import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Load the locally saved fine-tuned model inside your space MODEL_DIR = "./laptop-tinyllama" @st.cache_resource def load_pipeline(): tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) model = AutoModelForCausalLM.from_pretrained(MODEL_DIR) return pipeline("text-generation", model=model, tokenizer=tokenizer) # Load model pipeline generator = load_pipeline() # Streamlit UI st.title("💻 Laptop Recommendation with TinyLlama") st.write("Enter a question like: *Suggest a laptop for gaming under 1 lakh BDT.*") # Prompt input prompt = st.text_area("Enter your query", value="Suggest a laptop for programming under 70000 BDT.") if st.button("Generate Response"): with st.spinner("Generating..."): result = generator(prompt, max_new_tokens=100, temperature=0.7) st.success(result[0]["generated_text"])