Spaces:
Running
Running
File size: 15,304 Bytes
10e9b7d eccf8e4 a37281a 29bc439 0b28c6a 3c4371f 0b28c6a 29bc439 10e9b7d a37281a d59f015 e80aab9 3db6293 e80aab9 0b28c6a 31243f4 c33725f d17ef16 0b28c6a b49b95b a37281a 29bc439 a37281a 29bc439 a37281a 29bc439 a37281a 29bc439 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 c33725f 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import os
import gradio as gr
import requests
import speech_recognition as sr
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
from pathlib import Path
import tempfile
from smolagents.tools import PipelineTool, Tool
import pathlib
from typing import Union, Optional
import pandas as pd
from tabulate import tabulate # pragma: no cover – fallback path
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain.agents import initialize_agent
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun
from langchain_community.llms import HuggingFaceHub
from typing import Union
import os
from langchain.agents import AgentExecutor, Tool, initialize_agent
from langchain_community.llms import Ollama
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun
from langchain_community.document_loaders import (
CSVLoader,
PyPDFLoader,
UnstructuredWordDocumentLoader
)
from langchain_community.utilities import TextRequestsWrapper
import speech_recognition as sr
from pydub import AudioSegment # For audio format conversion
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = self.agent.run(question)
print(f"Agent returning answer: {fixed_answer}")
return fixed_answer
def __init__(self, model_name: str = "llama3"):
"""
Open-source multi-modal agent with:
- Web search
- Document processing
- Speech-to-text
- URL content fetching
"""
# Initialize LLM (local via Ollama)
self.llm = Ollama(model=model_name, temperature=0.7)
# Initialize tools
self.search_tool = DuckDuckGoSearchRun()
self.wikipedia_tool = WikipediaQueryRun()
self.requests_tool = TextRequestsWrapper()
# Speech recognition
self.recognizer = sr.Recognizer()
# Initialize agent
self.tools = self._initialize_tools()
self.agent = self._create_agent()
def _initialize_tools(self) -> list[Tool]:
"""Initialize all available tools"""
return [
Tool(
name="Web Search",
func=self.search_tool.run,
description="For current events/unknown topics"
),
Tool(
name="Wikipedia",
func=self.wikipedia_tool.run,
description="For factual information"
),
Tool(
name="Document Loader",
func=self.process_document,
description="Processes PDF, Word, CSV files"
),
Tool(
name="Speech Transcription",
func=self.transcribe_audio,
description="Converts speech from audio files to text"
),
Tool(
name="Website Content",
func=self.requests_tool.get,
description="Fetches content from URLs"
)
]
def _create_agent(self) -> AgentExecutor:
"""Create the agent executor"""
return initialize_agent(
tools=self.tools,
llm=self.llm,
agent="structured-chat-react",
verbose=True,
handle_parsing_errors=True
)
def process_document(self, file_path: str) -> str:
"""Handle different document types"""
if not os.path.exists(file_path):
return "File not found"
ext = os.path.splitext(file_path)[1].lower()
try:
if ext == '.pdf':
loader = PyPDFLoader(file_path)
elif ext in ('.doc', '.docx'):
loader = UnstructuredWordDocumentLoader(file_path)
elif ext == '.csv':
loader = CSVLoader(file_path)
else:
return "Unsupported file format"
docs = loader.load()
return "\n".join([doc.page_content for doc in docs])
except Exception as e:
return f"Error processing document: {str(e)}"
def _convert_audio_format(self, audio_path: str) -> str:
"""Convert audio to WAV format if needed"""
if audio_path.endswith('.wav'):
return audio_path
try:
sound = AudioSegment.from_file(audio_path)
wav_path = os.path.splitext(audio_path)[0] + ".wav"
sound.export(wav_path, format="wav")
return wav_path
except:
return audio_path # Fallback to original if conversion fails
def transcribe_audio(self, audio_path: str) -> str:
"""Convert speech to text using purely open-source tools"""
audio_path = self._convert_audio_format(audio_path)
try:
with sr.AudioFile(audio_path) as source:
audio = self.recognizer.record(source)
return self.recognizer.recognize_vosk(audio) # Offline recognition
except sr.UnknownValueError:
try:
# Fallback to Sphinx if Vosk fails
return self.recognizer.recognize_sphinx(audio)
except Exception as e:
return f"Transcription failed: {str(e)}"
def run(self, input_data: Union[str, dict]) -> str:
"""
Handle different input types:
- Text queries
- File paths
- Structured requests
"""
if isinstance(input_data, dict):
if 'query' in input_data:
return self.agent.run(input_data['query'])
elif 'file' in input_data:
content = self.process_document(input_data['file'])
return self.agent.run(f"Process this: {content}")
elif isinstance(input_data, str):
if input_data.endswith(('.pdf', '.docx', '.csv')):
content = self.process_document(input_data)
return self.agent.run(f"Process this document: {content}")
elif input_data.endswith(('.wav', '.mp3', '.ogg')):
content = self.transcribe_audio(input_data)
return self.agent.run(f"Process this transcript: {content}")
else:
return self.agent.run(input_data)
return "Unsupported input type"
# Usage Example
if __name__ == "__main__":
agent = FullyOpenSourceAgent(model_name="mistral") # Try "llama3", "gemma", etc.
# Example 1: Web search
print(agent.run("Latest breakthroughs in renewable energy"))
# Example 2: Process document
print(agent.run({"file": "research.pdf"}))
# Example 3: Complex workflow
print(agent.run({
"query": "Summarize the key points from this meeting recording",
"file": "meeting.wav"
}))
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |