File size: 1,148 Bytes
1902db3
a715ccc
 
 
 
c4f1406
edebd7a
a715ccc
c4f1406
 
 
edebd7a
a715ccc
 
c4f1406
a715ccc
 
 
 
 
 
 
 
c4f1406
a715ccc
f30b5e5
a715ccc
c4f1406
a715ccc
c4f1406
a715ccc
 
c4f1406
a715ccc
c4f1406
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import streamlit as st
from transformers import pipeline
from gtts import gTTS
import os

# Load a fully public language model
@st.cache_resource(show_spinner="Loading language model...")
def load_llm():
    return pipeline("text2text-generation",
                    model="google/flan-t5-base",
                    tokenizer="google/flan-t5-base")

llm = load_llm()

# Text-to-speech function
def speak(text, filename="response.mp3"):
    tts = gTTS(text)
    tts.save(filename)
    audio_file = open(filename, "rb")
    audio_bytes = audio_file.read()
    st.audio(audio_bytes, format="audio/mp3")
    os.remove(filename)

# Streamlit UI
st.set_page_config(page_title="AI Learning Buddy", page_icon="🧸")
st.title("🧸 AI Learning Buddy for Kids (Ages 4–7)")

st.markdown("Ask your question below and the AI Buddy will answer in a fun, friendly voice!")

user_input = st.text_input("Type your question (e.g., What's 2 + 3?):")

if st.button("Ask the Buddy") and user_input:
    prompt = f"Explain to a 5-year-old: {user_input}"
    result = llm(prompt)[0]["generated_text"]
    st.markdown(f"**AI Buddy says:** {result}")
    speak(result)