File size: 12,508 Bytes
8bbef17
c6a9f47
8705301
 
c6a9f47
8bbef17
 
8705301
c6a9f47
8bbef17
 
c6a9f47
 
 
8bbef17
 
c6a9f47
5599ea4
8bbef17
c6a9f47
 
4522002
c6a9f47
 
5599ea4
 
c6a9f47
8bbef17
8705301
c6a9f47
8bbef17
8705301
8bbef17
 
 
c6a9f47
 
8bbef17
5599ea4
 
 
 
 
 
c6a9f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5599ea4
c6a9f47
 
f840bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5599ea4
f840bdc
 
c6a9f47
 
 
 
f840bdc
 
 
 
 
 
5599ea4
c6a9f47
f840bdc
 
 
 
 
c6a9f47
f840bdc
 
 
 
 
 
c6a9f47
f840bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a9f47
f840bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5599ea4
c6a9f47
 
 
5599ea4
c6a9f47
 
f840bdc
c6a9f47
5599ea4
c6a9f47
f840bdc
5599ea4
f840bdc
 
 
 
 
 
 
 
c6a9f47
f840bdc
 
5599ea4
f840bdc
c6a9f47
8bbef17
f840bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a9f47
f840bdc
c6a9f47
f840bdc
 
c6a9f47
89f2ae3
f840bdc
8705301
f840bdc
 
 
5599ea4
f840bdc
c6a9f47
f840bdc
c6a9f47
 
 
 
5599ea4
f840bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5599ea4
 
c6a9f47
 
5599ea4
f840bdc
 
c6a9f47
f840bdc
 
 
 
 
 
 
c6a9f47
 
 
 
5599ea4
f840bdc
c6a9f47
f840bdc
c6a9f47
f840bdc
c6a9f47
 
 
 
 
 
5599ea4
f840bdc
c6a9f47
 
 
eda4d8c
c6a9f47
f840bdc
5599ea4
 
 
c6a9f47
5599ea4
c6a9f47
 
5599ea4
c6a9f47
 
 
 
f840bdc
c6a9f47
 
 
f840bdc
c6a9f47
f840bdc
c6a9f47
5599ea4
c6a9f47
f840bdc
c6a9f47
 
 
f840bdc
 
 
c6a9f47
f840bdc
c6a9f47
 
f840bdc
c6a9f47
f840bdc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import time
import io
import base64
import re
import numpy as np
import fitz  # PyMuPDF
import tempfile
from PIL import Image
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from ultralytics import YOLO
import streamlit as st
from streamlit_chat import message
from langchain_core.output_parsers import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_text_splitters import SpacyTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from streamlit.runtime.scriptrunner import get_script_run_ctx
from streamlit import runtime

# Initialize models and environment
os.system("python -m spacy download en_core_web_sm")
model = YOLO("best.pt")
openai_api_key = os.environ.get("openai_api_key")
MAX_FILE_SIZE = 50 * 1024 * 1024  # 50MB

# Utility functions
@st.cache_data(show_spinner=False, ttl=3600)
def clean_text(text):
    return re.sub(r'\s+', ' ', text).strip()

def remove_references(text):
    reference_patterns = [
        r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', 
        r'\bCitations\b', r'\bWorks Cited\b', r'\bReference\b'
    ]
    lines = text.split('\n')
    for i, line in enumerate(lines):
        if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns):
            return '\n'.join(lines[:i])
    return text

def handle_errors(func):
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            st.session_state.chat_history.append({
                "bot": f"❌ An error occurred: {str(e)}"
            })
            st.rerun()
    return wrapper

def scroll_to_bottom():
    ctx = get_script_run_ctx()
    if ctx and runtime.exists():
        js = """
        <script>
            function scrollToBottom() {
                window.parent.document.querySelector('section.main').scrollTo(0, window.parent.document.querySelector('section.main').scrollHeight);
            }
            setTimeout(scrollToBottom, 100);
        </script>
        """
        st.components.v1.html(js, height=0)

# Core processing functions
@st.cache_data(show_spinner=False, ttl=3600)
@handle_errors
def summarize_pdf(_pdf_file_path, num_clusters=10):
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
    llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
    
    # Load PDF with page numbers
    loader = PyMuPDFLoader(_pdf_file_path)
    docs = loader.load()
    
    # Create chunks with page metadata
    text_splitter = SpacyTextSplitter(chunk_size=500)
    chunks_with_metadata = []
    for doc in docs:
        chunks = text_splitter.split_text(doc.page_content)
        for chunk in chunks:
            chunks_with_metadata.append({
                "text": clean_text(chunk),
                "page": doc.metadata["page"] + 1  # Convert to 1-based numbering
            })
    
    # Prepare prompt with citation instructions
    prompt = ChatPromptTemplate.from_template(
        """Generate a comprehensive summary with inline citations using [Source X] format. 
        Include these elements:
        1. Key findings and conclusions
        2. Main methodologies used
        3. Important data points
        4. Limitations mentioned
        
        Structure your response as:
        ## Comprehensive Summary
        {summary_content}
        
        Contexts: {topic}"""
    )
    
    # Generate summary
    chain = prompt | llm | StrOutputParser()
    raw_summary = chain.invoke({
        "topic": ' '.join([chunk["text"] for chunk in chunks_with_metadata])
    })
    
    return generate_interactive_citations(raw_summary, chunks_with_metadata)

def generate_interactive_citations(summary_text, source_chunks):
    # Create source entries with page numbers and full text
    sources_html = """<div style="margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e0e0e0;">
                        <h3 style="color: #2c3e50;">πŸ“– Source References</h3>"""
    
    source_mapping = {}
    for idx, chunk in enumerate(source_chunks):
        source_id = f"source-{idx+1}"
        source_mapping[idx+1] = {
            "id": source_id,
            "page": chunk["page"],
            "text": chunk["text"]
        }
        
        sources_html += f"""
        <div id="{source_id}" style="margin: 1rem 0; padding: 1rem; 
                    border: 1px solid #e0e0e0; border-radius: 8px;
                    background-color: #f8f9fa; transition: all 0.3s ease;">
            <div style="display: flex; justify-content: space-between; align-items: center;">
                <div style="font-weight: 600; color: #4CAF50;">Source {idx+1}</div>
                <div style="font-size: 0.9em; color: #666;">Page {chunk['page']}</div>
            </div>
            <div style="margin-top: 0.5rem; color: #444; font-size: 0.95em;">
                {chunk["text"]}
            </div>
        </div>
        """
    
    sources_html += "</div>"
    
    # Add click interactions
    interaction_js = """
    <script>
    document.querySelectorAll('.citation-link').forEach(item => {
        item.addEventListener('click', function(e) {
            e.preventDefault();
            const sourceId = this.getAttribute('data-source');
            const sourceDiv = document.getElementById(sourceId);
            
            // Highlight animation
            sourceDiv.style.transform = 'scale(1.02)';
            sourceDiv.style.boxShadow = '0 4px 12px rgba(76,175,80,0.2)';
            
            setTimeout(() => {
                sourceDiv.style.transform = 'none';
                sourceDiv.style.boxShadow = 'none';
            }, 500);
            
            // Smooth scroll
            sourceDiv.scrollIntoView({behavior: 'smooth', block: 'start'});
        });
    });
    </script>
    """
    
    # Replace citations with interactive links
    cited_summary = re.sub(r'\[Source (\d+)\]', 
        lambda m: f'<a class="citation-link" data-source="source-{m.group(1)}" '
                  f'style="cursor: pointer; color: #4CAF50; text-decoration: none; '
                  f'border-bottom: 1px dashed #4CAF50;">[Source {m.group(1)}]</a>', 
        summary_text)
    
    return f"""
    <div style="margin-bottom: 3rem;">
        {cited_summary}
        {sources_html}
    </div>
    {interaction_js}
    """

@st.cache_data(show_spinner=False, ttl=3600)
@handle_errors
def qa_pdf(_pdf_file_path, query, num_clusters=5):
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
    llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
    
    # Load PDF with page numbers
    loader = PyMuPDFLoader(_pdf_file_path)
    docs = loader.load()
    
    # Create chunks with page metadata
    text_splitter = SpacyTextSplitter(chunk_size=500)
    chunks_with_metadata = []
    for doc in docs:
        chunks = text_splitter.split_text(doc.page_content)
        for chunk in chunks:
            chunks_with_metadata.append({
                "text": clean_text(chunk),
                "page": doc.metadata["page"] + 1
            })
    
    # Find relevant chunks
    embeddings = embeddings_model.embed_documents([chunk["text"] for chunk in chunks_with_metadata])
    query_embedding = embeddings_model.embed_query(query)
    similarities = cosine_similarity([query_embedding], embeddings)[0]
    top_indices = np.argsort(similarities)[-num_clusters:]
    
    # Prepare prompt with citation instructions
    prompt = ChatPromptTemplate.from_template(
        """Answer this question with inline citations using [Source X] format:
        {question}
        
        Use these verified sources:
        {context}
        
        Structure your answer with:
        - Clear section headings
        - Bullet points for lists
        - Citations for all factual claims"""
    )
    
    chain = prompt | llm | StrOutputParser()
    raw_answer = chain.invoke({
        "question": query,
        "context": '\n\n'.join([f"Source {i+1} (Page {chunks_with_metadata[i]['page']}): {chunks_with_metadata[i]['text']}" 
                              for i in top_indices])
    })
    
    return generate_interactive_citations(raw_answer, [chunks_with_metadata[i] for i in top_indices])

# (Keep the rest of the code from previous implementation for PDF processing and UI)
# [Include the process_pdf, image_to_base64, and Streamlit UI code from previous response]
# [Make sure to maintain all the UI improvements and error handling]

# Streamlit UI Configuration
st.set_page_config(
    page_title="PDF Research Assistant",
    page_icon="πŸ“„",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS Styles
st.markdown("""
<style>
    .citation-link {
        transition: all 0.2s ease;
        font-weight: 500;
    }
    .citation-link:hover {
        color: #45a049 !important;
        border-bottom-color: #45a049 !important;
    }
    .stChatMessage {
        border-radius: 12px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.08);
        margin: 1.5rem 0;
        padding: 1.5rem;
    }
    .stButton>button {
        background: linear-gradient(135deg, #4CAF50, #45a049);
        transition: transform 0.2s ease, box-shadow 0.2s ease;
    }
    .stButton>button:hover {
        transform: translateY(-1px);
        box-shadow: 0 4px 12px rgba(76,175,80,0.3);
    }
    [data-testid="stFileUploader"] {
        border: 2px dashed #4CAF50;
        border-radius: 12px;
        background: #f8fff8;
    }
</style>
""", unsafe_allow_html=True)

# Session state initialization
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'current_file' not in st.session_state:
    st.session_state.current_file = None

# Main UI
st.title("πŸ“„ Academic PDF Analyzer")
st.markdown("""
<div style="border-left: 4px solid #4CAF50; padding-left: 1.5rem; margin: 2rem 0;">
    <p style="color: #2c3e50; font-size: 1.1rem;">πŸ” Upload research papers to:
    <ul style="color: #2c3e50; font-size: 1rem;">
        <li>Generate citations-backed summaries</li>
        <li>Trace claims to original sources</li>
        <li>Extract data tables and figures</li>
        <li>Q&A with verifiable references</li>
    </ul>
    </p>
</div>
""", unsafe_allow_html=True)

# File uploader
uploaded_file = st.file_uploader(
    "Upload research PDF", 
    type="pdf",
    help="Maximum file size: 50MB",
    on_change=lambda: setattr(st.session_state, 'chat_history', [])
)

if uploaded_file and uploaded_file.size > MAX_FILE_SIZE:
    st.error("File size exceeds 50MB limit")
    st.stop()

# Document processing
if uploaded_file:
    file_path = tempfile.NamedTemporaryFile(delete=False).name
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer()οΌ‰
    
    # Chat interface
    chat_container = st.container()
    with chat_container:
        for idx, chat in enumerate(st.session_state.chat_history):
            col1, col2 = st.columns([1, 4])
            if chat.get("user"):
                with col2:
                    message(chat["user"], is_user=True, key=f"user_{idx}")
            if chat.get("bot"):
                with col1:
                    message(chat["bot"], key=f"bot_{idx}", allow_html=True)
        scroll_to_bottom()

    # Interaction controls
    with st.container():
        col1, col2, col3 = st.columns([3, 2, 2])
        with col1:
            user_input = st.chat_input("Ask a research question...")
        with col2:
            if st.button("πŸ“„ Generate Summary", use_container_width=True):
                with st.spinner("Analyzing document structure..."):
                    summary = summarize_pdf(file_path)
                    st.session_state.chat_history.append({
                        "bot": f"## Research Summary\n{summary}"
                    })
                    st.rerun()
        with col3:
            if st.button("πŸ”„ Clear Session", use_container_width=True):
                st.session_state.chat_history = []
                st.rerun()

    # Handle user questions
    if user_input:
        st.session_state.chat_history.append({"user": user_input})
        with st.spinner("Verifying sources..."):
            answer = qa_pdf(file_path, user_input)
            st.session_state.chat_history[-1]["bot"] = f"## Research Answer\n{answer}"
            st.rerun()