text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) hyperelliptic curve; Witt vectors; Jacobian; p-adic gamma function; Dieudonné-module; Frobenius action; p-divisible group Ditters, On the connected part of the covariant Tate p-divisible group and the {\(\zeta\)}-function of the family of hyperelliptic curves y2 = 1 + {\(\mu\)}xN modulo various primes, Math. Z. 200 pp 245-- (1989) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) regular vector field; unipotent group; stratified \(G_a\)-action; Fano variety | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) quadratic form; function field of a quadric; unramified Witt group; Galois cohomology; stable birational equivalence B. Kahn and A. Laghribi, A second descent problem for quadratic forms, K-Theory 29 (2003), 253--284. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Hasse-Weil zeta function; Shimura variety; automorphic L-functions; trace formula Langlands, R.P.: Infinite dimensional Lie algebras and their applications. Kass, S. (ed.). Singapore: World Scientific 1988 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Néron model; weak Néron model; abelian variety; group scheme; elliptic curve; semi-stable reduction; Jacobian; group of components | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) \(p\)-adic field; abelian varieties; Galois cohomology; integral \(p\)-adic Hodge theory; zero-cycles; Brauer group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic stacks; intersection theory of moduli spaces of curves; KdV equation; tau-function; matrix integral; cellular decomposition of the moduli space; intersection numbers; trivalent graphs; stable ribbon graphs Terasoma, T.: Fundamental groups of moduli spaces of hyperplane configurations. http://gauss.ms.u-tokyo.ac.jp/paper/paper.html | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) local fields; local class field theory; Dedekind rings; different; discriminant; ramification groups; cyclotomic fields; Hasse's norm theory; cohomology of groups; Galois cohomology; Brauer group; class formation Serre, J.-P., Corps locaux, Actualités Sci. Indust., vol. 1296, (1962), Hermann | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) global function field; arithmetic equivalence; Gassmann equivalence; Weil zeta function; Goss zeta function J NUMBER THEORY 130 pp 1000-- (2010) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Shimura reciprocity law; arithmetic elliptic function field; automorphism group; Jacobi function of level N; Jacobi forms | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) polynomial equations of genus zero and one; function field; algorithms; effective determination; diophantine equations in two unknowns; Thue equations; hyperelliptic equations; fundamental inequality; fields of positive characteristic; explicit bounds; solutions in rational functions; superelliptic equations R. C. Mason, \textit{Diophantine Equations over Function Fields.} London Mathematical Society Lecture Note Series, Vol. 96. Cambridge Univ. Press, Cambridge, 1984. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) computational invariant theory; harmonic polynomials; orthogonal group; slice; rational invariants; diffusion MRI; neuroimaging | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) absolute Galois group; Shafarevich's conjecture; free profinite group; quasi-free profinite group; function field; real closed field; Laurent series field Harbater, D., On function fields with free absolute Galois groups, Journal für die Reine und Angewandte Mathematik, 632, 85-103, (2009) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection theory; limit of join; limit of secant variety; normal cone; distinguished component Flenner, H.; Vogel, W.:Limits of joins and intersections. In: ''Higher dimensional complex varieties''. Proceedings of the International Conference, Trento (1994), pp. 209--220. Walter de Gruyter, Berlin-New York 1996. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) semiabelian variety; the Mordell--Lang conjecture; finite field; Frobenius map; F-set Moosa, R.; Scanlon, T., The Mordell-lang conjecture in positive characteristic revisited, (Belair, L.; Chatzidakis, Z.; D'Aquino, P.; Marker, D.; Otero, M.; Point, F.; Wilkie, A., Model theory and applications, Quad. mat., vol. 11, (2002), Dipartimento di Matematica Seconda Università di Napoli), 273-296 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) singular curves; maximal curves; finite field; rational point | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) principal polarization; height function; Arakelov intersection theory; moduli scheme of abelian varieties | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic curve; Mordell-Weil theorem; Selmer group; Tate-Shafarevich group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) finite Shafarevich-Tate group; finite Mordell-Weil group; L-series; modular abelian varieties Kolyvagin, V. A.; Logachëv, D. Yu., Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Leningrad Math. J., 0234-0852, 1 1, 5, 1229-1253, (1990) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) finite ground field; unit root \(L\)-functions; overconvergent cohomology theory; unit zeta function; logarithmic decay B. Dwork and S. Sperber, Logarithmic decay and overconvergence of the unit root and associated zeta functions, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 5, 575 -- 604. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) genus two; Pic; Arakelov-Green function; Riemann surface; theta divisor of the jacobian variety Bost, J.-B.: Fonctions de Green-Arakelov, fonctions thêta et courbes de genre 2. C. R. Acad. Sci. Paris Sér. I Math. \textbf{305}(14), 643-646 (1987) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Hermitian curve; Hermitian code; rational point; automorphism group Korchmáros, G; Speziali, P, Hermitian codes with automorphism group isomorphic to \(PGL(2,q)\) with \(q\) odd, Finite Fields Appl., 44, 1-17, (2017) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) K-theory; function field; elliptic curve; motivic cohomology | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) fixed point varieties on affine flag manifolds; simply connected semisimple algebraic group; variety of Borel subalgebras; Iwahori subalgebras; projective algebraic varieties; nilpotent orbits Chen, Z.: Truncated affine grassmannians and truncated affine Springer fibers for \({\mathrm GL}_{3}\). arXiv:1401.1930 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Mordell-Weil groups; generic fibre; system of polarized abelian varieties; level structure; endomorphism structure; CM-field , Moredell-Weil groups of generic abelian varieties in the unitary case, Proc. of the A. M.S., 104 (1988), 723-728. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; polarization; theta group; Heisenberg group; moduli problems in the theory of abelian varieties; number of theta structures; symmetric line bundles; symmetric theta structures Birkenhake, Ch., Lange, H.: Symmetric theta-structures. Manuscr. Math.70, 67-91 (1990) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) fiber cone; minimal variety; rational normal scroll; set-theoretic complete intersection DOI: 10.1080/00927870701302099 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Brauer group; function field of the projective line Mestre, J.F. 1994.Annulation, par changement de variable, d'éléments de Br2(k(x)) ayant quatre pôles, SÉrie I Vol. 319, 529--532. Paris: C. R. Acad. Sci. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) quadratic form over a field; excellent field extension; central simple algebra; Severi-Brauer variety; Chow group; Galois cohomology DOI: 10.1023/A:1009910324736 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) equivalence theorem; abelian variety; Jacobian variety; theta divisor; Riemannian theta function; Kadomtsev-Petviashvili equation; Novikov conjecture T. Shiota, ''Characterization of Jacobian varieties in terms of soliton equations,'' Invent. Math., vol. 83, iss. 2, pp. 333-382, 1986. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) nonalgebraic elliptic surface; vector bundle; Neron-Severi group; Jacobian variety of a curve; Chern classes | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) projective group of separable field extension; rational points; ring of integers | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) moduli spaces of stable pointed curves; Weil-Petersson volumes; 1-dimensional cohomological field theories; rational cohomology classes Kaufmann, R.; Manin, Yu.; Zagier, D., Higher {W}eil-{P}etersson volumes of moduli spaces of stable {\(n\)}-pointed curves, Comm. Math. Phys., 181, 3, 763-787, (1996) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) self-dual strings; string group; higher gauge theory; superconformal field theories; strong homotopy Lie algebras | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) finite subgroups of rotation group; groups; linear algebra; infinite dimensional spaces; systems of linear differential equations; symmetry; free groups; generators; relations; Todd-Coxeter algorithm; bilinear forms; spectral theorems; linear groups; group representations; rings; algebraic geometry; factorization; modules; function fields and their relations to Riemann surfaces; Galois theory Artin, M.: Algebra. Prentice-Hall, Englewood Cliffs (1991) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) binary field with many rational places; global function field Niederreiter, H., Xing, C.P.: Explicit global function fields over the binary field with many rational places. Acta Arithm.~75, 383--396 (1996) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) real algebraic geometry; rational function field; real valuation rings; semi-algebraic geometry | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; Weil polynomial; group order; non-adjacent form | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) arithmetic surface; Arakelov theory; discriminant; pairing on curves; intersection number of horizontal divisors; Green's functions; divisor group Harbater, D.: Arithmetic discriminants and horizontal intersections. Mathematische annalen 291, 705-724 (1991) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Weyl group representations; cone bundles on the flag variety; characteristic class; cohomology of the flag variety; intersection homology; action of the Weyl group Borho, W.; Brylinksky, J. -L; Macpherson, J. -L; Macpherson, R.: Springer's Weyl group representations through characteristic classes of cone bundles. (1986) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Hodge theory; fundamental group; Kähler manifold; k-algebraic variety; deformation theories William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 153 -- 158. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection theory; numerical algebraic geometry; Schubert variety; witness set | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) GKZ system; twisted (co)homology group; intersection theory; monodromy invariant Hermitian form | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) finite-dimensional vector space; irreducible representations; unitary group; holomorphic line bundle; flags; Hilbert space; manifold of flags; quantum field theory; integrable systems A. G. Helminck and G. F. Helminck, \(H_k\)-fixed distributionvectors for representations related to \(\mathfrak p\)-adic symmetric varieties, To appear. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) duality; abelian variety; local field; Picard group; formal group; group scheme; fundamental group; torsor; global field; proalgebraic group; group of universal norms | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) projective variety; finite field; action by a finite group; complex representation; functional equation for \(L\)-function; Euler characteristic Chinburg T. , Erez B. , Pappas G. , Taylor M.J. , On the \epsilon -constants of a variety over a finite field , Amer. J. Math. 119 ( 1997 ) 503 - 522 . Zbl 0927.14013 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Mordell-Weil groups; anticyclotomic extension of imaginary field; modular elliptic curve; Iwasawa algebra; Heegner points M. Bertolini , Growth of Mordell-Weil groups in anticyclotomic towers . Symposia Mathematica, Proceedings of the Symposium in Arithmetic Geometry, Cortona 1994 , E. Bombieri, et al., eds., Cambridge Univ. Press , to appear. MR 1472490 | Zbl 0911.14010 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational function; projective variety | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Albanese variety; Chow group; zero cycles; rational equivalence; isomorphism on torsion; desingularization M. Levine, ''Torsion zero-cycles on singular varieties,'' Amer. J. Math., vol. 107, iss. 3, pp. 737-757, 1985. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) theta-functions; basic hypergeometric series; q-continued fractions; Rogers-Ramanujan continued fraction; Rogers-Ramanujan identities; basic theory of elliptic functions; Ramanujan's Eisenstein series; Jacobian elliptic functions; modular equations; theta-function identities B. C. Berndt, \textit{Ramanujan's Notebooks, Pt. III}, Springer, New York (1991). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) transcendental number theory; abelian varieties; surfaces; rational points; diophantine geometry; Mordell's conjecture B. Mazur, \textit{The topology of rational points}, Exp. Math. \textbf{1}(1992), no. 1, 35-45. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Picard's theorem; infinitely many integral or rational points; Nevanlinna theory; higher-dimensional Mordell conjecture Vojta, P. : A higher dimensional Mordell conjecture . In: Arithmetic Geometry , ed. by G. Cornell and J. Silverman. Springer-Verlag (1986) 334-346. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Whittaker functions; moduli stack; Drinfeld theory; Hecke algebra; reductive group; local field; perverse sheaves Frenkel, E.; Gaitsgory, D.; Vilonen, K., \textit{Whittaker patterns in the geometry of moduli spaces of bundles on curves}, Ann. of Math. (2), 153, 699-748, (2001) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) transcendental invariant subfield; rational function field; automorphisms Chu, H, Orthogonal group actions on rational function fields, Bull. Inst. Math. Acad. Sinica, 16, 115-122, (1988) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) factorization spaces; vertex algebras; Boson-fermion correspondence; chiral algebra; ind-scheme; conformal field theory; lattice vertex algebra; Beilinson-Drinfeld Grassmannian; Clifford group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection theory; arithmetic surfaces; second Chern class; Hurwitz formula; Arakelov-Faltings intersection product; Lefschetz fixed point formula Q.V. Pham. Zur Rolle der Chern-Klassen in der Arakelovschen arithmetischen Geometrie. Thesis 1992. Univ. Hamburg. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) arithmetic surface; localized intersection theory; bivariant class; Lefschetz fixed point formula; Artin representation; Swan conductor; localized Gysin map A. Abbes, Cycles on arithmetic surfaces, Compos. Math., 122 (2000), 23--111. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) quadratic function field; hyperelliptic curve; divisor class group Sachar Paulus and Andreas Stein, Comparing real and imaginary arithmetics for divisor class groups of hyperelliptic curves, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 576 -- 591. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) modular group; combinatorial group theory; free group; unity; generating function; algebraic function; cogrowth rate; return generating function; word problem; pushdown automaton | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) curves; rational points; Chabauty; Coleman; Mordell-Weil sieve | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) flag variety; resolution of singularities; intersection homology; Weyl group representations Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23 -- 74. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) \(K_ 0\); \(G_ 0\); relative Chow group; singular variety; rational equivalence; complete intersections Levine, M.; Weibel, C., \textit{zero cycles and complete intersections on singular varieties}, J. Reine Angew. Math., 359, 106-120, (1985) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) cubic surface; 27 lines; rational elliptic surface; Mordell-Weil lattice | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic K-theory; algebraic cycles; Chow group; codimension two cycles; Abel-Jacobi map; norm residue map; higher Picard variety Murre, J.P., Applications of algebraic \textit{K}-theory to the theory of algebraic cycles, (Algebraic geometry, Sitges (Barcelona), 1983, Lecture notes in math., vol. 1124, (1985), Springer Berlin), 216-261 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Riemann surfaces; equisymmetric family; Jacobian variety; field of definition | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Weyl group; Bruhat order; Schubert variety; intersection cohomology; Kazhdan-Lusztig polynomial | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) field extension; existence of rational point; minimal polynomial; conjecture of Cassels and Swinnerton-Dyer Wang, S, The propagation of the leading wave, 657-670, (1987) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Jacobian; function field; Abel-Jacobi embedding; Bogomolov's conjecture A. Moriwaki, Bogomolov conjecture for curves of genus 2 over function fields, J. Math. Kyoto Univ. 36 (1996), 687-695. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) class field theory; local field; Schur group; Galois group; cup product pairing; norm residue symbol Riehm, C.: Linear and quadratic Schur groups. (1988) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) differential Chow form; differential Chow variety; differential intersection theory; sparse differential resultant | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) genus; hyperelliptic curves; strong boundedness conjecture; group of rational points; Jacobian varieties of hyperelliptic curves --, Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genreg 1.Manuscr. Math. 92 (1) (1997), 47--63. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) tropical curve; secondary fan; Severi variety; enumerative problem; intersection theory Katz, E., Tropical invariants from the secondary Fan, Adv. Geom., 9, 153-180, (2009) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) graded rings; complete intersection; regular sequences; Jacobian criterion; singularities; unmixedness theorem; Cohen-Macaulay rings and modules; homogeneous forms; rational points | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Schubert calculus; intersection theory; Peterson variety Insko, Erik, Schubert calculus and the homology of the Peterson variety, Electron. J. Combin., 22, 2, (2015) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) linear algebraic group; torsor; function field; local-global principle; Galois cohomology David Harbater, Julia Hartmann, and Daniel Krashen. Local-global principles for torsors over arithmetic curves. Amer.\ J.\ Math., \textbf{137}(6) (2015), 1559--1612. DOI 10.1353/ajm.2015.0039; zbl 1348.11036; MR3432268; arxiv 1108.3323 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) reduction; Kummer theory; algebraic group; semiabelian variety; elliptic curve; Galois representations | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Fermat's curves; Jacobians; Mordell-Weil group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational map; Cremona group; Fano variety; involution Y. Prokhorov, On birational involutions of P^{3}. Izvestiya Math. Russ. Acad. Sci. 77(3), 627-648 (2013) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Gauge theory with finite gauge group; cobordism; topological quantum field theory; Picard groupoid of Hermitian lines; cohomology with coefficeints in Picard groupoid; gerbe; cap product | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) continuous rational function; real algebraic variety; substitution property | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) curve; Jacobian; abelian surface; zeta function; Weil polynomial; Weil number DOI: 10.5802/aif.2430 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) discretized moduli space; random surfaces; two-dimensional quantum field theory; intersection theory on the moduli space of Riemann surfaces Chekov, L., Matrix model for discretized moduli space, J. Geom. Phys., 12, 153, (1993) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) dimension of Zariski tangent space; singular locus of a Schubert variety; flag variety; standard monomial theory; Jacobian matrix; weight vectors C.S. Seshadri : Normality of Schubert variety . Proceeding de ''Algebraic Geometry'' (Bombay, Avril 1984). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic curve with complex multiplication; Mordell-Weil group; Birch Swinnerton-Dyer conjectures; Hecke L-series; Selmer groups R. GREENBERG : On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication . Invent. Math. (à paraître). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Dell Pezzo fibrations; Cremona group; Klein simple group; Rational variety | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Iwasawa theory of totally real number fields; covering of algebraic curves over a finite field; Drinfel'd modules; Picard group; L-series David Goss, The theory of totally real function fields, Applications of algebraic \?-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 449 -- 477. | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Kuga variety; intermediate Jacobian; cusp forms; generalized Hodge conjecture; Abel-Jacobi map; algebraic cycles; elliptic curve; rational Hodge structure; Tate's conjecture 10.2307/2154385 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) partial zeta function; finite ground field; Weil-type conjectures Wan, D.: Partial zeta functions of algebraic varieties over finite fields. Finite fields \& appl. 7, 238-251 (2001) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) function field; prime divisor; Galois theory Pop, F, Pro-\(\mathcall \) abelian-by-central Galois theory of prime divisors, Isr. J. Math., 180, 43.68, (2010) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Néron-Tate height; Jacobian varieties; Arakelov intersection theory on arithmetic surfaces; Hodge index theorem Hriljac, P., \textit{heights and arakelov's intersection theory}, Amer. J. Math., 107, 23-38, (1985) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) determinant line bundle; vertex operators; loop group; Kac-Moody Lie algebras; affine algebras; infinite-dimensional Lie groups; central extensions; circle group; Grassmannian; polarized Hilbert space; Schubert cell decomposition; homogeneous space; complex manifold; Borel-Weil theory; spin representation; Kac character formula; Bernstein-Gel'fand- Gel'fand resolution A. Pressley and G. Segal, \textit{Loop Groups}, Clarendon Press, Oxford (1986). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Deligne-Lusztig variety; zeta function; Weil-Deligne bound; Betti numbers Rodier, F., Nombre de points des surfaces de Deligne et Lusztig, J. Algebra, 227, 2, 706-766, (2000) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) conformal field models in string theory; superstrings and heterotic strings; renormalization group Jardine, IT; Quigley, C., Conformal invariance of (0, 2) \({\sigma}\)-models on Calabi-Yau manifolds, JHEP, 03, 090, (2018) | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) central division algebras over the function field of a curve; Brauer group; elliptic curves V. I. Yanchevskiĭ and G. L. Margolin, Brauer groups of local hyperelliptic curves with good reduction, Algebra i Analiz 7 (1995), no. 6, 227 -- 249 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 7 (1996), no. 6, 1033 -- 1048. V. I. Yanchevskiĭ and G. L. Margolin, Erratum: ''Brauer groups of local hyperelliptic curves with good reduction'', Algebra i Analiz 8 (1996), no. 1, 237 (Russian). | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic group acting on an algebraic variety; invariant theory | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) quasilocal field; Brauer group; character group; transfer; corestriction; tensor compositum; Brauer-Severi variety; Galois extension; norm group | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic curve; Picard group; Galois group; rational point | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic curve; Mordell-Weil rank; twist theory | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) reductive group scheme; algebraic curve; function field; root system; split maximal torus; complementary polyhedron; parabolic subgroup; vector bundle; Harder-Narasimhan filtration Behrend K, Semi-stability of reductive group schemes over curves, Math. Ann. 301 (1995) 281--305 | 0 |
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) smooth integral projective curve; function field; division algebra; algebraic index; Azumaya algebra; generic splitting variety | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.