text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Langlands' conjecture for GL(2) over global field; \(\ell \)-adic representations of the Weil group; cusp forms Drinfeld\´, V. G.; : Cohomology of compactified moduli varieties of F-sheaves of rank 2, Zap. nauchn. Sem. leningrad. Otdel. mat. Inst. Steklov (LOMI) 162, 107-158 (1987) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) simplest cubic field; quadratic twists; elliptic curve; 2-rank; ideal class group; groups of rational points Byeon, Dongho, Quadratic twists of elliptic curves associated to the simplest cubic fields, Proc. Japan Acad. Ser. A Math. Sci., 73, 10, 185-186, (1997) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Grassmann variety; Hilbert function; \(p\)-rank; incidence matrix of points; hyperplane sections; finite field Moorhouse, G.E.: Some \(P\)-ranks related to finite geometric structures. In: Johnson, N. (ed.) Mostly Finite Geometries, pp 353-364. Marcel Dekker, Inc., New York (1997) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic curve; algebraic points of small degree; Mordell-Weil group; linear systems | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic curves; function field; automorphism group Danisman, Y.; Özdemir, M., On subfields of GK and generalized GK function fields, \textit{J. Korean Math. Soc.}, 52, 2, 225-237, (2015) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational point; Selmer group; elliptic curves | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; symmetric line bundles; ampleness of rational line bundles; Mordell conjecture; product theorem; products of a subvariety C. Faber , Geometric part of Faltings's proof , In: ''[EE]'', Chapitre IX, pp. 83 - 91 . MR 1289007 | Zbl 0811.14023 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational surface; fibration; Mordell-Weil lattice K. V. Nguyen, On certain Mordell-Weil lattices of hyperelliptic type on rational surfaces, J. Math. Sci. (New York) 102 (2000), no. 2, 3938--3977. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) genus-changing algebraic curves; finite number of rational points; characteristic \(p\); function field; non-conservative algebraic curve Jeong, S.: Rational points on algebraic curves that change genus. J. number theory 67, 170-181 (1998) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) flag manifold; Schubert varieties; smoothness; rational smoothness; Billey-Postnikov decomposition; Coxeter group; enumeration; generating function Edward Richmond and William Slofstra, Staircase diagrams and enumeration of smooth Schubert varieties. J. Combin. Theory Ser. A 150 (2017), 328--376. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; compatible system of Galois representations; Weil-Deligne group Noot, R., The system of representations of the Weil-Deligne group associated to an abelian variety, Algebra Num. Theory, 7, 243-281, (2013) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Hasse-Weil bound; maximal curve; geometric Goppa code; asymptotically good sequence; survey; number of rational points; curves over finite fields; towers of function fields van der Geer, G., Curves over finite fields and codes, (European congress of mathematics, vol. II, Barcelona, 2000, Prog. math., vol. 202, (2001), Birkhäuser Basel), 225-238 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) class field theory of arithmetical schemes; Bloch's exact sequence; reciprocity theorem; abelian fundamental group; idele class groups S. Saito, Unramified class field theory of arithmetic schemes, Ann. Math., 121 (1985), 251--281. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Mordell-Weil lattices; elliptic surfaces; height pairing; minimal height of a non-torsion point T. SHIODA, Existence of a rational elliptic surface with a given Mordell-Weil lattice, Proc. Japan Acad Ser. A, Math. Sci. 68 (1992), 251-255. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Chow group; rational point; finite fields H. Esnault, Varieties over a finite field with trivial Chow group of \(\(0\)\)-cycles have a rational point. Invent. Math. 151, 187-191 (2003) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) enumerative geometry of curves; quantum field theory; Gromov-Witten invariants; torus actions; Feynman diagrams; integrable system; infinite Grassmannians; rational curves; Calabi-Yau manifolds M. Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island 1994), Progr. Math. 129, Birkhäuser, Boston (1995), 335-368. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational points; Néron-Severi group; height; height zeta-function P. Swinnerton-Dyer, Counting points on cubic surfaces, II, Geometric methods in algebra and number theory, Progr. Math., 235, pp. 303--310, Birkhäuser, Basel, 2005. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational points; Heisenberg group; height zeta function Joseph A. Shalika and Yuri Tschinkel, Height zeta functions of equivariant compactifications of the Heisenberg group, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 743 -- 771. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) supersingular K3 surface; elliptic fibration; rational extremal elliptic surfaces; Mordell-Weil groups Ito, H.: On extremal elliptic surfaces in characteristic 2 and 3. Hiroshima math. J. 32, 179-188 (2002) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) regulator; polylogarithm; zeta function; Hopf algebra; rational homotopy theory; cohomology of groups; Deligne cohomology; de Rham cohomology; Lie algebra cohomology Burgos Gil, J.I.: The Regulators of Beilinson and Borel. CRM Monographs, vol.~15. American Math. Soc., Providence (2002) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) ramified covering; Chern class; self-intersection index; homology group; Jacobian conjecture A. G. Vitushkin, ''Homology of a ramified covering overC 2,''Mat. Zametki [Math. Notes],64, No. 62, 839--846 (1998). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Prym variety; Jacobian; Schottky problem; Riemann surfaces; theta divisor; period matrix; Heisenberg group; principally polarized abelian variety B. van Geemen, The Schottky problem and second order theta functions, in Workshop on Abelian Varieties and Theta Functions (Morelia, 1996), Aportaciones Matemáticas: Investigación 13 Sociedad Matematica Mexicana, México, 1998, pp. 41--84. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) \(\mathbb{R}\)-place; space of \(\mathbb{R}\)-places; path-connected component; path-connected space; rational function field; maximal field; Harrison set | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) non-Archimedean analytic torus; abelian variety over non-archimedean valued field; maximal rank of Neron-Severi group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) topological version of Weil's theorem; birational group law; group chunk; homogeneous group; quasi-algebraic group chunks; differentially algebraic group chunks; model theory; first-order definable L. P. D. van den Dries, Weil's group chunk theorem: a topological setting, Illinois J. Math. 34 (1990), no. 1, 127 -- 139. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) effective field theory; D-particle; orbifolds; orbifold singularities; K3 surface; cyclic group action Greene, B. R.; Lazaroiu, C. I.; Yi, P.: D-particles on T4/zn orbifolds and their resolutions. Nucl. phys. B 539, 135-165 (1999) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) central extensions of Lie algebras; conformal groups; Witt algebra; conformal field theories; central extensions of groups; two-dimensional conformal field theory; Virasoro algebra; conformal symmetries in dimension two; representation; Verma modules; Kac determinant; diffeomorphism group of the circle; bosonic string theory; Verlinde formula; fusion rule; dimension formula; spaces of generalized theta functions; moduli spaces of vector bundles; compact Riemann surfaces; bibliography Schottenloher, M.: A mathematical introduction to conformal field theory. (1997) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) positive characteristic; abelian variety; jet schemes; Galois theory; restriction of scalars functor; lifts of points; \(p\)-divisible points; Manin-Mumford conjecture; Mordell-Lang conjecture Rössler, D, On the Manin-Mumford and Mordell-lang conjectures in positive characteristic, Algebra Number Theory, 7, 2039-2057, (2013) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) representations of central extension; conformal field theory; stable curves; gauge symmetries; integrable representations of Lie algebras; sheaf of twisted first order differential operators; monodromy; mapping class group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian motive; Tate motive; Tannakian category; polarizable rational Hodge structure; Mumford-Tate group; Shimura varieties; weight; reflex field; conjecture of Langlands and Rapaport Milne, J.S., Shimura varieties and motives, Seattle, WA, 1991, Providence | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) binary forms; ternary forms; symmetrization; Rubik cube; line bundles; vector bundles; Jordan algebra; Hermitian hypercubes; moduli space; Selmer group; Mordell Weil group; prehomogeneous vector spaces; genus one curves; coregular spaces Bhargava, M.; Ho, W., Coregular spaces and genus one curves, Cambridge J. Math., 4, 1, 1-119, (2016) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) local class field theory; maximal unramified extension; formal groups; local cyclotomic field; norm residue symbol; Artin-Hasse formula; Brauer group; cohomology theory K. Iwasawa, \textit{Local Class Field Theory} [Russian translation], Mir, Moscow (1983). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) variety of linear systems on a general curve; cohomology of Jacobian; Castelnuovo-Severi-Kleiman conjecture; algebraic intersection number; Schubert calculus Griffiths, P. \& Harris, J.,On the variety of special linear systems on a general algebraic curves, Duke Math. J.,47(1980), 233--272. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Galois group; function field; Riemann surface; symmetric permutation; group; punctured spheres; moduli spaces | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) modular curve; abelian varieties with twist; \(X_ 0\); simple factors of the Jacobian variety; correspondence between cusp forms of weight 2 and elliptic curves; Taniyama-Weil conjecture J.E. Cremona, Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields, J. London Math. Soc. (2), 45 (1992), 404-416. MR 93h:11056 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) torsors of finite commutative group schemes; local field; Fontaine method; rank of the Jacobian; Fermat curve; cyclic extensions | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic curve on abelian variety; Mordell conjecture; rational points on algebraic curves; Manin-Mumford conjecture; torsion points M. Raynaud, Courbes sur une variété abélienne et points de torsion. \textit{Inventiones} \textit{Mathematica 71}(1983), 207--233.Zbl 0564.14020 MR 0688265 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection theory; tropical variety; intersection product; Psi-class; moduli of curves Kerber, M; Markwig, H, Intersecting psi-classes on tropical \(M_{0, n}\), Int. Math. Res. Not., 2009, 221-240, (2009) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) height function; non-archimedean local height pairings; intersection theory Call, G.; Silverman, J., \textit{canonical heights on varieties with morphisms}, Compos. Math., 89, 163-205, (1993) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational maps; group actions on varieties; geometric invariant theory; moduli spaces; complex dynamical systems; entropy; compactification DeMarco, L., The moduli space of quadratic rational maps, Journal of the American Mathematical Society, 20, 321-355, (2007) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) tropical curves; moduli spaces of marked rational tropical curves; moduli spaces of marked rational curve; tropicalization; tropical intersection theory A. Gross, Correspondence theorems via tropicalizations of moduli spaces. Commun. Contemp. Math. (2014, to appear). arXiv:1406.1999 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) maximal curves; genus; Hasse-Weil bound; Hermitian curve; Fermat curve; curves over a finite field; configurations; number of rational points | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic group; classical group; exceptional group; simply connected group; adjoint group; quasisplit group; principal homogeneous space; zero cycle; rational point; Galois cohomology J. Black, Zero cycles of degree one on principal homogeneous spaces, Journal of Algebra, 334 (2011), 232--246.Zbl 1271.11046 MR 2787661 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Manin's conjecture; Weil restriction; algebraic variety; number field; counter-example; height Loughran, D., Rational points of bounded height and the Weil restriction, Israel J. Math., 210, 1, 47-79, (2015) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) homogeneous ideal; ample line bundle; Picard group; Hilbert function; Grassmannian; Fano variety | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic function field; automorphisms of rational function field; Lüroth extensions; \(PSL({\mathbb{F}}_ q)\); holomorphic differentials; different; genus | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Jacobi quartic curves; Jacobi intersection curves; Tate pairing; Miller function; group law; geometric interpretation; birational equivalence Duquesne S, Fouotsa E (2013) Tate pairing computation on Jacobis elliptic curves. In: Proceedings of the 5th international conference on pairing based cryptography, pp. 254-269 (2012) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) class field theory; local field; Schur group; Galois group; cup product pairing; norm residue symbol | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) computational complexity; algebraic geometry; irreducible polynomials; primitive polynomials; finite fields; polynomial factorization; distribution of primitive polynomials; construction of bases; algebraic number theory; computer science; coding theory; cryptography; factorization of bivariate polynomials; fast algorithms; discrete logarithm problem; fast exponentiation; polynomial multiplication; algebraic curves over finite fields; strengthening of the Weil-Serre bound; rational points; elliptic curves; distribution of primitive points; linear recurring sequences; automata; integer factorization; computational algebraic number theory; algebraic complexity theory; polynomials with integer coefficients 20.I. E. Shparlinski, \(Computational and algorithmic problems in finite fields\), Kluwer, Dordtrecht-Boston-London, 1992. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Zariski topology; Zariski group; group of finite Morley rank; algebraic group; algebraic geometry; smooth variety; bad groups; algebraically closed field | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) cubic surface; discriminant polynomial; fiber bundle; incidence variety; moduli space; rational cohomology; simplicial resolution; universal family; Weyl group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Mordell-Weil group; elliptic curve; Eisenstein quotient DOI: 10.1080/00927879508825337 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian varieties; Mordell-Weil group; Alexander polynomials Dimca, A.: Differential forms and hypersurface singularities. In: Singularity theory and its applications, Part I (Coventry, 1988/1989), vol. 1462 of Lecture Notes in Math., pp. 122-153. Springer, Berlin (1991) | 1 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational point; periodically finite variety; periodic point; height functions; periodically finite abelian varieties Kawaguchi S, Some remarks on rational periodic points,Math. Res. Lett. 6 (1999) 495--509 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Hasse principle; cubic; quadratic; system; rational point; Diophantine equations; circle method; Weyl sum; van der Corput method; complete intersection Browning, T. D., Dietmann, R., Heath-Brown, D. R.: Rational points on intersections of cubic and quadric hypersurfaces. J. Inst. Math. Jussieu 14, 703--749 (2015)Zbl 1327.11043 MR 3394125 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) quadratic forms; function field of a quadric; Pfister forms; Pfister neighbor; Galois cohomology; unramified cohomology; Voevodsky's motivic cohomology; Chow group B. KAHN - R. SUJATHA, Motivic cohomology and unramified cohomology of quadrics. J. Eur. Math. Soc. (JEMS), 2 no. 2 (2000), pp. 145-177. Zbl1066.11015 MR1763303 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Euler product; arithmetic surface; Jacobian zeta function; modular curve; survey; Dirichlet series; L-series of elliptic curves; conjecture of Birch and Swinnerton-Dyer; Hasse-Weil conjecture; analytic continuation; functional equation; Shimura-Taniyama conjecture; Serre's conjecture; modular representations | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) cyclotomic field; class field theory; ray class field; absolute Galois group; Heisenberg group; Fermat curve; homology; Galois cohomology; obstruction; transgression | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) adjunction theory; low codimension; quadric; non log-general-type; classification; codimension three; Mukai variety; complete intersection | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) divisor class group; normal variety; local complete intersection domain Brevik, J.; Nollet, S., Grothendieck-Lefschetz theorem with base locus, Isr. J. math., 212, 107-122, (2016) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) curves of genus two; Jacobians; canonical height; infinite descent; Mordell-Weil group; algorithm E.V. Flynn and N.P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith., 79 (1997), 333-352. MR 98f:11066 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) modular curves; Eisenstein ideal; Mordell-Weil group; Shimura subgroups Mazur, B., Modular curves and the Eisenstein ideal, Publ. Math. Inst. Hautes Études Sci., 47, 33-186, (1977) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational point; conic; Brauer group; Poncelet curve | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Chow group; conic bundles over a nonsingular surface; group of codimension 2 cycles; intermediate Jacobian; Prym variety M. Beltrametti,On the Chow group and the intermediate Jacobian of the conic bundle, Annali Mat. Pura Appl.,141 (1985), pp. 331--351. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Fermat's last theorem; Diophantine equations; elliptic functions; elliptic curves; modular functions; Galois theory; representation theory; Weil-Shimura-Taniyama conjecture; abc conjecture; Serre conjectures; Mordell-Weil theorem Hellegouarch, Y.: Invitation to the Mathematics of Fermat-Wiles. Academic Press, Cambridge (2002) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Abelian variety; Zariski set; differentially closed field; Mordell-Lang conjecture; Manin-Mumford conjecture Anand Pillay, Model theory and Diophantine geometry, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 4, 405 -- 422. , https://doi.org/10.1090/S0273-0979-97-00730-1 Anand Pillay, Erratum to: ''Model theory and Diophantine geometry'', Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 1, 67. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Bernstein-Kushnirenko theorem; semigroup of integral points; convex body; mixed volume; Alexandrov-Fenchel inequality; Brunn-Minkowski inequality; Hodge index theorem; intersection theory of Cartier divisors; Hilbert function Kaveh, K., Khovanskii, A.G.: Algebraic equations and convex bodies. In: Itenberg, I., Jöricke, B., Passare, M. (eds.) Perspectives in Analysis, Geometry, and Topology, on the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics, vol. 296, pp. 263-282. Birkhäuser Verlag Ag (2012) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) geometric fibres; Châtelet surface; rational point; Hasse's principle; torseur; weak approximation; Brauer group J. Colliot-Thélène, ''Surfaces rationnelles fibrées en coniques de degré \(4\),'' in Séminaire de Théorie des Nombres, Paris 1988-1989, Boston, MA: Birkhäuser, 1990, vol. 91, pp. 43-55. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) class field theory; arithmetic scheme; fundamental group Wiesend G.: Class field theory for arithmetic schemes. Math. Z. 256(4), 717--729 (2007) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) local Langlands conjecture; automorphic form; Shimura variety; unitary group; formal group; GL(n); Weil-Deligne group; survey Carayol, H., Preuve de la conjecture de Langlands locale pour \(\text{GL} _{n}\): travaux de harris-Taylor et henniart, No. 266, 191-243, (2000) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) cyclotomic function field; Jacobian; Hasse-Witt invariant | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) tensor product of quaternion algebras; central simple algebras; orthogonal involution; Brauer-Severi variety; involution variety; function fields; generic isotropic splitting field; Brauer groups; Quillen \(K\)-theory D. Tao, ''A variety associated to an algebra with involution'',J. Algebra,168, 479--520 (1994). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) characteristic \(p\); rational function field; smoothness Reinhold Hübl and Ernst Kunz, On algebraic varieties over fields of prime characteristic, Arch. Math. (Basel) 62 (1994), no. 1, 88 -- 96. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) plane curve; finite field; rational point | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Chow group; algebraic cycles; rational equivalence; cycle map; Abel- Jacobi map; intermediate Jacobian T. Shioda, ``Algebraic cycles on hypersurfaces in \(\mathbbP^N \)'' in Algebraic Geometry (Sendai, Japan, 1985) , Adv. Stud. Pure Math. 10 , North-Holland, Amsterdam, 1987, 717--732. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic curve over function field; elliptic surface; integral solutions; rank; rational points Bremner, A.: On the equationy 2=x 3+k over function fields, Proc. NATO ASI, Banff, Alberta: Kluwer 1989 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Nullstellensatz; free algebra; rational identity; division ring; skew field; spherical isometry; non commutative unitary group; positivstellensatz; real algebraic geometry; free analysis Klep, I.; Vinnikov, V.; Volčič, J., Null- and positivstellensätze for rationally resolvable ideals | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) unipotent representation; Jacobian; local class field theory; Tate module; exponent of Artin character; maximal unramified extension; semi-stable reduction; modular curve Krir, M.: Degré d'une extension de \({\mathbb{Q}}_p^{\mathrm nr}\) sur laquelle \(J_0(N)\) est semi-stable. Ann. Inst. Fourier (Grenoble) \textbf{46}(2), 279-291 (1996) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) secant variety; variety of reducible hypersurfaces; variety of reducible forms; intersection theory; weak Lefschetz Property; Froeberg's Conjecture | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Generalized Airy function; Intersection number; Flat basis; Generalized Veronese variety; Twisted de Rham cohomology | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Brauer group of the rational function fields | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Galois point; plane curve; rational point; finite field | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection theory; spherical varieties; reductive group actions; Chow homology groups Fulton, W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Algebraic Geom. 4, 181--193 (1995) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) hyperelliptic curve; non-hyperelliptic curve; Jacobian varieties; eta function; theta functions; isogeny; Kummer variety | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Hermite-Joubert problem; étale algebra; hypersurface; rational point; \(p\)-closed field; elliptic curve | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Lefschetz fixed point formula; representations; character functions; Weil conjectures; Steinberg representation; Green polynomials; intersection cohomology | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) groups; linear algebra; infinite dimensional spaces; systems of linear differential equations; symmetry; finite subgroups of rotation group; free groups; generators; relations; Todd-Coxeter algorithm; bilinear forms; spectral theorems; linear groups; group representations; rings; algebraic geometry; factorization; modules; function fields and their relations to Riemann surfaces; Galois theory | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) quartic number fields; elliptic curve; Mordell-Weil group; \(j\)-invariant; torsion subgroup Christine S. Abel-Hollinger and Horst G. Zimmer, Torsion groups of elliptic curves with integral \?-invariant over multiquadratic fields, Number-theoretic and algebraic methods in computer science (Moscow, 1993) World Sci. Publ., River Edge, NJ, 1995, pp. 69 -- 87. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Chern classes; Weil divisors; Picard group of moduli variety; factoriality of moduli variety Drezet, J.-M. , Groupe de Picard des varietés de modules de faisceaux semi-stables sur P2(C) , Ann. Inst. Fourier 38 (1988), 105-168. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) automorphism group; rational point; maximal curve; canonical representation; hyperelliptic curve Gunby, G.B.; Smith, A.; Yuan, A., Irreducible canonical representations in positive characteristic, Res. number theor., 1, 3, 1-25, (2015) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Witt group; function field | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) public key cryptography; discrete logarithm; abelian varieties over finite fields; Jacobian varieties of hyperelliptic curves; Galois theory; Weil descent; Tate duality G. Frey, Applications of arithmetical geometry to cryptographic constructions, in Proceedings of the Fifth International Conference on Finite Fields and Applications (Springer, Berlin, 2001), pp. 128--161 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection numbers; biextensions; \(p\)-adic height pairings; Néron- Tate pairing on the Jacobian of a curve; Arakelov intersection theory | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) categorical quotients; algebraic group actions; algebraic variety; unipotent group; constructable set; geometric invariant theory; Cox ring Arzhantsev, I.V.; Celik, D.; Hausen, J., Factorial algebraic group actions and categorical quotients, J. Algebra, 387, 87-98, (2013) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) index; GSV-index; vector field; complete intersection; complex; homology of complexes; homological index; Buchsbaum--Eisenbud theory Graf von Bothmer, H.-Ch.; Ebeling, Wolfgang; Gómez-Mont, Xavier, An algebraic formula for the index of a vector field on an isolated complete intersection singularity, Ann. Inst. Fourier (Grenoble), 58, 5, 1761-1783, (2008) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) class field theory; motivic homology; abelian étale fundamental group M. Uzun, {Motivic homology and class field theory over p-adic fields}, Journal of Number Theory {160} (2016), 566--585. DOI 10.1016/j.jnt.2015.09.004; zbl 1396.14022; MR3425223 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) miniversal deformation; semi-universal deformation; rational double point; simple algebraic group; simple singularity; Chevalley group; quoteint morphism | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) homogeneous weight enumerator of a linear code; Duursma's zeta polynomial and Duursma's reduced polynomial of a linear code; Riemann hypothesis analogue for linear codes; formally self-dual linear codes; Hasse-Weil polynomial and Duursma's reduced polynomial of a function field of one variable Kasparian, A.; Marinov, I., Duursma's reduced polynomial, (8 May 2015) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) threefolds; pencil of del Pezzo surfaces; exceptional curves; Prym-Tyurin variety; intermediate Jacobian; Chow group Kanev V., Intermediate Jacobians and Chow groups of threefolds with a pencil of del Pezzo surfaces, Ann. Mat. Pura Appl., 1989, 154, 13--48 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) representation theory; reductive algebraic groups; simple G-modules; highest weights; character formula; Weyl's formula; affine group schemes; injective modules; injective resolutions; derived functors; Hochschild cohomology groups; hyperalgebra; split reductive group schemes; Steinberg's tensor product theorem; irreducible representations; Kempf's vanishing theorem; Borel-Bott-Weil theorem; characters; linkage principle; dominant weights; filtrations; Steinberg modules; cohomology ring; ring of regular functions; Schubert schemes; line bundles [6] Jantzen J.\ C., Representations of Algebraic Groups, Academic Press, Orlando, 1987 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.