File size: 3,438 Bytes
19736cf
025580f
104c39e
a7de18e
104c39e
19736cf
c623da2
19736cf
c623da2
19736cf
104c39e
deb409e
a7de18e
025580f
104c39e
c623da2
025580f
104c39e
 
14299e0
a92b56c
104c39e
 
 
14299e0
104c39e
 
 
c623da2
a7de18e
deb409e
 
a7de18e
19736cf
 
 
104c39e
c4cf574
19736cf
025580f
 
 
104c39e
c4cf574
19736cf
104c39e
025580f
104c39e
c623da2
025580f
4639dba
 
104c39e
4639dba
104c39e
 
 
 
 
 
 
 
 
 
 
 
a7de18e
deb409e
 
4639dba
deb409e
17f2d95
a92b56c
 
17f2d95
104c39e
 
a7de18e
 
a92b56c
a7de18e
4639dba
104c39e
a7de18e
 
104c39e
 
 
e08cb5e
4639dba
 
 
 
 
 
 
 
 
 
 
 
 
0ab07a8
4ee3a20
a7de18e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
import torch
import json
import csv
import os
import cv2
import numpy as np
import easyocr
import keras_ocr
from paddleocr import PaddleOCR
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch.nn.functional as F
from save_results import save_results_to_repo  # Import the save function

# Paths
MODEL_PATH = "./distilbert_spam_model"

# Ensure model exists
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
    print(f"⚠️ Model not found in {MODEL_PATH}. Downloading from Hugging Face Hub...")
    model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
    model.save_pretrained(MODEL_PATH)
    tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
    tokenizer.save_pretrained(MODEL_PATH)
    print(f"✅ Model saved at {MODEL_PATH}.")
else:
    model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH)
    tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH)

# 🔹 Ensure model is in evaluation mode
model.eval()

# OCR Functions (No changes here)
def ocr_with_paddle(img):
    ocr = PaddleOCR(lang='en', use_angle_cls=True)
    result = ocr.ocr(img)
    return ' '.join([item[1][0] for item in result[0]])

def ocr_with_keras(img):
    pipeline = keras_ocr.pipeline.Pipeline()
    images = [keras_ocr.tools.read(img)]
    predictions = pipeline.recognize(images)
    return ' '.join([text for text, _ in predictions[0]])

def ocr_with_easy(img):
    gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    reader = easyocr.Reader(['en'])
    results = reader.readtext(gray_image, detail=0)
    return ' '.join(results)

# OCR & Classification Function
def generate_ocr(method, img):
    if img is None:
        raise gr.Error("Please upload an image!")

    # Convert PIL Image to OpenCV format
    img = np.array(img)

    # Select OCR method
    if method == "PaddleOCR":
        text_output = ocr_with_paddle(img)
    elif method == "EasyOCR":
        text_output = ocr_with_easy(img)
    else:  # KerasOCR
        text_output = ocr_with_keras(img)

    # Preprocess text properly
    text_output = text_output.strip()
    if len(text_output) == 0:
        return "No text detected!", "Cannot classify"

    # Tokenize text
    inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True, max_length=512)

    # Perform inference
    with torch.no_grad():
        outputs = model(**inputs)
        probs = F.softmax(outputs.logits, dim=1)  # Convert logits to probabilities
        spam_prob = probs[0][1].item()  # Probability of Spam

    # Adjust classification based on threshold (better than argmax)
    label = "Spam" if spam_prob > 0.5 else "Not Spam"

    # Save results using external function
    save_results_to_repo(text_output, label)

    return text_output, label

# Gradio Interface
image_input = gr.Image()
method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR")
output_text = gr.Textbox(label="Extracted Text")
output_label = gr.Textbox(label="Spam Classification")

demo = gr.Interface(
    generate_ocr,
    inputs=[method_input, image_input],
    outputs=[output_text, output_label],
    title="OCR Spam Classifier",
    description="Upload an image, extract text, and classify it as Spam or Not Spam.",
    theme="compact",
)

# Launch App
if __name__ == "__main__":
    demo.launch()