Spaces:
Running
Running
File size: 21,061 Bytes
10e9b7d a8fe6cd 10e9b7d a8fe6cd eccf8e4 cda9f5c a8fe6cd 6b81dc2 a37281a d59f015 e80aab9 3db6293 a8fe6cd cda9f5c 3460c7e a8fe6cd 9bc447b a8fe6cd b2a7d74 a8fe6cd 7c40d5d a8fe6cd 7c40d5d a8fe6cd 7c40d5d a8fe6cd 7c40d5d a8fe6cd 7c40d5d a8fe6cd 7c40d5d a8fe6cd 7c40d5d ad7890b 632828a a37281a b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 c33725f 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import os
from typing import Annotated, Optional, TypedDict
import gradio as gr
from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langgraph.graph.message import add_messages
from langgraph.graph import StateGraph, START
from langgraph.prebuilt import tools_condition, ToolNode
import requests
import pandas as pd
from langchain.tools import Tool
from dotenv import load_dotenv
from arxiv_searcher import ArxivSearcher
from chess_algebraic_notation_retriever import ChessAlgebraicNotationMoveRetriever
from excel_file_reader import ExcelFileReader
from image_question_answer_tool import ImageQuestionAnswerTool
from python_code_question_answer_tool import PythonCodeQuestionAnswerTool
from tavily_searcher import TavilySearcher
from transcriber import Transcriber
from wikipedia_searcher import WikipediaSearcher
from youtube_video_question_answer_tool import YoutubeVideoQuestionAnswerTool
load_dotenv()
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
ASSOCIATED_FILE_ENDPOINT = f"{DEFAULT_API_URL}/files/"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
#search_tool = DuckDuckGoSearchRun()
#search_tool = DuckDuckGoSearcherTool()
def retrieve_task_file(task_id: str) -> Optional[bytes]:
"""
Retrieve the task file for a given task ID.
"""
try:
response = requests.get(ASSOCIATED_FILE_ENDPOINT + task_id, timeout=15)
response.raise_for_status()
if response.status_code != 200:
print(f"Error fetching file: {response.status_code}")
return None
#print(f"Fetched file: {response.content}")
return response.content
except requests.exceptions.RequestException as e:
print(f"Error fetching file: {e}")
return None
except Exception as e:
print(f"An unexpected error occurred fetching file: {e}")
return None
def retrieve_next_chess_move_in_algebraic_notation(task_file_path: str, is_black_turn: bool) -> str:
"""
Retrieve the next chess move in algebraic notation from an image path.
"""
if task_file_path is None:
return "Error: Task file not found."
# Retrieve the next chess move in algebraic notation
next_chess_move = ChessAlgebraicNotationMoveRetriever().retrieve(task_file_path, is_black_turn)
return next_chess_move
# Initialize the tool
retrieve_next_chess_move_in_algebraic_notation_tool = Tool(
name="retrieve_next_chess_move_in_algebraic_notation",
func=retrieve_next_chess_move_in_algebraic_notation,
description="Retrieve the next chess move in algebraic notation from an image path."
)
def transcribe_audio(file_path: str) -> str:
if file_path is None:
return "Error: Audio path not found."
# Transcribe the audio
return Transcriber().transcribe(file_path)
# Initialize the tool
transcribe_audio_tool = Tool(
name="transcribe_audio",
func=transcribe_audio,
description="Transcribe the audio from an audio path."
)
# Initialize the tool
answer_python_code_tool = PythonCodeQuestionAnswerTool()
# Initialize the tool
answer_image_question_tool = ImageQuestionAnswerTool()
# Initialize the tool
answer_youtube_video_question_tool = YoutubeVideoQuestionAnswerTool()
'''def answer_youtube_video_question(youtube_video_url: str, question: str) -> str:
"""
Answer the question based on the youtube video.
"""
if youtube_video_url is None:
return "Error: Video not found."
# Download the video
video_path = YoutubeVideoDownloader().download_video(youtube_video_url)
# Answer the question
return VideoQuestionAnswer().answer(video_path, question)
# Initialize the tool
answer_youtube_video_question_tool = Tool(
name="answer_youtube_video_question",
func=answer_youtube_video_question,
description="Answer the question based on the youtube video."
)'''
def read_excel_file(file_path: str) -> str:
if file_path is None:
return "Error: File not found."
return ExcelFileReader().read_file(file_path)
# Initialize the tool
read_excel_file_tool = Tool(
name="read_excel_file",
func=read_excel_file,
description="Read the excel file."
)
# Initialize the tool
wikipedia_search_tool = Tool(
name="wikipedia_search",
func=WikipediaSearcher().search,
description="Search Wikipedia for a given query."
)
# Initialize the tool
arxiv_search_tool = Tool(
name="arxiv_search",
func=ArxivSearcher().search,
description="Search Arxiv for a given query."
)
tavily_search_tool = Tool(
name="tavily_search",
func=TavilySearcher().search,
description="Search the web for a given query."
)
def format_gaia_answer(answer: str) -> str:
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
prompt = f"""
You are formatting answers for the GAIA benchmark, which requires responses to be concise and unambiguous.
Given the answer: {answer}
Return the answer in the correct GAIA format:
- If the answer is a single word or number, return it without any additional text or formatting.
- If the answer is a list, return a comma-separated list without any additional text or formatting.
- If the answer is a string, return it without any additional text or formatting.
Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
Do not include any additional text or formatting.
"""
response = llm.invoke(prompt)
# Delete double quotes
return response.content.strip().replace('"', '')
class AgentState(TypedDict):
# The document provided
messages: Annotated[list[AnyMessage], add_messages]
file_path: Optional[str]
class BasicAgent:
def __init__(self):
tools = [
tavily_search_tool,
arxiv_search_tool,
wikipedia_search_tool,
transcribe_audio_tool,
answer_python_code_tool,
answer_image_question_tool,
answer_youtube_video_question_tool,
read_excel_file_tool
]
'''llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0.2,
api_key=os.getenv("GEMINI_API_KEY")
)'''
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY"))
self.llm_with_tools = llm.bind_tools(tools)
builder = StateGraph(AgentState)
# Define nodes: these do the work
builder.add_node("assistant", self.assistant)
builder.add_node("tools", ToolNode(tools))
# Define edges: these determine how the control flow moves
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
# If the latest message requires a tool, route to tools
# Otherwise, provide a direct response
tools_condition,
)
builder.add_edge("tools", "assistant")
self.agent = builder.compile()
print("BasicAgent initialized.")
def assistant(self, state: AgentState):
# System message
textual_description_of_tools="""
tavily_search(query: str) -> str:
Search the web for a given query.
Args:
query: Query to search the web for (string).
Returns:
A single string containing the information found on the web.
arxiv_search(query: str) -> str:
Search Arxiv, that contains scientific papers, for a given query.
Args:
query: Query to search Arxiv for (string).
Returns:
A single string containing the answer to the question.
wikipedia_search(query: str) -> str:
Search Wikipedia for a given query.
Args:
query: Query to search Wikipedia for (string).
Returns:
A single string containing the answer to the question.
transcribe_audio(file_path: str) -> str:
Transcribe the audio from an audio path.
Args:
file_path: File path of the audio file (string).
Returns:
A single string containing the transcribed text from the audio.
answer_python_code(file_path: str, question: str) -> str:
Answer the question based on the python code.
Args:
file_path: File path of the python file (string).
question: Question to answer (string).
Returns:
A single string containing the answer to the question.
answer_image_question(file_path: str, question: str) -> str:
Answer the question based on the image.
Args:
file_path: File path of the image (string).
question: Question to answer (string).
Returns:
A single string containing the answer to the question.
download_youtube_video(youtube_video_url: str) -> str:
Download the Youtube video into a local file based on the URL
Args:
youtube_video_url: A youtube video url (string).
Returns:
A single string containing the file path of the downloaded youtube video.
answer_youtube_video_question(file_path: str, question: str) -> str:
Answer the question based on file path of the downloaded youtube video
Args:
file_path: File path of the downloaded youtube video (string).
question: Question to answer (string).
Returns:
A single string containing the answer to the question.
read_excel_file(file_path: str) -> str:
Read the excel file.
Args:
file_path: File path of the excel file (string).
Returns:
A markdown formatted string containing the contents of the excel file.
"""
file_path=state["file_path"]
prompt = f"""
You are a helpful assistant that can analyse images, videos, excel files and Python scripts and run computations with provided tools:
{textual_description_of_tools}
You have access to the file path of the attached file in case it's informed. Currently the file path is: {file_path}
Be direct and specific. GAIA benchmark requires exact matching answers.
For example, if asked "What is the capital of France?", respond simply with "Paris".
Do not include any prefixes, dots, enumerations, explanations, or quotation marks.
Do not include any additional text or formatting.
If you are required a number, return a number, not the items.
"""
sys_msg = SystemMessage(content=prompt)
return {
"messages": [self.llm_with_tools.invoke([sys_msg] + state["messages"], config={"configurable": {"file_path": state["file_path"]}})],
"file_path": state["file_path"]
}
'''return {
"messages": [self.llm_with_tools.invoke(
state["messages"],
config={"configurable": {"file_path": state["file_path"]}} # Aquí pasas el task_id
)],
"file_path": state["file_path"]
}'''
def __call__(self, question: str, task_id: str, file_name: str) -> str:
print(f"######################### Agent received question (first 50 chars): {question[:50]}... with file_name: {file_name}")
# Get the file path
tmp_file_path = None
if file_name is not None and file_name != "":
file_content = retrieve_task_file(task_id)
if file_content is not None:
print(f"Saving file {file_name} to tmp folder")
tmp_file_path = f"tmp/{file_name}"
with open(tmp_file_path, "wb") as f:
f.write(file_content)
# Show the file path
print(f"File path: {tmp_file_path}")
messages = self.agent.invoke({"messages": [HumanMessage(question)], "file_path": tmp_file_path})
# Show the messages
for m in messages['messages']:
m.pretty_print()
answer = messages["messages"][-1].content
answer = format_gaia_answer(answer)
print(f"######################### Agent returning answer: {answer}\n")
# Delete the file
if tmp_file_path is not None:
os.remove(tmp_file_path)
return answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |