import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load model and tokenizer model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) model.eval() # Set the model to evaluation mode # Function to get relevance score and relevant excerpt while preserving order def get_relevance_score_and_excerpt(query, paragraph): if not query.strip() or not paragraph.strip(): return "Please provide both a query and a document paragraph.", "" # Tokenize the input inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True, return_attention_mask=True) with torch.no_grad(): output = model(**inputs, output_attentions=True) # Get attention scores # Extract logits and calculate relevance score logit = output.logits.squeeze().item() relevance_score = torch.sigmoid(torch.tensor(logit)).item() # Extract attention scores (use the last attention layer) attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len) # Average across attention heads to get token importance attention_scores = attention.mean(dim=1).squeeze(0) # Shape: (seq_len, seq_len) # Tokenize query and paragraph separately to get lengths query_tokens = tokenizer.tokenize(query) paragraph_tokens = tokenizer.tokenize(paragraph) # Extract only paragraph-related attention scores query_length = len(query_tokens) + 2 # +2 for special tokens like [CLS] and [SEP] para_start_idx = query_length para_end_idx = len(inputs["input_ids"][0]) - 1 # Ignore final [SEP] token para_attention_scores = attention_scores[0, para_start_idx:para_end_idx].mean(dim=0) # Get indices of top-k attended tokens while preserving order top_k = min(5, len(paragraph_tokens)) # Extract top 5 tokens or fewer if short top_indices = para_attention_scores.argsort(descending=True)[:top_k].sort().values # Sort to preserve order # Extract top tokens based on original order highlighted_tokens = [paragraph_tokens[i] for i in top_indices] # Reconstruct the excerpt from ordered tokens excerpt = tokenizer.convert_tokens_to_string(highlighted_tokens) return round(relevance_score, 4), excerpt # Define Gradio interface interface = gr.Interface( fn=get_relevance_score_and_excerpt, inputs=[ gr.Textbox(label="Query", placeholder="Enter your search query..."), gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...") ], outputs=[ gr.Textbox(label="Relevance Score"), gr.Textbox(label="Most Relevant Excerpt") ], title="Cross-Encoder Relevance Scoring with Ordered Excerpt Extraction", description="Enter a query and a document paragraph to get a relevance score and a relevant excerpt in original order.", allow_flagging="never", live=True ) if __name__ == "__main__": interface.launch()