A newer version of the Gradio SDK is available:
5.29.0
Demo (Web UI)
You need GeoChat-7B to run the demo locally. Download the model from GeoChat-7B. After loading the model, run this command by giving the model path to launch the gradio demo.
Launch the demo
python geochat_demo.py --model-path /path/to/model
Training
Please see sample training scripts for LoRA
We provide sample DeepSpeed configs, zero3.json
is more like PyTorch FSDP, and zero3_offload.json
can further save memory consumption by offloading parameters to CPU. zero3.json
is usually faster than zero3_offload.json
but requires more GPU memory, therefore, we recommend trying zero3.json
first, and if you run out of GPU memory, try zero3_offload.json
. You can also tweak the per_device_train_batch_size
and gradient_accumulation_steps
in the config to save memory, and just to make sure that per_device_train_batch_size
and gradient_accumulation_steps
remains the same.
If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try zero2.json
. This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning.
Create Merged Checkpoints
python scripts/merge_lora_weights.py \
--model-path /path/to/lora_model \
--model-base /path/to/base_model \
--save-model-path /path/to/merge_model