|
import gradio as gr |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
model.eval() |
|
|
|
|
|
def get_relevance_score_and_excerpt(query, paragraph): |
|
if not query.strip() or not paragraph.strip(): |
|
return "Please provide both a query and a document paragraph.", "" |
|
|
|
|
|
inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True, return_attention_mask=True) |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs, output_attentions=True) |
|
|
|
|
|
logit = output.logits.squeeze().item() |
|
relevance_score = torch.sigmoid(torch.tensor(logit)).item() |
|
|
|
|
|
attention = output.attentions[-1] |
|
|
|
|
|
attention_scores = attention.mean(dim=1).squeeze(0) |
|
|
|
|
|
query_tokens = tokenizer.tokenize(query) |
|
paragraph_tokens = tokenizer.tokenize(paragraph) |
|
|
|
|
|
query_length = len(query_tokens) + 2 |
|
para_start_idx = query_length |
|
para_end_idx = len(inputs["input_ids"][0]) - 1 |
|
|
|
para_attention_scores = attention_scores[0, para_start_idx:para_end_idx].mean(dim=0) |
|
|
|
|
|
top_k = min(5, len(paragraph_tokens)) |
|
top_indices = para_attention_scores.argsort(descending=True)[:top_k].sort().values |
|
|
|
|
|
highlighted_tokens = [paragraph_tokens[i] for i in top_indices] |
|
|
|
|
|
excerpt = tokenizer.convert_tokens_to_string(highlighted_tokens) |
|
|
|
return round(relevance_score, 4), excerpt |
|
|
|
|
|
interface = gr.Interface( |
|
fn=get_relevance_score_and_excerpt, |
|
inputs=[ |
|
gr.Textbox(label="Query", placeholder="Enter your search query..."), |
|
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Relevance Score"), |
|
gr.Textbox(label="Most Relevant Excerpt") |
|
], |
|
title="Cross-Encoder Relevance Scoring with Ordered Excerpt Extraction", |
|
description="Enter a query and a document paragraph to get a relevance score and a relevant excerpt in original order.", |
|
allow_flagging="never", |
|
live=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |