MedicineOCR / app.py
shukdevdatta123's picture
Create app.py
5dbe551 verified
raw
history blame
13.5 kB
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
import re
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples a video file by extracting 10 evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Determine 10 evenly spaced frame indices.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def extract_medicine_names(text):
"""
Extracts medicine names from OCR text output.
Uses a combination of pattern matching and formatting to identify medications.
Returns a formatted list of medicines found.
"""
# Common medicine patterns (extended to catch more formats)
lines = text.split('\n')
medicines = []
# Look for patterns typical in prescriptions
for line in lines:
# Clean and standardize the line
clean_line = line.strip()
# Skip very short lines, headers, or non-relevant text
if len(clean_line) < 3 or re.search(r'(prescription|rx|patient|name|date|doctor|hospital|clinic|address)', clean_line.lower()):
continue
# Medicine names often appear at the beginning of lines, with dosage info following
# Look for tablet/capsule/mg indicators - strong indicators of medication
if re.search(r'(tab|tablet|cap|capsule|mg|ml|injection|syrup|solution|suspension|ointment|cream|gel|patch|suppository|inhaler|drops)', clean_line.lower()):
# Extract the likely medicine name - the part before the dosage/form or the entire line if it's short
medicine_match = re.split(r'(\d+\s*mg|\d+\s*ml|\d+\s*tab|\d+\s*cap)', clean_line, 1)[0].strip()
if medicine_match and len(medicine_match) > 2:
medicines.append(medicine_match)
# Check for brand names or generic medication patterns
elif re.match(r'^[A-Z][a-z]+\s*[A-Z0-9]', clean_line) or re.match(r'^[A-Z][a-z]+', clean_line):
# Likely a medicine name starting with a capital letter
medicine_parts = re.split(r'(\d+|\s+\d+\s*times|\s+\d+\s*times\s+daily)', clean_line, 1)
if medicine_parts and len(medicine_parts[0]) > 2:
medicines.append(medicine_parts[0].strip())
# Remove duplicates while preserving order
unique_medicines = []
for med in medicines:
if med not in unique_medicines:
unique_medicines.append(med)
return unique_medicines
# Model and Processor Setup
# Qwen2VL OCR (default branch)
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# RolmOCR branch (@RolmOCR)
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
ROLMOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# Check for prescription-specific command
if text.lower().startswith("@prescription") or text.lower().startswith("@med"):
# Specific mode for medicine extraction
if not files:
yield "Error: Please upload a prescription image to extract medicine names."
return
# Use RolmOCR for better text extraction from prescriptions
images = [load_image(image) for image in files[:1]] # Taking just the first image for processing
messages = [{
"role": "user",
"content": [
{"type": "image", "image": images[0]},
{"type": "text", "text": "Extract all text from this medical prescription image, focus on medicine names, dosages, and instructions."},
],
}]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=images,
return_tensors="pt",
padding=True,
).to("cuda")
# First, get the complete OCR text
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
thread.start()
ocr_text = ""
yield progress_bar_html("Processing Prescription with Medicine Extractor")
for new_text in streamer:
ocr_text += new_text
ocr_text = ocr_text.replace("<|im_end|>", "")
time.sleep(0.01)
# After getting full OCR text, extract medicine names
medicines = extract_medicine_names(ocr_text)
# Format the results nicely
result = "## Extracted Medicine Names\n\n"
if medicines:
for i, med in enumerate(medicines, 1):
result += f"{i}. {med}\n"
else:
result += "No medicine names detected in the prescription.\n\n"
result += "\n\n## Full OCR Text\n\n```\n" + ocr_text + "\n```"
yield result
return
# RolmOCR Inference (@RolmOCR)
if text.lower().startswith("@rolmocr"):
# Remove the tag from the query.
text_prompt = text[len("@rolmocr"):].strip()
# Check if a video is provided for inference.
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build the message: prompt followed by each frame with its timestamp.
content_list = [{"type": "text", "text": text_prompt}]
for image, timestamp in frames:
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
content_list.append({"type": "image", "image": image})
messages = [{"role": "user", "content": content_list}]
# For video, extract images only.
video_images = [image for image, _ in frames]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
else:
# Assume image(s) or text query.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text_prompt == "" and not images:
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text_prompt},
],
}]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
# Use a different color scheme for RolmOCR (purple-themed).
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Default Inference: Qwen2VL OCR
# Process files: support multiple images.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
yield "Error: Please input a text query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = qwen_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "@Prescription Extract medicines from this prescription", "files": ["examples/prescription1.jpg"]}],
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
]
css = """
.gradio-container {
font-family: 'Roboto', sans-serif;
}
.prescription-header {
background-color: #4B0082;
color: white;
padding: 10px;
border-radius: 5px;
margin-bottom: 10px;
}
"""
description = """
# **Multimodal OCR with Medicine Extraction**
## Modes:
- **@Prescription** - Upload a prescription image to extract medicine names
- **@RolmOCR** - Use RolmOCR for general text extraction
- **Default** - Use Qwen2VL OCR for general purposes
Upload your medical prescription images and get the medicine names extracted automatically!
"""
demo = gr.ChatInterface(
fn=model_inference,
description=description,
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Use @Prescription to extract medicines, @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
css=css
)
demo.launch(debug=True)