Spaces:
Running
Running
File size: 13,515 Bytes
5dbe551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
import re
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples a video file by extracting 10 evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Determine 10 evenly spaced frame indices.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def extract_medicine_names(text):
"""
Extracts medicine names from OCR text output.
Uses a combination of pattern matching and formatting to identify medications.
Returns a formatted list of medicines found.
"""
# Common medicine patterns (extended to catch more formats)
lines = text.split('\n')
medicines = []
# Look for patterns typical in prescriptions
for line in lines:
# Clean and standardize the line
clean_line = line.strip()
# Skip very short lines, headers, or non-relevant text
if len(clean_line) < 3 or re.search(r'(prescription|rx|patient|name|date|doctor|hospital|clinic|address)', clean_line.lower()):
continue
# Medicine names often appear at the beginning of lines, with dosage info following
# Look for tablet/capsule/mg indicators - strong indicators of medication
if re.search(r'(tab|tablet|cap|capsule|mg|ml|injection|syrup|solution|suspension|ointment|cream|gel|patch|suppository|inhaler|drops)', clean_line.lower()):
# Extract the likely medicine name - the part before the dosage/form or the entire line if it's short
medicine_match = re.split(r'(\d+\s*mg|\d+\s*ml|\d+\s*tab|\d+\s*cap)', clean_line, 1)[0].strip()
if medicine_match and len(medicine_match) > 2:
medicines.append(medicine_match)
# Check for brand names or generic medication patterns
elif re.match(r'^[A-Z][a-z]+\s*[A-Z0-9]', clean_line) or re.match(r'^[A-Z][a-z]+', clean_line):
# Likely a medicine name starting with a capital letter
medicine_parts = re.split(r'(\d+|\s+\d+\s*times|\s+\d+\s*times\s+daily)', clean_line, 1)
if medicine_parts and len(medicine_parts[0]) > 2:
medicines.append(medicine_parts[0].strip())
# Remove duplicates while preserving order
unique_medicines = []
for med in medicines:
if med not in unique_medicines:
unique_medicines.append(med)
return unique_medicines
# Model and Processor Setup
# Qwen2VL OCR (default branch)
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# RolmOCR branch (@RolmOCR)
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
ROLMOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# Check for prescription-specific command
if text.lower().startswith("@prescription") or text.lower().startswith("@med"):
# Specific mode for medicine extraction
if not files:
yield "Error: Please upload a prescription image to extract medicine names."
return
# Use RolmOCR for better text extraction from prescriptions
images = [load_image(image) for image in files[:1]] # Taking just the first image for processing
messages = [{
"role": "user",
"content": [
{"type": "image", "image": images[0]},
{"type": "text", "text": "Extract all text from this medical prescription image, focus on medicine names, dosages, and instructions."},
],
}]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=images,
return_tensors="pt",
padding=True,
).to("cuda")
# First, get the complete OCR text
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
thread.start()
ocr_text = ""
yield progress_bar_html("Processing Prescription with Medicine Extractor")
for new_text in streamer:
ocr_text += new_text
ocr_text = ocr_text.replace("<|im_end|>", "")
time.sleep(0.01)
# After getting full OCR text, extract medicine names
medicines = extract_medicine_names(ocr_text)
# Format the results nicely
result = "## Extracted Medicine Names\n\n"
if medicines:
for i, med in enumerate(medicines, 1):
result += f"{i}. {med}\n"
else:
result += "No medicine names detected in the prescription.\n\n"
result += "\n\n## Full OCR Text\n\n```\n" + ocr_text + "\n```"
yield result
return
# RolmOCR Inference (@RolmOCR)
if text.lower().startswith("@rolmocr"):
# Remove the tag from the query.
text_prompt = text[len("@rolmocr"):].strip()
# Check if a video is provided for inference.
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build the message: prompt followed by each frame with its timestamp.
content_list = [{"type": "text", "text": text_prompt}]
for image, timestamp in frames:
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
content_list.append({"type": "image", "image": image})
messages = [{"role": "user", "content": content_list}]
# For video, extract images only.
video_images = [image for image, _ in frames]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
else:
# Assume image(s) or text query.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text_prompt == "" and not images:
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text_prompt},
],
}]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
# Use a different color scheme for RolmOCR (purple-themed).
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Default Inference: Qwen2VL OCR
# Process files: support multiple images.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
yield "Error: Please input a text query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = qwen_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "@Prescription Extract medicines from this prescription", "files": ["examples/prescription1.jpg"]}],
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
]
css = """
.gradio-container {
font-family: 'Roboto', sans-serif;
}
.prescription-header {
background-color: #4B0082;
color: white;
padding: 10px;
border-radius: 5px;
margin-bottom: 10px;
}
"""
description = """
# **Multimodal OCR with Medicine Extraction**
## Modes:
- **@Prescription** - Upload a prescription image to extract medicine names
- **@RolmOCR** - Use RolmOCR for general text extraction
- **Default** - Use Qwen2VL OCR for general purposes
Upload your medical prescription images and get the medicine names extracted automatically!
"""
demo = gr.ChatInterface(
fn=model_inference,
description=description,
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Use @Prescription to extract medicines, @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
css=css
)
demo.launch(debug=True) |