Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ import easyocr
|
|
10 |
import keras_ocr
|
11 |
from paddleocr import PaddleOCR
|
12 |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
|
|
13 |
|
14 |
# Paths
|
15 |
MODEL_PATH = "./distilbert_spam_model"
|
@@ -19,7 +20,7 @@ RESULTS_CSV = "ocr_results.csv"
|
|
19 |
# Ensure model exists
|
20 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
21 |
print(f"⚠️ Model not found in {MODEL_PATH}. Downloading from Hugging Face Hub...")
|
22 |
-
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
23 |
model.save_pretrained(MODEL_PATH)
|
24 |
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
25 |
tokenizer.save_pretrained(MODEL_PATH)
|
@@ -63,11 +64,15 @@ def generate_ocr(method, img):
|
|
63 |
text_output = ocr_with_keras(img)
|
64 |
|
65 |
# Classify Text as Spam or Not Spam
|
66 |
-
inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True)
|
|
|
67 |
with torch.no_grad():
|
68 |
outputs = model(**inputs)
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
# Save results
|
73 |
save_results(text_output, label)
|
|
|
10 |
import keras_ocr
|
11 |
from paddleocr import PaddleOCR
|
12 |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
13 |
+
import torch.nn.functional as F # Added for softmax
|
14 |
|
15 |
# Paths
|
16 |
MODEL_PATH = "./distilbert_spam_model"
|
|
|
20 |
# Ensure model exists
|
21 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
22 |
print(f"⚠️ Model not found in {MODEL_PATH}. Downloading from Hugging Face Hub...")
|
23 |
+
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
|
24 |
model.save_pretrained(MODEL_PATH)
|
25 |
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
26 |
tokenizer.save_pretrained(MODEL_PATH)
|
|
|
64 |
text_output = ocr_with_keras(img)
|
65 |
|
66 |
# Classify Text as Spam or Not Spam
|
67 |
+
inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
68 |
+
|
69 |
with torch.no_grad():
|
70 |
outputs = model(**inputs)
|
71 |
+
probs = F.softmax(outputs.logits, dim=1) # Convert logits to probabilities
|
72 |
+
prediction = torch.argmax(probs, dim=1).item()
|
73 |
+
|
74 |
+
label_map = {0: "Not Spam", 1: "Spam"}
|
75 |
+
label = label_map[prediction]
|
76 |
|
77 |
# Save results
|
78 |
save_results(text_output, label)
|