Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,20 +3,8 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from langchain_core.tools import tool
|
9 |
-
from langchain_openai import ChatOpenAI
|
10 |
-
from langgraph.graph import END, StateGraph
|
11 |
-
from langgraph.prebuilt import ToolNode
|
12 |
-
from langchain_community.tools import DuckDuckGoSearchResults
|
13 |
-
from langchain_community.utilities import WikipediaAPIWrapper
|
14 |
-
from langchain.agents import create_tool_calling_agent, AgentExecutor
|
15 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
16 |
-
import operator
|
17 |
-
from langchain_experimental.utilities import PythonREPL
|
18 |
-
from functools import wraps
|
19 |
-
import logging
|
20 |
|
21 |
# (Keep Constants as is)
|
22 |
# --- Constants ---
|
@@ -26,168 +14,29 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
26 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
27 |
|
28 |
|
29 |
-
|
30 |
-
# --- Configure logging ---
|
31 |
-
logging.basicConfig(level=logging.INFO)
|
32 |
-
logger = logging.getLogger(__name__)
|
33 |
-
|
34 |
-
# --- Constants ---
|
35 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
36 |
-
DEFAULT_MODEL = "gpt-3.5-turbo"
|
37 |
-
MAX_RESPONSE_LENGTH = 2000 # Prevent overly long responses
|
38 |
-
|
39 |
-
def handle_errors(func):
|
40 |
-
"""Decorator to handle common errors in agent operations."""
|
41 |
-
@wraps(func)
|
42 |
-
def wrapper(*args, **kwargs):
|
43 |
-
try:
|
44 |
-
return func(*args, **kwargs)
|
45 |
-
except Exception as e:
|
46 |
-
logger.error(f"Error in {func.__name__}: {str(e)}")
|
47 |
-
return {"error": str(e)}
|
48 |
-
return wrapper
|
49 |
-
|
50 |
-
class AgentState(TypedDict):
|
51 |
-
messages: Annotated[Sequence[BaseMessage], operator.add]
|
52 |
-
sender: str
|
53 |
-
|
54 |
-
@tool
|
55 |
-
def wikipedia_search(query: str) -> str:
|
56 |
-
"""Search Wikipedia for information. Useful for historical facts, scientific concepts, and general knowledge."""
|
57 |
-
try:
|
58 |
-
return WikipediaAPIWrapper().run(query)[:MAX_RESPONSE_LENGTH]
|
59 |
-
except Exception as e:
|
60 |
-
return f"Wikipedia search failed: {str(e)}"
|
61 |
-
|
62 |
-
@tool
|
63 |
-
def web_search(query: str, num_results: int = 3) -> list:
|
64 |
-
"""Search the web for current information. Useful for news, recent events, and up-to-date data."""
|
65 |
-
try:
|
66 |
-
results = DuckDuckGoSearchResults(num_results=num_results).run(query)
|
67 |
-
return [str(r)[:500] for r in results][:num_results] # Limit result size
|
68 |
-
except Exception as e:
|
69 |
-
return [f"Web search failed: {str(e)}"]
|
70 |
-
|
71 |
-
@tool
|
72 |
-
def calculate(expression: str) -> str:
|
73 |
-
"""Evaluate mathematical expressions. Supports basic arithmetic and complex formulas."""
|
74 |
-
try:
|
75 |
-
python_repl = PythonREPL()
|
76 |
-
result = python_repl.run(expression)
|
77 |
-
return str(result)[:100] # Limit numeric output length
|
78 |
-
except Exception as e:
|
79 |
-
return f"Calculation failed: {str(e)}"
|
80 |
-
|
81 |
class BasicAgent:
|
82 |
-
|
83 |
-
|
84 |
-
def
|
85 |
-
"
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
self.llm = ChatOpenAI(model=model_name, temperature=temperature)
|
90 |
-
self.agent_executor = self._build_agent_executor()
|
91 |
-
self.workflow = self._build_workflow()
|
92 |
-
logger.info(f"AdvancedAgent initialized with model: {model_name}")
|
93 |
-
|
94 |
-
def _build_agent_executor(self) -> AgentExecutor:
|
95 |
-
"""Build the agent executor with proper prompt and tools."""
|
96 |
-
prompt = ChatPromptTemplate.from_messages([
|
97 |
-
("system", self._get_system_prompt()),
|
98 |
-
MessagesPlaceholder(variable_name="messages"),
|
99 |
-
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
100 |
-
])
|
101 |
-
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
|
102 |
-
return AgentExecutor(
|
103 |
-
agent=agent,
|
104 |
-
tools=self.tools,
|
105 |
-
verbose=True,
|
106 |
-
handle_parsing_errors=True
|
107 |
-
)
|
108 |
-
|
109 |
-
def _get_system_prompt(self) -> str:
|
110 |
-
"""Return a comprehensive system prompt for the agent."""
|
111 |
-
return """You are an advanced AI assistant with access to tools. Follow these rules:
|
112 |
-
1. Be precise and factual
|
113 |
-
2. Use tools when needed
|
114 |
-
3. Cite your sources
|
115 |
-
4. Break complex problems into steps
|
116 |
-
5. Admit when you don't know something"""
|
117 |
-
|
118 |
-
def _build_workflow(self) -> StateGraph:
|
119 |
-
"""Build and compile the agent workflow."""
|
120 |
-
workflow = StateGraph(AgentState)
|
121 |
-
|
122 |
-
workflow.add_node("agent", self._run_agent)
|
123 |
-
workflow.add_node("tools", ToolNode(self.tools))
|
124 |
-
|
125 |
-
workflow.set_entry_point("agent")
|
126 |
-
workflow.add_conditional_edges(
|
127 |
-
"agent",
|
128 |
-
self._should_continue,
|
129 |
-
{"continue": "tools", "end": END}
|
130 |
-
)
|
131 |
-
workflow.add_edge("tools", "agent")
|
132 |
-
|
133 |
-
return workflow.compile()
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
def
|
142 |
-
"
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
"""Process a user query and return a structured response."""
|
149 |
-
if not query or len(query.strip()) == 0:
|
150 |
-
return {"error": "Empty query provided"}
|
151 |
-
|
152 |
-
logger.info(f"Processing query: {query[:50]}...")
|
153 |
-
state = AgentState(messages=[HumanMessage(content=query)], sender="user")
|
154 |
-
|
155 |
-
for output in self.workflow.stream(state):
|
156 |
-
for key, value in output.items():
|
157 |
-
if key == "messages":
|
158 |
-
for message in value:
|
159 |
-
if isinstance(message, BaseMessage):
|
160 |
-
response = message.content[:MAX_RESPONSE_LENGTH]
|
161 |
-
return {
|
162 |
-
"response": response,
|
163 |
-
"sources": self._extract_sources(state["messages"]),
|
164 |
-
"steps": self._extract_steps(state["messages"]),
|
165 |
-
"model": self.model_name
|
166 |
-
}
|
167 |
-
return {"response": "No response generated", "sources": [], "steps": []}
|
168 |
-
|
169 |
-
def _extract_sources(self, messages: Sequence[BaseMessage]) -> List[str]:
|
170 |
-
"""Extract and format sources from tool messages."""
|
171 |
-
sources = []
|
172 |
-
for msg in messages:
|
173 |
-
if hasattr(msg, 'additional_kwargs') and 'name' in msg.additional_kwargs:
|
174 |
-
source_name = msg.additional_kwargs.get('name', 'unknown')
|
175 |
-
content = str(msg.content)[:200] # Truncate long content
|
176 |
-
sources.append(f"{source_name}: {content}")
|
177 |
-
return sources
|
178 |
-
|
179 |
-
def _extract_steps(self, messages: Sequence[BaseMessage]) -> List[str]:
|
180 |
-
"""Extract and format the reasoning steps."""
|
181 |
-
steps = []
|
182 |
-
for msg in messages:
|
183 |
-
if hasattr(msg, 'additional_kwargs') and 'tool_calls' in msg.additional_kwargs:
|
184 |
-
for call in msg.additional_kwargs['tool_calls']:
|
185 |
-
tool_name = call['function']['name']
|
186 |
-
args = call['function']['arguments'][:100] # Truncate long args
|
187 |
-
steps.append(f"Used {tool_name} with args: {args}")
|
188 |
-
return steps
|
189 |
|
190 |
-
|
191 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
192 |
"""
|
193 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
@@ -315,11 +164,9 @@ with gr.Blocks() as demo:
|
|
315 |
gr.Markdown(
|
316 |
"""
|
317 |
**Instructions:**
|
318 |
-
|
319 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
320 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
321 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
322 |
-
|
323 |
---
|
324 |
**Disclaimers:**
|
325 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from langchain_core.messages import HumanMessage
|
7 |
+
from agent import build_graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
# --- Constants ---
|
|
|
14 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
15 |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
class BasicAgent:
|
18 |
+
def __init__(self):
|
19 |
+
print("BasicAgent initialized.")
|
20 |
+
def __call__(self, question: str) -> str:
|
21 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
22 |
+
fixed_answer = "This is a default answer."
|
23 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
24 |
+
return fixed_answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
class BasicAgent:
|
27 |
+
"""A langgraph agent."""
|
28 |
+
def __init__(self):
|
29 |
+
print("BasicAgent initialized.")
|
30 |
+
self.graph = build_graph()
|
31 |
+
|
32 |
+
def __call__(self, question: str) -> str:
|
33 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
34 |
+
# Wrap the question in a HumanMessage from langchain_core
|
35 |
+
messages = [HumanMessage(content=question)]
|
36 |
+
messages = self.graph.invoke({"messages": messages})
|
37 |
+
answer = messages['messages'][-1].content
|
38 |
+
return answer[14:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
40 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
41 |
"""
|
42 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
164 |
gr.Markdown(
|
165 |
"""
|
166 |
**Instructions:**
|
|
|
167 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
168 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
169 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
170 |
---
|
171 |
**Disclaimers:**
|
172 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|