Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
# Load the locally saved fine-tuned model inside your space | |
MODEL_DIR = "./laptop-tinyllama" | |
def load_pipeline(): | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR) | |
return pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Load model pipeline | |
generator = load_pipeline() | |
# Streamlit UI | |
st.title("💻 Laptop Recommendation with TinyLlama") | |
st.write("Enter a question like: *Suggest a laptop for gaming under 1 lakh BDT.*") | |
# Prompt input | |
prompt = st.text_area("Enter your query", value="Suggest a laptop for programming under 70000 BDT.") | |
if st.button("Generate Response"): | |
with st.spinner("Generating..."): | |
result = generator(prompt, max_new_tokens=100, temperature=0.7) | |
st.success(result[0]["generated_text"]) | |