Spaces:
Sleeping
Sleeping
File size: 934 Bytes
350f453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Load the locally saved fine-tuned model inside your space
MODEL_DIR = "./laptop-tinyllama"
@st.cache_resource
def load_pipeline():
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
# Load model pipeline
generator = load_pipeline()
# Streamlit UI
st.title("💻 Laptop Recommendation with TinyLlama")
st.write("Enter a question like: *Suggest a laptop for gaming under 1 lakh BDT.*")
# Prompt input
prompt = st.text_area("Enter your query", value="Suggest a laptop for programming under 70000 BDT.")
if st.button("Generate Response"):
with st.spinner("Generating..."):
result = generator(prompt, max_new_tokens=100, temperature=0.7)
st.success(result[0]["generated_text"])
|