Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,11 @@ import numpy as np
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
from sklearn import svm
|
7 |
import gradio as gr
|
8 |
-
import matplotlib
|
9 |
plt.switch_backend("agg")
|
10 |
|
11 |
kernels = ["linear", "poly", "rbf"]
|
12 |
|
13 |
-
font1 = {'family':'
|
14 |
|
15 |
cmaps = {'Set1': plt.cm.Set1, 'Set2': plt.cm.Set2, 'Set3': plt.cm.Set3,
|
16 |
'tab10': plt.cm.tab10, 'tab20': plt.cm.tab20}
|
@@ -96,15 +95,16 @@ def clf_kernel(kernel, cmap, dpi = 300, use_random = False):
|
|
96 |
bbox=dict(boxstyle="round,pad=0.3",
|
97 |
color = "#6366F1"))
|
98 |
|
|
|
99 |
return fig
|
100 |
|
101 |
-
intro = """<h1 style="text-align: center;"
|
102 |
"""
|
103 |
-
desc = """<h3 style="text-align: center;"
|
104 |
-
The polynomial and RBF are especially useful when the data-points are not linearly separable.
|
105 |
"""
|
106 |
-
notice = """<div style = "text-align: left;"> <em>Notice: Run the model on example data or
|
107 |
-
<strong>Randomize data</strong> to check out the model on emulated data-points.</em></div>"""
|
108 |
|
109 |
made ="""<div style="text-align: center;">
|
110 |
<p>Made with ❤</p>"""
|
@@ -118,20 +118,27 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
|
|
118 |
neutral_hue="slate",
|
119 |
font = gr.themes.GoogleFont("Inter")),
|
120 |
title="SVM-Kernels") as demo:
|
|
|
121 |
gr.HTML(intro)
|
122 |
gr.HTML(desc)
|
123 |
-
with gr.
|
124 |
-
kernel = gr.
|
125 |
show_label = True, value = 'linear')
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
gr.HTML(made)
|
136 |
gr.HTML(link)
|
137 |
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
from sklearn import svm
|
7 |
import gradio as gr
|
|
|
8 |
plt.switch_backend("agg")
|
9 |
|
10 |
kernels = ["linear", "poly", "rbf"]
|
11 |
|
12 |
+
font1 = {'family':'DejaVu Sans','size':20}
|
13 |
|
14 |
cmaps = {'Set1': plt.cm.Set1, 'Set2': plt.cm.Set2, 'Set3': plt.cm.Set3,
|
15 |
'tab10': plt.cm.tab10, 'tab20': plt.cm.tab20}
|
|
|
95 |
bbox=dict(boxstyle="round,pad=0.3",
|
96 |
color = "#6366F1"))
|
97 |
|
98 |
+
plt.close()
|
99 |
return fig
|
100 |
|
101 |
+
intro = """<h1 style="text-align: center;">🤗 Introducing SVM-Kernels 🤗</h1>
|
102 |
"""
|
103 |
+
desc = """<h3 style="text-align: center;">Three different types of SVM-Kernels are displayed below.
|
104 |
+
The polynomial and RBF are especially useful when the data-points are not linearly separable. </h3>
|
105 |
"""
|
106 |
+
notice = """<div style = "text-align: left;"> <em>Notice: Run the model on example data or press
|
107 |
+
<strong>Randomize data</strong> button to check out the model on emulated data-points.</em></div>"""
|
108 |
|
109 |
made ="""<div style="text-align: center;">
|
110 |
<p>Made with ❤</p>"""
|
|
|
118 |
neutral_hue="slate",
|
119 |
font = gr.themes.GoogleFont("Inter")),
|
120 |
title="SVM-Kernels") as demo:
|
121 |
+
|
122 |
gr.HTML(intro)
|
123 |
gr.HTML(desc)
|
124 |
+
with gr.Column():
|
125 |
+
kernel = gr.Radio(kernels, label="Select kernel:",
|
126 |
show_label = True, value = 'linear')
|
127 |
+
plot = gr.Plot(label="Plot")
|
128 |
+
|
129 |
+
with gr.Accordion(label = "More options", open = True):
|
130 |
+
cmap = gr.Radio(['Set1', 'Set2', 'Set3', 'tab10', 'tab20'], label="Choose color map: ", value = 'Set2')
|
131 |
+
dpi = gr.Slider(50, 150, value = 100, step = 1, label = "Set the resolution: ")
|
132 |
+
gr.HTML(notice)
|
133 |
+
random = gr.Button("Randomize data").style(full_width = False)
|
134 |
|
135 |
+
cmap.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
|
136 |
+
dpi.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
|
137 |
+
kernel.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
|
138 |
+
|
139 |
+
random.click(fn=clf_kernel, inputs=[kernel,cmap,dpi,random], outputs=plot)
|
140 |
+
|
141 |
+
demo.load(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
|
142 |
gr.HTML(made)
|
143 |
gr.HTML(link)
|
144 |
|