Spaces:
Running
Running
File size: 3,429 Bytes
19736cf 025580f 104c39e 19736cf c623da2 19736cf c623da2 19736cf 104c39e deb409e 025580f 104c39e c623da2 104c39e 025580f 104c39e 14299e0 a92b56c 104c39e 14299e0 104c39e c623da2 deb409e 104c39e 19736cf 104c39e c4cf574 19736cf 025580f 104c39e c4cf574 19736cf 104c39e 025580f 104c39e c623da2 025580f 104c39e deb409e 104c39e a92b56c 104c39e a92b56c 3b9df4d a92b56c 104c39e f9afb31 104c39e 19736cf 025580f 104c39e c623da2 deb409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import gradio as gr
import torch
import json
import csv
import os
import cv2
import numpy as np
import easyocr
import keras_ocr
from paddleocr import PaddleOCR
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch.nn.functional as F
from save_results import save_results_to_repo
# Paths
MODEL_PATH = "./distilbert_spam_model"
RESULTS_JSON = "ocr_results.json"
RESULTS_CSV = "ocr_results.csv"
# Ensure model exists
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
print(f"⚠️ Model not found in {MODEL_PATH}. Downloading from Hugging Face Hub...")
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
model.save_pretrained(MODEL_PATH)
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
tokenizer.save_pretrained(MODEL_PATH)
print(f"✅ Model saved at {MODEL_PATH}.")
else:
model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH)
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH)
# Set the model to evaluation mode to disable dropout layers
model.eval()
# Load OCR Methods
def ocr_with_paddle(img):
ocr = PaddleOCR(lang='en', use_angle_cls=True)
result = ocr.ocr(img)
return ' '.join([item[1][0] for item in result[0]])
def ocr_with_keras(img):
pipeline = keras_ocr.pipeline.Pipeline()
images = [keras_ocr.tools.read(img)]
predictions = pipeline.recognize(images)
return ' '.join([text for text, _ in predictions[0]])
def ocr_with_easy(img):
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
reader = easyocr.Reader(['en'])
results = reader.readtext(gray_image, detail=0)
return ' '.join(results)
# OCR Function
def generate_ocr(method, img):
if img is None:
raise gr.Error("Please upload an image!")
# Convert PIL Image to OpenCV format
img = np.array(img)
# Select OCR method
if method == "PaddleOCR":
text_output = ocr_with_paddle(img)
elif method == "EasyOCR":
text_output = ocr_with_easy(img)
else: # KerasOCR
text_output = ocr_with_keras(img)
# Clean and truncate the extracted text
text_output = text_output.strip()
if len(text_output) == 0:
return "No text detected!", "Cannot classify"
# Classify Text as Spam or Not Spam
inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=1) # Convert logits to probabilities
prediction = torch.argmax(probs, dim=1).item()
label_map = {0: "Spam", 1: "Not Spam"}
label = label_map[prediction]
# Save results using the external save function
save_results_to_repo(text_output, label)
return text_output, label
# Gradio Interface
image_input = gr.Image()
method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR")
output_text = gr.Textbox(label="Extracted Text")
output_label = gr.Textbox(label="Spam Classification")
demo = gr.Interface(
generate_ocr,
inputs=[method_input, image_input],
outputs=[output_text, output_label],
title="OCR Spam Classifier",
description="Upload an image, extract text, and classify it as Spam or Not Spam.",
theme="compact",
)
# Launch App
if __name__ == "__main__":
demo.launch()
|