File size: 1,714 Bytes
2b49482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

## Demo (Web UI)
You need GeoChat-7B to run the demo locally. Download the model from [GeoChat-7B](https://huggingface.co/MBZUAI/geochat-7B). After loading the model, run this command by giving the model path to launch the gradio demo.
#### Launch the demo
```Shell
python geochat_demo.py --model-path /path/to/model 
```

## Training

Please see sample training scripts for [LoRA](https://github.com/mbzuai-oryx/GeoChat/blob/main/scripts/finetune_lora.sh)

We provide sample DeepSpeed configs, [`zero3.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3.json) is more like PyTorch FSDP, and [`zero3_offload.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3_offload.json) can further save memory consumption by offloading parameters to CPU. `zero3.json` is usually faster than `zero3_offload.json` but requires more GPU memory, therefore, we recommend trying `zero3.json` first, and if you run out of GPU memory, try `zero3_offload.json`. You can also tweak the `per_device_train_batch_size` and `gradient_accumulation_steps` in the config to save memory, and just to make sure that `per_device_train_batch_size` and `gradient_accumulation_steps` remains the same.

If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try [`zero2.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero2.json). This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning.

## Create Merged Checkpoints

```Shell
python scripts/merge_lora_weights.py \
    --model-path /path/to/lora_model \
    --model-base /path/to/base_model \
    --save-model-path /path/to/merge_model
```