Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import os
|
|
6 |
import re
|
7 |
import shutil
|
8 |
import tempfile
|
9 |
-
from collections import Counter
|
10 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
11 |
from dataclasses import dataclass
|
12 |
from pathlib import Path
|
@@ -47,9 +47,9 @@ except ImportError:
|
|
47 |
# βββββββββββββββββ Config & Constants βββββββββββββββββββββββββββββββββββββββ
|
48 |
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
|
49 |
TMP_ROOT.mkdir(parents=True, exist_ok=True)
|
50 |
-
CPU_COUNT
|
51 |
-
BATCH_SIZE
|
52 |
-
SAMPLE_LIMIT = int(os.getenv("QC_SAMPLE",
|
53 |
|
54 |
DEFAULT_W = {
|
55 |
"Integrity": 0.25,
|
@@ -64,13 +64,13 @@ _model_cache: dict[str, YOLO] = {}
|
|
64 |
|
65 |
@dataclass
|
66 |
class QCConfig:
|
67 |
-
blur_thr:
|
68 |
-
iou_thr:
|
69 |
-
conf_thr:
|
70 |
-
weights:
|
71 |
-
cpu_count:
|
72 |
-
batch_size:
|
73 |
-
sample_limit:
|
74 |
|
75 |
# βββββββββββ Helpers & Caching βββββββββββββββββββββββββββββββββββββββββββββ
|
76 |
def load_yaml(path: Path) -> Dict:
|
@@ -89,8 +89,13 @@ def parse_label_file(path: Path) -> list[tuple[int, float, float, float, float]]
|
|
89 |
return []
|
90 |
|
91 |
def guess_image_dirs(root: Path) -> List[Path]:
|
92 |
-
candidates = [
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
94 |
return [d for d in candidates if d.exists()]
|
95 |
|
96 |
def gather_dataset(root: Path, yaml_path: Path | None):
|
@@ -105,8 +110,10 @@ def gather_dataset(root: Path, yaml_path: Path | None):
|
|
105 |
raise FileNotFoundError("images/ directory missing")
|
106 |
imgs = [p for d in img_dirs for p in d.rglob('*.*') if imghdr.what(p)]
|
107 |
labels_roots = {d.parent/'labels' for d in img_dirs}
|
108 |
-
lbls = [
|
109 |
-
|
|
|
|
|
110 |
return imgs, lbls, meta
|
111 |
|
112 |
def get_model(weights: str) -> YOLO | None:
|
@@ -139,31 +146,45 @@ def _is_corrupt(path: Path) -> bool:
|
|
139 |
|
140 |
# βββββββββββββββββ Quality Checks ββββββββββββββββββββββββββββββββββββββββββ
|
141 |
def qc_integrity(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
142 |
-
missing = [i for i,l in zip(imgs, lbls) if l is None]
|
143 |
corrupt = []
|
|
|
144 |
with ThreadPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
145 |
-
fut = {ex.submit(_is_corrupt, p): p for p in
|
146 |
for f in as_completed(fut):
|
147 |
if f.result():
|
148 |
corrupt.append(fut[f])
|
149 |
-
score = 100 - (len(missing)+len(corrupt)) / max(len(imgs), 1) * 100
|
150 |
-
return {
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
def qc_class_balance(lbls: List[Path], cfg: QCConfig) -> Dict:
|
155 |
counts, boxes = Counter(), []
|
156 |
for l in lbls[:cfg.sample_limit]:
|
157 |
bs = parse_label_file(l) if l else []
|
158 |
-
boxes.append(len(bs))
|
|
|
159 |
if not counts:
|
160 |
return {"name":"Class balance","score":0,"details":"No labels"}
|
161 |
bal = min(counts.values()) / max(counts.values()) * 100
|
162 |
-
return {
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
def qc_image_quality(imgs: List[Path], cfg: QCConfig) -> Dict:
|
169 |
if cv2 is None:
|
@@ -178,10 +199,15 @@ def qc_image_quality(imgs: List[Path], cfg: QCConfig) -> Dict:
|
|
178 |
if isB: bright.append(p)
|
179 |
bad = len({*blurry, *dark, *bright})
|
180 |
score = 100 - bad / max(len(sample), 1) * 100
|
181 |
-
return {
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
def qc_duplicates(imgs: List[Path], cfg: QCConfig) -> Dict:
|
187 |
if fastdup is not None and len(imgs) > 50:
|
@@ -193,13 +219,14 @@ def qc_duplicates(imgs: List[Path], cfg: QCConfig) -> Dict:
|
|
193 |
fd.run()
|
194 |
clusters = fd.get_clusters()
|
195 |
dup = sum(len(c)-1 for c in clusters)
|
196 |
-
return {
|
197 |
-
|
|
|
|
|
|
|
198 |
except Exception as e:
|
199 |
-
return {"name":"Duplicates","score":100,
|
200 |
-
|
201 |
-
return {"name":"Duplicates","score":100,
|
202 |
-
"details":{"note":"fastdup not available or small dataset"}}
|
203 |
|
204 |
def qc_model_qa(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
205 |
model = get_model(cfg.weights)
|
@@ -211,57 +238,67 @@ def qc_model_qa(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
|
211 |
batch = sample[i:i+cfg.batch_size]
|
212 |
results = model.predict(batch, verbose=False, half=True, dynamic=True)
|
213 |
for p, res in zip(batch, results):
|
214 |
-
gt = parse_label_file(p.parent.parent/'labels'/f"{p.stem}.txt")
|
215 |
-
for cls,x,y,w,h in gt:
|
216 |
best = 0.0
|
217 |
-
for b, c, conf in zip(
|
218 |
-
|
219 |
-
|
|
|
|
|
220 |
if conf < cfg.conf_thr or int(c) != cls:
|
221 |
continue
|
222 |
-
best = max(best, _rel_iou((x,y,w,h), tuple(b)))
|
223 |
ious.append(best)
|
224 |
if best < cfg.iou_thr:
|
225 |
mism.append(str(p))
|
226 |
miou = float(np.mean(ious)) if ious else 1.0
|
227 |
-
return {
|
228 |
-
|
|
|
|
|
|
|
229 |
|
230 |
def qc_label_issues(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
231 |
if get_noise_indices is None:
|
232 |
-
return {"name":"Label issues","score":100,"details":"
|
233 |
-
labels,
|
234 |
-
model = get_model(cfg.weights)
|
235 |
sample = imgs[:cfg.sample_limit]
|
236 |
-
|
237 |
-
|
|
|
238 |
for cls, *_ in bs:
|
239 |
-
labels.append(int(cls))
|
240 |
-
|
241 |
-
pred_cls = int(res.boxes.cls.cpu().numpy()[0]) if len(res.boxes)>0 else -1
|
242 |
-
preds.append(pred_cls)
|
243 |
if not labels:
|
244 |
return {"name":"Label issues","score":100,"details":"no GT"}
|
245 |
labels_arr = np.array(labels)
|
246 |
-
uniq
|
247 |
-
probs
|
248 |
-
noise
|
249 |
-
flags
|
250 |
-
files
|
251 |
-
score
|
252 |
-
return {
|
253 |
-
|
|
|
|
|
|
|
254 |
|
255 |
def _rel_iou(b1, b2):
|
256 |
-
x1,y1,w1,h1 = b1
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
261 |
union = w1*h1 + w2*h2 - inter
|
262 |
return inter/union if union else 0.0
|
263 |
|
264 |
-
def aggregate(results: List[
|
265 |
return sum(DEFAULT_W[r['name']]*r['score'] for r in results)
|
266 |
|
267 |
RF_RE = re.compile(r"https?://universe\.roboflow\.com/([^/]+)/([^/]+)/dataset/(\d+)")
|
@@ -272,31 +309,29 @@ def download_rf_dataset(url: str, rf_api: Roboflow, dest: Path) -> Path:
|
|
272 |
raise ValueError(f"Bad RF URL: {url}")
|
273 |
ws, proj, ver = m.groups()
|
274 |
ds_dir = dest/f"{ws}_{proj}_v{ver}"
|
275 |
-
if ds_dir.exists():
|
|
|
276 |
pr = rf_api.workspace(ws).project(proj)
|
277 |
pr.version(int(ver)).download("yolov8", location=str(ds_dir))
|
278 |
return ds_dir
|
279 |
|
280 |
-
def run_quality(
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
imgs, lbls, meta = gather_dataset(root, yaml_file)
|
283 |
results = [
|
284 |
qc_integrity(imgs, lbls, cfg),
|
285 |
qc_class_balance(lbls, cfg),
|
286 |
-
qc_image_quality(imgs, cfg)
|
|
|
|
|
|
|
287 |
]
|
288 |
-
# conditional duplicates
|
289 |
-
if run_dup:
|
290 |
-
results.append(qc_duplicates(imgs, cfg))
|
291 |
-
else:
|
292 |
-
results.append({"name":"Duplicates","score":100,"details":"skipped"})
|
293 |
-
# conditional model QA & label issues
|
294 |
-
if run_modelqa:
|
295 |
-
results.append(qc_model_qa(imgs, lbls, cfg))
|
296 |
-
results.append(qc_label_issues(imgs, lbls, cfg))
|
297 |
-
else:
|
298 |
-
results.append({"name":"Model QA","score":100,"details":"skipped"})
|
299 |
-
results.append({"name":"Label issues","score":100,"details":"skipped"})
|
300 |
final = aggregate(results)
|
301 |
|
302 |
md = [f"## **{meta.get('name', root.name)}** β Score {final:.1f}/100"]
|
@@ -317,48 +352,56 @@ with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
|
|
317 |
gr.Markdown("""
|
318 |
# YOLOv8 Dataset Quality Evaluator v3
|
319 |
|
320 |
-
* Configurable blur, IOU & confidence thresholds
|
321 |
-
* Optional duplicates (fastdup)
|
322 |
-
* Optional Model QA & cleanlab label-issue detection
|
323 |
-
* Model caching for speed
|
324 |
""")
|
325 |
with gr.Row():
|
326 |
-
api_in
|
327 |
-
url_txt
|
328 |
with gr.Row():
|
329 |
-
zip_in
|
330 |
-
path_in
|
331 |
with gr.Row():
|
332 |
-
yaml_in
|
333 |
-
weights_in= gr.File(label="YOLO weights (.pt)")
|
334 |
with gr.Row():
|
335 |
-
blur_sl
|
336 |
-
iou_sl
|
337 |
-
conf_sl
|
338 |
with gr.Row():
|
339 |
run_dup = gr.Checkbox(label="Check duplicates (fastdup)", value=False)
|
340 |
-
run_modelqa = gr.Checkbox(label="Run Model QA & cleanlab",
|
341 |
run_btn = gr.Button("Evaluate")
|
342 |
-
out_md
|
343 |
-
out_df
|
344 |
|
345 |
-
def evaluate(
|
346 |
-
|
|
|
|
|
347 |
reports, dfs = [], []
|
348 |
-
cfg = QCConfig(
|
349 |
-
|
|
|
|
|
350 |
rf = Roboflow(api_key) if api_key and Roboflow else None
|
351 |
|
352 |
# Roboflow URLs
|
353 |
if url_txt:
|
354 |
for line in Path(url_txt.name).read_text().splitlines():
|
355 |
-
if not line.strip():
|
|
|
356 |
try:
|
357 |
ds = download_rf_dataset(line, rf, TMP_ROOT)
|
358 |
-
md, df = run_quality(
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
362 |
except Exception as e:
|
363 |
reports.append(f"### {line}\nβ οΈ {e}")
|
364 |
|
@@ -366,30 +409,38 @@ with gr.Blocks(title="YOLO Dataset Quality Evaluator v3") as demo:
|
|
366 |
if zip_file:
|
367 |
tmp = Path(tempfile.mkdtemp())
|
368 |
shutil.unpack_archive(zip_file.name, tmp)
|
369 |
-
md, df = run_quality(
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
374 |
shutil.rmtree(tmp, ignore_errors=True)
|
375 |
|
376 |
# Server path
|
377 |
if server_path:
|
378 |
ds = Path(server_path)
|
379 |
-
md, df = run_quality(
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
384 |
|
385 |
-
summary
|
386 |
combined = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
|
387 |
return summary, combined
|
388 |
|
389 |
-
run_btn.click(
|
390 |
-
|
391 |
-
|
392 |
-
|
|
|
|
|
393 |
|
394 |
if __name__ == '__main__':
|
395 |
demo.launch(server_name='0.0.0.0', server_port=int(os.getenv('PORT', 7860)))
|
|
|
6 |
import re
|
7 |
import shutil
|
8 |
import tempfile
|
9 |
+
from collections import Counter
|
10 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
11 |
from dataclasses import dataclass
|
12 |
from pathlib import Path
|
|
|
47 |
# βββββββββββββββββ Config & Constants βββββββββββββββββββββββββββββββββββββββ
|
48 |
TMP_ROOT = Path(tempfile.gettempdir()) / "rf_datasets"
|
49 |
TMP_ROOT.mkdir(parents=True, exist_ok=True)
|
50 |
+
CPU_COUNT = int(os.getenv("QC_CPU", 1)) # force single-core by default
|
51 |
+
BATCH_SIZE = int(os.getenv("QC_BATCH", 4)) # small batches
|
52 |
+
SAMPLE_LIMIT = int(os.getenv("QC_SAMPLE", 200))
|
53 |
|
54 |
DEFAULT_W = {
|
55 |
"Integrity": 0.25,
|
|
|
64 |
|
65 |
@dataclass
|
66 |
class QCConfig:
|
67 |
+
blur_thr: float
|
68 |
+
iou_thr: float
|
69 |
+
conf_thr: float
|
70 |
+
weights: str | None
|
71 |
+
cpu_count: int = CPU_COUNT
|
72 |
+
batch_size: int = BATCH_SIZE
|
73 |
+
sample_limit:int = SAMPLE_LIMIT
|
74 |
|
75 |
# βββββββββββ Helpers & Caching βββββββββββββββββββββββββββββββββββββββββββββ
|
76 |
def load_yaml(path: Path) -> Dict:
|
|
|
89 |
return []
|
90 |
|
91 |
def guess_image_dirs(root: Path) -> List[Path]:
|
92 |
+
candidates = [
|
93 |
+
root/'images',
|
94 |
+
root/'train'/'images',
|
95 |
+
root/'valid'/'images',
|
96 |
+
root/'val' /'images',
|
97 |
+
root/'test' /'images',
|
98 |
+
]
|
99 |
return [d for d in candidates if d.exists()]
|
100 |
|
101 |
def gather_dataset(root: Path, yaml_path: Path | None):
|
|
|
110 |
raise FileNotFoundError("images/ directory missing")
|
111 |
imgs = [p for d in img_dirs for p in d.rglob('*.*') if imghdr.what(p)]
|
112 |
labels_roots = {d.parent/'labels' for d in img_dirs}
|
113 |
+
lbls = [
|
114 |
+
next((lr/f"{p.stem}.txt" for lr in labels_roots if (lr/f"{p.stem}.txt").exists()), None)
|
115 |
+
for p in imgs
|
116 |
+
]
|
117 |
return imgs, lbls, meta
|
118 |
|
119 |
def get_model(weights: str) -> YOLO | None:
|
|
|
146 |
|
147 |
# βββββββββββββββββ Quality Checks ββββββββββββββββββββββββββββββββββββββββββ
|
148 |
def qc_integrity(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
149 |
+
missing = [i for i, l in zip(imgs, lbls) if l is None]
|
150 |
corrupt = []
|
151 |
+
sample = imgs[:cfg.sample_limit]
|
152 |
with ThreadPoolExecutor(max_workers=cfg.cpu_count) as ex:
|
153 |
+
fut = {ex.submit(_is_corrupt, p): p for p in sample}
|
154 |
for f in as_completed(fut):
|
155 |
if f.result():
|
156 |
corrupt.append(fut[f])
|
157 |
+
score = 100 - (len(missing) + len(corrupt)) / max(len(imgs), 1) * 100
|
158 |
+
return {
|
159 |
+
"name": "Integrity",
|
160 |
+
"score": max(score, 0),
|
161 |
+
"details": {
|
162 |
+
"missing_label_files": [str(p) for p in missing],
|
163 |
+
"corrupt_images": [str(p) for p in corrupt],
|
164 |
+
}
|
165 |
+
}
|
166 |
|
167 |
def qc_class_balance(lbls: List[Path], cfg: QCConfig) -> Dict:
|
168 |
counts, boxes = Counter(), []
|
169 |
for l in lbls[:cfg.sample_limit]:
|
170 |
bs = parse_label_file(l) if l else []
|
171 |
+
boxes.append(len(bs))
|
172 |
+
counts.update(b[0] for b in bs)
|
173 |
if not counts:
|
174 |
return {"name":"Class balance","score":0,"details":"No labels"}
|
175 |
bal = min(counts.values()) / max(counts.values()) * 100
|
176 |
+
return {
|
177 |
+
"name":"Class balance",
|
178 |
+
"score":bal,
|
179 |
+
"details":{
|
180 |
+
"class_counts": dict(counts),
|
181 |
+
"boxes_per_image": {
|
182 |
+
"min": min(boxes),
|
183 |
+
"max": max(boxes),
|
184 |
+
"mean": float(np.mean(boxes))
|
185 |
+
}
|
186 |
+
}
|
187 |
+
}
|
188 |
|
189 |
def qc_image_quality(imgs: List[Path], cfg: QCConfig) -> Dict:
|
190 |
if cv2 is None:
|
|
|
199 |
if isB: bright.append(p)
|
200 |
bad = len({*blurry, *dark, *bright})
|
201 |
score = 100 - bad / max(len(sample), 1) * 100
|
202 |
+
return {
|
203 |
+
"name":"Image quality",
|
204 |
+
"score":score,
|
205 |
+
"details":{
|
206 |
+
"blurry": [str(p) for p in blurry],
|
207 |
+
"dark": [str(p) for p in dark],
|
208 |
+
"bright": [str(p) for p in bright]
|
209 |
+
}
|
210 |
+
}
|
211 |
|
212 |
def qc_duplicates(imgs: List[Path], cfg: QCConfig) -> Dict:
|
213 |
if fastdup is not None and len(imgs) > 50:
|
|
|
219 |
fd.run()
|
220 |
clusters = fd.get_clusters()
|
221 |
dup = sum(len(c)-1 for c in clusters)
|
222 |
+
return {
|
223 |
+
"name":"Duplicates",
|
224 |
+
"score":100-dup/len(imgs)*100,
|
225 |
+
"details":{"groups":clusters[:50]}
|
226 |
+
}
|
227 |
except Exception as e:
|
228 |
+
return {"name":"Duplicates","score":100,"details":{"fastdup_error":str(e)}}
|
229 |
+
return {"name":"Duplicates","score":100,"details":{"note":"skipped"}}
|
|
|
|
|
230 |
|
231 |
def qc_model_qa(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
232 |
model = get_model(cfg.weights)
|
|
|
238 |
batch = sample[i:i+cfg.batch_size]
|
239 |
results = model.predict(batch, verbose=False, half=True, dynamic=True)
|
240 |
for p, res in zip(batch, results):
|
241 |
+
gt = parse_label_file(Path(p).parent.parent/'labels'/f"{Path(p).stem}.txt")
|
242 |
+
for cls, x, y, w, h in gt:
|
243 |
best = 0.0
|
244 |
+
for b, c, conf in zip(
|
245 |
+
res.boxes.xywh.cpu().numpy(),
|
246 |
+
res.boxes.cls.cpu().numpy(),
|
247 |
+
res.boxes.conf.cpu().numpy()
|
248 |
+
):
|
249 |
if conf < cfg.conf_thr or int(c) != cls:
|
250 |
continue
|
251 |
+
best = max(best, _rel_iou((x, y, w, h), tuple(b)))
|
252 |
ious.append(best)
|
253 |
if best < cfg.iou_thr:
|
254 |
mism.append(str(p))
|
255 |
miou = float(np.mean(ious)) if ious else 1.0
|
256 |
+
return {
|
257 |
+
"name":"Model QA",
|
258 |
+
"score":miou*100,
|
259 |
+
"details":{"mean_iou":miou, "mismatches":mism[:50]}
|
260 |
+
}
|
261 |
|
262 |
def qc_label_issues(imgs: List[Path], lbls: List[Path], cfg: QCConfig) -> Dict:
|
263 |
if get_noise_indices is None:
|
264 |
+
return {"name":"Label issues","score":100,"details":"skipped"}
|
265 |
+
labels, idxs = [], []
|
|
|
266 |
sample = imgs[:cfg.sample_limit]
|
267 |
+
model = get_model(cfg.weights)
|
268 |
+
for i, p in enumerate(sample):
|
269 |
+
bs = parse_label_file(lbls[i]) if lbls[i] else []
|
270 |
for cls, *_ in bs:
|
271 |
+
labels.append(int(cls))
|
272 |
+
idxs.append(i)
|
|
|
|
|
273 |
if not labels:
|
274 |
return {"name":"Label issues","score":100,"details":"no GT"}
|
275 |
labels_arr = np.array(labels)
|
276 |
+
uniq = sorted(set(labels_arr))
|
277 |
+
probs = np.eye(len(uniq))[np.searchsorted(uniq, labels_arr)]
|
278 |
+
noise = get_noise_indices(labels=labels_arr, probabilities=probs)
|
279 |
+
flags = sorted({idxs[n] for n in noise})
|
280 |
+
files = [str(sample[i]) for i in flags]
|
281 |
+
score = 100 - len(flags)/len(labels)*100
|
282 |
+
return {
|
283 |
+
"name":"Label issues",
|
284 |
+
"score":score,
|
285 |
+
"details":{"files":files[:50]}
|
286 |
+
}
|
287 |
|
288 |
def _rel_iou(b1, b2):
|
289 |
+
x1, y1, w1, h1 = b1
|
290 |
+
x2, y2, w2, h2 = b2
|
291 |
+
xa1, ya1 = x1-w1/2, y1-h1/2
|
292 |
+
xa2, ya2 = x1+w1/2, y1+h1/2
|
293 |
+
xb1, yb1 = x2-w2/2, y2-h2/2
|
294 |
+
xb2, yb2 = x2+w2/2, y2+h2/2
|
295 |
+
ix1 = max(xa1, xb1); iy1 = max(ya1, yb1)
|
296 |
+
ix2 = min(xa2, xb2); iy2 = min(ya2, yb2)
|
297 |
+
inter = max(ix2-ix1, 0) * max(iy2-iy1, 0)
|
298 |
union = w1*h1 + w2*h2 - inter
|
299 |
return inter/union if union else 0.0
|
300 |
|
301 |
+
def aggregate(results: List[Dict]) -> float:
|
302 |
return sum(DEFAULT_W[r['name']]*r['score'] for r in results)
|
303 |
|
304 |
RF_RE = re.compile(r"https?://universe\.roboflow\.com/([^/]+)/([^/]+)/dataset/(\d+)")
|
|
|
309 |
raise ValueError(f"Bad RF URL: {url}")
|
310 |
ws, proj, ver = m.groups()
|
311 |
ds_dir = dest/f"{ws}_{proj}_v{ver}"
|
312 |
+
if ds_dir.exists():
|
313 |
+
return ds_dir
|
314 |
pr = rf_api.workspace(ws).project(proj)
|
315 |
pr.version(int(ver)).download("yolov8", location=str(ds_dir))
|
316 |
return ds_dir
|
317 |
|
318 |
+
def run_quality(
|
319 |
+
root: Path,
|
320 |
+
yaml_file: Path | None,
|
321 |
+
weights: Path | None,
|
322 |
+
cfg: QCConfig,
|
323 |
+
run_dup: bool,
|
324 |
+
run_modelqa: bool
|
325 |
+
) -> Tuple[str, pd.DataFrame]:
|
326 |
imgs, lbls, meta = gather_dataset(root, yaml_file)
|
327 |
results = [
|
328 |
qc_integrity(imgs, lbls, cfg),
|
329 |
qc_class_balance(lbls, cfg),
|
330 |
+
qc_image_quality(imgs, cfg),
|
331 |
+
qc_duplicates(imgs, cfg) if run_dup else {"name":"Duplicates","score":100,"details":"skipped"},
|
332 |
+
qc_model_qa(imgs, lbls, cfg) if run_modelqa else {"name":"Model QA","score":100,"details":"skipped"},
|
333 |
+
qc_label_issues(imgs, lbls, cfg) if run_modelqa else {"name":"Label issues","score":100,"details":"skipped"},
|
334 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
final = aggregate(results)
|
336 |
|
337 |
md = [f"## **{meta.get('name', root.name)}** β Score {final:.1f}/100"]
|
|
|
352 |
gr.Markdown("""
|
353 |
# YOLOv8 Dataset Quality Evaluator v3
|
354 |
|
355 |
+
* Configurable blur, IOU & confidence thresholds
|
356 |
+
* Optional duplicates (fastdup)
|
357 |
+
* Optional Model QA & cleanlab label-issue detection
|
358 |
+
* Model caching for speed
|
359 |
""")
|
360 |
with gr.Row():
|
361 |
+
api_in = gr.Textbox(label="Roboflow API key", type="password")
|
362 |
+
url_txt = gr.File(label=".txt of RF dataset URLs", file_types=['.txt'])
|
363 |
with gr.Row():
|
364 |
+
zip_in = gr.File(label="Dataset ZIP")
|
365 |
+
path_in = gr.Textbox(label="Server path")
|
366 |
with gr.Row():
|
367 |
+
yaml_in = gr.File(label="Custom YAML", file_types=['.yaml'])
|
368 |
+
weights_in = gr.File(label="YOLO weights (.pt)")
|
369 |
with gr.Row():
|
370 |
+
blur_sl = gr.Slider(0.0, 500.0, value=100.0, label="Blur threshold")
|
371 |
+
iou_sl = gr.Slider(0.0, 1.0, value=0.5, label="IOU threshold")
|
372 |
+
conf_sl = gr.Slider(0.0, 1.0, value=0.25, label="Min detection confidence")
|
373 |
with gr.Row():
|
374 |
run_dup = gr.Checkbox(label="Check duplicates (fastdup)", value=False)
|
375 |
+
run_modelqa = gr.Checkbox(label="Run Model QA & cleanlab", value=False)
|
376 |
run_btn = gr.Button("Evaluate")
|
377 |
+
out_md = gr.Markdown()
|
378 |
+
out_df = gr.Dataframe()
|
379 |
|
380 |
+
def evaluate(
|
381 |
+
api_key, url_txt, zip_file, server_path, yaml_file, weights,
|
382 |
+
blur_thr, iou_thr, conf_thr, run_dup, run_modelqa
|
383 |
+
):
|
384 |
reports, dfs = [], []
|
385 |
+
cfg = QCConfig(
|
386 |
+
blur_thr, iou_thr, conf_thr,
|
387 |
+
weights.name if weights else None
|
388 |
+
)
|
389 |
rf = Roboflow(api_key) if api_key and Roboflow else None
|
390 |
|
391 |
# Roboflow URLs
|
392 |
if url_txt:
|
393 |
for line in Path(url_txt.name).read_text().splitlines():
|
394 |
+
if not line.strip():
|
395 |
+
continue
|
396 |
try:
|
397 |
ds = download_rf_dataset(line, rf, TMP_ROOT)
|
398 |
+
md, df = run_quality(
|
399 |
+
ds, None,
|
400 |
+
Path(weights.name) if weights else None,
|
401 |
+
cfg, run_dup, run_modelqa
|
402 |
+
)
|
403 |
+
reports.append(md)
|
404 |
+
dfs.append(df)
|
405 |
except Exception as e:
|
406 |
reports.append(f"### {line}\nβ οΈ {e}")
|
407 |
|
|
|
409 |
if zip_file:
|
410 |
tmp = Path(tempfile.mkdtemp())
|
411 |
shutil.unpack_archive(zip_file.name, tmp)
|
412 |
+
md, df = run_quality(
|
413 |
+
tmp,
|
414 |
+
Path(yaml_file.name) if yaml_file else None,
|
415 |
+
Path(weights.name) if weights else None,
|
416 |
+
cfg, run_dup, run_modelqa
|
417 |
+
)
|
418 |
+
reports.append(md)
|
419 |
+
dfs.append(df)
|
420 |
shutil.rmtree(tmp, ignore_errors=True)
|
421 |
|
422 |
# Server path
|
423 |
if server_path:
|
424 |
ds = Path(server_path)
|
425 |
+
md, df = run_quality(
|
426 |
+
ds,
|
427 |
+
Path(yaml_file.name) if yaml_file else None,
|
428 |
+
Path(weights.name) if weights else None,
|
429 |
+
cfg, run_dup, run_modelqa
|
430 |
+
)
|
431 |
+
reports.append(md)
|
432 |
+
dfs.append(df)
|
433 |
|
434 |
+
summary = "\n---\n".join(reports)
|
435 |
combined = pd.concat(dfs).groupby(level=0).sum() if dfs else pd.DataFrame()
|
436 |
return summary, combined
|
437 |
|
438 |
+
run_btn.click(
|
439 |
+
evaluate,
|
440 |
+
inputs=[api_in, url_txt, zip_in, path_in, yaml_in, weights_in,
|
441 |
+
blur_sl, iou_sl, conf_sl, run_dup, run_modelqa],
|
442 |
+
outputs=[out_md, out_df]
|
443 |
+
)
|
444 |
|
445 |
if __name__ == '__main__':
|
446 |
demo.launch(server_name='0.0.0.0', server_port=int(os.getenv('PORT', 7860)))
|