Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -19,12 +19,12 @@ RESULTS_CSV = "ocr_results.csv"
|
|
19 |
|
20 |
# Ensure model exists
|
21 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
22 |
-
print(f" Model not found in {MODEL_PATH}. Downloading from Hugging Face Hub...")
|
23 |
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
|
24 |
model.save_pretrained(MODEL_PATH)
|
25 |
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
26 |
tokenizer.save_pretrained(MODEL_PATH)
|
27 |
-
print(f" Model saved at {MODEL_PATH}.")
|
28 |
else:
|
29 |
model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH)
|
30 |
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH)
|
@@ -47,13 +47,6 @@ def ocr_with_easy(img):
|
|
47 |
results = reader.readtext(gray_image, detail=0)
|
48 |
return ' '.join(results)
|
49 |
|
50 |
-
# Preprocess Text
|
51 |
-
def preprocess_text(text):
|
52 |
-
# Clean up the text by removing unwanted characters
|
53 |
-
text = text.strip() # Remove leading/trailing whitespace
|
54 |
-
text = ' '.join(text.split()) # Normalize spaces
|
55 |
-
return text
|
56 |
-
|
57 |
# OCR Function
|
58 |
def generate_ocr(method, img):
|
59 |
if img is None:
|
@@ -70,9 +63,6 @@ def generate_ocr(method, img):
|
|
70 |
else: # KerasOCR
|
71 |
text_output = ocr_with_keras(img)
|
72 |
|
73 |
-
# Preprocess the text before feeding to the model
|
74 |
-
text_output = preprocess_text(text_output)
|
75 |
-
|
76 |
# Classify Text as Spam or Not Spam
|
77 |
inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
78 |
|
@@ -106,4 +96,4 @@ demo = gr.Interface(
|
|
106 |
|
107 |
# Launch App
|
108 |
if __name__ == "__main__":
|
109 |
-
demo.launch()
|
|
|
19 |
|
20 |
# Ensure model exists
|
21 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
22 |
+
print(f"⚠️ Model not found in {MODEL_PATH}. Downloading from Hugging Face Hub...")
|
23 |
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
|
24 |
model.save_pretrained(MODEL_PATH)
|
25 |
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
26 |
tokenizer.save_pretrained(MODEL_PATH)
|
27 |
+
print(f"✅ Model saved at {MODEL_PATH}.")
|
28 |
else:
|
29 |
model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH)
|
30 |
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH)
|
|
|
47 |
results = reader.readtext(gray_image, detail=0)
|
48 |
return ' '.join(results)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# OCR Function
|
51 |
def generate_ocr(method, img):
|
52 |
if img is None:
|
|
|
63 |
else: # KerasOCR
|
64 |
text_output = ocr_with_keras(img)
|
65 |
|
|
|
|
|
|
|
66 |
# Classify Text as Spam or Not Spam
|
67 |
inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
68 |
|
|
|
96 |
|
97 |
# Launch App
|
98 |
if __name__ == "__main__":
|
99 |
+
demo.launch()
|