siviku commited on
Commit
a715ccc
·
verified ·
1 Parent(s): 1030617

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +56 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,57 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
+ import whisper
4
+ from gtts import gTTS
5
+ import os
6
+
7
+ # Load Whisper model for speech-to-text
8
+ @st.cache_resource
9
+ def load_whisper():
10
+ return whisper.load_model("base")
11
+
12
+ asr_model = load_whisper()
13
+
14
+ # Load a small instruction-tuned model (for Hugging Face free GPU)
15
+ @st.cache_resource
16
+ def load_llm():
17
+ return pipeline("text-generation",
18
+ model="tiiuae/falcon-7b-instruct",
19
+ tokenizer="tiiuae/falcon-7b-instruct",
20
+ max_new_tokens=100,
21
+ do_sample=True,
22
+ temperature=0.7)
23
+ llm = load_llm()
24
+
25
+ # Convert text to speech using gTTS
26
+ def speak(text, filename="response.mp3"):
27
+ tts = gTTS(text)
28
+ tts.save(filename)
29
+ audio_file = open(filename, "rb")
30
+ audio_bytes = audio_file.read()
31
+ st.audio(audio_bytes, format="audio/mp3")
32
+ os.remove(filename)
33
+
34
+ # UI
35
+ st.set_page_config(page_title="AI Learning Buddy", page_icon="🧸")
36
+ st.title("🧸 AI Learning Buddy for Kids (4–7)")
37
+
38
+ input_type = st.radio("Choose how to ask your question:", ["Type", "Speak"])
39
+
40
+ if input_type == "Type":
41
+ user_input = st.text_input("Ask something fun or educational:")
42
+ else:
43
+ audio = st.file_uploader("Upload a voice file (wav/mp3)", type=["wav", "mp3"])
44
+ if audio:
45
+ with open("temp_audio.wav", "wb") as f:
46
+ f.write(audio.read())
47
+ result = asr_model.transcribe("temp_audio.wav")
48
+ user_input = result["text"]
49
+ st.success(f"You said: {user_input}")
50
+ os.remove("temp_audio.wav")
51
+
52
+ if st.button("Ask the Buddy") and user_input:
53
+ prompt = f"You are a fun and friendly teacher for a 5-year-old. Question: {user_input} Answer:"
54
+ result = llm(prompt)[0]["generated_text"]
55
+ answer = result.split("Answer:")[-1].strip()
56
+ st.markdown(f"**AI Buddy says:** {answer}")
57
+ speak(answer)