Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
import speech_recognition as sr | |
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool | |
from pathlib import Path | |
import tempfile | |
from smolagents.tools import PipelineTool, Tool | |
import pathlib | |
from typing import Union, Optional | |
import pandas as pd | |
from tabulate import tabulate # pragma: no cover – fallback path | |
import re | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from langchain.agents import initialize_agent | |
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun | |
from langchain_community.llms import HuggingFaceHub | |
from typing import Union | |
import os | |
from langchain.agents import AgentExecutor, Tool, initialize_agent | |
from langchain_community.llms import Ollama | |
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun | |
from langchain_community.document_loaders import ( | |
CSVLoader, | |
PyPDFLoader, | |
UnstructuredWordDocumentLoader | |
) | |
from langchain_community.utilities import TextRequestsWrapper | |
import speech_recognition as sr | |
from pydub import AudioSegment # For audio format conversion | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
fixed_answer = self.agent.run(question) | |
print(f"Agent returning answer: {fixed_answer}") | |
return fixed_answer | |
def __init__(self, model_name: str = "llama3"): | |
""" | |
Open-source multi-modal agent with: | |
- Web search | |
- Document processing | |
- Speech-to-text | |
- URL content fetching | |
""" | |
# Initialize LLM (local via Ollama) | |
self.llm = Ollama(model=model_name, temperature=0.7) | |
# Initialize tools | |
self.search_tool = DuckDuckGoSearchRun() | |
self.wikipedia_tool = WikipediaQueryRun() | |
self.requests_tool = TextRequestsWrapper() | |
# Speech recognition | |
self.recognizer = sr.Recognizer() | |
# Initialize agent | |
self.tools = self._initialize_tools() | |
self.agent = self._create_agent() | |
def _initialize_tools(self) -> list[Tool]: | |
"""Initialize all available tools""" | |
return [ | |
Tool( | |
name="Web Search", | |
func=self.search_tool.run, | |
description="For current events/unknown topics" | |
), | |
Tool( | |
name="Wikipedia", | |
func=self.wikipedia_tool.run, | |
description="For factual information" | |
), | |
Tool( | |
name="Document Loader", | |
func=self.process_document, | |
description="Processes PDF, Word, CSV files" | |
), | |
Tool( | |
name="Speech Transcription", | |
func=self.transcribe_audio, | |
description="Converts speech from audio files to text" | |
), | |
Tool( | |
name="Website Content", | |
func=self.requests_tool.get, | |
description="Fetches content from URLs" | |
) | |
] | |
def _create_agent(self) -> AgentExecutor: | |
"""Create the agent executor""" | |
return initialize_agent( | |
tools=self.tools, | |
llm=self.llm, | |
agent="structured-chat-react", | |
verbose=True, | |
handle_parsing_errors=True | |
) | |
def process_document(self, file_path: str) -> str: | |
"""Handle different document types""" | |
if not os.path.exists(file_path): | |
return "File not found" | |
ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if ext == '.pdf': | |
loader = PyPDFLoader(file_path) | |
elif ext in ('.doc', '.docx'): | |
loader = UnstructuredWordDocumentLoader(file_path) | |
elif ext == '.csv': | |
loader = CSVLoader(file_path) | |
else: | |
return "Unsupported file format" | |
docs = loader.load() | |
return "\n".join([doc.page_content for doc in docs]) | |
except Exception as e: | |
return f"Error processing document: {str(e)}" | |
def _convert_audio_format(self, audio_path: str) -> str: | |
"""Convert audio to WAV format if needed""" | |
if audio_path.endswith('.wav'): | |
return audio_path | |
try: | |
sound = AudioSegment.from_file(audio_path) | |
wav_path = os.path.splitext(audio_path)[0] + ".wav" | |
sound.export(wav_path, format="wav") | |
return wav_path | |
except: | |
return audio_path # Fallback to original if conversion fails | |
def transcribe_audio(self, audio_path: str) -> str: | |
"""Convert speech to text using purely open-source tools""" | |
audio_path = self._convert_audio_format(audio_path) | |
try: | |
with sr.AudioFile(audio_path) as source: | |
audio = self.recognizer.record(source) | |
return self.recognizer.recognize_vosk(audio) # Offline recognition | |
except sr.UnknownValueError: | |
try: | |
# Fallback to Sphinx if Vosk fails | |
return self.recognizer.recognize_sphinx(audio) | |
except Exception as e: | |
return f"Transcription failed: {str(e)}" | |
def run(self, input_data: Union[str, dict]) -> str: | |
""" | |
Handle different input types: | |
- Text queries | |
- File paths | |
- Structured requests | |
""" | |
if isinstance(input_data, dict): | |
if 'query' in input_data: | |
return self.agent.run(input_data['query']) | |
elif 'file' in input_data: | |
content = self.process_document(input_data['file']) | |
return self.agent.run(f"Process this: {content}") | |
elif isinstance(input_data, str): | |
if input_data.endswith(('.pdf', '.docx', '.csv')): | |
content = self.process_document(input_data) | |
return self.agent.run(f"Process this document: {content}") | |
elif input_data.endswith(('.wav', '.mp3', '.ogg')): | |
content = self.transcribe_audio(input_data) | |
return self.agent.run(f"Process this transcript: {content}") | |
else: | |
return self.agent.run(input_data) | |
return "Unsupported input type" | |
# Usage Example | |
if __name__ == "__main__": | |
agent = FullyOpenSourceAgent(model_name="mistral") # Try "llama3", "gemma", etc. | |
# Example 1: Web search | |
print(agent.run("Latest breakthroughs in renewable energy")) | |
# Example 2: Process document | |
print(agent.run({"file": "research.pdf"})) | |
# Example 3: Complex workflow | |
print(agent.run({ | |
"query": "Summarize the key points from this meeting recording", | |
"file": "meeting.wav" | |
})) | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |