File size: 20,763 Bytes
dfd19f5
9305a6e
c1d3919
9305a6e
 
 
 
dfd19f5
 
9305a6e
 
dfd19f5
 
c1d3919
 
09c80e8
06293e9
9305a6e
c1d3919
09c80e8
06293e9
9305a6e
 
 
 
 
 
 
dfd19f5
 
9305a6e
dfd19f5
 
 
 
c1d3919
dfd19f5
 
 
 
 
 
 
 
34606bb
9305a6e
dfd19f5
b9a4880
dfd19f5
 
524e312
 
9305a6e
524e312
9305a6e
 
dfd19f5
 
 
 
 
 
 
09c80e8
dfd19f5
 
9305a6e
 
 
09c80e8
 
524e312
 
9305a6e
524e312
 
9305a6e
 
524e312
 
9305a6e
524e312
09c80e8
 
 
 
 
 
 
9305a6e
09c80e8
 
 
9305a6e
09c80e8
524e312
 
 
 
 
 
9305a6e
 
524e312
 
9305a6e
524e312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9305a6e
524e312
 
9305a6e
524e312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9305a6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c80e8
9305a6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c80e8
 
9305a6e
09c80e8
 
9305a6e
09c80e8
 
 
 
 
 
9305a6e
06293e9
9305a6e
 
 
 
 
09c80e8
 
9305a6e
09c80e8
 
dfd19f5
9305a6e
 
 
 
 
 
 
 
 
09c80e8
9305a6e
34606bb
9305a6e
 
 
 
09c80e8
9305a6e
09c80e8
 
 
9305a6e
09c80e8
9305a6e
dfd19f5
09c80e8
9305a6e
 
09c80e8
 
 
9305a6e
09c80e8
 
 
9305a6e
 
09c80e8
 
 
9305a6e
 
 
09c80e8
9305a6e
 
09c80e8
9305a6e
 
 
09c80e8
9305a6e
 
 
09c80e8
9305a6e
 
 
 
 
 
 
 
 
06293e9
9305a6e
 
 
 
 
 
 
09c80e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
"""
agent.py – Claude-smolagents based solution for GAIA challenge
-----------------------------------------------------------
Environment
-----------
ANTHROPIC_API_KEY   – API key from Anthropic (set in Hugging Face space secrets)
GAIA_API_URL     – (optional) override for the GAIA scoring endpoint
"""

from __future__ import annotations

import base64
import mimetypes
import os
import re
import tempfile
from typing import List, Dict, Any, Optional
import json
import requests
from urllib.parse import urlparse

from smolagents import (
    CodeAgent, 
    DuckDuckGoSearchTool, 
    PythonInterpreterTool,
    LiteLLMModel,
    tool,
)

# --------------------------------------------------------------------------- #
# constants & helpers
# --------------------------------------------------------------------------- #
DEFAULT_API_URL = os.getenv(
    "GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space"
)
FILE_TAG = re.compile(r"<file:([^>]+)>")  # <file:xyz>

def _download_file(file_id: str) -> bytes:
    """Download the attachment for a GAIA task."""
    url = f"{DEFAULT_API_URL}/files/{file_id}"
    resp = requests.get(url, timeout=30)
    resp.raise_for_status()
    return resp.content

# --------------------------------------------------------------------------- #
# custom tool: fetch GAIA attachments
# --------------------------------------------------------------------------- #
@tool
def gaia_file_reader(file_id: str) -> str:
    """
    Download a GAIA attachment and return its contents.
    Args:
        file_id: identifier that appears inside a <file:...> placeholder.
    Returns:
        base64-encoded string for binary files (images, PDFs, …) or decoded
        UTF-8 text for textual files.
    """
    try:
        raw = _download_file(file_id)
        mime = mimetypes.guess_type(file_id)[0] or "application/octet-stream"
        if mime.startswith("text") or mime in ("application/json",):
            return raw.decode(errors="ignore")
        return base64.b64encode(raw).decode()
    except Exception as exc:
        return f"ERROR downloading {file_id}: {exc}"

# --------------------------------------------------------------------------- #
# additional tool functions
# --------------------------------------------------------------------------- #
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save content to a temporary file and return the path.
    Useful for processing files from the GAIA API.
    
    Args:
        content: The content to save to the file
        filename: Optional filename, will generate a random name if not provided
        
    Returns:
        Path to the saved file
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)
    
    # Write content to the file
    with open(filepath, 'w') as f:
        f.write(content)
    
    return f"File saved to {filepath}. You can read this file to process its contents."

@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    
    Args:
        url: The URL to download from
        filename: Optional filename, will generate one based on URL if not provided
        
    Returns:
        Path to the downloaded file
    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                # Generate a random name if we couldn't extract one
                import uuid
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"
        
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)
        
        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()
        
        # Save the file
        with open(filepath, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        return f"File downloaded to {filepath}. You can now process this file."
    except Exception as e:
        return f"Error downloading file: {str(e)}"

@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extract text from an image using pytesseract (if available).
    
    Args:
        image_path: Path to the image file
        
    Returns:
        Extracted text or error message
    """
    try:
        # Try to import pytesseract
        import pytesseract
        from PIL import Image
        
        # Open the image
        image = Image.open(image_path)
        
        # Extract text
        text = pytesseract.image_to_string(image)
        
        return f"Extracted text from image:\n\n{text}"
    except ImportError:
        return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer a question about it.
    
    Args:
        file_path: Path to the CSV file
        query: Question about the data
        
    Returns:
        Analysis result or error message
    """
    try:
        import pandas as pd
        
        # Read the CSV file
        df = pd.read_csv(file_path)
        
        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas is not installed. Please install it with 'pip install pandas'."
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer a question about it.
    
    Args:
        file_path: Path to the Excel file
        query: Question about the data
        
    Returns:
        Analysis result or error message
    """
    try:
        import pandas as pd
        
        # Read the Excel file
        df = pd.read_excel(file_path)
        
        # Run various analyses based on the query
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

# --------------------------------------------------------------------------- #
# GAIAAgent class
# --------------------------------------------------------------------------- #
class GAIAAgent:
    def __init__(
        self, 
        api_key: Optional[str] = None,
        temperature: float = 0.1,
        verbose: bool = False,
        system_prompt: Optional[str] = None
    ):
        """
        Initialize a GAIAAgent with Claude model
        
        Args:
            api_key: Anthropic API key (fetched from environment if not provided)
            temperature: Temperature for text generation
            verbose: Enable verbose logging
            system_prompt: Custom system prompt (optional)
        """
        # Set verbosity
        self.verbose = verbose
        self.system_prompt = system_prompt or """You are a concise, highly accurate assistant specialized in solving challenges for the GAIA benchmark. 
Unless explicitly required, reply with ONE short sentence.
Your answers should be precise, direct, and exactly match the expected format.
All answers are graded by exact string match, so format carefully!"""
        
        # Get API key
        if api_key is None:
            api_key = os.getenv("ANTHROPIC_API_KEY")
            if not api_key:
                raise ValueError("No Anthropic token provided. Please set ANTHROPIC_API_KEY environment variable or pass api_key parameter.")
            
        if self.verbose:
            print(f"Using Anthropic token: {api_key[:5]}...")
                
        # Initialize Claude model
        self.model = LiteLLMModel(
            model_id="anthropic/claude-3-5-sonnet-20240620",  # Use Claude 3.5 Sonnet
            api_key=api_key,
            temperature=temperature
        )
            
        if self.verbose:
            print(f"Initialized model: LiteLLMModel - anthropic/claude-3-5-sonnet-20240620")
        
        # Initialize default tools
        self.tools = [
            DuckDuckGoSearchTool(),
            PythonInterpreterTool(),
            save_and_read_file,
            download_file_from_url,
            analyze_csv_file,
            analyze_excel_file,
            gaia_file_reader
        ]
        
        # Add extract_text_from_image if PIL and pytesseract are available
        try:
            import pytesseract
            from PIL import Image
            self.tools.append(extract_text_from_image)
            if self.verbose:
                print("Added image processing tool")
        except ImportError:
            if self.verbose:
                print("Image processing libraries not available")
            
        if self.verbose:
            print(f"Initialized with {len(self.tools)} tools")
        
        # Setup imports allowed
        self.imports = ["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
            
        # Initialize the CodeAgent
        self.agent = CodeAgent(
            tools=self.tools,
            model=self.model,
            additional_authorized_imports=self.imports,
            executor_type="local",
            verbosity_level=2 if self.verbose else 0
        )
        
        if self.verbose:
            print("Agent initialized and ready")
    
    def answer_question(self, question: str, task_file_path: Optional[str] = None) -> str:
        """
        Process a GAIA benchmark question and return the answer
        
        Args:
            question: The question to answer
            task_file_path: Optional path to a file associated with the question
            
        Returns:
            The answer to the question
        """
        try:
            if self.verbose:
                print(f"Processing question: {question}")
                if task_file_path:
                    print(f"With associated file: {task_file_path}")
            
            # Create a context with file information if available
            context = question
            file_content = None
            
            # If there's a file, read it and include its content in the context
            if task_file_path:
                try:
                    with open(task_file_path, 'r', errors='ignore') as f:
                        file_content = f.read()
                    
                    # Determine file type from extension
                    import os
                    file_ext = os.path.splitext(task_file_path)[1].lower()
                    
                    context = f"""
Question: {question}
This question has an associated file. Here is the file content:
```{file_ext}
{file_content}
```
Analyze the file content above to answer the question.
"""
                except Exception as file_e:
                    try:
                        # Try to read in binary mode
                        with open(task_file_path, 'rb') as f:
                            binary_content = f.read()
                        
                        # For image files
                        if file_ext.lower() in ['.jpg', '.jpeg', '.png', '.gif', '.bmp']:
                            context = f"""
Question: {question}
This question has an associated image file. Please use the extract_text_from_image tool to process it.
File path: {task_file_path}
"""
                        else:
                            context = f"""
Question: {question}
This question has an associated file at path: {task_file_path}
This is a binary file. Use appropriate tools to analyze it.
"""
                    except Exception as binary_e:
                        context = f"""
Question: {question}
This question has an associated file at path: {task_file_path}
However, there was an error reading the file: {file_e}
You can still try to answer the question based on the information provided.
"""
            
            # Check for special cases that need specific formatting
            # Reversed text questions
            if question.startswith(".") or ".rewsna eht sa" in question:
                context = f"""
This question appears to be in reversed text. Here's the reversed version:
{question[::-1]}
Now answer the question above. Remember to format your answer exactly as requested.
"""
            
            # Add a prompt to ensure precise answers
            full_prompt = f"""{context}
When answering, provide ONLY the precise answer requested. 
Do not include explanations, steps, reasoning, or additional text.
Be direct and specific. GAIA benchmark requires exact matching answers.
For example, if asked "What is the capital of France?", respond simply with "Paris".
"""
            
            # Run the agent with the question
            answer = self.agent.run(full_prompt)
            
            # Clean up the answer to ensure it's in the expected format
            # Remove common prefixes that models often add
            answer = self._clean_answer(answer)
            
            if self.verbose:
                print(f"Generated answer: {answer}")
                
            return answer
        except Exception as e:
            error_msg = f"Error answering question: {e}"
            if self.verbose:
                print(error_msg)
            return error_msg
    
    def _clean_answer(self, answer: any) -> str:
        """
        Clean up the answer to remove common prefixes and formatting
        that models often add but that can cause exact match failures.
        
        Args:
            answer: The raw answer from the model
            
        Returns:
            The cleaned answer as a string
        """
        # Convert non-string types to strings
        if not isinstance(answer, str):
            # Handle numeric types (float, int)
            if isinstance(answer, float):
                # Format floating point numbers properly
                # Check if it's an integer value in float form (e.g., 12.0)
                if answer.is_integer():
                    formatted_answer = str(int(answer))
                else:
                    # For currency values that might need formatting
                    if abs(answer) >= 1000:
                        formatted_answer = f"${answer:,.2f}"
                    else:
                        formatted_answer = str(answer)
                return formatted_answer
            elif isinstance(answer, int):
                return str(answer)
            else:
                # For any other type
                return str(answer)
        
        # Now we know answer is a string, so we can safely use string methods
        # Normalize whitespace
        answer = answer.strip()
        
        # Remove common prefixes and formatting that models add
        prefixes_to_remove = [
            "The answer is ", 
            "Answer: ",
            "Final answer: ",
            "The result is ",
            "To answer this question: ",
            "Based on the information provided, ",
            "According to the information: ",
        ]
        
        for prefix in prefixes_to_remove:
            if answer.startswith(prefix):
                answer = answer[len(prefix):].strip()
        
        # Remove quotes if they wrap the entire answer
        if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
            answer = answer[1:-1].strip()
        
        return answer

# --------------------------------------------------------------------------- #
# GeminiAgent class - Wrapper around GAIAAgent
# --------------------------------------------------------------------------- #
class ClaudeAgent:
    """Claude-enhanced agent for GAIA challenge"""
    
    def __init__(self):
        # Try to initialize GAIAAgent with Claude
        try:
            # Get API key
            api_key = os.getenv("ANTHROPIC_API_KEY")
            if not api_key:
                raise ValueError("ANTHROPIC_API_KEY environment variable not found")
                
            print("βœ… Initializing GAIAAgent with Claude")
            
            # Create GAIAAgent instance
            self.agent = GAIAAgent(
                api_key=api_key,
                temperature=0.1,  # Use low temperature for precise answers
                verbose=True,     # Enable verbose logging
            )
        except Exception as e:
            print(f"Error initializing GAIAAgent: {e}")
            raise
    
    def __call__(self, question: str) -> str:
        """
        Process a GAIA question and return the answer
        
        Args:
            question: The question to answer
            
        Returns:
            The answer to the question
        """
        try:
            print(f"Received question: {question[:100]}..." if len(question) > 100 else f"Received question: {question}")
            
            # Detect reversed text
            if question.startswith(".") or ".rewsna eht sa" in question:
                print("Detected reversed text question")
                # GAIAAgent handles reversed text internally
            
            # Detect if there's a file
            file_match = re.search(r"<file:([^>]+)>", question)
            if file_match:
                file_id = file_match.group(1)
                print(f"Detected file reference: {file_id}")
                
                # Download the file
                try:
                    file_content = _download_file(file_id)
                    
                    # Create temporary file for the file
                    temp_dir = tempfile.gettempdir()
                    file_path = os.path.join(temp_dir, file_id)
                    
                    # Save file content
                    with open(file_path, 'wb') as f:
                        f.write(file_content)
                    
                    print(f"File downloaded to: {file_path}")
                    
                    # Remove file tag from question
                    clean_question = re.sub(r"<file:[^>]+>", "", question).strip()
                    
                    # Process question with file path
                    answer = self.agent.answer_question(clean_question, file_path)
                    return self._clean_answer(answer)
                except Exception as e:
                    print(f"Error processing file: {e}")
                    # Fall back to processing without file
            
            # Process standard question
            answer = self.agent.answer_question(question)
            return self._clean_answer(answer)
        except Exception as e:
            print(f"Error processing question: {e}")
            error_msg = f"Unable to process question: {str(e)}"
            return error_msg
    
    def _clean_answer(self, answer: str) -> str:
        """
        Final cleanup of answer to ensure correct format
        Reuses GAIAAgent's cleaning method
        """
        # Already cleaned in GAIAAgent, but do additional checks
        if isinstance(answer, str):
            # Remove any trailing periods and whitespace
            answer = answer.rstrip(". \t\n\r")
            
            # Ensure it's not too long an answer - GAIA usually needs concise responses
            if len(answer) > 1000:
                # Try to find the first sentence or statement of the answer
                sentences = answer.split('. ')
                if len(sentences) > 1:
                    return sentences[0].strip()
        
        return answer