Raaniel commited on
Commit
70535d8
·
1 Parent(s): bcae252

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -9
app.py CHANGED
@@ -6,12 +6,11 @@ import matplotlib.pyplot as plt
6
  from sklearn import svm
7
  import gradio as gr
8
  import matplotlib
9
- matplotlib.use('Agg')
10
 
11
  kernels = ["linear", "poly", "rbf"]
12
 
13
- font1 = {'family':'Consolas','size':20}
14
-
15
 
16
  cmaps = {'Set1': plt.cm.Set1, 'Set2': plt.cm.Set2, 'Set3': plt.cm.Set3,
17
  'tab10': plt.cm.tab10, 'tab20': plt.cm.tab20}
@@ -99,7 +98,7 @@ def clf_kernel(kernel, cmap, dpi = 300, use_random = False):
99
 
100
  return fig
101
 
102
- intro = """<h1 style="text-align: center;">Introducing <strong>SVM-Kernels</strong></h1>
103
  """
104
  desc = """<h3 style="text-align: center;">🤗 Three different types of SVM-Kernels are displayed below.
105
  The polynomial and RBF are especially useful when the data-points are not linearly separable. 🤗</h3>
@@ -116,22 +115,21 @@ Demo is based on this script from scikit-learn documentation</a>"""
116
 
117
  with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
118
  secondary_hue="violet",
119
- neutral_hue="neutral",
120
  font = gr.themes.GoogleFont("Inter")),
121
  title="SVM-Kernels") as demo:
122
  gr.HTML(intro)
123
  gr.HTML(desc)
124
  with gr.Box():
125
- with gr.Row():
126
- kernel = gr.Dropdown([i for i in kernels], label="Select kernel:",
127
- show_label = True, value = 'linear')
128
  with gr.Accordion(label = "More options", open = True):
129
  cmap = gr.Radio(['Set1', 'Set2', 'Set3', 'tab10', 'tab20'], label="Choose color map: ", value = 'Set2')
130
  dpi = gr.Slider(50, 150, value = 100, step = 1, label = "Set the resolution: ")
131
  gr.HTML(notice)
132
  random = gr.Checkbox(label="Randomize data", value = False)
133
 
134
- btn = gr.Button('Make plot!').style(full_width=True)
135
  plot = gr.Plot(label="Plot")
136
  btn.click(fn=clf_kernel, inputs=[kernel,cmap,dpi,random], outputs=plot)
137
  gr.HTML(made)
 
6
  from sklearn import svm
7
  import gradio as gr
8
  import matplotlib
9
+ plt.switch_backend("agg")
10
 
11
  kernels = ["linear", "poly", "rbf"]
12
 
13
+ font1 = {'family':'Comic Sans SM','size':20}
 
14
 
15
  cmaps = {'Set1': plt.cm.Set1, 'Set2': plt.cm.Set2, 'Set3': plt.cm.Set3,
16
  'tab10': plt.cm.tab10, 'tab20': plt.cm.tab20}
 
98
 
99
  return fig
100
 
101
+ intro = """<h1 style="text-align: center;">Introducing SVM-Kernels</h1>
102
  """
103
  desc = """<h3 style="text-align: center;">🤗 Three different types of SVM-Kernels are displayed below.
104
  The polynomial and RBF are especially useful when the data-points are not linearly separable. 🤗</h3>
 
115
 
116
  with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
117
  secondary_hue="violet",
118
+ neutral_hue="slate",
119
  font = gr.themes.GoogleFont("Inter")),
120
  title="SVM-Kernels") as demo:
121
  gr.HTML(intro)
122
  gr.HTML(desc)
123
  with gr.Box():
124
+ kernel = gr.Dropdown([i for i in kernels], label="Select kernel:",
125
+ show_label = True, value = 'linear')
 
126
  with gr.Accordion(label = "More options", open = True):
127
  cmap = gr.Radio(['Set1', 'Set2', 'Set3', 'tab10', 'tab20'], label="Choose color map: ", value = 'Set2')
128
  dpi = gr.Slider(50, 150, value = 100, step = 1, label = "Set the resolution: ")
129
  gr.HTML(notice)
130
  random = gr.Checkbox(label="Randomize data", value = False)
131
 
132
+ btn = gr.Button('Make plot!').style(full_width=True)
133
  plot = gr.Plot(label="Plot")
134
  btn.click(fn=clf_kernel, inputs=[kernel,cmap,dpi,random], outputs=plot)
135
  gr.HTML(made)