File size: 16,694 Bytes
e9206ba
 
 
 
 
cf7f887
e9206ba
 
ea2cc6e
72f83c1
e9206ba
 
 
 
 
 
 
 
 
 
6e43295
e9206ba
cb23c0f
e9206ba
cf7f887
e9206ba
cb23c0f
e9206ba
cf7f887
e09a48c
cb23c0f
e09a48c
 
e9206ba
cb23c0f
e9206ba
cb23c0f
e9206ba
cb23c0f
e9206ba
cb23c0f
 
 
 
 
cf7f887
6e43295
cf7f887
 
b8d4606
 
60db5ed
e09a48c
 
6e43295
 
 
 
 
 
e09a48c
e9206ba
cb23c0f
e9206ba
cb23c0f
 
b8d4606
 
 
 
 
 
 
cb23c0f
6e43295
2fb062a
cb23c0f
e9206ba
 
b8d4606
cb23c0f
6620c2f
e09a48c
 
 
 
6620c2f
d72206a
6620c2f
e9206ba
 
ea2cc6e
 
 
 
 
 
 
d72206a
e9206ba
cb23c0f
e9206ba
cb23c0f
cf7f887
 
 
 
2fb062a
 
cb23c0f
 
d72206a
ea2cc6e
 
 
 
2fb062a
e9206ba
cb23c0f
d72206a
cb23c0f
 
 
 
 
72f83c1
6e43295
d72206a
6e43295
 
 
 
 
 
 
d72206a
 
e9206ba
cf7f887
e9206ba
cf7f887
e9206ba
 
cb23c0f
e9206ba
 
6e43295
 
ea2cc6e
cb23c0f
b8d4606
72f83c1
ea2cc6e
cb23c0f
72f83c1
 
ea2cc6e
 
 
 
 
 
 
 
 
cb23c0f
6e43295
d72206a
72f83c1
6e43295
ea2cc6e
 
cb23c0f
bf24dd3
72f83c1
ea2cc6e
bf24dd3
 
 
ea2cc6e
 
 
 
 
 
 
 
6e43295
 
e9206ba
bf24dd3
d72206a
b8d4606
72f83c1
 
 
cb23c0f
 
 
72f83c1
 
ea2cc6e
bf24dd3
 
 
ea2cc6e
 
 
 
 
cb23c0f
6e43295
d72206a
e09a48c
d72206a
 
60db5ed
d72206a
 
b8d4606
 
bf24dd3
 
 
 
 
b8d4606
 
 
 
 
 
bf24dd3
b8d4606
bf24dd3
b8d4606
60db5ed
bf24dd3
ea2cc6e
60db5ed
bf24dd3
60db5ed
ea2cc6e
d72206a
60db5ed
 
 
 
 
b8d4606
cb23c0f
6e43295
 
cb23c0f
bf24dd3
6620c2f
b8d4606
72f83c1
bf24dd3
6e43295
72f83c1
bf24dd3
ea2cc6e
72f83c1
ea2cc6e
 
 
 
 
72f83c1
 
ea2cc6e
6620c2f
72f83c1
 
6e43295
ea2cc6e
bf24dd3
 
 
ea2cc6e
cb23c0f
6e43295
 
bf24dd3
ea2cc6e
b8d4606
ea2cc6e
 
72f83c1
ea2cc6e
 
cb23c0f
bf24dd3
6e43295
ea2cc6e
 
 
 
 
bf24dd3
ea2cc6e
bf24dd3
 
 
ea2cc6e
d72206a
72f83c1
ea2cc6e
 
bf24dd3
 
 
 
ea2cc6e
 
bf24dd3
 
 
6e43295
ea2cc6e
bf24dd3
6e43295
 
d72206a
6e43295
 
 
 
 
bf24dd3
ea2cc6e
 
d72206a
 
6e43295
 
ea2cc6e
 
 
 
 
 
 
 
72f83c1
6e43295
72f83c1
 
ea2cc6e
bf24dd3
 
 
6620c2f
6e43295
72f83c1
 
6e43295
72f83c1
cb23c0f
60db5ed
6620c2f
72f83c1
cb23c0f
60db5ed
 
6620c2f
60db5ed
cb23c0f
6620c2f
cb23c0f
 
 
6620c2f
ea2cc6e
 
 
 
cb23c0f
6620c2f
ea2cc6e
 
cb23c0f
ea2cc6e
 
6620c2f
ea2cc6e
 
cb23c0f
b8d4606
ea2cc6e
 
72f83c1
 
ea2cc6e
6620c2f
ea2cc6e
 
cb23c0f
ea2cc6e
 
 
 
cb23c0f
ea2cc6e
 
 
 
cb23c0f
72f83c1
 
cb23c0f
b8d4606
ea2cc6e
 
cb23c0f
bf24dd3
b8d4606
 
 
 
 
ea2cc6e
 
cb23c0f
72f83c1
 
 
cb23c0f
6e43295
 
b8d4606
 
 
 
 
 
ea2cc6e
 
6e43295
72f83c1
 
cb23c0f
6e43295
b8d4606
 
 
 
 
 
ea2cc6e
 
72f83c1
ea2cc6e
cb23c0f
 
 
ea2cc6e
 
 
 
 
 
cb23c0f
 
72f83c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
from __future__ import annotations

import imghdr
import json
import os
import re
import shutil
import tempfile
from collections import Counter
from concurrent.futures import ThreadPoolExecutor, as_completed
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple

import gradio as gr
import numpy as np
import pandas as pd
import yaml
from PIL import Image

# Optional heavy deps -------------------------------------------------------
try:
    import cv2
except ImportError:
    cv2 = None
try:
    import imagehash
except ImportError:
    imagehash = None
try:
    import fastdup
except ImportError:
    fastdup = None
try:
    from ultralytics import YOLO
except ImportError:
    YOLO = None
try:
    from roboflow import Roboflow
except ImportError:
    Roboflow = None
try:
    from cleanlab.pruning import get_noise_indices
except ImportError:
    get_noise_indices = None

# ───────────────── Config & Constants ───────────────────────────────────────
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
TMP_ROOT.mkdir(parents=True, exist_ok=True)
CPU_COUNT    = int(os.getenv("QC_CPU",      1))   # force single-core by default
BATCH_SIZE   = int(os.getenv("QC_BATCH",    4))   # small batches
SAMPLE_LIMIT = int(os.getenv("QC_SAMPLE", 200))

DEFAULT_W = {
    "Integrity":     0.25,
    "Class balance": 0.10,
    "Image quality": 0.15,
    "Duplicates":    0.10,
    "Model QA":      0.30,
    "Label issues":  0.10,
}

_model_cache: dict[str, YOLO] = {}

@dataclass
class QCConfig:
    blur_thr:    float
    iou_thr:     float
    conf_thr:    float
    weights:     str | None
    cpu_count:   int = CPU_COUNT
    batch_size:  int = BATCH_SIZE
    sample_limit:int = SAMPLE_LIMIT

# ─────────── Helpers & Caching ─────────────────────────────────────────────
def load_yaml(path: Path) -> Dict:
    with path.open('r', encoding='utf-8') as f:
        return yaml.safe_load(f)

def parse_label_file(path: Path) -> list[tuple[int, float, float, float, float]]:
    if not path or not path.exists() or path.stat().st_size == 0:
        return []
    try:
        arr = np.loadtxt(path, dtype=float)
        if arr.ndim == 1:
            arr = arr.reshape(1, -1)
        return [tuple(row) for row in arr]
    except:
        return []

def guess_image_dirs(root: Path) -> List[Path]:
    candidates = [
        root/'images',
        root/'train'/'images',
        root/'valid'/'images',
        root/'val'  /'images',
        root/'test' /'images',
    ]
    return [d for d in candidates if d.exists()]

def gather_dataset(root: Path, yaml_path: Path | None):
    if yaml_path is None:
        yamls = list(root.glob('*.yaml'))
        if not yamls:
            raise FileNotFoundError("Dataset YAML not found")
        yaml_path = yamls[0]
    meta = load_yaml(yaml_path)
    img_dirs = guess_image_dirs(root)
    if not img_dirs:
        raise FileNotFoundError("images/ directory missing")
    imgs = [p for d in img_dirs for p in d.rglob('*.*') if imghdr.what(p)]
    labels_roots = {d.parent/'labels' for d in img_dirs}
    lbls = [
        next((lr/f"{p.stem}.txt" for lr in labels_roots if (lr/f"{p.stem}.txt").exists()), None)
        for p in imgs
    ]
    return imgs, lbls, meta

def get_model(weights: str) -> YOLO | None:
    if not weights or YOLO is None:
        return None
    if weights not in _model_cache:
        _model_cache[weights] = YOLO(weights)
    return _model_cache[weights]

# ───────── Functions for I/O-bound concurrency ─────────────────────────────
def _quality_stat_args(args: Tuple[Path, float]) -> Tuple[Path, bool, bool, bool]:
    path, thr = args
    if cv2 is None:
        return path, False, False, False
    im = cv2.imread(str(path))
    if im is None:
        return path, False, False, False
    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
    lap = cv2.Laplacian(gray, cv2.CV_64F).var()
    mean = gray.mean()
    return path, lap < thr, mean < 25, mean > 230

def _is_corrupt(path: Path) -> bool:
    try:
        with Image.open(path) as im:
            im.verify()
        return False
    except:
        return True

# ───────────────── Quality Checks ──────────────────────────────────────────
def qc_integrity(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
    missing = [i for i, l in zip(imgs, lbls) if l is None]
    corrupt = []
    sample = imgs[:cfg.sample_limit]
    with ThreadPoolExecutor(max_workers=cfg.cpu_count) as ex:
        fut = {ex.submit(_is_corrupt, p): p for p in sample}
        for f in as_completed(fut):
            if f.result():
                corrupt.append(fut[f])
    score = 100 - (len(missing) + len(corrupt)) / max(len(imgs), 1) * 100
    return {
        "name": "Integrity",
        "score": max(score, 0),
        "details": {
            "missing_label_files": [str(p) for p in missing],
            "corrupt_images":       [str(p) for p in corrupt],
        }
    }

def qc_class_balance(lbls: List[Path], cfg: QCConfig) -> Dict:
    counts, boxes = Counter(), []
    for l in lbls[:cfg.sample_limit]:
        bs = parse_label_file(l) if l else []
        boxes.append(len(bs))
        counts.update(b[0] for b in bs)
    if not counts:
        return {"name":"Class balance","score":0,"details":"No labels"}
    bal = min(counts.values()) / max(counts.values()) * 100
    return {
        "name":"Class balance",
        "score":bal,
        "details":{
            "class_counts": dict(counts),
            "boxes_per_image": {
                "min": min(boxes),
                "max": max(boxes),
                "mean": float(np.mean(boxes))
            }
        }
    }

def qc_image_quality(imgs: List[Path], cfg: QCConfig) -> Dict:
    if cv2 is None:
        return {"name":"Image quality","score":100,"details":"cv2 missing"}
    blurry, dark, bright = [], [], []
    sample = imgs[:cfg.sample_limit]
    with ThreadPoolExecutor(max_workers=cfg.cpu_count) as ex:
        args = [(p, cfg.blur_thr) for p in sample]
        for p, isb, isd, isB in ex.map(_quality_stat_args, args):
            if isb: blurry.append(p)
            if isd: dark.append(p)
            if isB: bright.append(p)
    bad = len({*blurry, *dark, *bright})
    score = 100 - bad / max(len(sample), 1) * 100
    return {
        "name":"Image quality",
        "score":score,
        "details":{
            "blurry": [str(p) for p in blurry],
            "dark":   [str(p) for p in dark],
            "bright": [str(p) for p in bright]
        }
    }

def qc_duplicates(imgs: List[Path], cfg: QCConfig) -> Dict:
    if fastdup is not None and len(imgs) > 50:
        try:
            fd = fastdup.create(
                input_dir=str(Path(imgs[0]).parent.parent),
                work_dir=str(TMP_ROOT / "fastdup")
            )
            fd.run()

            # Try the grouped-DataFrame API first:
            try:
                cc = fd.connected_components_grouped(sort_by="comp_size", ascending=False)
                if "files" in cc.columns:
                    clusters = cc["files"].tolist()
                else:
                    # fallback: group by component ID, collect filenames
                    clusters = (
                        cc.groupby("component")["filename"]
                          .apply(list)
                          .tolist()
                    )
            except Exception:
                # final fallback to the old list-based API
                clusters = fd.connected_components()

            dup = sum(len(c) - 1 for c in clusters)
            score = max(0.0, 100 - dup / len(imgs) * 100)
            return {
                "name": "Duplicates",
                "score": score,
                "details": {"groups": clusters[:50]}
            }
        except Exception as e:
            return {
                "name": "Duplicates",
                "score": 100.0,
                "details": {"fastdup_error": str(e)}
            }
    return {"name": "Duplicates", "score": 100.0, "details": {"note": "skipped"}}

def qc_model_qa(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
    model = get_model(cfg.weights)
    if model is None:
        return {"name":"Model QA","score":100,"details":"skipped"}
    ious, mism = [], []
    sample = imgs[:cfg.sample_limit]
    for i in range(0, len(sample), cfg.batch_size):
        batch = sample[i:i+cfg.batch_size]
        results = model.predict(batch, verbose=False, half=True, dynamic=True)
        for p, res in zip(batch, results):
            gt = parse_label_file(Path(p).parent.parent/'labels'/f"{Path(p).stem}.txt")
            for cls, x, y, w, h in gt:
                best = 0.0
                for b, c, conf in zip(
                    res.boxes.xywh.cpu().numpy(),
                    res.boxes.cls.cpu().numpy(),
                    res.boxes.conf.cpu().numpy()
                ):
                    if conf < cfg.conf_thr or int(c) != cls:
                        continue
                    best = max(best, _rel_iou((x, y, w, h), tuple(b)))
                ious.append(best)
                if best < cfg.iou_thr:
                    mism.append(str(p))
    miou = float(np.mean(ious)) if ious else 1.0
    return {
        "name":"Model QA",
        "score":miou*100,
        "details":{"mean_iou":miou, "mismatches":mism[:50]}
    }

def qc_label_issues(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
    if get_noise_indices is None:
        return {"name":"Label issues","score":100,"details":"skipped"}
    labels, idxs = [], []
    sample = imgs[:cfg.sample_limit]
    for i, p in enumerate(sample):
        bs = parse_label_file(lbls[i]) if lbls[i] else []
        for cls, *_ in bs:
            labels.append(int(cls))
            idxs.append(i)
    if not labels:
        return {"name":"Label issues","score":100,"details":"no GT"}
    labels_arr = np.array(labels)
    uniq       = sorted(set(labels_arr))
    probs      = np.eye(len(uniq))[np.searchsorted(uniq, labels_arr)]
    noise      = get_noise_indices(labels=labels_arr, probabilities=probs)
    flags      = sorted({idxs[n] for n in noise})
    files      = [str(sample[i]) for i in flags]
    score      = 100 - len(flags)/len(labels)*100
    return {
        "name":"Label issues",
        "score":score,
        "details":{"files":files[:50]}
    }

def _rel_iou(b1, b2):
    x1, y1, w1, h1 = b1
    x2, y2, w2, h2 = b2
    xa1, ya1 = x1-w1/2, y1-h1/2
    xa2, ya2 = x1+w1/2, y1+h1/2
    xb1, yb1 = x2-w2/2, y2-h2/2
    xb2, yb2 = x2+w2/2, y2+h2/2
    ix1 = max(xa1, xb1); iy1 = max(ya1, yb1)
    ix2 = min(xa2, xb2); iy2 = min(ya2, yb2)
    inter = max(ix2-ix1, 0) * max(iy2-iy1, 0)
    union = w1*h1 + w2*h2 - inter
    return inter/union if union else 0.0

def aggregate(results: List[Dict]) -> float:
    return sum(DEFAULT_W[r["name"]]*r["score"] for r in results)

RF_RE = re.compile(r"https?://universe\.roboflow\.com/([^/]+)/([^/]+)/dataset/(\d+)")

def download_rf_dataset(url: str, rf_api: Roboflow, dest: Path) -> Path:
    m = RF_RE.match(url.strip())
    if not m:
        raise ValueError(f"Bad RF URL: {url}")
    ws, proj, ver = m.groups()
    ds_dir = dest/f"{ws}_{proj}_v{ver}"
    if ds_dir.exists():
        return ds_dir
    pr = rf_api.workspace(ws).project(proj)
    pr.version(int(ver)).download("yolov8", location=str(ds_dir))
    return ds_dir

def run_quality(
    root: Path,
    yaml_file: Path | None,
    weights: Path | None,
    cfg: QCConfig,
    run_dup: bool,
    run_modelqa: bool
) -> Tuple[str, pd.DataFrame]:
    imgs, lbls, meta = gather_dataset(root, yaml_file)
    results = [
        qc_integrity(imgs, lbls, cfg),
        qc_class_balance(lbls, cfg),
        qc_image_quality(imgs, cfg),
        qc_duplicates(imgs, cfg)      if run_dup     else {"name":"Duplicates","score":100,"details":"skipped"},
        qc_model_qa(imgs, lbls, cfg)  if run_modelqa else {"name":"Model QA","score":100,"details":"skipped"},
        qc_label_issues(imgs, lbls, cfg) if run_modelqa else {"name":"Label issues","score":100,"details":"skipped"},
    ]
    final = aggregate(results)

    md = [f"## **{meta.get('name', root.name)}** β€” Score {final:.1f}/100"]
    for r in results:
        md.append(f"### {r['name']}  {r['score']:.1f}")
        md.append("<details><summary>details</summary>\n```json")
        md.append(json.dumps(r["details"], indent=2))
        md.append("```\n</details>\n")

    df = pd.DataFrame.from_dict(
        next(r for r in results if r["name"] == "Class balance")["details"]["class_counts"],
        orient="index", columns=["count"]
    )
    df.index.name = "class"
    return "\n".join(md), df

with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
    gr.Markdown("""
# YOLOv8 Dataset Quality Evaluator v3

* Configurable blur, IOU & confidence thresholds  
* Optional duplicates (fastdup)  
* Optional Model QA & cleanlab label-issue detection  
* Model caching for speed  
""")
    with gr.Row():
        api_in     = gr.Textbox(label="Roboflow API key", type="password")
        url_txt    = gr.File(label=".txt of RF dataset URLs", file_types=['.txt'])
    with gr.Row():
        zip_in     = gr.File(label="Dataset ZIP")
        path_in    = gr.Textbox(label="Server path")
    with gr.Row():
        yaml_in    = gr.File(label="Custom YAML", file_types=['.yaml'])
        weights_in = gr.File(label="YOLO weights (.pt)")
    with gr.Row():
        blur_sl    = gr.Slider(0.0, 500.0, value=100.0, label="Blur threshold")
        iou_sl     = gr.Slider(0.0, 1.0,   value=0.5,   label="IOU threshold")
        conf_sl    = gr.Slider(0.0, 1.0,   value=0.25,  label="Min detection confidence")
    with gr.Row():
        run_dup     = gr.Checkbox(label="Check duplicates (fastdup)", value=False)
        run_modelqa = gr.Checkbox(label="Run Model QA & cleanlab",   value=False)
    run_btn = gr.Button("Evaluate")
    out_md   = gr.Markdown()
    out_df   = gr.Dataframe()

    def evaluate(
        api_key, url_txt, zip_file, server_path, yaml_file, weights,
        blur_thr, iou_thr, conf_thr, run_dup, run_modelqa
    ):
        reports, dfs = [], []
        cfg = QCConfig(
            blur_thr, iou_thr, conf_thr,
            weights.name if weights else None
        )
        rf = Roboflow(api_key) if api_key and Roboflow else None

        # Roboflow URLs
        if url_txt:
            for line in Path(url_txt.name).read_text().splitlines():
                if not line.strip():
                    continue
                try:
                    ds = download_rf_dataset(line, rf, TMP_ROOT)
                    md, df = run_quality(
                        ds, None,
                        Path(weights.name) if weights else None,
                        cfg, run_dup, run_modelqa
                    )
                    reports.append(md)
                    dfs.append(df)
                except Exception as e:
                    reports.append(f"### {line}\n⚠️ {e}")

        # ZIP upload
        if zip_file:
            tmp = Path(tempfile.mkdtemp())
            shutil.unpack_archive(zip_file.name, tmp)
            md, df = run_quality(
                tmp,
                Path(yaml_file.name) if yaml_file else None,
                Path(weights.name) if weights else None,
                cfg, run_dup, run_modelqa
            )
            reports.append(md)
            dfs.append(df)
            shutil.rmtree(tmp, ignore_errors=True)

        # Server path
        if server_path:
            ds = Path(server_path)
            md, df = run_quality(
                ds,
                Path(yaml_file.name) if yaml_file else None,
                Path(weights.name) if weights else None,
                cfg, run_dup, run_modelqa
            )
            reports.append(md)
            dfs.append(df)

        summary  = "\n---\n".join(reports)
        combined = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
        return summary, combined

    run_btn.click(
        evaluate,
        inputs=[api_in, url_txt, zip_in, path_in, yaml_in, weights_in,
                blur_sl, iou_sl, conf_sl, run_dup, run_modelqa],
        outputs=[out_md, out_df]
    )

if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0', server_port=int(os.getenv('PORT', 7860)))