Update src/streamlit_app.py
Browse files- src/streamlit_app.py +21 -16
src/streamlit_app.py
CHANGED
@@ -1,28 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
import whisper
|
4 |
from gtts import gTTS
|
5 |
import os
|
6 |
|
7 |
-
# Load Whisper model for
|
8 |
-
@st.
|
9 |
def load_whisper():
|
10 |
-
|
|
|
11 |
|
12 |
asr_model = load_whisper()
|
13 |
|
14 |
-
# Load a small instruction-tuned model
|
15 |
-
@st.cache_resource
|
16 |
def load_llm():
|
17 |
-
return pipeline("text-generation",
|
18 |
-
model="tiiuae/falcon-7b-instruct",
|
19 |
tokenizer="tiiuae/falcon-7b-instruct",
|
20 |
max_new_tokens=100,
|
21 |
do_sample=True,
|
22 |
temperature=0.7)
|
|
|
23 |
llm = load_llm()
|
24 |
|
25 |
-
# Convert
|
26 |
def speak(text, filename="response.mp3"):
|
27 |
tts = gTTS(text)
|
28 |
tts.save(filename)
|
@@ -35,15 +36,19 @@ def speak(text, filename="response.mp3"):
|
|
35 |
st.set_page_config(page_title="AI Learning Buddy", page_icon="🧸")
|
36 |
st.title("🧸 AI Learning Buddy for Kids (4–7)")
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
if input_type == "
|
41 |
-
user_input = st.text_input("
|
42 |
else:
|
43 |
-
|
44 |
-
if
|
45 |
with open("temp_audio.wav", "wb") as f:
|
46 |
-
f.write(
|
47 |
result = asr_model.transcribe("temp_audio.wav")
|
48 |
user_input = result["text"]
|
49 |
st.success(f"You said: {user_input}")
|
@@ -54,4 +59,4 @@ if st.button("Ask the Buddy") and user_input:
|
|
54 |
result = llm(prompt)[0]["generated_text"]
|
55 |
answer = result.split("Answer:")[-1].strip()
|
56 |
st.markdown(f"**AI Buddy says:** {answer}")
|
57 |
-
speak(answer)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
3 |
from gtts import gTTS
|
4 |
import os
|
5 |
|
6 |
+
# Load Whisper model (tiny for lower memory use)
|
7 |
+
@st.cache_data(show_spinner="Loading Whisper model...")
|
8 |
def load_whisper():
|
9 |
+
import whisper
|
10 |
+
return whisper.load_model("tiny")
|
11 |
|
12 |
asr_model = load_whisper()
|
13 |
|
14 |
+
# Load a small instruction-tuned model for child-safe answers
|
15 |
+
@st.cache_resource(show_spinner="Loading language model...")
|
16 |
def load_llm():
|
17 |
+
return pipeline("text-generation",
|
18 |
+
model="tiiuae/falcon-7b-instruct",
|
19 |
tokenizer="tiiuae/falcon-7b-instruct",
|
20 |
max_new_tokens=100,
|
21 |
do_sample=True,
|
22 |
temperature=0.7)
|
23 |
+
|
24 |
llm = load_llm()
|
25 |
|
26 |
+
# Convert AI response to speech
|
27 |
def speak(text, filename="response.mp3"):
|
28 |
tts = gTTS(text)
|
29 |
tts.save(filename)
|
|
|
36 |
st.set_page_config(page_title="AI Learning Buddy", page_icon="🧸")
|
37 |
st.title("🧸 AI Learning Buddy for Kids (4–7)")
|
38 |
|
39 |
+
st.markdown("Ask a question by typing or uploading your voice.")
|
40 |
+
|
41 |
+
input_type = st.radio("Choose input method:", ["Text", "Voice"])
|
42 |
+
|
43 |
+
user_input = ""
|
44 |
|
45 |
+
if input_type == "Text":
|
46 |
+
user_input = st.text_input("Type your question here:")
|
47 |
else:
|
48 |
+
audio_file = st.file_uploader("Upload a voice file (wav/mp3)", type=["wav", "mp3"])
|
49 |
+
if audio_file:
|
50 |
with open("temp_audio.wav", "wb") as f:
|
51 |
+
f.write(audio_file.read())
|
52 |
result = asr_model.transcribe("temp_audio.wav")
|
53 |
user_input = result["text"]
|
54 |
st.success(f"You said: {user_input}")
|
|
|
59 |
result = llm(prompt)[0]["generated_text"]
|
60 |
answer = result.split("Answer:")[-1].strip()
|
61 |
st.markdown(f"**AI Buddy says:** {answer}")
|
62 |
+
speak(answer)
|