File size: 4,618 Bytes
bcae252
 
 
 
 
 
 
70535d8
bcae252
 
 
03ab24e
bcae252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03ab24e
bcae252
 
03ab24e
bcae252
03ab24e
 
bcae252
03ab24e
 
bcae252
 
 
 
 
 
 
 
 
 
70535d8
bcae252
 
03ab24e
bcae252
 
03ab24e
 
70535d8
03ab24e
 
 
 
 
 
 
bcae252
03ab24e
 
 
 
 
 
 
bcae252
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Code source: Gaël Varoquaux
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import gradio as gr
plt.switch_backend("agg")

kernels = ["linear", "poly", "rbf"]

font1 = {'family':'DejaVu Sans','size':20}

cmaps = {'Set1': plt.cm.Set1, 'Set2': plt.cm.Set2, 'Set3': plt.cm.Set3, 
         'tab10': plt.cm.tab10, 'tab20': plt.cm.tab20}

# fit the model
def clf_kernel(kernel, cmap, dpi = 300, use_random = False):    
    
    #example data
    if use_random == False:
        X = np.c_[
        (0.4, -0.7),
        (-1.5, -1),
        (-1.4, -0.9),
        (-1.3, -1.2),
        (-1.5, 0.2),
        (-1.2, -0.4),
        (-0.5, 1.2),
        (-1.5, 2.1),
        (1, 1),
        # --
        (1.3, 0.8),
        (1.5, 0.5),
        (0.2, -2),
        (0.5, -2.4),
        (0.2, -2.3),
        (0, -2.7),
        (1.3, 2.8),
        ].T
    else:
        #emulate some random data
        x = np.random.uniform(-2, 2, size=(16, 1))
        y = np.random.uniform(-2, 2, size=(16, 1))
        X = np.hstack((x, y))
    
    Y = [0] * 8 + [1] * 8
    
    clf = svm.SVC(kernel=kernel, gamma=2)
    clf.fit(X, Y)

    # plot the line, the points, and the nearest vectors to the plane
    fig= plt.figure(figsize=(10, 6), facecolor = 'none', 
                    frameon = False, dpi = dpi)
    ax = fig.add_subplot(111)
    
    ax.scatter(
        clf.support_vectors_[:, 0],
        clf.support_vectors_[:, 1],
        s=80,
        facecolors="none",
        zorder=10,
        edgecolors="k",
    )
    ax.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k")

    ax.axis("tight")
    x_min = -3
    x_max = 3
    y_min = -3
    y_max = 3

    XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
    Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(XX.shape)
    ax.pcolormesh(XX, YY, Z > 0, cmap=cmap)
    ax.contour(
        XX,
        YY,
        Z,
        colors=["k", "k", "k"],
        linestyles=["--", "-", "--"],
        levels=[-0.5, 0, 0.5],
    )

    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)

    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_title('Type of kernel: ' + kernel, 
                 color = "white", fontdict = font1, pad=20,  
                 bbox=dict(boxstyle="round,pad=0.3", 
                           color = "#6366F1"))
    
    plt.close()
    return fig

intro = """<h1 style="text-align: center;">🤗 Introducing SVM-Kernels 🤗</h1>
"""
desc = """<h3 style="text-align: center;">Three different types of SVM-Kernels are displayed below. 
The polynomial and RBF are especially useful when the data-points are not linearly separable. </h3>
"""
notice = """<div style = "text-align: left;"> <em>Notice: Run the model on example data or press
<strong>Randomize data</strong> button to check out the model on emulated data-points.</em></div>"""

made ="""<div style="text-align: center;">
  <p>Made with ❤</p>"""

link = """<div style="text-align: center;">
<a href="https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py" target="_blank" rel="noopener noreferrer">
Demo is based on this script from scikit-learn documentation</a>"""

with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
                                    secondary_hue="violet",
                                    neutral_hue="slate",
                                    font =  gr.themes.GoogleFont("Inter")),
               title="SVM-Kernels") as demo:
    
    gr.HTML(intro)
    gr.HTML(desc)
    with gr.Column():
        kernel = gr.Radio(kernels, label="Select kernel:",
                                show_label = True, value = 'linear') 
        plot = gr.Plot(label="Plot")
    
    with gr.Accordion(label = "More options", open = True):
        cmap = gr.Radio(['Set1', 'Set2', 'Set3', 'tab10', 'tab20'], label="Choose color map: ", value = 'Set2')
        dpi = gr.Slider(50, 150, value = 100, step = 1, label = "Set the resolution: ")
        gr.HTML(notice)
        random = gr.Button("Randomize data").style(full_width = False)
        
    cmap.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
    dpi.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot) 
    kernel.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
    
    random.click(fn=clf_kernel, inputs=[kernel,cmap,dpi,random], outputs=plot)
    
    demo.load(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
    gr.HTML(made)
    gr.HTML(link)
    
demo.launch()