Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers.image_utils import load_image
|
3 |
+
from threading import Thread
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import spaces
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import re
|
11 |
+
from transformers import (
|
12 |
+
Qwen2VLForConditionalGeneration,
|
13 |
+
AutoProcessor,
|
14 |
+
TextIteratorStreamer,
|
15 |
+
)
|
16 |
+
from transformers import Qwen2_5_VLForConditionalGeneration
|
17 |
+
|
18 |
+
# ---------------------------
|
19 |
+
# Helper Functions
|
20 |
+
# ---------------------------
|
21 |
+
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
22 |
+
"""
|
23 |
+
Returns an HTML snippet for a thin animated progress bar with a label.
|
24 |
+
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
|
25 |
+
"""
|
26 |
+
return f'''
|
27 |
+
<div style="display: flex; align-items: center;">
|
28 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
29 |
+
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
30 |
+
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
31 |
+
</div>
|
32 |
+
</div>
|
33 |
+
<style>
|
34 |
+
@keyframes loading {{
|
35 |
+
0% {{ transform: translateX(-100%); }}
|
36 |
+
100% {{ transform: translateX(100%); }}
|
37 |
+
}}
|
38 |
+
</style>
|
39 |
+
'''
|
40 |
+
|
41 |
+
def downsample_video(video_path):
|
42 |
+
"""
|
43 |
+
Downsamples a video file by extracting 10 evenly spaced frames.
|
44 |
+
Returns a list of tuples (PIL.Image, timestamp).
|
45 |
+
"""
|
46 |
+
vidcap = cv2.VideoCapture(video_path)
|
47 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
48 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
49 |
+
frames = []
|
50 |
+
if total_frames <= 0 or fps <= 0:
|
51 |
+
vidcap.release()
|
52 |
+
return frames
|
53 |
+
# Determine 10 evenly spaced frame indices.
|
54 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
55 |
+
for i in frame_indices:
|
56 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
57 |
+
success, image = vidcap.read()
|
58 |
+
if success:
|
59 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
60 |
+
pil_image = Image.fromarray(image)
|
61 |
+
timestamp = round(i / fps, 2)
|
62 |
+
frames.append((pil_image, timestamp))
|
63 |
+
vidcap.release()
|
64 |
+
return frames
|
65 |
+
|
66 |
+
def extract_medicine_names(text):
|
67 |
+
"""
|
68 |
+
Extracts medicine names from OCR text output.
|
69 |
+
Uses a combination of pattern matching and formatting to identify medications.
|
70 |
+
Returns a formatted list of medicines found.
|
71 |
+
"""
|
72 |
+
# Common medicine patterns (extended to catch more formats)
|
73 |
+
lines = text.split('\n')
|
74 |
+
medicines = []
|
75 |
+
|
76 |
+
# Look for patterns typical in prescriptions
|
77 |
+
for line in lines:
|
78 |
+
# Clean and standardize the line
|
79 |
+
clean_line = line.strip()
|
80 |
+
|
81 |
+
# Skip very short lines, headers, or non-relevant text
|
82 |
+
if len(clean_line) < 3 or re.search(r'(prescription|rx|patient|name|date|doctor|hospital|clinic|address)', clean_line.lower()):
|
83 |
+
continue
|
84 |
+
|
85 |
+
# Medicine names often appear at the beginning of lines, with dosage info following
|
86 |
+
# Look for tablet/capsule/mg indicators - strong indicators of medication
|
87 |
+
if re.search(r'(tab|tablet|cap|capsule|mg|ml|injection|syrup|solution|suspension|ointment|cream|gel|patch|suppository|inhaler|drops)', clean_line.lower()):
|
88 |
+
# Extract the likely medicine name - the part before the dosage/form or the entire line if it's short
|
89 |
+
medicine_match = re.split(r'(\d+\s*mg|\d+\s*ml|\d+\s*tab|\d+\s*cap)', clean_line, 1)[0].strip()
|
90 |
+
if medicine_match and len(medicine_match) > 2:
|
91 |
+
medicines.append(medicine_match)
|
92 |
+
|
93 |
+
# Check for brand names or generic medication patterns
|
94 |
+
elif re.match(r'^[A-Z][a-z]+\s*[A-Z0-9]', clean_line) or re.match(r'^[A-Z][a-z]+', clean_line):
|
95 |
+
# Likely a medicine name starting with a capital letter
|
96 |
+
medicine_parts = re.split(r'(\d+|\s+\d+\s*times|\s+\d+\s*times\s+daily)', clean_line, 1)
|
97 |
+
if medicine_parts and len(medicine_parts[0]) > 2:
|
98 |
+
medicines.append(medicine_parts[0].strip())
|
99 |
+
|
100 |
+
# Remove duplicates while preserving order
|
101 |
+
unique_medicines = []
|
102 |
+
for med in medicines:
|
103 |
+
if med not in unique_medicines:
|
104 |
+
unique_medicines.append(med)
|
105 |
+
|
106 |
+
return unique_medicines
|
107 |
+
|
108 |
+
# Model and Processor Setup
|
109 |
+
# Qwen2VL OCR (default branch)
|
110 |
+
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
|
111 |
+
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
112 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
113 |
+
QV_MODEL_ID,
|
114 |
+
trust_remote_code=True,
|
115 |
+
torch_dtype=torch.float16
|
116 |
+
).to("cuda").eval()
|
117 |
+
|
118 |
+
# RolmOCR branch (@RolmOCR)
|
119 |
+
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
120 |
+
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
121 |
+
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
+
ROLMOCR_MODEL_ID,
|
123 |
+
trust_remote_code=True,
|
124 |
+
torch_dtype=torch.bfloat16
|
125 |
+
).to("cuda").eval()
|
126 |
+
|
127 |
+
# Main Inference Function
|
128 |
+
@spaces.GPU
|
129 |
+
def model_inference(input_dict, history):
|
130 |
+
text = input_dict["text"].strip()
|
131 |
+
files = input_dict.get("files", [])
|
132 |
+
|
133 |
+
# Check for prescription-specific command
|
134 |
+
if text.lower().startswith("@prescription") or text.lower().startswith("@med"):
|
135 |
+
# Specific mode for medicine extraction
|
136 |
+
if not files:
|
137 |
+
yield "Error: Please upload a prescription image to extract medicine names."
|
138 |
+
return
|
139 |
+
|
140 |
+
# Use RolmOCR for better text extraction from prescriptions
|
141 |
+
images = [load_image(image) for image in files[:1]] # Taking just the first image for processing
|
142 |
+
|
143 |
+
messages = [{
|
144 |
+
"role": "user",
|
145 |
+
"content": [
|
146 |
+
{"type": "image", "image": images[0]},
|
147 |
+
{"type": "text", "text": "Extract all text from this medical prescription image, focus on medicine names, dosages, and instructions."},
|
148 |
+
],
|
149 |
+
}]
|
150 |
+
|
151 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
152 |
+
inputs = rolmocr_processor(
|
153 |
+
text=[prompt_full],
|
154 |
+
images=images,
|
155 |
+
return_tensors="pt",
|
156 |
+
padding=True,
|
157 |
+
).to("cuda")
|
158 |
+
|
159 |
+
# First, get the complete OCR text
|
160 |
+
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
|
161 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
162 |
+
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
|
163 |
+
thread.start()
|
164 |
+
|
165 |
+
ocr_text = ""
|
166 |
+
yield progress_bar_html("Processing Prescription with Medicine Extractor")
|
167 |
+
|
168 |
+
for new_text in streamer:
|
169 |
+
ocr_text += new_text
|
170 |
+
ocr_text = ocr_text.replace("<|im_end|>", "")
|
171 |
+
time.sleep(0.01)
|
172 |
+
|
173 |
+
# After getting full OCR text, extract medicine names
|
174 |
+
medicines = extract_medicine_names(ocr_text)
|
175 |
+
|
176 |
+
# Format the results nicely
|
177 |
+
result = "## Extracted Medicine Names\n\n"
|
178 |
+
if medicines:
|
179 |
+
for i, med in enumerate(medicines, 1):
|
180 |
+
result += f"{i}. {med}\n"
|
181 |
+
else:
|
182 |
+
result += "No medicine names detected in the prescription.\n\n"
|
183 |
+
|
184 |
+
result += "\n\n## Full OCR Text\n\n```\n" + ocr_text + "\n```"
|
185 |
+
yield result
|
186 |
+
return
|
187 |
+
|
188 |
+
# RolmOCR Inference (@RolmOCR)
|
189 |
+
if text.lower().startswith("@rolmocr"):
|
190 |
+
# Remove the tag from the query.
|
191 |
+
text_prompt = text[len("@rolmocr"):].strip()
|
192 |
+
# Check if a video is provided for inference.
|
193 |
+
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
|
194 |
+
video_path = files[0]
|
195 |
+
frames = downsample_video(video_path)
|
196 |
+
if not frames:
|
197 |
+
yield "Error: Could not extract frames from the video."
|
198 |
+
return
|
199 |
+
# Build the message: prompt followed by each frame with its timestamp.
|
200 |
+
content_list = [{"type": "text", "text": text_prompt}]
|
201 |
+
for image, timestamp in frames:
|
202 |
+
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
|
203 |
+
content_list.append({"type": "image", "image": image})
|
204 |
+
messages = [{"role": "user", "content": content_list}]
|
205 |
+
# For video, extract images only.
|
206 |
+
video_images = [image for image, _ in frames]
|
207 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
208 |
+
inputs = rolmocr_processor(
|
209 |
+
text=[prompt_full],
|
210 |
+
images=video_images,
|
211 |
+
return_tensors="pt",
|
212 |
+
padding=True,
|
213 |
+
).to("cuda")
|
214 |
+
else:
|
215 |
+
# Assume image(s) or text query.
|
216 |
+
if len(files) > 1:
|
217 |
+
images = [load_image(image) for image in files]
|
218 |
+
elif len(files) == 1:
|
219 |
+
images = [load_image(files[0])]
|
220 |
+
else:
|
221 |
+
images = []
|
222 |
+
if text_prompt == "" and not images:
|
223 |
+
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
|
224 |
+
return
|
225 |
+
messages = [{
|
226 |
+
"role": "user",
|
227 |
+
"content": [
|
228 |
+
*[{"type": "image", "image": image} for image in images],
|
229 |
+
{"type": "text", "text": text_prompt},
|
230 |
+
],
|
231 |
+
}]
|
232 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
233 |
+
inputs = rolmocr_processor(
|
234 |
+
text=[prompt_full],
|
235 |
+
images=images if images else None,
|
236 |
+
return_tensors="pt",
|
237 |
+
padding=True,
|
238 |
+
).to("cuda")
|
239 |
+
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
|
240 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
241 |
+
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
|
242 |
+
thread.start()
|
243 |
+
buffer = ""
|
244 |
+
# Use a different color scheme for RolmOCR (purple-themed).
|
245 |
+
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
|
246 |
+
for new_text in streamer:
|
247 |
+
buffer += new_text
|
248 |
+
buffer = buffer.replace("<|im_end|>", "")
|
249 |
+
time.sleep(0.01)
|
250 |
+
yield buffer
|
251 |
+
return
|
252 |
+
|
253 |
+
# Default Inference: Qwen2VL OCR
|
254 |
+
# Process files: support multiple images.
|
255 |
+
if len(files) > 1:
|
256 |
+
images = [load_image(image) for image in files]
|
257 |
+
elif len(files) == 1:
|
258 |
+
images = [load_image(files[0])]
|
259 |
+
else:
|
260 |
+
images = []
|
261 |
+
|
262 |
+
if text == "" and not images:
|
263 |
+
yield "Error: Please input a text query and optionally image(s)."
|
264 |
+
return
|
265 |
+
if text == "" and images:
|
266 |
+
yield "Error: Please input a text query along with the image(s)."
|
267 |
+
return
|
268 |
+
|
269 |
+
messages = [{
|
270 |
+
"role": "user",
|
271 |
+
"content": [
|
272 |
+
*[{"type": "image", "image": image} for image in images],
|
273 |
+
{"type": "text", "text": text},
|
274 |
+
],
|
275 |
+
}]
|
276 |
+
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
277 |
+
inputs = qwen_processor(
|
278 |
+
text=[prompt_full],
|
279 |
+
images=images if images else None,
|
280 |
+
return_tensors="pt",
|
281 |
+
padding=True,
|
282 |
+
).to("cuda")
|
283 |
+
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
|
284 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
285 |
+
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
286 |
+
thread.start()
|
287 |
+
buffer = ""
|
288 |
+
yield progress_bar_html("Processing with Qwen2VL OCR")
|
289 |
+
for new_text in streamer:
|
290 |
+
buffer += new_text
|
291 |
+
buffer = buffer.replace("<|im_end|>", "")
|
292 |
+
time.sleep(0.01)
|
293 |
+
yield buffer
|
294 |
+
|
295 |
+
# Gradio Interface
|
296 |
+
examples = [
|
297 |
+
[{"text": "@Prescription Extract medicines from this prescription", "files": ["examples/prescription1.jpg"]}],
|
298 |
+
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
|
299 |
+
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
|
300 |
+
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
|
301 |
+
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
302 |
+
]
|
303 |
+
|
304 |
+
css = """
|
305 |
+
.gradio-container {
|
306 |
+
font-family: 'Roboto', sans-serif;
|
307 |
+
}
|
308 |
+
.prescription-header {
|
309 |
+
background-color: #4B0082;
|
310 |
+
color: white;
|
311 |
+
padding: 10px;
|
312 |
+
border-radius: 5px;
|
313 |
+
margin-bottom: 10px;
|
314 |
+
}
|
315 |
+
"""
|
316 |
+
|
317 |
+
description = """
|
318 |
+
# **Multimodal OCR with Medicine Extraction**
|
319 |
+
|
320 |
+
## Modes:
|
321 |
+
- **@Prescription** - Upload a prescription image to extract medicine names
|
322 |
+
- **@RolmOCR** - Use RolmOCR for general text extraction
|
323 |
+
- **Default** - Use Qwen2VL OCR for general purposes
|
324 |
+
|
325 |
+
Upload your medical prescription images and get the medicine names extracted automatically!
|
326 |
+
"""
|
327 |
+
|
328 |
+
demo = gr.ChatInterface(
|
329 |
+
fn=model_inference,
|
330 |
+
description=description,
|
331 |
+
examples=examples,
|
332 |
+
textbox=gr.MultimodalTextbox(
|
333 |
+
label="Query Input",
|
334 |
+
file_types=["image", "video"],
|
335 |
+
file_count="multiple",
|
336 |
+
placeholder="Use @Prescription to extract medicines, @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
|
337 |
+
),
|
338 |
+
stop_btn="Stop Generation",
|
339 |
+
multimodal=True,
|
340 |
+
cache_examples=False,
|
341 |
+
css=css
|
342 |
+
)
|
343 |
+
|
344 |
+
demo.launch(debug=True)
|