text
stringlengths
2
1.42k
label
int64
0
1
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) semisimple algebraic group; Schubert variety; singular point Carrell, JB; Kuttler, J, Singularities of Schubert varieties, tangent cones and Bruhat graphs, Am. J. Math., 128, 121-138, (2006)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) nonstandard arithmetic; Galois theory; decision procedures; elementary theory of algebraically closed fields; undecidability; nonstandard model theory; Hilbert's irreducibility theorem; pseudo-algebraically closed fields; PAC fields; ultraproducts; Hilbertian field; absolut Galois group; embedding property M. Fried - M. Jarden , '' Field Arithmetic '', Springer-Verlag , 1986 . MR 868860 | Zbl 0625.12001
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) local zeta function; Shimura variety; quaternion algebra; totally real number field; local L-functions attached to automorphic forms; trace formula
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) purely transcendental field extensions; finite field; rational function field; field of invariants DOI: 10.1017/S000497270002801X
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian varieties; Mordell-Weil group; degree; height D.W. Masser, Specializations of finitely generated subgroups of abelian varieties , Trans. Amer. Math. Soc. 311 (1989), 413-424. JSTOR:
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) cohomological quantum field theory; rational curves in Calabi-Yau manifolds; complete intersections; mirror map; Yukawa couplings A. Klemm, B.H. Lian, S.S. Roan and S.-T. Yau, \textit{A note on ODEs from mirror symmetry}, hep-th/9407192 [INSPIRE].
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) bivariant intersection theory; correspondences; abelian variety
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) class field theory for curves over local fields; abelian fundamental group; class field theory of two-dimensional local fields; reciprocity law Saito S.: Class field theory for curves over local fields. J. Number Theory 21(1), 44--80 (1985)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) finiteness of integral points; prime characteristic; abelian variety over a function field Voloch, J.F., Diophantine approximation on abelian varieties in characteristic \textit{p}, Amer. J. math., 117, 4, 1089-1095, (1995)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) inter-universal Teichmüller theory; punctured elliptic curve; number field; mono-complex; étale theta function; 6-torsion points; height; explicit estimate; effective version; diophantine inequality; ABC conjecture; Szpiro conjecture; Fermat's last theorem
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; very thin; Hasse derivation; field of definition; rational points DOI: 10.1017/S1474748008000145
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) commutative algebraic group; rational point; divisibility Roberto Dvornicich & Umberto Zannier, ``On local-global principle for the divisibility of a rational point by a positive integer'', Bull. Lond. Math. Soc.39 (2007), p. 27-34
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Birch-Swinnerton-Dyer conjecture; Hasse-Weil conjecture; Shimura- Tamagawa-Weil conjecture; algorithm for computing the Mordell-Weil group of an elliptic curve Josef Gebel and Horst G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over \?, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 61 -- 83.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; finite flat group scheme; polarization; division field; paramodular group Brumer, A.; Kramer, K., Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc., 366, 5, 2463-2516, (2014)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Baily-Borel compactification of Shimura variety; \(L\)-function; Tate's conjectures; Tate classes; intersection cohomology group Blasius, Don; Rogawski, Jonathan D., Tate classes and arithmetic quotients of the two-ball.The zeta functions of Picard modular surfaces, 421-444, (1992), Univ. Montréal, Montreal, QC
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) automorphism groups of algebraic function fields; realization of group as Galois group; Galois theory Henning Stichtenoth, Zur Realisierbarkeit endlicher Gruppen als Automorphismengruppen algebraischer Funktionenkörper, Math. Z. 187 (1984), no. 2, 221 -- 225 (German).
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Weil curves; elliptic curve; L-function; Shafarevich-Tate group Борисов, А. В.; Мамаев, И. С., Странные аттракторы в динамике кельтских камней, УФН, 173, 4, 407-418, (2003)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) transcendence theory; modular curves; Shimura curves; covering radius; Fuchsian triangle group; period; abelian variety with complex multiplication; modular embedding Cohen, Paula; Wolfart, Jürgen, Modular embeddings for some nonarithmetic Fuchsian groups, Acta Arith., 56, 2, 93-110, (1990)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) average rank of the Mordell-Weil group of abelian varieties; Lefschetz pencil
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Tango structure; pre-Tango structure; uniruled variety; \(p\)-closed rational vector field DOI: 10.4064/cm108-2-4
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) inverse Galois theory; algebraic fundamental group; plane curves; factorization of polynomials; resolution of plane curve singularities; hyperelliptic function fields; construction of Galois extensions; finite group; Galois group; PSL(2,8); unramified covering; affine line Shreeram S. Abhyankar, Square-root parametrization of plane curves, Algebraic geometry and its applications (West Lafayette, IN, 1990) Springer, New York, 1994, pp. 19 -- 84.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) toric variety; fan; torus action; Weil divisors; Picard group; Brauer group; étale cohomology T. J. Ford, Topological invariants of a fan associated to a toric variety, Comm. Algebra 23 (1995), 4031--4045.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic cycles; rational equivalence; Chow group; Lieberman Jacobian Lewis J.D. (1993). Cylinder homomorphism and Chow groups. Math. Nachr. 160: 205--221
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) generalization of class field theory; local fields; global fields; Milnor K-group; integral projective scheme; Chow group; generalization of ramification theory; higher dimensional schemes; generalized Swan conductor Kato, K. : A generalization of class field theory (Japanese) . Sûgaku 40 (1988) 289-311.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) moduli space of stable curves; Koszul algebra; rational homotopy theory; toric variety
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) spheric variety; Borel subgroup; dense orbit; symmetric varieties; Picard group of spherical varieties; intersection numbers; characteristic numbers Brion, M., Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J., 58, 397-424, (1989)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) smooth Fano variety; associated height; height zeta function; distribution of rational points V. Batyrev and Yu. Tschinkel,Manin's conjecture for toric varieties, Preprint IHES (1995).
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) quantum affinoid algebra; Calabi-Yau variety; \(p\)-adic quantum group; locally analytic function; locally analytic distribution Y. Soibelman, ''Quantum p-adic spaces and quantum p-adic groups,'' Geometry and Dynamics of Groups and Spaces, Progr. Math. 265, 697--719 (Birkhauser, Basel, 2008).
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) finite field; hyperelliptic curve; hyperelliptic cryptosystem; Koblitz model; Weierstrass point; rational \(n\)-set Demirkiran, C.; Nart, E.: Counting hyperelliptic curves that admit a Koblitz model
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) index theorem; analytic torsion; heat kernel of the Laplacian on Riemann manifolds; Arakelov's theory; hermitean bundles; Mordell conjecture; arithmetic intersection theory for general arithmetic varieties; arithmetic Riemann-Roch theory; arithmetic Chern classes; arithmetic \(K\)- groups; arithmetic Chow groups; Dirac operators on compact Kähler manifolds; super-Dirac operators [15] Faltings (G.).-- Lectures on the arithmetic Riemann-Roch theorem, Annals of Math. Studies, vol. 127, Princeton University Press, 1992. &MR~11 | &Zbl~0744.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational cohomology; hypersurface of degree 5; Fano variety; cylinder map; deformation theory Lewis J.D., The cylinder homomorphism associated to quintic fourfolds (1985)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Function field; Jacobian; \(\ell\)-rank; L-polynomial Berger, Lisa; Hoelscher, Jing Long; Lee, Yoonjin; Paulhus, Jennifer; Scheidler, Renate: The \(\ell \)-rank structure of a global function field, Fields inst. Commun. 60, 145-166 (2011)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) global field of positive characteristic; Langlands conjecture; \(\ell\)-adic representations; Weil group; automorphic cuspidal representations; adele V. G. Drinfel\(^{\prime}\)d, Two-dimensional \?-adic representations of the Galois group of a global field of characteristic \? and automorphic forms on \?\?(2), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 138 -- 156 (Russian, with English summary). Automorphic functions and number theory, II.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational points of bounded degree on a curve; Faltings' theorem; Mordell's conjecture; Brill-Noether loci; Jacobian
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) spherical variety; homogeneous embedding theory; reductive algebraic group Cupit-Foutou S.: Classification of two-orbit varieties. Comment. Math. Helv. 78, 245--265 (2003)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Cremona transformation; \(q\)-difference equation; Painlevé equation; rational variety; tropical representation; Weyl group; continuous limit; Sasano system; Bäcklund transformation
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) modular Jacobian variety; rational torsion subgroup; Eisenstein ideal [6]M. Ohta, Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math. 37 (2014), 273--318.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rank; Mordell-Weil group T. Shioda, Genus two curves over Q(t) with high rank, Comment. Math. Univ. St. Pauli 46 (1997), 15--21.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Galois cohomology; number fields; elliptic curves; abelian varieties; function fields; profinite groups; class field theory; formal groups; Milnor K-groups; Lubi-Tate groups
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Mordell conjecture; curve; rational point; genus; \(p\)-adic number; Galois representation
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) hyperelliptic curve; asymptotic formula; finite field; Jacobian; torsion point; Betti numbers J. D. Achter, ''Results of Cohen-Lenstra type for quadratic function fields,'' in Computational Arithmetic Geometry, Providence, RI: Amer. Math. Soc., 2008, vol. 463, pp. 1-7.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic functions; \(L\)-series; complex multiplication; \(p\)-adic uniformization; modular functions; Mordell-Weil theorem for function fields; canonical height; Néron-model; minimal model J.H. Silverman, in \(Advanced Topics in The Arithmetic of Elliptic Curves\), Graduate Texts in Mathematics, vol. 151 (Springer, New York, 1994)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) cubic form; rational point; Hasse principle; zero; nonsingular; eight variables; conditional; Hasse-Weil \(L\)-function; Riemann hypothesis J.-L. Colliot-Thélène. Points rationnels sur les fibrations. In: \textit{Higher Dimensional Varieties and Rational Points (Budapest, 2001)}. Springer, Berlin (2003), pp. 171-221.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) complex symmetric domains; p-adic fields; Lie groups; maximal compact subgroups; non-archimedean groundfields; symmetric spaces; analytic varieties; reductive group; non-archimedean local field; discrete co- compact subgroup; rigid analytic variety; Bruhat-Tits buildings; reductive linear algebraic groups; toroidal embeddings; analytic spaces; projective space; split orthogonal groups H. Voskuil, Ultrametric uniformization and symmetric spaces, Thesis, Groningen, 1990.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Quillen conjecture; Lichtenbaum conjecture; zeta-function; \(\ell \)-adic K-theory; etale homotopy; general linear group homology W. G. Dwyer and E. M. Friedlander, Conjectural calculations of general linear group homology, Applications of algebraic \?-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 135 -- 147.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; absolute endomorphism ring; Weil height; Jacobian Masser, D, Specialization of endomorphism rings of abelian varieties, Bull. Soc. Math. Fr., 124, 457-476, (1996)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic independence; crystalline cohomology; de Rham; differential; finite field; Galois ring; identity testing; Jacobian; Kähler; \(p\)-adic; Teichmüller; Witt; zeta function Mittmann, Johannes; Saxena, Nitin; Scheiblechner, Peter, Algebraic independence in positive characteristic: A \(p\)-adic calculus, Transactions of the American Mathematical Society, 366, 3425-3450, (2014)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) pullback domain; Picard group; field extensions; integral representation theory
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational functions; sums of squares; Pythagoras number; elliptic curve; Jacobian variety; divisor DOI: 10.1007/s00229-004-0535-0
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) infinite dimensional representation; reductive group; geometry of flag manifold; fixed point theorem; Weyl's character formula; cohomology group; equivariant line bundle; real semisimple group; invariant eigendistribution; flag variety; Harish-Chandra modules; K-equivariant sheaves [K] Kashiwara, M.: Character, character cycle, fixed point theorem, and group representations. Adv. Stud. Pure Math.14, 369-378 (1988)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Mordell-Weil groups; elliptic curves; function fields; fibrations
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) theta functions; soliton equations; tau function; Krichever theory; \(n\)-component KP hierarchy; Novikov conjecture; Kadomtsev-Petviashvili equation; Schottky problem; group actions on infinite Grassmannian; theta relation; Fay trisecant formula Maffei, A., No article title, Internat. Math. Res. Notices, 1996, 769-791, (1996)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic function field; quadratic field; ideal class group
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) function fields; Weil differentials; Weierstrass points; Riemann hypothesis; zeta functions; coding theory Goldschmidt, D. M.: Algebraic functions and projective curves, Grad texts in math. 215 (2003)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) relative Lubin-Tate formal groups; class field theory; Honda formal group; type of formal group O. V. Demchenko, ''New relationships between Lubin--Tate formal groups and Honda formal groups,'' Algebra Analiz, 10, No. 5, 77--84 (1998).
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) field of definition of the Néron-Severi group; 2-coverings; elliptic curve over function field H.P.F. Swinnerton-Dyer , The field of definition of the Néron-Severi group , Studies in Pure Mathematics, 719-731.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Artin invariant; Mordell-Weil groups of quasi-elliptic surfaces; rational unirational quasi-elliptic surfaces; characteristic~3; Néron-Severi groups; K3 surfaces Ito, H., The Mordell--Weil groups of unirational quasi-elliptic surfaces in characteristic 3, Math. Z. 211 (1992), 1--39.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) lifting problem; deformation of \({\mathbb{G}}_ a\) to \({\mathbb{G}}_ m\); characteristic p; automorphism group; Galois covering of curves; class field theory; Artin-Schreier sequence; Kummer sequence Sekiguchi, T.; Oort, F.; Suwa, N., On the deformation of Artin-Schreier to Kummer, Annales Scientifiques de l'École Normale Supérieure, 22, 345-375, (1989)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) ordinary representations; main conjecture; motives; p-adic L-function; Selmer group; Iwasawa theory R. Greenberg, ''Iwasawa theory for motives,'' in \(L\)-Functions and Arithmetic, Cambridge: Cambridge Univ. Press, 1991, vol. 153, pp. 211-233.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Pochhammer hypergeometric function; Hypergeometric group; Complete intersection S. Tanabé, Invariant of the hypergeometric group associated to the quantum cohomology of the projective space , Bull. Sci. Math. 128 (2004), 811-827.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) hyperelliptic function fields; imaginary quadratic function field; real quadratic function field; divisor class group; reduced ideals; group law [14]S. Paulus and H.-G. Rück, Real and imaginary quadratic representations of hyperelliptic function fields, Math. Comput. 68 (1999), 1233--1241.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) trivial Mordell-Weil group; elliptic curve; order of the 3-primary component of the ideal class group of quadratic fields J. Nakagawa and K. Horie: Elliptic curves with no rational points. Proc. A.M.S., 104, 20-24 (1988). JSTOR:
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic curve; integral point; Lang-Vojta conjecture; function field
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) random matrix model; topological field theory; intersection numbers; critical phenomena
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebra textbook; Universal algebra; multilinear algebra; Homological algebra; group theory; field theory; Algebras; Quadratic forms; Rings Cohn, P. M.: Algebra, vol. 3, (1991)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) height zeta function; toric variety; function field Bourqui, Fonction zêta des hauteurs des variétés toriques déployées dans le cas fonctionnel, J. reine angew. Math. 562 pp 171-- (2003)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Birch--Swinnerton-Dyer conjecture; rational points on elliptic curve; Heegner point; modular function G. Frey, ''Der Rang der Lösungen von Y2=X3 p3 uber Q'', Manuscr. Math.,48, 71--101 (1984).
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic function field; automorphism group
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) PAC fields; function field; Tate-Shafarevich group; stably birational invariant; flasque resolution
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Mordell-Weil lattice; supersingular; rational points; rational elliptic surface; height pairing; Mordell-Weil groups J. Wolfard, \textit{ABC for polynomials, dessins d}'\textit{enfants, and uniformization} -- \textit{a survey}, in \textit{Proceedings der ELAZ-Konferenz} 2004, W. Schwarz and J. Steuding eds., Steiner Verlag, Stuttgart, Germany, (2006), pg. 313.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic number theory; valuation theory; local class field theory; algebraic number fields; algebraic function fields of one variable; Riemann-Roch theorem E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational point; one parameter family of hyperelliptic curves; jacobian Leprévost, Familles de courbes de genre 2 munies d'une classe de diviseurs rationnels d'ordre 15,17,19 ou 21, C. R. Acad. Sci. Paris Sér. I Math. 313 pp 771-- (1991)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection theory; intersection products; Chow group; Alexander duality; Alexander schemes; geometrically unibranch Vistoli, A.: Alexander duality in intersection theory. Compos. math. 70, 199-225 (1989)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) logarithmic connection; moduli space; Chow group; differential operator; Torelli theorem; rational variety
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) intersection ring; Grothendieck group; \(\gamma\)-filtration; rational equivalence; Chow's moving lemma; algebraic cycles; relative Chow group Consani, C., A moving-lemma for a singular variety and applications to the Grothendieck group \(K\)\_{}\{0\}(\(X\)), Santa Margherita Ligure, 1989, Providence
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) affine algebraic variety; algebraic vector field; homogeneous space; linear algebraic group Donzelli F., Dvorsky A., Kaliman S.: Algebraic density property of homogeneus spaces. Transform. Groups 3, 551--576 (2012)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) étale cohomology; level; sum of squares; non-real function field of a rational surface Parimala, R.; Sujatha, R.: Levels of non-real function fields of real rational surfaces. Amer. J. Math. 113, 757-761 (1991)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Néron-Severi group; elliptic bundles over a curve; group of morphisms of abelian varieties; Jacobian variety Brînzănescu, V, Neron-Severi group for non-algebraic elliptic surfaces I: elliptic bundle case, Manuscr. Math., 79, 187-195, (1993)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) tower of abelian extensions; cyclotomic \(\Gamma\)-extension; abelian variety; finitely generated group of rational points; Shafarevich-Tate group; Iwasawa's characteristic polynomials Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math. \textbf{18}(3), 183-266 (1972)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) lattices and their invariants; associated tori; elliptic functions; modular forms of one variable; periodic meromorphic functions; field of elliptic functions; Weierstrass \(\wp\)-function; elliptic curves; product representations; complex multiplication; Jacobi's theta series; Jacobi forms; modular functions; Siegel modular group; discontinuous subgroups; weight formula; Dedekind's eta-function; cusp forms; algebra of Hecke operators; Petersson inner product; Eisenstein series; Dirichlet series; functional equation; Hecke operators; harmonic polynomials; quadratic forms; Epstein zeta-function; Kronecker's limit formula; Rankin convolution M. Koecher and A. Krieg, \textit{Elliptische Funktionen und Modulformen}, Springer, Berlin, Heidelberg, 1998.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) modular elliptic curve; \(L\)-function; Mordell-Weil group; Tate- Shafarevich group M. R. Murty and V. K. Murty, Mean values of derivatives of modular \textit{L}-series, Ann. of Math. (2) 133 (1991), no. 3, 447-475.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) fusion rules; rational conformal quantum field theory; conformal blocks; compact Riemann surface; Verlinde formula; dimension formula; generalized theta functions; moduli spaces of semi-stable vector bundles; representations of affine Lie algebras Sorger, C., La formule de Verlinde, Séminaire Bourbaki, vol. 1994/1995, Astérisque, 237, 87-114, (1996), [Exp. No. 794, 3]
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic curve; rational point; torsion group
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Dihedral cover; Mordell-Weil group; elliptic surface; Zariski pair Tokunaga, H.: Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers. J. Math. Soc. Japan \textbf{66}(2), 613-640 (2014)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; elliptic curve; Hasse invariant; Artin effect; infiniteness of Tate-Shafarevich group; quasi-global field; potentially good reduction; Neron minimal models O.N. Vvedenskiĭ : The Artin effect in elliptic curves I . Izv. Akad. Nauk SSSR 43 (1979) = Math. USSR Izv. 15 (1980) 277-288.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) transcendental field extensions; Galois group; elliptic function fields
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) mixed Hodge theory; homotopy of a complex algebraic variety; neighborhood of a subvariety; links of isolated singular points; cup product; decomposition theorem of intersection homology Hain, R.M. and Durfee, A.: Mixed Hodge structures on the homotopy of links. Math. Ann.,280, 69--83 (1988)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) algebraic geometry; schemes; sheaves; cohomology; resolution of singularities; intersection theory; enumerative algebraic geometry; Hodge theory; Weil conjectures; moduli problems; arithmetical algebraic geometry Ciro Ciliberto, The geometry of algebraic varieties, Development of mathematics 1950 -- 2000, Birkhäuser, Basel, 2000, pp. 269 -- 312.
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Kolchin polynomial; partial differential Chow form; partial differential Chow variety; quasi-generic differential intersection theory
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) A'Campo type formula; tame monodromy zeta function; variety over a discretely valued field Bultot, E., Nicaise, J.: Computing motivic zeta functions on log smooth models. (Preprint). arXiv:1610.00742
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) patching; local-global principle; two-dimensional complete domain; function field of a curve; quadratic form; Witt ring; \(u\)-invariant; Brauer group; period-index problem Harbater, D.; Hartmann, J.; Krashen, D., \textit{refinements to patching and applications to field invariants}, Int. Math. Res. Not. IMRN, 2015, 10399-10450, (2015)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) rational singularities; complete intersection; analysis on p-adic varieties; asymptotic point count
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) decomposition of the Jacobian; zeta function; Weil numbers Carbonne, P.; Henocq, T.: Décomposition de la jacobinne sur LES corps finis. Bull. Polish acad. Sci. math. 42, No. 3, 207-215 (1994)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) determinant line bundle; vertex operators; loop group; Kac-Moody Lie algebras; affine algebras; infinite-dimensional Lie groups; central extensions; circle group; Grassmannian; polarized Hilbert space; Schubert cell decomposition; homogeneous space; complex manifold; Borel-Weil theory; spin representation; Kac character formula; Bernstein-Gel'fand- Gel'fand resolution A. Pressley and G. Segal, \textit{Loop Groups} (Clarendon Press, Oxford, 1988).
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) abelian variety; function field; logarithmic height
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) Weil-Deligne group; local Euler factors; L-function of motif; non-archimedean places; Tannakian category; admissible objects; Deligne motives; Dirichlet series; Riemann zeta function Deninger, C., Local \textit{L}-factors of motives and regularized determinants, Invent. Math., 107, 135-150, (1992)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) formal groups; cobordism; projective complex space; Milnor manifold; Chern characteristic classes; natural multiplicative transformation; Chern-Novikov character; logarithm; exponent; K-theory; generating function; Hirzebruch's genus; Toda's genus; virtual arithmetical genus; Euler formal group; elliptic function V. M. Bukhshtaber and A. N. Kholodov, ''Formal Groups, Functional Equations, and Generalized Cohomology Theories,'' Mat. Sb. 181(1), 75--94 (1990) [Math. USSR, Sb. 69, 77--97 (1991)].
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) elliptic \(K3\) surface; torsion section; conjectures of Shioda and Artin; Artin invariant; height of a formal Brauer group; Mordell-Weil group; supersingular \(K3\) surface Ito, Hiroyuki; Liedtke, Christian, Elliptic K3 surfaces with \(p^n\)-torsion sections, J. Algebraic Geom., 1056-3911, 22, 1, 105-139, (2013)
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) modular curves; quadratic points; Mordell-Weil; Jacobian
0
rational point; function field; Jacobian variety; Mordell-Weil group; intersection theory Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve. In: New Trends in Algebraic Geometry (Warwick 1996), pp. 359-373, London Mathematical Soceity, Lecture Note on Series , vol. \textbf{264}. Cambridge University Press, Cambridge (1999) isogeny class of abelian varieties; finite group schemes; kernels of polarizations of varieties; principally polarized variety; CM-field E. W. Howe, Kernels of polarizations of abelian varieties over finite fields, submitted for publication.
0