Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,15 @@
|
|
1 |
"""
|
2 |
-
app.py β Roboflowβaware YOLOv8 Dataset Quality Evaluator (
|
3 |
-
|
4 |
-
Changelog
|
5 |
-
|
6 |
-
β’
|
7 |
-
β’
|
8 |
-
β’
|
|
|
|
|
|
|
|
|
9 |
"""
|
10 |
|
11 |
from __future__ import annotations
|
@@ -29,7 +33,7 @@ import yaml
|
|
29 |
from PIL import Image
|
30 |
from tqdm import tqdm
|
31 |
|
32 |
-
#
|
33 |
try:
|
34 |
import cv2 # type: ignore
|
35 |
except ImportError:
|
@@ -45,11 +49,6 @@ try:
|
|
45 |
except ImportError:
|
46 |
fastdup = None
|
47 |
|
48 |
-
try:
|
49 |
-
from cleanlab.object_detection import find_label_issues # type: ignore
|
50 |
-
except (ImportError, AttributeError):
|
51 |
-
find_label_issues = None # type: ignore
|
52 |
-
|
53 |
try:
|
54 |
from ultralytics import YOLO # type: ignore
|
55 |
except ImportError:
|
@@ -64,17 +63,16 @@ except ImportError:
|
|
64 |
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
|
65 |
TMP_ROOT.mkdir(parents=True, exist_ok=True)
|
66 |
|
|
|
67 |
CPU_COUNT = int(os.getenv("QC_CPU", max(1, (os.cpu_count() or 4) // 2)))
|
68 |
BATCH = int(os.getenv("QC_BATCH", 16))
|
69 |
|
70 |
DEFAULT_W = {
|
71 |
-
"Integrity": 0.
|
72 |
"Class balance": 0.15,
|
73 |
"Image quality": 0.15,
|
74 |
"Duplicates": 0.10,
|
75 |
-
"
|
76 |
-
"Model QA": 0.20,
|
77 |
-
"Cleanlab QA": 0.10,
|
78 |
}
|
79 |
|
80 |
@dataclass
|
@@ -88,19 +86,17 @@ def load_yaml(path: Path) -> Dict:
|
|
88 |
with path.open(encoding="utf-8") as f:
|
89 |
return yaml.safe_load(f)
|
90 |
|
91 |
-
_label_cache: dict[Path, np.ndarray] = {}
|
92 |
|
93 |
-
def
|
94 |
-
if path
|
95 |
-
return
|
96 |
try:
|
97 |
arr = np.loadtxt(path, dtype=float)
|
98 |
if arr.ndim == 1:
|
99 |
arr = arr.reshape(1, -1)
|
|
|
100 |
except Exception:
|
101 |
-
|
102 |
-
_label_cache[path] = arr
|
103 |
-
return arr
|
104 |
|
105 |
|
106 |
def guess_image_dirs(root: Path) -> List[Path]:
|
@@ -168,9 +164,9 @@ def qc_class_balance(lbls: List[Path]):
|
|
168 |
cls_counts = Counter()
|
169 |
boxes_per_img = []
|
170 |
for l in lbls:
|
171 |
-
|
172 |
-
boxes_per_img.append(len(
|
173 |
-
cls_counts.update(
|
174 |
|
175 |
if not cls_counts:
|
176 |
return {"name": "Class balance", "score": 0, "details": "No labels"}
|
@@ -204,7 +200,10 @@ def qc_image_quality(imgs: List[Path], blur_thr: float = 100.0):
|
|
204 |
if cv2 is None:
|
205 |
return {"name": "Image quality", "score": 100, "details": "cv2 not installed"}
|
206 |
|
207 |
-
blurry
|
|
|
|
|
|
|
208 |
with ProcessPoolExecutor(max_workers=CPU_COUNT) as ex:
|
209 |
for p, is_blur, is_dark, is_bright in tqdm(
|
210 |
ex.map(lambda x: _quality_stat(x, blur_thr), imgs),
|
@@ -234,6 +233,7 @@ def qc_image_quality(imgs: List[Path], blur_thr: float = 100.0):
|
|
234 |
# Duplicate images ---------------------------------------------
|
235 |
|
236 |
def qc_duplicates(imgs: List[Path]):
|
|
|
237 |
if fastdup is not None and len(imgs) > 50:
|
238 |
try:
|
239 |
fd = fastdup.create(input_dir=str(Path(imgs[0]).parent.parent), work_dir=str(TMP_ROOT / "fastdup"))
|
@@ -241,9 +241,13 @@ def qc_duplicates(imgs: List[Path]):
|
|
241 |
clusters = fd.get_clusters()
|
242 |
dup = sum(len(c) - 1 for c in clusters)
|
243 |
score = 100 - dup / max(len(imgs), 1) * 100
|
244 |
-
return {
|
|
|
|
|
|
|
|
|
245 |
except Exception:
|
246 |
-
pass
|
247 |
|
248 |
if imagehash is None:
|
249 |
return {"name": "Duplicates", "score": 100, "details": "skipped (deps)"}
|
@@ -252,4 +256,206 @@ def qc_duplicates(imgs: List[Path]):
|
|
252 |
return str(imagehash.average_hash(Image.open(p)))
|
253 |
|
254 |
hashes: Dict[str, List[Path]] = defaultdict(list)
|
255 |
-
with ProcessPoolExecutor(max_workers=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
+
app.py β Roboflowβaware YOLOv8 Dataset Quality Evaluator (v2)
|
3 |
+
|
4 |
+
Changelog (2025β04β17)
|
5 |
+
ββββββββββββββββββββββ
|
6 |
+
β’ **CPUβbound loops parallelised** with `concurrent.futures.ProcessPoolExecutor`.
|
7 |
+
β’ **Batch inference** in `qc_model_qa()` (GPU util β, latency β).
|
8 |
+
β’ Optional **fastdup** path for duplicate detection (ββ―10Γ faster on large sets).
|
9 |
+
β’ Faster NumPyβbased `parse_label_file()`.
|
10 |
+
β’ Small refactors β clearer separation of stages & fewer globals.
|
11 |
+
β’ Graceful degradation if heavy deps unavailable (cv2, imagehash, fastdup).
|
12 |
+
β’ Tunable `CPU_COUNT` + envβvar guard for HF Spaces quota.
|
13 |
"""
|
14 |
|
15 |
from __future__ import annotations
|
|
|
33 |
from PIL import Image
|
34 |
from tqdm import tqdm
|
35 |
|
36 |
+
# βββββββββββββββββββββββββββββββββββββββββ Heavy optional deps ββ
|
37 |
try:
|
38 |
import cv2 # type: ignore
|
39 |
except ImportError:
|
|
|
49 |
except ImportError:
|
50 |
fastdup = None
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
try:
|
53 |
from ultralytics import YOLO # type: ignore
|
54 |
except ImportError:
|
|
|
63 |
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
|
64 |
TMP_ROOT.mkdir(parents=True, exist_ok=True)
|
65 |
|
66 |
+
# Limit CPU workers on HF Spaces (feel free to raise locally)
|
67 |
CPU_COUNT = int(os.getenv("QC_CPU", max(1, (os.cpu_count() or 4) // 2)))
|
68 |
BATCH = int(os.getenv("QC_BATCH", 16))
|
69 |
|
70 |
DEFAULT_W = {
|
71 |
+
"Integrity": 0.30,
|
72 |
"Class balance": 0.15,
|
73 |
"Image quality": 0.15,
|
74 |
"Duplicates": 0.10,
|
75 |
+
"Model QA": 0.30,
|
|
|
|
|
76 |
}
|
77 |
|
78 |
@dataclass
|
|
|
86 |
with path.open(encoding="utf-8") as f:
|
87 |
return yaml.safe_load(f)
|
88 |
|
|
|
89 |
|
90 |
+
def parse_label_file(path: Path) -> list[tuple[int, float, float, float, float]]:
|
91 |
+
if not path.exists() or path.stat().st_size == 0:
|
92 |
+
return []
|
93 |
try:
|
94 |
arr = np.loadtxt(path, dtype=float)
|
95 |
if arr.ndim == 1:
|
96 |
arr = arr.reshape(1, -1)
|
97 |
+
return [tuple(row) for row in arr]
|
98 |
except Exception:
|
99 |
+
return []
|
|
|
|
|
100 |
|
101 |
|
102 |
def guess_image_dirs(root: Path) -> List[Path]:
|
|
|
164 |
cls_counts = Counter()
|
165 |
boxes_per_img = []
|
166 |
for l in lbls:
|
167 |
+
bs = parse_label_file(l) if l else []
|
168 |
+
boxes_per_img.append(len(bs))
|
169 |
+
cls_counts.update(b[0] for b in bs)
|
170 |
|
171 |
if not cls_counts:
|
172 |
return {"name": "Class balance", "score": 0, "details": "No labels"}
|
|
|
200 |
if cv2 is None:
|
201 |
return {"name": "Image quality", "score": 100, "details": "cv2 not installed"}
|
202 |
|
203 |
+
blurry: list[Path] = []
|
204 |
+
dark: list[Path] = []
|
205 |
+
bright: list[Path] = []
|
206 |
+
|
207 |
with ProcessPoolExecutor(max_workers=CPU_COUNT) as ex:
|
208 |
for p, is_blur, is_dark, is_bright in tqdm(
|
209 |
ex.map(lambda x: _quality_stat(x, blur_thr), imgs),
|
|
|
233 |
# Duplicate images ---------------------------------------------
|
234 |
|
235 |
def qc_duplicates(imgs: List[Path]):
|
236 |
+
# Fast path β use fastdup if installed & enough images
|
237 |
if fastdup is not None and len(imgs) > 50:
|
238 |
try:
|
239 |
fd = fastdup.create(input_dir=str(Path(imgs[0]).parent.parent), work_dir=str(TMP_ROOT / "fastdup"))
|
|
|
241 |
clusters = fd.get_clusters()
|
242 |
dup = sum(len(c) - 1 for c in clusters)
|
243 |
score = 100 - dup / max(len(imgs), 1) * 100
|
244 |
+
return {
|
245 |
+
"name": "Duplicates",
|
246 |
+
"score": score,
|
247 |
+
"details": {"groups": clusters[:50]},
|
248 |
+
}
|
249 |
except Exception:
|
250 |
+
pass # fallback to hash
|
251 |
|
252 |
if imagehash is None:
|
253 |
return {"name": "Duplicates", "score": 100, "details": "skipped (deps)"}
|
|
|
256 |
return str(imagehash.average_hash(Image.open(p)))
|
257 |
|
258 |
hashes: Dict[str, List[Path]] = defaultdict(list)
|
259 |
+
with ProcessPoolExecutor(max_workers=CPU_COUNT) as ex:
|
260 |
+
for h, p in tqdm(
|
261 |
+
zip(ex.map(_hash, imgs), imgs),
|
262 |
+
total=len(imgs),
|
263 |
+
desc="hashing",
|
264 |
+
leave=False,
|
265 |
+
):
|
266 |
+
hashes[h].append(p)
|
267 |
+
|
268 |
+
groups = [g for g in hashes.values() if len(g) > 1]
|
269 |
+
dup = sum(len(g) - 1 for g in groups)
|
270 |
+
score = 100 - dup / max(len(imgs), 1) * 100
|
271 |
+
return {
|
272 |
+
"name": "Duplicates",
|
273 |
+
"score": score,
|
274 |
+
"details": {"groups": [[str(p) for p in g] for g in groups[:50]]},
|
275 |
+
}
|
276 |
+
|
277 |
+
# Modelβassisted QA --------------------------------------------
|
278 |
+
|
279 |
+
def _rel_iou(b1, b2):
|
280 |
+
x1, y1, w1, h1 = b1
|
281 |
+
x2, y2, w2, h2 = b2
|
282 |
+
xa1, ya1, xa2, ya2 = x1 - w1 / 2, y1 - h1 / 2, x1 + w1 / 2, y1 + h1 / 2
|
283 |
+
xb1, yb1, xb2, yb2 = x2 - w2 / 2, y2 - h2 / 2, x2 + w2 / 2, y2 + h2 / 2
|
284 |
+
ix1, iy1, ix2, iy2 = max(xa1, xb1), max(ya1, yb1), min(xa2, xb2), min(ya2, yb2)
|
285 |
+
inter = max(ix2 - ix1, 0) * max(iy2 - iy1, 0)
|
286 |
+
union = w1 * h1 + w2 * h2 - inter
|
287 |
+
return inter / union if union else 0.0
|
288 |
+
|
289 |
+
|
290 |
+
def qc_model_qa(imgs: List[Path], weights: str | None, lbls: List[Path], iou_thr: float = 0.5):
|
291 |
+
if weights is None or YOLO is None:
|
292 |
+
return {"name": "Model QA", "score": 100, "details": "skipped (no weights)"}
|
293 |
+
|
294 |
+
model = YOLO(weights)
|
295 |
+
ious, mism = [], []
|
296 |
+
|
297 |
+
for i in range(0, len(imgs), BATCH):
|
298 |
+
batch_paths = imgs[i : i + BATCH]
|
299 |
+
results = model.predict(batch_paths, verbose=False)
|
300 |
+
for p, res in zip(batch_paths, results):
|
301 |
+
gtb = parse_label_file(p.parent.parent / "labels" / f"{p.stem}.txt")
|
302 |
+
if not gtb:
|
303 |
+
continue
|
304 |
+
for cls, x, y, w, h in gtb:
|
305 |
+
best = 0.0
|
306 |
+
for b, c in zip(res.boxes.xywh.cpu().numpy(), res.boxes.cls.cpu().numpy()):
|
307 |
+
if int(c) != cls:
|
308 |
+
continue
|
309 |
+
best = max(best, _rel_iou((x, y, w, h), tuple(b)))
|
310 |
+
ious.append(best)
|
311 |
+
if best < iou_thr:
|
312 |
+
mism.append(str(p))
|
313 |
+
|
314 |
+
miou = float(np.mean(ious)) if ious else 1.0
|
315 |
+
return {
|
316 |
+
"name": "Model QA",
|
317 |
+
"score": miou * 100,
|
318 |
+
"details": {"mean_iou": miou, "mismatched_images": mism[:50]},
|
319 |
+
}
|
320 |
+
|
321 |
+
# Aggregate -----------------------------------------------------
|
322 |
+
|
323 |
+
def aggregate(scores):
|
324 |
+
return sum(DEFAULT_W.get(r["name"], 0) * r["score"] for r in scores)
|
325 |
+
|
326 |
+
# βββββββββββββββββββββββββββββββββββββββββ Roboflow helpers ββββ
|
327 |
+
RF_RE = re.compile(r"https://universe\.roboflow\.com/([^/]+)/([^/]+)/dataset/(\d+)")
|
328 |
+
|
329 |
+
def download_rf_dataset(url: str, rf_api: "Roboflow", dest: Path) -> Path:
|
330 |
+
m = RF_RE.match(url.strip())
|
331 |
+
if not m:
|
332 |
+
raise ValueError(f"Bad RF URL: {url}")
|
333 |
+
|
334 |
+
ws, proj, ver = m.groups()
|
335 |
+
ds_dir = dest / f"{ws}_{proj}_v{ver}"
|
336 |
+
if ds_dir.exists():
|
337 |
+
return ds_dir
|
338 |
+
|
339 |
+
project = rf_api.workspace(ws).project(proj)
|
340 |
+
project.version(int(ver)).download("yolov8", location=str(ds_dir))
|
341 |
+
return ds_dir
|
342 |
+
|
343 |
+
# βββββββββββββββββββββββββββββββββββββββββ Main logic ββββββββββ
|
344 |
+
|
345 |
+
def run_quality(root: Path, yaml_override: Path | None, weights: Path | None):
|
346 |
+
imgs, lbls, meta = gather_dataset(root, yaml_override)
|
347 |
+
res = [
|
348 |
+
qc_integrity(imgs, lbls),
|
349 |
+
qc_class_balance(lbls),
|
350 |
+
qc_image_quality(imgs),
|
351 |
+
qc_duplicates(imgs),
|
352 |
+
qc_model_qa(imgs, str(weights) if weights else None, lbls),
|
353 |
+
]
|
354 |
+
final = aggregate(res)
|
355 |
+
|
356 |
+
md = [f"## **{meta.get('name', root.name)}**Β βΒ ScoreΒ {final:.1f}/100"]
|
357 |
+
for r in res:
|
358 |
+
md.append(f"### {r['name']}Β Β {r['score']:.1f}")
|
359 |
+
md.append("<details><summary>details</summary>\n\n```json")
|
360 |
+
md.append(json.dumps(r["details"], indent=2))
|
361 |
+
md.append("```\n</details>\n")
|
362 |
+
md_str = "\n".join(md)
|
363 |
+
|
364 |
+
cls_counts = res[1]["details"].get("class_counts", {}) # type: ignore[index]
|
365 |
+
df = pd.DataFrame.from_dict(cls_counts, orient="index", columns=["count"])
|
366 |
+
df.index.name = "class"
|
367 |
+
return md_str, df
|
368 |
+
|
369 |
+
# ββββββββββββββββββββββββββββββββββββοΏ½οΏ½ββββ Gradio UI βββββββββββ
|
370 |
+
|
371 |
+
def evaluate(
|
372 |
+
api_key: str,
|
373 |
+
url_txt: gr.File | None,
|
374 |
+
zip_file: gr.File | None,
|
375 |
+
server_path: str,
|
376 |
+
yaml_file: gr.File | None,
|
377 |
+
weights: gr.File | None,
|
378 |
+
):
|
379 |
+
if not any([url_txt, zip_file, server_path]):
|
380 |
+
return "Upload a .txt of URLs or dataset ZIP/path", pd.DataFrame()
|
381 |
+
|
382 |
+
reports, dfs = [], []
|
383 |
+
|
384 |
+
# Roboflow batch ------------------------------------------
|
385 |
+
if url_txt:
|
386 |
+
if Roboflow is None:
|
387 |
+
return "`roboflow` not installed", pd.DataFrame()
|
388 |
+
if not api_key:
|
389 |
+
return "Enter Roboflow API key", pd.DataFrame()
|
390 |
+
|
391 |
+
rf = Roboflow(api_key=api_key.strip())
|
392 |
+
for line in Path(url_txt.name).read_text().splitlines():
|
393 |
+
if not line.strip():
|
394 |
+
continue
|
395 |
+
try:
|
396 |
+
ds_root = download_rf_dataset(line, rf, TMP_ROOT)
|
397 |
+
md, df = run_quality(ds_root, None, Path(weights.name) if weights else None)
|
398 |
+
reports.append(md)
|
399 |
+
dfs.append(df)
|
400 |
+
except Exception as e:
|
401 |
+
reports.append(f"### {line}\n\nβ οΈΒ {e}")
|
402 |
+
|
403 |
+
# Manual ZIP ----------------------------------------------
|
404 |
+
if zip_file:
|
405 |
+
tmp_dir = Path(tempfile.mkdtemp())
|
406 |
+
shutil.unpack_archive(zip_file.name, tmp_dir)
|
407 |
+
md, df = run_quality(tmp_dir, Path(yaml_file.name) if yaml_file else None, Path(weights.name) if weights else None)
|
408 |
+
reports.append(md)
|
409 |
+
dfs.append(df)
|
410 |
+
shutil.rmtree(tmp_dir, ignore_errors=True)
|
411 |
+
|
412 |
+
# Manual path ---------------------------------------------
|
413 |
+
if server_path:
|
414 |
+
md, df = run_quality(Path(server_path), Path(yaml_file.name) if yaml_file else None, Path(weights.name) if weights else None)
|
415 |
+
reports.append(md)
|
416 |
+
dfs.append(df)
|
417 |
+
|
418 |
+
summary_md = "\n\n---\n\n".join(reports)
|
419 |
+
combined_df = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
|
420 |
+
return summary_md, combined_df
|
421 |
+
|
422 |
+
# βββββββββββββββββββββββββββββββββββββββββ Launch ββββββββββββ
|
423 |
+
with gr.Blocks(title="YOLO Dataset Quality Evaluator") as demo:
|
424 |
+
gr.Markdown(
|
425 |
+
"""
|
426 |
+
# YOLOv8 Dataset Quality Evaluator
|
427 |
+
|
428 |
+
### Roboflow batch
|
429 |
+
1. Paste your **Roboflow API key**
|
430 |
+
2. Upload a **.txt** file β one `https://universe.roboflow.com/.../dataset/x` per line
|
431 |
+
|
432 |
+
### Manual
|
433 |
+
* Upload a dataset **ZIP** or type a dataset **path** on the server
|
434 |
+
* Optionally supply a custom **data.yaml** and/or a **YOLOΒ .pt** weights file for modelβassisted QA
|
435 |
+
"""
|
436 |
+
)
|
437 |
+
|
438 |
+
with gr.Row():
|
439 |
+
api_in = gr.Textbox(label="Roboflow API key", type="password", placeholder="rf_XXXXXXXXXXXXXXXX")
|
440 |
+
url_txt_in = gr.File(label=".txt of RF dataset URLs", file_types=[".txt"])
|
441 |
+
|
442 |
+
with gr.Row():
|
443 |
+
zip_in = gr.File(label="Dataset ZIP")
|
444 |
+
path_in = gr.Textbox(label="Path on server", placeholder="/data/my_dataset")
|
445 |
+
|
446 |
+
with gr.Row():
|
447 |
+
yaml_in = gr.File(label="Custom YAML", file_types=[".yaml"])
|
448 |
+
weights_in = gr.File(label="YOLO weights (.pt)")
|
449 |
+
|
450 |
+
run_btn = gr.Button("Evaluate")
|
451 |
+
out_md = gr.Markdown()
|
452 |
+
out_df = gr.Dataframe()
|
453 |
+
|
454 |
+
run_btn.click(
|
455 |
+
evaluate,
|
456 |
+
inputs=[api_in, url_txt_in, zip_in, path_in, yaml_in, weights_in],
|
457 |
+
outputs=[out_md, out_df],
|
458 |
+
)
|
459 |
+
|
460 |
+
if __name__ == "__main__":
|
461 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|