File size: 1,257 Bytes
1902db3
a715ccc
 
 
 
4c190fa
9becbf3
a715ccc
4c190fa
 
 
 
 
 
edebd7a
a715ccc
 
4c190fa
a715ccc
 
 
 
4c190fa
a715ccc
 
c4f1406
a715ccc
9becbf3
4c190fa
a715ccc
4c190fa
a715ccc
 
c4f1406
a715ccc
4c190fa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import streamlit as st
from transformers import pipeline
from gtts import gTTS
import os

# Load a public, PyTorch-compatible, conversational model
@st.cache_resource(show_spinner="Loading AI Buddy...")
def load_llm():
    return pipeline("text-generation",
                    model="declare-lab/flan-alpaca-base",
                    tokenizer="declare-lab/flan-alpaca-base",
                    max_new_tokens=100,
                    do_sample=True,
                    temperature=0.7)

llm = load_llm()

# Text-to-speech function
def speak(text, filename="response.mp3"):
    tts = gTTS(text)
    tts.save(filename)
    audio_file = open(filename, "rb")
    st.audio(audio_file.read(), format="audio/mp3")
    os.remove(filename)

# Streamlit UI
st.set_page_config(page_title="AI Learning Buddy", page_icon="🧸")
st.title("🧸 AI Learning Buddy (Ages 4–7)")
st.markdown("Ask anything fun or educational and hear your buddy talk!")

user_input = st.text_input("What would you like to ask?")

if st.button("Ask the Buddy") and user_input:
    prompt = f"Explain to a 5-year-old: {user_input}"
    result = llm(prompt)[0]["generated_text"]
    answer = result.split(":")[-1].strip()
    st.markdown(f"**AI Buddy says:** {answer}")
    speak(answer)