File size: 16,694 Bytes
e9206ba cf7f887 e9206ba ea2cc6e 72f83c1 e9206ba 6e43295 e9206ba cb23c0f e9206ba cf7f887 e9206ba cb23c0f e9206ba cf7f887 e09a48c cb23c0f e09a48c e9206ba cb23c0f e9206ba cb23c0f e9206ba cb23c0f e9206ba cb23c0f cf7f887 6e43295 cf7f887 b8d4606 60db5ed e09a48c 6e43295 e09a48c e9206ba cb23c0f e9206ba cb23c0f b8d4606 cb23c0f 6e43295 2fb062a cb23c0f e9206ba b8d4606 cb23c0f 6620c2f e09a48c 6620c2f d72206a 6620c2f e9206ba ea2cc6e d72206a e9206ba cb23c0f e9206ba cb23c0f cf7f887 2fb062a cb23c0f d72206a ea2cc6e 2fb062a e9206ba cb23c0f d72206a cb23c0f 72f83c1 6e43295 d72206a 6e43295 d72206a e9206ba cf7f887 e9206ba cf7f887 e9206ba cb23c0f e9206ba 6e43295 ea2cc6e cb23c0f b8d4606 72f83c1 ea2cc6e cb23c0f 72f83c1 ea2cc6e cb23c0f 6e43295 d72206a 72f83c1 6e43295 ea2cc6e cb23c0f bf24dd3 72f83c1 ea2cc6e bf24dd3 ea2cc6e 6e43295 e9206ba bf24dd3 d72206a b8d4606 72f83c1 cb23c0f 72f83c1 ea2cc6e bf24dd3 ea2cc6e cb23c0f 6e43295 d72206a e09a48c d72206a 60db5ed d72206a b8d4606 bf24dd3 b8d4606 bf24dd3 b8d4606 bf24dd3 b8d4606 60db5ed bf24dd3 ea2cc6e 60db5ed bf24dd3 60db5ed ea2cc6e d72206a 60db5ed b8d4606 cb23c0f 6e43295 cb23c0f bf24dd3 6620c2f b8d4606 72f83c1 bf24dd3 6e43295 72f83c1 bf24dd3 ea2cc6e 72f83c1 ea2cc6e 72f83c1 ea2cc6e 6620c2f 72f83c1 6e43295 ea2cc6e bf24dd3 ea2cc6e cb23c0f 6e43295 bf24dd3 ea2cc6e b8d4606 ea2cc6e 72f83c1 ea2cc6e cb23c0f bf24dd3 6e43295 ea2cc6e bf24dd3 ea2cc6e bf24dd3 ea2cc6e d72206a 72f83c1 ea2cc6e bf24dd3 ea2cc6e bf24dd3 6e43295 ea2cc6e bf24dd3 6e43295 d72206a 6e43295 bf24dd3 ea2cc6e d72206a 6e43295 ea2cc6e 72f83c1 6e43295 72f83c1 ea2cc6e bf24dd3 6620c2f 6e43295 72f83c1 6e43295 72f83c1 cb23c0f 60db5ed 6620c2f 72f83c1 cb23c0f 60db5ed 6620c2f 60db5ed cb23c0f 6620c2f cb23c0f 6620c2f ea2cc6e cb23c0f 6620c2f ea2cc6e cb23c0f ea2cc6e 6620c2f ea2cc6e cb23c0f b8d4606 ea2cc6e 72f83c1 ea2cc6e 6620c2f ea2cc6e cb23c0f ea2cc6e cb23c0f ea2cc6e cb23c0f 72f83c1 cb23c0f b8d4606 ea2cc6e cb23c0f bf24dd3 b8d4606 ea2cc6e cb23c0f 72f83c1 cb23c0f 6e43295 b8d4606 ea2cc6e 6e43295 72f83c1 cb23c0f 6e43295 b8d4606 ea2cc6e 72f83c1 ea2cc6e cb23c0f ea2cc6e cb23c0f 72f83c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
from __future__ import annotations
import imghdr
import json
import os
import re
import shutil
import tempfile
from collections import Counter
from concurrent.futures import ThreadPoolExecutor, as_completed
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import yaml
from PIL import Image
# Optional heavy deps -------------------------------------------------------
try:
import cv2
except ImportError:
cv2 = None
try:
import imagehash
except ImportError:
imagehash = None
try:
import fastdup
except ImportError:
fastdup = None
try:
from ultralytics import YOLO
except ImportError:
YOLO = None
try:
from roboflow import Roboflow
except ImportError:
Roboflow = None
try:
from cleanlab.pruning import get_noise_indices
except ImportError:
get_noise_indices = None
# βββββββββββββββββ Config & Constants βββββββββββββββββββββββββββββββββββββββ
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
TMP_ROOT.mkdir(parents=True, exist_ok=True)
CPU_COUNT = int(os.getenv("QC_CPU", 1)) # force single-core by default
BATCH_SIZE = int(os.getenv("QC_BATCH", 4)) # small batches
SAMPLE_LIMIT = int(os.getenv("QC_SAMPLE", 200))
DEFAULT_W = {
"Integrity": 0.25,
"Class balance": 0.10,
"Image quality": 0.15,
"Duplicates": 0.10,
"Model QA": 0.30,
"Label issues": 0.10,
}
_model_cache: dict[str, YOLO] = {}
@dataclass
class QCConfig:
blur_thr: float
iou_thr: float
conf_thr: float
weights: str | None
cpu_count: int = CPU_COUNT
batch_size: int = BATCH_SIZE
sample_limit:int = SAMPLE_LIMIT
# βββββββββββ Helpers & Caching βββββββββββββββββββββββββββββββββββββββββββββ
def load_yaml(path: Path) -> Dict:
with path.open('r', encoding='utf-8') as f:
return yaml.safe_load(f)
def parse_label_file(path: Path) -> list[tuple[int, float, float, float, float]]:
if not path or not path.exists() or path.stat().st_size == 0:
return []
try:
arr = np.loadtxt(path, dtype=float)
if arr.ndim == 1:
arr = arr.reshape(1, -1)
return [tuple(row) for row in arr]
except:
return []
def guess_image_dirs(root: Path) -> List[Path]:
candidates = [
root/'images',
root/'train'/'images',
root/'valid'/'images',
root/'val' /'images',
root/'test' /'images',
]
return [d for d in candidates if d.exists()]
def gather_dataset(root: Path, yaml_path: Path | None):
if yaml_path is None:
yamls = list(root.glob('*.yaml'))
if not yamls:
raise FileNotFoundError("Dataset YAML not found")
yaml_path = yamls[0]
meta = load_yaml(yaml_path)
img_dirs = guess_image_dirs(root)
if not img_dirs:
raise FileNotFoundError("images/ directory missing")
imgs = [p for d in img_dirs for p in d.rglob('*.*') if imghdr.what(p)]
labels_roots = {d.parent/'labels' for d in img_dirs}
lbls = [
next((lr/f"{p.stem}.txt" for lr in labels_roots if (lr/f"{p.stem}.txt").exists()), None)
for p in imgs
]
return imgs, lbls, meta
def get_model(weights: str) -> YOLO | None:
if not weights or YOLO is None:
return None
if weights not in _model_cache:
_model_cache[weights] = YOLO(weights)
return _model_cache[weights]
# βββββββββ Functions for I/O-bound concurrency βββββββββββββββββββββββββββββ
def _quality_stat_args(args: Tuple[Path, float]) -> Tuple[Path, bool, bool, bool]:
path, thr = args
if cv2 is None:
return path, False, False, False
im = cv2.imread(str(path))
if im is None:
return path, False, False, False
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
lap = cv2.Laplacian(gray, cv2.CV_64F).var()
mean = gray.mean()
return path, lap < thr, mean < 25, mean > 230
def _is_corrupt(path: Path) -> bool:
try:
with Image.open(path) as im:
im.verify()
return False
except:
return True
# βββββββββββββββββ Quality Checks ββββββββββββββββββββββββββββββββββββββββββ
def qc_integrity(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
missing = [i for i, l in zip(imgs, lbls) if l is None]
corrupt = []
sample = imgs[:cfg.sample_limit]
with ThreadPoolExecutor(max_workers=cfg.cpu_count) as ex:
fut = {ex.submit(_is_corrupt, p): p for p in sample}
for f in as_completed(fut):
if f.result():
corrupt.append(fut[f])
score = 100 - (len(missing) + len(corrupt)) / max(len(imgs), 1) * 100
return {
"name": "Integrity",
"score": max(score, 0),
"details": {
"missing_label_files": [str(p) for p in missing],
"corrupt_images": [str(p) for p in corrupt],
}
}
def qc_class_balance(lbls: List[Path], cfg: QCConfig) -> Dict:
counts, boxes = Counter(), []
for l in lbls[:cfg.sample_limit]:
bs = parse_label_file(l) if l else []
boxes.append(len(bs))
counts.update(b[0] for b in bs)
if not counts:
return {"name":"Class balance","score":0,"details":"No labels"}
bal = min(counts.values()) / max(counts.values()) * 100
return {
"name":"Class balance",
"score":bal,
"details":{
"class_counts": dict(counts),
"boxes_per_image": {
"min": min(boxes),
"max": max(boxes),
"mean": float(np.mean(boxes))
}
}
}
def qc_image_quality(imgs: List[Path], cfg: QCConfig) -> Dict:
if cv2 is None:
return {"name":"Image quality","score":100,"details":"cv2 missing"}
blurry, dark, bright = [], [], []
sample = imgs[:cfg.sample_limit]
with ThreadPoolExecutor(max_workers=cfg.cpu_count) as ex:
args = [(p, cfg.blur_thr) for p in sample]
for p, isb, isd, isB in ex.map(_quality_stat_args, args):
if isb: blurry.append(p)
if isd: dark.append(p)
if isB: bright.append(p)
bad = len({*blurry, *dark, *bright})
score = 100 - bad / max(len(sample), 1) * 100
return {
"name":"Image quality",
"score":score,
"details":{
"blurry": [str(p) for p in blurry],
"dark": [str(p) for p in dark],
"bright": [str(p) for p in bright]
}
}
def qc_duplicates(imgs: List[Path], cfg: QCConfig) -> Dict:
if fastdup is not None and len(imgs) > 50:
try:
fd = fastdup.create(
input_dir=str(Path(imgs[0]).parent.parent),
work_dir=str(TMP_ROOT / "fastdup")
)
fd.run()
# Try the grouped-DataFrame API first:
try:
cc = fd.connected_components_grouped(sort_by="comp_size", ascending=False)
if "files" in cc.columns:
clusters = cc["files"].tolist()
else:
# fallback: group by component ID, collect filenames
clusters = (
cc.groupby("component")["filename"]
.apply(list)
.tolist()
)
except Exception:
# final fallback to the old list-based API
clusters = fd.connected_components()
dup = sum(len(c) - 1 for c in clusters)
score = max(0.0, 100 - dup / len(imgs) * 100)
return {
"name": "Duplicates",
"score": score,
"details": {"groups": clusters[:50]}
}
except Exception as e:
return {
"name": "Duplicates",
"score": 100.0,
"details": {"fastdup_error": str(e)}
}
return {"name": "Duplicates", "score": 100.0, "details": {"note": "skipped"}}
def qc_model_qa(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
model = get_model(cfg.weights)
if model is None:
return {"name":"Model QA","score":100,"details":"skipped"}
ious, mism = [], []
sample = imgs[:cfg.sample_limit]
for i in range(0, len(sample), cfg.batch_size):
batch = sample[i:i+cfg.batch_size]
results = model.predict(batch, verbose=False, half=True, dynamic=True)
for p, res in zip(batch, results):
gt = parse_label_file(Path(p).parent.parent/'labels'/f"{Path(p).stem}.txt")
for cls, x, y, w, h in gt:
best = 0.0
for b, c, conf in zip(
res.boxes.xywh.cpu().numpy(),
res.boxes.cls.cpu().numpy(),
res.boxes.conf.cpu().numpy()
):
if conf < cfg.conf_thr or int(c) != cls:
continue
best = max(best, _rel_iou((x, y, w, h), tuple(b)))
ious.append(best)
if best < cfg.iou_thr:
mism.append(str(p))
miou = float(np.mean(ious)) if ious else 1.0
return {
"name":"Model QA",
"score":miou*100,
"details":{"mean_iou":miou, "mismatches":mism[:50]}
}
def qc_label_issues(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
if get_noise_indices is None:
return {"name":"Label issues","score":100,"details":"skipped"}
labels, idxs = [], []
sample = imgs[:cfg.sample_limit]
for i, p in enumerate(sample):
bs = parse_label_file(lbls[i]) if lbls[i] else []
for cls, *_ in bs:
labels.append(int(cls))
idxs.append(i)
if not labels:
return {"name":"Label issues","score":100,"details":"no GT"}
labels_arr = np.array(labels)
uniq = sorted(set(labels_arr))
probs = np.eye(len(uniq))[np.searchsorted(uniq, labels_arr)]
noise = get_noise_indices(labels=labels_arr, probabilities=probs)
flags = sorted({idxs[n] for n in noise})
files = [str(sample[i]) for i in flags]
score = 100 - len(flags)/len(labels)*100
return {
"name":"Label issues",
"score":score,
"details":{"files":files[:50]}
}
def _rel_iou(b1, b2):
x1, y1, w1, h1 = b1
x2, y2, w2, h2 = b2
xa1, ya1 = x1-w1/2, y1-h1/2
xa2, ya2 = x1+w1/2, y1+h1/2
xb1, yb1 = x2-w2/2, y2-h2/2
xb2, yb2 = x2+w2/2, y2+h2/2
ix1 = max(xa1, xb1); iy1 = max(ya1, yb1)
ix2 = min(xa2, xb2); iy2 = min(ya2, yb2)
inter = max(ix2-ix1, 0) * max(iy2-iy1, 0)
union = w1*h1 + w2*h2 - inter
return inter/union if union else 0.0
def aggregate(results: List[Dict]) -> float:
return sum(DEFAULT_W[r["name"]]*r["score"] for r in results)
RF_RE = re.compile(r"https?://universe\.roboflow\.com/([^/]+)/([^/]+)/dataset/(\d+)")
def download_rf_dataset(url: str, rf_api: Roboflow, dest: Path) -> Path:
m = RF_RE.match(url.strip())
if not m:
raise ValueError(f"Bad RF URL: {url}")
ws, proj, ver = m.groups()
ds_dir = dest/f"{ws}_{proj}_v{ver}"
if ds_dir.exists():
return ds_dir
pr = rf_api.workspace(ws).project(proj)
pr.version(int(ver)).download("yolov8", location=str(ds_dir))
return ds_dir
def run_quality(
root: Path,
yaml_file: Path | None,
weights: Path | None,
cfg: QCConfig,
run_dup: bool,
run_modelqa: bool
) -> Tuple[str, pd.DataFrame]:
imgs, lbls, meta = gather_dataset(root, yaml_file)
results = [
qc_integrity(imgs, lbls, cfg),
qc_class_balance(lbls, cfg),
qc_image_quality(imgs, cfg),
qc_duplicates(imgs, cfg) if run_dup else {"name":"Duplicates","score":100,"details":"skipped"},
qc_model_qa(imgs, lbls, cfg) if run_modelqa else {"name":"Model QA","score":100,"details":"skipped"},
qc_label_issues(imgs, lbls, cfg) if run_modelqa else {"name":"Label issues","score":100,"details":"skipped"},
]
final = aggregate(results)
md = [f"## **{meta.get('name', root.name)}** β Score {final:.1f}/100"]
for r in results:
md.append(f"### {r['name']} {r['score']:.1f}")
md.append("<details><summary>details</summary>\n```json")
md.append(json.dumps(r["details"], indent=2))
md.append("```\n</details>\n")
df = pd.DataFrame.from_dict(
next(r for r in results if r["name"] == "Class balance")["details"]["class_counts"],
orient="index", columns=["count"]
)
df.index.name = "class"
return "\n".join(md), df
with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
gr.Markdown("""
# YOLOv8 Dataset Quality Evaluator v3
* Configurable blur, IOU & confidence thresholds
* Optional duplicates (fastdup)
* Optional Model QA & cleanlab label-issue detection
* Model caching for speed
""")
with gr.Row():
api_in = gr.Textbox(label="Roboflow API key", type="password")
url_txt = gr.File(label=".txt of RF dataset URLs", file_types=['.txt'])
with gr.Row():
zip_in = gr.File(label="Dataset ZIP")
path_in = gr.Textbox(label="Server path")
with gr.Row():
yaml_in = gr.File(label="Custom YAML", file_types=['.yaml'])
weights_in = gr.File(label="YOLO weights (.pt)")
with gr.Row():
blur_sl = gr.Slider(0.0, 500.0, value=100.0, label="Blur threshold")
iou_sl = gr.Slider(0.0, 1.0, value=0.5, label="IOU threshold")
conf_sl = gr.Slider(0.0, 1.0, value=0.25, label="Min detection confidence")
with gr.Row():
run_dup = gr.Checkbox(label="Check duplicates (fastdup)", value=False)
run_modelqa = gr.Checkbox(label="Run Model QA & cleanlab", value=False)
run_btn = gr.Button("Evaluate")
out_md = gr.Markdown()
out_df = gr.Dataframe()
def evaluate(
api_key, url_txt, zip_file, server_path, yaml_file, weights,
blur_thr, iou_thr, conf_thr, run_dup, run_modelqa
):
reports, dfs = [], []
cfg = QCConfig(
blur_thr, iou_thr, conf_thr,
weights.name if weights else None
)
rf = Roboflow(api_key) if api_key and Roboflow else None
# Roboflow URLs
if url_txt:
for line in Path(url_txt.name).read_text().splitlines():
if not line.strip():
continue
try:
ds = download_rf_dataset(line, rf, TMP_ROOT)
md, df = run_quality(
ds, None,
Path(weights.name) if weights else None,
cfg, run_dup, run_modelqa
)
reports.append(md)
dfs.append(df)
except Exception as e:
reports.append(f"### {line}\nβ οΈ {e}")
# ZIP upload
if zip_file:
tmp = Path(tempfile.mkdtemp())
shutil.unpack_archive(zip_file.name, tmp)
md, df = run_quality(
tmp,
Path(yaml_file.name) if yaml_file else None,
Path(weights.name) if weights else None,
cfg, run_dup, run_modelqa
)
reports.append(md)
dfs.append(df)
shutil.rmtree(tmp, ignore_errors=True)
# Server path
if server_path:
ds = Path(server_path)
md, df = run_quality(
ds,
Path(yaml_file.name) if yaml_file else None,
Path(weights.name) if weights else None,
cfg, run_dup, run_modelqa
)
reports.append(md)
dfs.append(df)
summary = "\n---\n".join(reports)
combined = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
return summary, combined
run_btn.click(
evaluate,
inputs=[api_in, url_txt, zip_in, path_in, yaml_in, weights_in,
blur_sl, iou_sl, conf_sl, run_dup, run_modelqa],
outputs=[out_md, out_df]
)
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0', server_port=int(os.getenv('PORT', 7860)))
|