File size: 21,061 Bytes
10e9b7d
a8fe6cd
10e9b7d
a8fe6cd
 
 
 
 
eccf8e4
cda9f5c
a8fe6cd
 
 
 
 
 
 
 
 
 
 
 
6b81dc2
 
a37281a
d59f015
e80aab9
3db6293
a8fe6cd
cda9f5c
3460c7e
a8fe6cd
 
9bc447b
a8fe6cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2a7d74
a8fe6cd
 
 
 
 
 
 
 
 
7c40d5d
a8fe6cd
 
 
 
 
 
7c40d5d
a8fe6cd
 
 
 
 
7c40d5d
a8fe6cd
 
 
 
 
 
7c40d5d
a8fe6cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c40d5d
a8fe6cd
 
 
 
 
 
 
 
 
 
7c40d5d
a8fe6cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c40d5d
ad7890b
632828a
a37281a
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import os
from typing import Annotated, Optional, TypedDict
import gradio as gr
from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langgraph.graph.message import add_messages
from langgraph.graph import StateGraph, START
from langgraph.prebuilt import tools_condition, ToolNode
import requests
import pandas as pd
from langchain.tools import Tool
from dotenv import load_dotenv

from arxiv_searcher import ArxivSearcher
from chess_algebraic_notation_retriever import ChessAlgebraicNotationMoveRetriever
from excel_file_reader import ExcelFileReader
from image_question_answer_tool import ImageQuestionAnswerTool
from python_code_question_answer_tool import PythonCodeQuestionAnswerTool
from tavily_searcher import TavilySearcher
from transcriber import Transcriber
from wikipedia_searcher import WikipediaSearcher
from youtube_video_question_answer_tool import YoutubeVideoQuestionAnswerTool

load_dotenv()

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
ASSOCIATED_FILE_ENDPOINT = f"{DEFAULT_API_URL}/files/"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
#search_tool = DuckDuckGoSearchRun()

#search_tool = DuckDuckGoSearcherTool()

def retrieve_task_file(task_id: str) -> Optional[bytes]:
    """
    Retrieve the task file for a given task ID.
    """
    try:
        response = requests.get(ASSOCIATED_FILE_ENDPOINT + task_id, timeout=15)
        response.raise_for_status()
        if response.status_code != 200:
            print(f"Error fetching file: {response.status_code}")
            return None
        #print(f"Fetched file: {response.content}")
        return response.content
    except requests.exceptions.RequestException as e:
        print(f"Error fetching file: {e}")
        return None
    except Exception as e:
        print(f"An unexpected error occurred fetching file: {e}")
        return None

def retrieve_next_chess_move_in_algebraic_notation(task_file_path: str, is_black_turn: bool) -> str:
    """
    Retrieve the next chess move in algebraic notation from an image path.
    """
    if task_file_path is None:
        return "Error: Task file not found."
    # Retrieve the next chess move in algebraic notation
    next_chess_move = ChessAlgebraicNotationMoveRetriever().retrieve(task_file_path, is_black_turn)
    return next_chess_move

# Initialize the tool
retrieve_next_chess_move_in_algebraic_notation_tool = Tool(
    name="retrieve_next_chess_move_in_algebraic_notation",
    func=retrieve_next_chess_move_in_algebraic_notation,
    description="Retrieve the next chess move in algebraic notation from an image path."
)

def transcribe_audio(file_path: str) -> str:
    if file_path is None:
        return "Error: Audio path not found."
    # Transcribe the audio
    return Transcriber().transcribe(file_path)

# Initialize the tool
transcribe_audio_tool = Tool(
    name="transcribe_audio",
    func=transcribe_audio,
    description="Transcribe the audio from an audio path."
)

# Initialize the tool
answer_python_code_tool = PythonCodeQuestionAnswerTool()

# Initialize the tool
answer_image_question_tool = ImageQuestionAnswerTool()

# Initialize the tool
answer_youtube_video_question_tool = YoutubeVideoQuestionAnswerTool()

'''def answer_youtube_video_question(youtube_video_url: str, question: str) -> str:
    """
    Answer the question based on the youtube video.
    """
    if youtube_video_url is None:
        return "Error: Video not found."
    # Download the video
    video_path = YoutubeVideoDownloader().download_video(youtube_video_url)
    # Answer the question
    return VideoQuestionAnswer().answer(video_path, question)
# Initialize the tool
answer_youtube_video_question_tool = Tool(
    name="answer_youtube_video_question",
    func=answer_youtube_video_question,
    description="Answer the question based on the youtube video."
)'''

def read_excel_file(file_path: str) -> str:
    if file_path is None:
        return "Error: File not found."
    return ExcelFileReader().read_file(file_path)

# Initialize the tool
read_excel_file_tool = Tool(
    name="read_excel_file",
    func=read_excel_file,
    description="Read the excel file."
)

# Initialize the tool
wikipedia_search_tool = Tool(
    name="wikipedia_search",
    func=WikipediaSearcher().search,
    description="Search Wikipedia for a given query."
)

# Initialize the tool
arxiv_search_tool = Tool(
    name="arxiv_search",
    func=ArxivSearcher().search,
    description="Search Arxiv for a given query."
)

tavily_search_tool = Tool(
    name="tavily_search",
    func=TavilySearcher().search,
    description="Search the web for a given query."
)

def format_gaia_answer(answer: str) -> str:
    llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
    prompt = f"""
    You are formatting answers for the GAIA benchmark, which requires responses to be concise and unambiguous.
    Given the answer: {answer}
    Return the answer in the correct GAIA format:
    - If the answer is a single word or number, return it without any additional text or formatting.
    - If the answer is a list, return a comma-separated list without any additional text or formatting.
    - If the answer is a string, return it without any additional text or formatting.
    Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
    Do not include any additional text or formatting.
    """
    response = llm.invoke(prompt)
    # Delete double quotes
    return response.content.strip().replace('"', '')

class AgentState(TypedDict):
    # The document provided
    messages: Annotated[list[AnyMessage], add_messages]
    file_path: Optional[str]
    
class BasicAgent:
    def __init__(self):
        tools = [
            tavily_search_tool, 
            arxiv_search_tool,
            wikipedia_search_tool, 
            transcribe_audio_tool, 
            answer_python_code_tool, 
            answer_image_question_tool, 
            answer_youtube_video_question_tool,
            read_excel_file_tool
        ]
        '''llm = ChatGoogleGenerativeAI(
            model="gemini-2.0-flash", 
            temperature=0.2,
            api_key=os.getenv("GEMINI_API_KEY")
        )'''
        llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
        self.llm_with_tools = llm.bind_tools(tools)
        builder = StateGraph(AgentState)

        # Define nodes: these do the work
        builder.add_node("assistant", self.assistant)
        builder.add_node("tools", ToolNode(tools))

        # Define edges: these determine how the control flow moves
        builder.add_edge(START, "assistant")
        builder.add_conditional_edges(
            "assistant",
            # If the latest message requires a tool, route to tools
            # Otherwise, provide a direct response
            tools_condition,
        )
        builder.add_edge("tools", "assistant")
        self.agent = builder.compile()

        print("BasicAgent initialized.")

    def assistant(self, state: AgentState):
        # System message
        textual_description_of_tools="""
            tavily_search(query: str) -> str:
                Search the web for a given query.
                Args:
                    query: Query to search the web for (string).
                Returns:
                    A single string containing the information found on the web.
            arxiv_search(query: str) -> str:
                Search Arxiv, that contains scientific papers, for a given query.
                Args:
                    query: Query to search Arxiv for (string).
                Returns:
                    A single string containing the answer to the question.
            wikipedia_search(query: str) -> str:
                Search Wikipedia for a given query.
                Args:
                    query: Query to search Wikipedia for (string).
                Returns:
                    A single string containing the answer to the question.
            transcribe_audio(file_path: str) -> str:
                Transcribe the audio from an audio path.
                Args:
                    file_path: File path of the audio file (string).
                Returns:
                    A single string containing the transcribed text from the audio.
            
            answer_python_code(file_path: str, question: str) -> str:
                Answer the question based on the python code.
                Args:
                    file_path: File path of the python file (string).
                    question: Question to answer (string).
                Returns:
                    A single string containing the answer to the question.
            
            answer_image_question(file_path: str, question: str) -> str:
                Answer the question based on the image.
                Args:
                    file_path: File path of the image (string).
                    question: Question to answer (string).
                Returns:
                    A single string containing the answer to the question.
            
            download_youtube_video(youtube_video_url: str) -> str:
                Download the Youtube video into a local file based on the URL
                Args:
                    youtube_video_url: A youtube video url (string).
                Returns:
                    A single string containing the file path of the downloaded youtube video.
            answer_youtube_video_question(file_path: str, question: str) -> str:
                Answer the question based on file path of the downloaded youtube video
                Args:
                    file_path: File path of the downloaded youtube video (string).
                    question: Question to answer (string).
                Returns:
                    A single string containing the answer to the question.
            
            read_excel_file(file_path: str) -> str:
                Read the excel file.
                Args:
                    file_path: File path of the excel file (string).
                Returns:
                    A markdown formatted string containing the contents of the excel file.
        """
        file_path=state["file_path"]
        prompt = f"""
            You are a helpful assistant that can analyse images, videos, excel files and Python scripts and run computations with provided tools:
            {textual_description_of_tools} 
            You have access to the file path of the attached file in case it's informed. Currently the file path is: {file_path}
            Be direct and specific. GAIA benchmark requires exact matching answers.
            For example, if asked "What is the capital of France?", respond simply with "Paris".
            Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
            Do not include any additional text or formatting.
            If you are required a number, return a number, not the items.
        """
        sys_msg = SystemMessage(content=prompt)

        return {
            "messages": [self.llm_with_tools.invoke([sys_msg] + state["messages"], config={"configurable": {"file_path": state["file_path"]}})],
            "file_path": state["file_path"]
        }
        '''return {
            "messages": [self.llm_with_tools.invoke(
                state["messages"],
                config={"configurable": {"file_path": state["file_path"]}}  # Aquí pasas el task_id
            )],
            "file_path": state["file_path"]
        }'''
    
    def __call__(self, question: str, task_id: str, file_name: str) -> str:
        print(f"######################### Agent received question (first 50 chars): {question[:50]}... with file_name: {file_name}")

        # Get the file path
        tmp_file_path = None
        if file_name is not None and file_name != "":
            file_content = retrieve_task_file(task_id)
            if file_content is not None:
                print(f"Saving file {file_name} to tmp folder")
                tmp_file_path = f"tmp/{file_name}"
                with open(tmp_file_path, "wb") as f:
                    f.write(file_content)
        # Show the file path
        print(f"File path: {tmp_file_path}")

        messages = self.agent.invoke({"messages": [HumanMessage(question)], "file_path": tmp_file_path})
        # Show the messages
        for m in messages['messages']:
            m.pretty_print()
        answer = messages["messages"][-1].content
        answer = format_gaia_answer(answer)
        print(f"######################### Agent returning answer: {answer}\n")
        # Delete the file
        if tmp_file_path is not None:
            os.remove(tmp_file_path)
        return answer


    

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)