSize int64 = DefTargetBlockSize for t.size/targetBlockSize > 1048576 { targetBlockSize <<= 1 } blocks := t.size / targetBlockSize levels := 8 order := 1 if blocks > 0 { var d int64 = -1 for { b := int64(math.Pow(float64(order+1), 7)) bs := t.size / b if bs < targetBlockSize/2 { break } nd := targetBlockSize - bs if nd < 0 { nd = -nd } // log.Printf("b: %d, d: %d\n", b, nd) if d != -1 && nd > d { break } d = nd order++ } if order < 2 { order = 2 levels = int(math.Log2(float64(blocks))) + 1 } } else { levels = 1 order = 1 } bs := int(float64(t.size) / math.Pow(float64(order), float64(levels-1))) if verbose { log.Printf("Levels: %d, order: %d, target block size: %d, block size: %d\n", levels, order, targetBlockSize, bs) } t.root = t.build(0, t.size, order, levels) rr := int64(0) var reader io.Reader if t.useBuffer { var bufSize int for bufSize = DefTargetBlockSize; bufSize < bs; bufSize <<= 1 { } reader = bufio.NewReaderSize(t.reader, bufSize) } else { reader = t.reader } var pool hashPool = make([]hash.Hash, 0, levels) workItems := make([]*workCtx, 2) for i := range workItems { workItems[i] = &workCtx{ buf: make([]byte, bs+1), avail: make(chan struct{}, 1), hashReady: make(chan struct{}, 1), } workItems[i].hash, _ = blake2b.New512(nil) workItems[i].avail <- struct{}{} } go func() { idx := 0 for { wi := workItems[idx] <-wi.hashReady if wi.n == nil { break } if wi.n.parent != nil { wi.n.parent.childReady(wi.n, &pool, nil) } wi.avail <- struct{}{} idx++ if idx >= len(workItems) { idx = 0 } } }() workIdx := 0 if progressListener != nil { progressListener.Start(t.size) } for n := t.first(t.root); n != nil; n = n.next() { if n.size == 0 { panic("Leaf node size is zero") } wi := workItems[workIdx] <-wi.avail b := wi.buf[:n.size] r, err := io.ReadFull(reader, b) if err != nil { return fmt.Errorf("in calc at %d (expected %d, read %d): %w", rr, len(b), r, err) } rr += int64(r) if progressListener != nil { progressListener.Update(rr) } wi.n = n go func() { wi.hash.Write(b) wi.n.sum = wi.hash.Sum(wi.n.buf[:0]) wi.hash.Reset() wi.hashReady <- struct{}{} }() workIdx++ if workIdx >= len(workItems) { workIdx = 0 } } // wait until fully processed for i := range workItems { <-workItems[i].avail } // finish the goroutine workItems[workIdx].n = nil workItems[workIdx].hashReady <- struct{}{} if rr < t.size { return fmt.Errorf("read less data (%d) than expected (%d)", rr, t.size) } return nil } func readHeader(reader io.Reader) (size int64, err error) { buf := make([]byte, len(hdrMagic)+8) _, err = io.ReadFull(reader, buf) if err != nil { return } if string(buf[:len(hdrMagic)]) != hdrMagic { err = ErrInvalidFormat return } size = int64(binary.LittleEndian.Uint64(buf[len(hdrMagic):])) return } func writeHeader(writer io.Writer, size int64) (err error) { buf := make([]byte, len(hdrMagic)+8) copy(buf, hdrMagic) binary.LittleEndian.PutUint64(buf[len(hdrMagic):], uint64(size)) _, err = writer.Write(buf) return } func Source(reader io.ReadSeeker, size int64, cmdReader io.Reader, cmdWriter io.Writer, useBuffer bool, verbose bool, calcPl, syncPl ProgressListener) (err error) { err = writeHeader(cmdWriter, size) if err != nil { return } var remoteSize int64 remoteSize, err = readHeader(cmdReader) if err != nil
{ var o int64 if w.holeSize > 0 { o = w.offset + w.holeSize } else { o = w.offset + int64(len(w.buf)) } switch whence { case io.SeekStart: // no-op case io.SeekCurrent: offset = o + offset case io.SeekEnd: var err error offset, err = w.writer.Seek(offset, whence) if err != nil { return offset, err } } if offset != o {
identifier_body
sync.go
} } } func (w *batchingWriter) WriteHole(size int64) error { if w.holeSize == 0 { err := w.Flush() if err != nil { return err } } w.holeSize += size return nil } func (w *batchingWriter) Seek(offset int64, whence int) (int64, error) { var o int64 if w.holeSize > 0 { o = w.offset + w.holeSize } else { o = w.offset + int64(len(w.buf)) } switch whence { case io.SeekStart: // no-op case io.SeekCurrent: offset = o + offset case io.SeekEnd: var err error offset, err = w.writer.Seek(offset, whence) if err != nil { return offset, err } } if offset != o { err := w.Flush() w.offset = offset if err != nil { return offset, err } } return offset, nil } type counting struct { count int64 } type CountingReader struct { io.Reader counting } type CountingWriteCloser struct { io.WriteCloser counting } func (p *hashPool) get() (h hash.Hash) { l := len(*p) if l > 0 { l-- h = (*p)[l] (*p)[l] = nil *p = (*p)[:l] h.Reset() } else { h, _ = blake2b.New512(nil) } return } func (p *hashPool) put(h hash.Hash) { *p = append(*p, h) } func (c *counting) Count() int64 { return c.count } func (r *CountingReader) Read(buf []byte) (n int, err error) { n, err = r.Reader.Read(buf) r.count += int64(n) return } func (r *CountingWriteCloser) Write(buf []byte) (n int, err error) { n, err = r.WriteCloser.Write(buf) r.count += int64(n) return } func (n *node) next() *node { if n.parent != nil { if n.idx < len(n.parent.children)-1 { return n.parent.children[n.idx+1] } nn := n.parent.next() if nn != nil { return nn.children[0] } } return nil } func (n *node) childReady(child *node, pool *hashPool, h hash.Hash) { if n.hash == nil { if h != nil { h.Reset() n.hash = h } else { n.hash = pool.get() } } else { if h != nil { pool.put(h) } } n.hash.Write(child.sum) if child.idx == len(n.children)-1 { n.sum = n.hash.Sum(n.buf[:0]) if n.parent != nil { n.parent.childReady(n, pool, n.hash) } n.hash = nil } } func (b *base) buffer(size int64) []byte { if int64(cap(b.buf)) < size { b.buf = make([]byte, size+1) } return b.buf[:size] } func (t *tree) build(offset, length int64, order, level int) *node { n := &node{} level-- if level > 0 { n.children = make([]*node, order) b := offset for i := 0; i < order; i++ { l := offset + (length * int64(i+1) / int64(order)) - b child := t.build(b, l, order, level) child.parent = n child.idx = i n.children[i] = child b += l } } else { n.size = int(length) } return n } func (t *tree) first(n *node) *node { if len(n.children) > 0 { return t.first(n.children[0]) } return n } func (t *tree) calc(verbose bool, progressListener ProgressListener) error { var targetBlockSize int64 = DefTargetBlockSize for t.size/targetBlockSize > 1048576 { targetBlockSize <<= 1 } blocks := t.size / targetBlockSize levels := 8 order := 1 if blocks > 0 { var d int64 = -1 for { b := int64(math.Pow(float64(order+1), 7)) bs := t.size / b if bs < targetBlockSize/2 { break } nd := targetBlockSize - bs if nd < 0 { nd = -nd } // log.Printf("b: %d, d: %d\n", b, nd) if d != -1 && nd > d { break } d = nd order++ } if order < 2 { order = 2 levels = int(math.Log2(float64(blocks))) + 1 } } else { levels = 1 order = 1 } bs := int(float64(t.size) / math.Pow(float64(order), float64(levels-1))) if verbose { log.Printf("Levels: %d, order: %d, target block size: %d, block size: %d\n", levels, order, targetBlockSize, bs) } t.root = t.build(0, t.size, order, levels) rr := int64(0) var reader io.Reader if t.useBuffer { var bufSize int for bufSize = DefTargetBlockSize; bufSize < bs; bufSize <<= 1 { } reader = bufio.NewReaderSize(t.reader, bufSize) } else { reader = t.reader } var pool hashPool = make([]hash.Hash, 0, levels) workItems := make([]*workCtx, 2) for i := range workItems { workItems[i] = &workCtx{ buf: make([]byte, bs+1), avail: make(chan struct{}, 1), hashReady: make(chan struct{}, 1), } workItems[i].hash, _ = blake2b.New512(nil) workItems[i].avail <- struct{}{} } go func() { idx := 0 for { wi := workItems[idx] <-wi.hashReady if wi.n == nil { break } if wi.n.parent != nil { wi.n.parent.childReady(wi.n, &pool, nil) } wi.avail <- struct{}{} idx++ if idx >= len(workItems) { idx = 0 } } }() workIdx := 0 if progressListener != nil { progressListener.Start(t.size) } for n := t.first(t.root); n != nil; n = n.next() { if n.size == 0 { panic("Leaf node size is zero") } wi := workItems[workIdx] <-wi.avail b := wi.buf[:n.size] r, err := io.ReadFull(reader, b) if err != nil { return fmt.Errorf("in calc at %d (expected %d, read %d): %w", rr, len(b), r, err) } rr += int64(r) if progressListener != nil { progressListener.Update(rr) } wi.n = n go func() { wi.hash.Write(b) wi.n.sum = wi.hash.Sum(wi.n.buf[:0]) wi.hash.Reset() wi.hashReady <- struct{}{} }() workIdx++ if workIdx >= len(workItems) { workIdx = 0 } } // wait until fully processed for i := range workItems { <-workItems[i].avail } // finish the goroutine workItems[workIdx].n = nil workItems[workIdx].hashReady <- struct{}{} if rr < t.size { return fmt.Errorf("read less data (%d) than expected (%d)", rr, t.size) } return nil } func readHeader(reader io.Reader) (size int64, err error) { buf := make([]byte, len(hdrMagic)+8) _, err = io.ReadFull(reader, buf) if err != nil { return } if string(buf[:len(hdrMagic)]) != hdrMagic { err = ErrInvalidFormat return } size = int64(binary.LittleEndian.Uint64(buf[len(hdrMagic):])) return } func writeHeader(writer io.Writer, size int64) (err error) { buf := make([]byte, len(hdrMagic)+8) copy(buf, hdrMagic) binary.LittleEndian.PutUint64(buf[len(hdrMagic):], uint64(size
{ return read, err }
conditional_block
event.py
_* methods depend on this attribute. Can be: 'QUIT', 'KEYDOWN', 'KEYUP', 'MOUSEDOWN', 'MOUSEUP', or 'MOUSEMOTION.' """ def __repr__(self): """List an events public attributes when printed. """ attrdict = {} for varname in dir(self): if '_' == varname[0]: continue attrdict[varname] = self.__getattribute__(varname) return '%s Event %s' % (self.__class__.__name__, repr(attrdict)) class Quit(Event): """Fired when the window is closed by the user. """ __slots__ = () type = 'QUIT' class KeyEvent(Event): def __init__(self, key='', char='', text='', shift=False, left_alt=False, right_alt=False, left_control=False, right_control=False, left_meta=False, right_meta=False): # Convert keycodes into string, but use string if passed self.key = key if isinstance(key, str) else _keyNames[key] """Human readable names of the key pressed. Non special characters will show up as 'CHAR'. Can be one of 'NONE', 'ESCAPE', 'BACKSPACE', 'TAB', 'ENTER', 'SHIFT', 'CONTROL', 'ALT', 'PAUSE', 'CAPSLOCK', 'PAGEUP', 'PAGEDOWN', 'END', 'HOME', 'UP', 'LEFT', 'RIGHT', 'DOWN', 'PRINTSCREEN', 'INSERT', 'DELETE', 'LWIN', 'RWIN', 'APPS', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'KP0', 'KP1', 'KP2', 'KP3', 'KP4', 'KP5', 'KP6', 'KP7', 'KP8', 'KP9', 'KPADD', 'KPSUB', 'KPDIV', 'KPMUL', 'KPDEC', 'KPENTER', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'F9', 'F10', 'F11', 'F12', 'NUMLOCK', 'SCROLLLOCK', 'SPACE', 'CHAR' For the actual character instead of 'CHAR' use L{keychar}. @type: string""" self.char = char.replace('\x00', '') # change null to empty string """A single character string of the letter or symbol pressed. Special characters like delete and return are not cross-platform. L{key} or L{keychar} should be used instead for special keys. Characters are also case sensitive. @type: string""" # get the best out of self.key and self.char self.keychar = self.char if self.key == 'CHAR' else self.key """Similar to L{key} but returns a case sensitive letter or symbol instead of 'CHAR'. This variable makes available the widest variety of symbols and should be used for key-mappings or anywhere where a narrower sample of keys isn't needed. """ self.text = text self.left_alt = self.leftAlt = bool(left_alt) """@type: boolean""" self.right_alt = self.rightAlt = bool(right_alt) """@type: boolean""" self.left_control = self.leftCtrl = bool(left_control) """@type: boolean""" self.right_control = self.rightCtrl = bool(right_control) """@type: boolean""" self.shift = bool(shift) """True if shift was held down during this event. @type: boolean""" self.alt = self.left_alt or self.right_alt """True if alt was held down during this event. @type: boolean""" self.control = self.left_control or self.right_control """True if control was held down during this event. @type: boolean""" self.left_meta = bool(left_meta) self.right_meta = bool(right_meta) self.meta = self.left_meta or self.right_meta def __repr__(self): parameters = [] for attr in ('key', 'char', 'text', 'shift', 'left_alt', 'right_alt', 'left_control', 'right_control', 'left_meta', 'right_meta'): value = getattr(self, attr) if value:
return '%s(%s)' % (self.__class__.__name__, ', '.join(parameters)) class KeyDown(KeyEvent): """Fired when the user presses a key on the keyboard or a key repeats. """ type = 'KEYDOWN' class KeyUp(KeyEvent): """Fired when the user releases a key on the keyboard. """ type = 'KEYUP' _mouseNames = {1: 'LEFT', 2: 'MIDDLE', 3: 'RIGHT', 4: 'SCROLLUP', 5: 'SCROLLDOWN'} class MouseButtonEvent(Event): def __init__(self, button, pos, cell): self.button = _mouseNames[button] """Can be one of 'LEFT', 'MIDDLE', 'RIGHT', 'SCROLLUP', 'SCROLLDOWN' @type: string""" self.pos = pos """(x, y) position of the mouse on the screen @type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console @type: (int, int)""" class MouseDown(MouseButtonEvent): """Fired when a mouse button is pressed.""" __slots__ = () type = 'MOUSEDOWN' class MouseUp(MouseButtonEvent): """Fired when a mouse button is released.""" __slots__ = () type = 'MOUSEUP' class MouseMotion(Event): """Fired when the mouse is moved.""" type = 'MOUSEMOTION' def __init__(self, pos, cell, motion, cellmotion): self.pos = pos """(x, y) position of the mouse on the screen. type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console. type: (int, int)""" self.motion = motion """(x, y) motion of the mouse on the screen. type: (int, int)""" self.cellmotion = cellmotion """(x, y) mostion of the mouse moving over cells on the root console. type: (int, int)""" class App(object): """ Application framework. - ev_*: Events are passed to methods based on their L{Event.type} attribute. If an event type is 'KEYDOWN' the ev_KEYDOWN method will be called with the event instance as a parameter. - key_*: When a key is pressed another method will be called based on the L{KeyEvent.key} attribute. For example the 'ENTER' key will call key_ENTER with the associated L{KeyDown} event as its parameter. - L{update}: This method is called every loop. It is passed a single parameter detailing the time in seconds since the last update (often known as deltaTime.) You may want to call drawing routines in this method followed by L{tdl.flush}. """ __slots__ = ('__running', '__prevTime') def ev_QUIT(self, event): """Unless overridden this method raises a SystemExit exception closing the program.""" raise SystemExit() def ev_KEYDOWN(self, event): """Override this method to handle a L{KeyDown} event.""" def ev_KEYUP(self, event): """Override this method to handle a L{KeyUp} event.""" def ev_MOUSEDOWN(self, event): """Override this method to handle a L{MouseDown} event.""" def ev_MOUSEUP(self, event): """Override this method to handle a L{MouseUp} event.""" def ev_MOUSEMOTION(self, event): """Override this method to handle a L{MouseMotion} event.""" def update(self, deltaTime): """Override this method to handle per frame logic and drawing. @type deltaTime: float @param deltaTime: This parameter tells the amount of time passed since the last call measured in seconds as a floating point number. You can use this variable to make your program frame rate independent. Use this parameter to adjust the speed of motion, timers, and other game logic. """ pass def suspend(self): """When called the App will begin to return control to where L{App.run} was called. Some further events are processed and the L{App.update} method will be called one last time before exiting (unless suspended during a call to L{App.update}.) """ self.__running = False def run(self): """Delegate control over to this App instance. This function will process all events and send them to the special methods ev_* and key_*. A call to L{App.suspend} will return the control flow back to where this function is called. And then the App can be run again. But
parameters.append('%s=%r' % (attr, value))
conditional_block
event.py
'QUIT', 'KEYDOWN', 'KEYUP', 'MOUSEDOWN', 'MOUSEUP', or 'MOUSEMOTION.' - L{MouseButtonEvent.button} (found in L{MouseDown} and L{MouseUp} events) 'LEFT', 'MIDDLE', 'RIGHT', 'SCROLLUP', 'SCROLLDOWN' - L{KeyEvent.key} (found in L{KeyDown} and L{KeyUp} events) 'NONE', 'ESCAPE', 'BACKSPACE', 'TAB', 'ENTER', 'SHIFT', 'CONTROL', 'ALT', 'PAUSE', 'CAPSLOCK', 'PAGEUP', 'PAGEDOWN', 'END', 'HOME', 'UP', 'LEFT', 'RIGHT', 'DOWN', 'PRINTSCREEN', 'INSERT', 'DELETE', 'LWIN', 'RWIN', 'APPS', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'KP0', 'KP1', 'KP2', 'KP3', 'KP4', 'KP5', 'KP6', 'KP7', 'KP8', 'KP9', 'KPADD', 'KPSUB', 'KPDIV', 'KPMUL', 'KPDEC', 'KPENTER', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'F9', 'F10', 'F11', 'F12', 'NUMLOCK', 'SCROLLLOCK', 'SPACE', 'CHAR' """ import time as _time from tcod import ffi as _ffi from tcod import lib as _lib import tdl as _tdl from . import style as _style _eventQueue = [] _pushedEvents = [] _mousel = 0 _mousem = 0 _mouser = 0 # this interprets the constants from libtcod and makes a key -> keyname dictionary def _parseKeyNames(lib): """ returns a dictionary mapping of human readable key names to their keycodes this parses constants with the names of K_* and makes code=name pairs this is for KeyEvent.key variable and that enables things like: if (event.key == 'PAGEUP'): """ _keyNames = {} for attr in dir(lib): # from the modules variables if attr[:6] == 'TCODK_': # get the K_* constants _keyNames[getattr(lib, attr)] = attr[6:] # and make CODE=NAME pairs return _keyNames _keyNames = _parseKeyNames(_lib) class Event(object): """Base Event class. You can easily subclass this to make your own events. Be sure to set the class attribute L{Event.type} for it to be passed to a custom L{App} ev_* method.""" type = None """String constant representing the type of event. The L{App} ev_* methods depend on this attribute. Can be: 'QUIT', 'KEYDOWN', 'KEYUP', 'MOUSEDOWN', 'MOUSEUP', or 'MOUSEMOTION.' """ def __repr__(self): """List an events public attributes when printed. """ attrdict = {} for varname in dir(self): if '_' == varname[0]: continue attrdict[varname] = self.__getattribute__(varname) return '%s Event %s' % (self.__class__.__name__, repr(attrdict)) class Quit(Event): """Fired when the window is closed by the user. """ __slots__ = () type = 'QUIT' class KeyEvent(Event): def __init__(self, key='', char='', text='', shift=False, left_alt=False, right_alt=False, left_control=False, right_control=False, left_meta=False, right_meta=False): # Convert keycodes into string, but use string if passed self.key = key if isinstance(key, str) else _keyNames[key] """Human readable names of the key pressed. Non special characters will show up as 'CHAR'. Can be one of 'NONE', 'ESCAPE', 'BACKSPACE', 'TAB', 'ENTER', 'SHIFT', 'CONTROL', 'ALT', 'PAUSE', 'CAPSLOCK', 'PAGEUP', 'PAGEDOWN', 'END', 'HOME', 'UP', 'LEFT', 'RIGHT', 'DOWN', 'PRINTSCREEN', 'INSERT', 'DELETE', 'LWIN', 'RWIN', 'APPS', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'KP0', 'KP1', 'KP2', 'KP3', 'KP4', 'KP5', 'KP6', 'KP7', 'KP8', 'KP9', 'KPADD', 'KPSUB', 'KPDIV', 'KPMUL', 'KPDEC', 'KPENTER', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'F9', 'F10', 'F11', 'F12', 'NUMLOCK', 'SCROLLLOCK', 'SPACE', 'CHAR' For the actual character instead of 'CHAR' use L{keychar}. @type: string""" self.char = char.replace('\x00', '') # change null to empty string """A single character string of the letter or symbol pressed. Special characters like delete and return are not cross-platform. L{key} or L{keychar} should be used instead for special keys. Characters are also case sensitive. @type: string""" # get the best out of self.key and self.char self.keychar = self.char if self.key == 'CHAR' else self.key """Similar to L{key} but returns a case sensitive letter or symbol instead of 'CHAR'. This variable makes available the widest variety of symbols and should be used for key-mappings or anywhere where a narrower sample of keys isn't needed. """ self.text = text self.left_alt = self.leftAlt = bool(left_alt) """@type: boolean""" self.right_alt = self.rightAlt = bool(right_alt) """@type: boolean""" self.left_control = self.leftCtrl = bool(left_control) """@type: boolean""" self.right_control = self.rightCtrl = bool(right_control) """@type: boolean""" self.shift = bool(shift) """True if shift was held down during this event. @type: boolean""" self.alt = self.left_alt or self.right_alt """True if alt was held down during this event. @type: boolean""" self.control = self.left_control or self.right_control """True if control was held down during this event. @type: boolean""" self.left_meta = bool(left_meta) self.right_meta = bool(right_meta) self.meta = self.left_meta or self.right_meta def __repr__(self): parameters = [] for attr in ('key', 'char', 'text', 'shift', 'left_alt', 'right_alt', 'left_control', 'right_control', 'left_meta', 'right_meta'): value = getattr(self, attr) if value: parameters.append('%s=%r' % (attr, value)) return '%s(%s)' % (self.__class__.__name__, ', '.join(parameters)) class KeyDown(KeyEvent): """Fired when the user presses a key on the keyboard or a key repeats. """ type = 'KEYDOWN' class KeyUp(KeyEvent): """Fired when the user releases a key on the keyboard. """ type = 'KEYUP' _mouseNames = {1: 'LEFT', 2: 'MIDDLE', 3: 'RIGHT', 4: 'SCROLLUP', 5: 'SCROLLDOWN'} class MouseButtonEvent(Event): def __init__(self, button, pos, cell): self.button = _mouseNames[button] """Can be one of 'LEFT', 'MIDDLE', 'RIGHT', 'SCROLLUP', 'SCROLLDOWN' @type: string""" self.pos = pos """(x, y) position of the mouse on the screen @type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console @type: (int, int)""" class MouseDown(MouseButtonEvent): """Fired when a mouse button is pressed.""" __slots__ = () type = 'MOUSEDOWN' class MouseUp(MouseButtonEvent): """Fired when a mouse button is released.""" __slots__ = () type = 'MOUSEUP' class MouseMotion(Event): """Fired when the mouse is moved.""" type = 'MOUSEMOTION' def __init__(self, pos, cell, motion, cellmotion): self.pos = pos """(x, y) position of the mouse on the screen. type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console. type: (int
random_line_split
event.py
_* methods depend on this attribute. Can be: 'QUIT', 'KEYDOWN', 'KEYUP', 'MOUSEDOWN', 'MOUSEUP', or 'MOUSEMOTION.' """ def __repr__(self): """List an events public attributes when printed. """ attrdict = {} for varname in dir(self): if '_' == varname[0]: continue attrdict[varname] = self.__getattribute__(varname) return '%s Event %s' % (self.__class__.__name__, repr(attrdict)) class Quit(Event): """Fired when the window is closed by the user. """ __slots__ = () type = 'QUIT' class KeyEvent(Event): def __init__(self, key='', char='', text='', shift=False, left_alt=False, right_alt=False, left_control=False, right_control=False, left_meta=False, right_meta=False): # Convert keycodes into string, but use string if passed self.key = key if isinstance(key, str) else _keyNames[key] """Human readable names of the key pressed. Non special characters will show up as 'CHAR'. Can be one of 'NONE', 'ESCAPE', 'BACKSPACE', 'TAB', 'ENTER', 'SHIFT', 'CONTROL', 'ALT', 'PAUSE', 'CAPSLOCK', 'PAGEUP', 'PAGEDOWN', 'END', 'HOME', 'UP', 'LEFT', 'RIGHT', 'DOWN', 'PRINTSCREEN', 'INSERT', 'DELETE', 'LWIN', 'RWIN', 'APPS', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'KP0', 'KP1', 'KP2', 'KP3', 'KP4', 'KP5', 'KP6', 'KP7', 'KP8', 'KP9', 'KPADD', 'KPSUB', 'KPDIV', 'KPMUL', 'KPDEC', 'KPENTER', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8', 'F9', 'F10', 'F11', 'F12', 'NUMLOCK', 'SCROLLLOCK', 'SPACE', 'CHAR' For the actual character instead of 'CHAR' use L{keychar}. @type: string""" self.char = char.replace('\x00', '') # change null to empty string """A single character string of the letter or symbol pressed. Special characters like delete and return are not cross-platform. L{key} or L{keychar} should be used instead for special keys. Characters are also case sensitive. @type: string""" # get the best out of self.key and self.char self.keychar = self.char if self.key == 'CHAR' else self.key """Similar to L{key} but returns a case sensitive letter or symbol instead of 'CHAR'. This variable makes available the widest variety of symbols and should be used for key-mappings or anywhere where a narrower sample of keys isn't needed. """ self.text = text self.left_alt = self.leftAlt = bool(left_alt) """@type: boolean""" self.right_alt = self.rightAlt = bool(right_alt) """@type: boolean""" self.left_control = self.leftCtrl = bool(left_control) """@type: boolean""" self.right_control = self.rightCtrl = bool(right_control) """@type: boolean""" self.shift = bool(shift) """True if shift was held down during this event. @type: boolean""" self.alt = self.left_alt or self.right_alt """True if alt was held down during this event. @type: boolean""" self.control = self.left_control or self.right_control """True if control was held down during this event. @type: boolean""" self.left_meta = bool(left_meta) self.right_meta = bool(right_meta) self.meta = self.left_meta or self.right_meta def __repr__(self): parameters = [] for attr in ('key', 'char', 'text', 'shift', 'left_alt', 'right_alt', 'left_control', 'right_control', 'left_meta', 'right_meta'): value = getattr(self, attr) if value: parameters.append('%s=%r' % (attr, value)) return '%s(%s)' % (self.__class__.__name__, ', '.join(parameters)) class KeyDown(KeyEvent): """Fired when the user presses a key on the keyboard or a key repeats. """ type = 'KEYDOWN' class KeyUp(KeyEvent): """Fired when the user releases a key on the keyboard. """ type = 'KEYUP' _mouseNames = {1: 'LEFT', 2: 'MIDDLE', 3: 'RIGHT', 4: 'SCROLLUP', 5: 'SCROLLDOWN'} class MouseButtonEvent(Event):
class MouseDown(MouseButtonEvent): """Fired when a mouse button is pressed.""" __slots__ = () type = 'MOUSEDOWN' class MouseUp(MouseButtonEvent): """Fired when a mouse button is released.""" __slots__ = () type = 'MOUSEUP' class MouseMotion(Event): """Fired when the mouse is moved.""" type = 'MOUSEMOTION' def __init__(self, pos, cell, motion, cellmotion): self.pos = pos """(x, y) position of the mouse on the screen. type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console. type: (int, int)""" self.motion = motion """(x, y) motion of the mouse on the screen. type: (int, int)""" self.cellmotion = cellmotion """(x, y) mostion of the mouse moving over cells on the root console. type: (int, int)""" class App(object): """ Application framework. - ev_*: Events are passed to methods based on their L{Event.type} attribute. If an event type is 'KEYDOWN' the ev_KEYDOWN method will be called with the event instance as a parameter. - key_*: When a key is pressed another method will be called based on the L{KeyEvent.key} attribute. For example the 'ENTER' key will call key_ENTER with the associated L{KeyDown} event as its parameter. - L{update}: This method is called every loop. It is passed a single parameter detailing the time in seconds since the last update (often known as deltaTime.) You may want to call drawing routines in this method followed by L{tdl.flush}. """ __slots__ = ('__running', '__prevTime') def ev_QUIT(self, event): """Unless overridden this method raises a SystemExit exception closing the program.""" raise SystemExit() def ev_KEYDOWN(self, event): """Override this method to handle a L{KeyDown} event.""" def ev_KEYUP(self, event): """Override this method to handle a L{KeyUp} event.""" def ev_MOUSEDOWN(self, event): """Override this method to handle a L{MouseDown} event.""" def ev_MOUSEUP(self, event): """Override this method to handle a L{MouseUp} event.""" def ev_MOUSEMOTION(self, event): """Override this method to handle a L{MouseMotion} event.""" def update(self, deltaTime): """Override this method to handle per frame logic and drawing. @type deltaTime: float @param deltaTime: This parameter tells the amount of time passed since the last call measured in seconds as a floating point number. You can use this variable to make your program frame rate independent. Use this parameter to adjust the speed of motion, timers, and other game logic. """ pass def suspend(self): """When called the App will begin to return control to where L{App.run} was called. Some further events are processed and the L{App.update} method will be called one last time before exiting (unless suspended during a call to L{App.update}.) """ self.__running = False def run(self): """Delegate control over to this App instance. This function will process all events and send them to the special methods ev_* and key_*. A call to L{App.suspend} will return the control flow back to where this function is called. And then the App can be run again. But
def __init__(self, button, pos, cell): self.button = _mouseNames[button] """Can be one of 'LEFT', 'MIDDLE', 'RIGHT', 'SCROLLUP', 'SCROLLDOWN' @type: string""" self.pos = pos """(x, y) position of the mouse on the screen @type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console @type: (int, int)"""
identifier_body
event.py
on the screen @type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console @type: (int, int)""" class MouseDown(MouseButtonEvent): """Fired when a mouse button is pressed.""" __slots__ = () type = 'MOUSEDOWN' class MouseUp(MouseButtonEvent): """Fired when a mouse button is released.""" __slots__ = () type = 'MOUSEUP' class MouseMotion(Event): """Fired when the mouse is moved.""" type = 'MOUSEMOTION' def __init__(self, pos, cell, motion, cellmotion): self.pos = pos """(x, y) position of the mouse on the screen. type: (int, int)""" self.cell = cell """(x, y) position of the mouse snapped to a cell on the root console. type: (int, int)""" self.motion = motion """(x, y) motion of the mouse on the screen. type: (int, int)""" self.cellmotion = cellmotion """(x, y) mostion of the mouse moving over cells on the root console. type: (int, int)""" class App(object): """ Application framework. - ev_*: Events are passed to methods based on their L{Event.type} attribute. If an event type is 'KEYDOWN' the ev_KEYDOWN method will be called with the event instance as a parameter. - key_*: When a key is pressed another method will be called based on the L{KeyEvent.key} attribute. For example the 'ENTER' key will call key_ENTER with the associated L{KeyDown} event as its parameter. - L{update}: This method is called every loop. It is passed a single parameter detailing the time in seconds since the last update (often known as deltaTime.) You may want to call drawing routines in this method followed by L{tdl.flush}. """ __slots__ = ('__running', '__prevTime') def ev_QUIT(self, event): """Unless overridden this method raises a SystemExit exception closing the program.""" raise SystemExit() def ev_KEYDOWN(self, event): """Override this method to handle a L{KeyDown} event.""" def ev_KEYUP(self, event): """Override this method to handle a L{KeyUp} event.""" def ev_MOUSEDOWN(self, event): """Override this method to handle a L{MouseDown} event.""" def ev_MOUSEUP(self, event): """Override this method to handle a L{MouseUp} event.""" def ev_MOUSEMOTION(self, event): """Override this method to handle a L{MouseMotion} event.""" def update(self, deltaTime): """Override this method to handle per frame logic and drawing. @type deltaTime: float @param deltaTime: This parameter tells the amount of time passed since the last call measured in seconds as a floating point number. You can use this variable to make your program frame rate independent. Use this parameter to adjust the speed of motion, timers, and other game logic. """ pass def suspend(self): """When called the App will begin to return control to where L{App.run} was called. Some further events are processed and the L{App.update} method will be called one last time before exiting (unless suspended during a call to L{App.update}.) """ self.__running = False def run(self): """Delegate control over to this App instance. This function will process all events and send them to the special methods ev_* and key_*. A call to L{App.suspend} will return the control flow back to where this function is called. And then the App can be run again. But a single App instance can not be run multiple times simultaneously. """ if getattr(self, '_App__running', False): raise _tdl.TDLError('An App can not be run multiple times simultaneously') self.__running = True while self.__running: self.runOnce() def run_once(self): """Pump events to this App instance and then return. This works in the way described in L{App.run} except it immediately returns after the first L{update} call. Having multiple L{App} instances and selectively calling runOnce on them is a decent way to create a state machine. """ if not hasattr(self, '_App__prevTime'): self.__prevTime = _time.clock() # initiate __prevTime for event in get(): if event.type: # exclude custom events with a blank type variable # call the ev_* methods method = 'ev_%s' % event.type # ev_TYPE getattr(self, method)(event) if event.type == 'KEYDOWN': # call the key_* methods method = 'key_%s' % event.key # key_KEYNAME if hasattr(self, method): # silently exclude undefined methods getattr(self, method)(event) newTime = _time.clock() self.update(newTime - self.__prevTime) self.__prevTime = newTime #_tdl.flush() def _processEvents(): """Flushes the event queue from libtcod into the global list _eventQueue""" global _mousel, _mousem, _mouser, _eventsflushed, _pushedEvents _eventsflushed = True events = _pushedEvents # get events from event.push _pushedEvents = [] # then clear the pushed events queue mouse = _ffi.new('TCOD_mouse_t *') libkey = _ffi.new('TCOD_key_t *') while 1: libevent = _lib.TCOD_sys_check_for_event(_lib.TCOD_EVENT_ANY, libkey, mouse) if not libevent: # no more events from libtcod break #if mouse.dx or mouse.dy: if libevent & _lib.TCOD_EVENT_MOUSE_MOVE: events.append(MouseMotion((mouse.x, mouse.y), (mouse.cx, mouse.cy), (mouse.dx, mouse.dy), (mouse.dcx, mouse.dcy))) mousepos = ((mouse.x, mouse.y), (mouse.cx, mouse.cy)) for oldstate, newstate, released, button in \ zip((_mousel, _mousem, _mouser), (mouse.lbutton, mouse.mbutton, mouse.rbutton), (mouse.lbutton_pressed, mouse.mbutton_pressed, mouse.rbutton_pressed), (1, 2, 3)): if released: if not oldstate: events.append(MouseDown(button, *mousepos)) events.append(MouseUp(button, *mousepos)) if newstate: events.append(MouseDown(button, *mousepos)) elif newstate and not oldstate: events.append(MouseDown(button, *mousepos)) if mouse.wheel_up: events.append(MouseDown(4, *mousepos)) if mouse.wheel_down: events.append(MouseDown(5, *mousepos)) _mousel = mouse.lbutton _mousem = mouse.mbutton _mouser = mouse.rbutton if libkey.vk == _lib.TCODK_NONE: break if libkey.pressed: keyevent = KeyDown else: keyevent = KeyUp if libkey.vk == _lib.TCODK_TEXT: # Hack 2017-03-22 HexDecimal # Fix undefined libtcod behaviour which breaks 32-bit builds. libkey.c = b'\x00' libkey.shift = False libkey.lalt = libkey.ralt = False libkey.lctrl = libkey.rctrl = False libkey.lmeta = libkey.rmeta = False events.append( keyevent( libkey.vk, libkey.c.decode('ascii', errors='ignore'), _ffi.string(libkey.text).decode('utf-8'), libkey.shift, libkey.lalt, libkey.ralt, libkey.lctrl, libkey.rctrl, libkey.lmeta, libkey.rmeta, ) ) if _lib.TCOD_console_is_window_closed(): events.append(Quit()) _eventQueue.extend(events) def get(): """Flushes the event queue and returns the list of events. This function returns L{Event} objects that can be identified by their type attribute or their class. @rtype: iterator @return: Returns an iterable of objects derived from L{Event} or anything put in a L{push} call. If the iterator is deleted or otherwise interrupted before finishing the excess items are preserved for the next call. """ _processEvents() return _event_generator() def _event_generator(): while _eventQueue: # if there is an interruption the rest of the events stay untouched # this means you can break out of a event.get loop without losing # the leftover events yield(_eventQueue.pop(0)) raise StopIteration() def
wait
identifier_name
dealerDispatcherList.js
*) pageList: [10, 25, 50, 100], //这个接口需要处理bootstrap table传递的固定参数,并返回特定格式的json数据 url: "${ctx}/process/shopmsg/shopMsg/dataDispatcher", //默认值为 'limit',传给服务端的参数为:limit, offset, search, sort, order Else //queryParamsType:'', ////查询参数,每次调用是会带上这个参数,可自定义 queryParams : function(params) { var searchParam = $("#searchForm").serializeJSON(); searchParam.pageNo = params.limit === undefined? "1" :params.offset/params.limit+1; searchParam.pageSize = params.limit === undefined? -1 : params.limit; searchParam.orderBy = params.sort === undefined? "" : params.sort+ " "+ params.order; return searchParam; }, //分页方式:client客户端分页,server服务端分页(*) sidePagination: "server", contextMenuTrigger:"right",//pc端 按右键弹出菜单 contextMenuTriggerMobile:"press",//手机端 弹出菜单,click:单击, press:长按。 contextMenu: '#context-menu', onContextMenuItem: function(row, $el){ if($el.data("item") == "edit"){ window.location = "${ctx}/shop/dealer/dealer/form?id=" + row.id; } else if($el.data("item") == "delete"){ del(row.id); } }, onClickRow: function(row, $el){ }, columns: [{ checkbox: true } ,{ field: 'companyCode', title: '经销商编码', sortable: true } ,{ field: 'companyName', title: '经销商名称', sortable: true } ,{ field: 'contacts', title: '联系人', sortable: true } ,{ field: 'mobile', title: '手机', sortable: true } ,{ field: 'undertakeArea', title: '承接区域', sortable: true } ,{ field: 'underProduct', title: '承接品类', sortable: true },{ field: 'gmName', title: '工贸名称', sortable: true }, /* ,{ field: 'channelName', title: '渠道名称', sortable: true } ,{ field: 'taxCode', title: '税码', sortable: true } ,{ field: 'kjtAccount', title: '快捷通账号', sortable: true } ,{ field: 'legalPersonName', title: '法人姓名', sortable: true } ,{ field: 'legalPersonIdCard', title: '法人身份号', sortable: true } ,{ field: 'companyTel', title: '公司电话', sortable: true } */ /* ,{ field: 'undertakeArea', title: '承接区域', sortable: true }*/ ] }); if(navigator.userAgent.match(/(iPhone|iPod|Android|ios)/i)){//如果是移动端 $('#dealerTable').bootstrapTable("toggleView"); } $('#dealerTable').on('check.bs.table uncheck.bs.table load-success.bs.table ' + 'check-all.bs.table uncheck-all.bs.table', function () { var sels = $('#dealerTable').bootstrapTable('getSelections'); $('#remove').prop('disabled', ! sels.length); $('#edit').prop('disabled', sels.length!=1); if(sels.length == 1 && sels[0].auditState =='0'){ $('#audit').prop('disabled', false); } else { $('#audit').prop('disabled', true); } }); $("#btnImport").click(function(){ jh.open({ type: 1, area: [500, 300], title:"导入数据", content:$("#importBox").html() , btn: ['下载模板','确定', '关闭'], btn1: function(index, layero){ window.location='${ctx}/shop/dealer/dealer/import/template'; }, btn2: function(index, layero){ var inputForm =top.$("#importForm"); var top_iframe = top.getActiveTab().attr("name");//获取当前active的tab的iframe inputForm.attr("target",top_iframe);//表单提交成功后,从服务器返回的url在当前tab中展示 inputForm.onsubmit = function(){ jh.loading(' 正在导入,请稍等...'); } inputForm.submit(); jh.close(index); }, btn3: function(index){ jh.close(index); } }); }); $("#search").click("click", function() {// 绑定查询按扭 $('#dealerTable').bootstrapTable('refresh'); }); $("#reset").click("click", function() {// 绑定查询按扭 $("#searchForm input").val(""); $("#searchForm select").val(""); $("#searchForm .select-item").html(""); $('#dealerTable').bootstrapTable('refresh'); }); }); function getIdSelections() { return $.map($("#dealerTable").bootstrapTable('getSelections'), function (row) { return row.id }); } function getNameSelections() { return $.map($("#dealerTable").bootstrapTable('getSelections'), function (row) { return row.companyName }); } function del(id){ jh.confirm('确认要删除该经销商记录吗?', function(){ jh.loading(); jh.get("${ctx}/shop/dealer/dealer/delete?id="+id, function(data){ if(data.success){ $('#dealerTable').bootstrapTable('refresh'); jh.success(data.msg); }else{ jh.error(data.msg); } }) }); } function deleteAll(){ jh.confirm('确认要删除该经销商记录吗?', function(){ jh.loading(); jh.get("${ctx}/shop/dealer/dealer/deleteAll?ids=" + getIdSelections(), function(data){ if(data.success){ $('#dealerTable').bootstrapTable('refresh'); jh.success(data.msg); }else{ jh.error(data.msg); } }) }) } function edit(){ window.location = "${ctx}/shop/dealer/dealer/form?id=" + getIdSelections(); } function audit(id){ if(id == undefined){ id = getIdSelections(); } jh.open({ type: 1, area: ['400px','200px'], title:"审核", content:$("#auditBox").html() , scrollbar: false, btn: ['确定', '关闭'], btn1: function(index, layero){ var inputForm = layero.find("#auditForm"); var sel = inputForm.find("input[name='auditState']:checked").val(); if(sel==undefined){ jh.alert('请选择是否同意'); return false; } if(sel=='2'){ var auditDesc = inputForm.find('#auditDesc'); if($.trim(auditDesc.val())==''){ jh.alert('请输入不同意原因'); return false; } } jh.loading(' 正在审核,请稍等...'); jh.post("${ctx}/shop/dealer/dealer/audit",inputForm.serialize(),function(data){ if(data.success){ $('#dealerTable').bootstrapTable('refresh'); jh.success(data.msg); }else{ jh.error(data.msg); } }); jh.close(index); }, btn2: function(index){ jh.close(index); }, success: function(layero, index){ //窗口打开后做初始化 var contElem = layero.find('.layui-layer-content'); var inputForm = contElem.find("#auditForm"); var idElem = inputForm.find('#auditId'); idElem.val(id); var auditDescDiv = inputForm.find('#auditDescDiv'); var auditDesc = inputForm.find('#auditDesc'); var conHeight = contElem.height(); var layerHeight = layero.height(); inputForm.find("input[name='auditState']").change(function(){ var sel = $(this).val(); if(sel == "1"){ auditDescDiv.addClass('hide'); auditDesc.val(''); layero.height(layerHeight); contElem.height(conHeight); } else if(sel == "2"){ auditDescDiv.removeClass('hide'); layero.height(layerHeight+120); contElem.height(conHeight+120); auditDesc.focus(); } }) } }); } var callbackdata = function () { var arrIds = getIdSelections(); var arrNames = getNameSelections(); return { arrIds:arrIds, arrNames:arrNames }; } </script>
conditional_block
dealerDispatcherList.js
true, //显示 内容列下拉框 showColumns: true, //显示到处按钮 showExport: true, //显示切换分页按钮 showPaginationSwitch: true, //最低显示2行 minimumCountColumns: 2, //是否显示行间隔色 striped: true, //是否使用缓存,默认为true,所以一般情况下需要设置一下这个属性(*) cache: false, //是否显示分页(*) pagination: true, //排序方式 sortOrder: "asc", //初始化加载第一页,默认第一页 pageNumber:1, //每页的记录行数(*) pageSize: 10, //可供选择的每页的行数(*) pageList: [10, 25, 50, 100], //这个接口需要处理bootstrap table传递的固定参数,并返回特定格式的json数据 url: "${ctx}/process/shopmsg/shopMsg/dataDispatcher", //默认值为 'limit',传给服务端的参数为:limit, offset, search, sort, order Else //queryParamsType:'', ////查询参数,每次调用是会带上这个参数,可自定义 queryParams : function(params) { var searchParam = $("#searchForm").serializeJSON(); searchParam.pageNo = params.limit === undefined? "1" :params.offset/params.limit+1; searchParam.pageSize = params.limit === undefined? -1 : params.limit; searchParam.orderBy = params.sort === undefined? "" : params.sort+ " "+ params.order; return searchParam; }, //分页方式:client客户端分页,server服务端分页(*) sidePagination: "server", contextMenuTrigger:"right",//pc端 按右键弹出菜单 contextMenuTriggerMobile:"press",//手机端 弹出菜单,click:单击, press:长按。 contextMenu: '#context-menu', onContextMenuItem: function(row, $el){ if($el.data("item") == "edit"){ window.location = "${ctx}/shop/dealer/dealer/form?id=" + row.id; } else if($el.data("item") == "delete"){ del(row.id); } }, onClickRow: function(row, $el){ }, columns: [{ checkbox: true } ,{ field: 'companyCode', title: '经销商编码', sortable: true } ,{ field: 'companyName', title: '经销商名称', sortable: true } ,{ field: 'contacts', title: '联系人', sortable: true } ,{ field: 'mobile', title: '手机', sortable: true } ,{ field: 'undertakeArea', title: '承接区域', sortable: true } ,{ field: 'underProduct', title: '承接品类', sortable: true },{ field: 'gmName', title: '工贸名称', sortable: true }, /* ,{ field: 'channelName', title: '渠道名称', sortable: true } ,{ field: 'taxCode', title: '税码', sortable: true } ,{ field: 'kjtAccount', title: '快捷通账号',
} ,{ field: 'legalPersonName', title: '法人姓名', sortable: true } ,{ field: 'legalPersonIdCard', title: '法人身份号', sortable: true } ,{ field: 'companyTel', title: '公司电话', sortable: true } */ /* ,{ field: 'undertakeArea', title: '承接区域', sortable: true }*/ ] }); if(navigator.userAgent.match(/(iPhone|iPod|Android|ios)/i)){//如果是移动端 $('#dealerTable').bootstrapTable("toggleView"); } $('#dealerTable').on('check.bs.table uncheck.bs.table load-success.bs.table ' + 'check-all.bs.table uncheck-all.bs.table', function () { var sels = $('#dealerTable').bootstrapTable('getSelections'); $('#remove').prop('disabled', ! sels.length); $('#edit').prop('disabled', sels.length!=1); if(sels.length == 1 && sels[0].auditState =='0'){ $('#audit').prop('disabled', false); } else { $('#audit').prop('disabled', true); } }); $("#btnImport").click(function(){ jh.open({ type: 1, area: [500, 300], title:"导入数据", content:$("#importBox").html() , btn: ['下载模板','确定', '关闭'], btn1: function(index, layero){ window.location='${ctx}/shop/dealer/dealer/import/template'; }, btn2: function(index, layero){ var inputForm =top.$("#importForm"); var top_iframe = top.getActiveTab().attr("name");//获取当前active的tab的iframe inputForm.attr("target",top_iframe);//表单提交成功后,从服务器返回的url在当前tab中展示 inputForm.onsubmit = function(){ jh.loading(' 正在导入,请稍等...'); } inputForm.submit(); jh.close(index); }, btn3: function(index){ jh.close(index); } }); }); $("#search").click("click", function() {// 绑定查询按扭 $('#dealerTable').bootstrapTable('refresh'); }); $("#reset").click("click", function() {// 绑定查询按扭 $("#searchForm input").val(""); $("#searchForm select").val(""); $("#searchForm .select-item").html(""); $('#dealerTable').bootstrapTable('refresh'); }); }); function getIdSelections() { return $.map($("#dealerTable").bootstrapTable('getSelections'), function (row) { return row.id }); } function getNameSelections() { return $.map($("#dealerTable").bootstrapTable('getSelections'), function (row) { return row.companyName }); } function del(id){ jh.confirm('确认要删除该经销商记录吗?', function(){ jh.loading(); jh.get("${ctx}/shop/dealer/dealer/delete?id="+id, function(data){ if(data.success){ $('#dealerTable').bootstrapTable('refresh'); jh.success(data.msg); }else{ jh.error(data.msg); } }) }); } function deleteAll(){ jh.confirm('确认要删除该经销商记录吗?', function(){ jh.loading(); jh.get("${ctx}/shop/dealer/dealer/deleteAll?ids=" + getIdSelections(), function(data){ if(data.success){ $('#dealerTable').bootstrapTable('refresh'); jh.success(data.msg); }else{ jh.error(data.msg); } }) }) } function edit(){ window.location = "${ctx}/shop/dealer/dealer/form?id=" + getIdSelections(); } function audit(id){ if(id == undefined){ id = getIdSelections(); } jh.open({ type: 1, area: ['400px','200px'], title:"审核", content:$("#auditBox").html() , scrollbar: false, btn: ['确定', '关闭'], btn1: function(index, layero){ var inputForm = layero.find("#auditForm"); var sel = inputForm.find("input[name='auditState']:checked").val(); if(sel==undefined){ jh.alert('请选择是否同意'); return false; } if(sel=='2'){ var auditDesc = inputForm.find('#auditDesc'); if($.trim(auditDesc.val())==''){ jh.alert('请输入不同意原因'); return false; } } jh.loading(' 正在审核,请稍等...'); jh.post("${ctx}/shop/dealer/dealer/audit",inputForm.serialize(),function(data){ if(data.success){ $('#dealerTable').bootstrapTable('refresh'); jh.success(data.msg); }else{ jh.error(data.msg); } }); jh.close(index); }, btn2: function(index){ jh.close(index); }, success: function(layero, index){ //窗口打开后做初始化 var contElem = layero.find('.layui-layer-content'); var inputForm = contElem.find("#auditForm"); var idElem = inputForm.find('#auditId'); idElem.val(id); var auditDescDiv = inputForm.find('#auditDescDiv'); var auditDesc =
sortable: true
random_line_split
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
51