real-jiakai commited on
Commit
9305a6e
·
verified ·
1 Parent(s): 524e312

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +400 -245
agent.py CHANGED
@@ -1,24 +1,34 @@
1
  """
2
- agent.py - Claude implementation for GAIA challenge
3
  -----------------------------------------------------------
4
- A simplified implementation with direct litellm access to Anthropic's Claude
 
 
 
5
  """
6
 
 
 
7
  import base64
8
  import mimetypes
9
  import os
10
  import re
11
  import tempfile
12
- import time
13
- import random
14
  from typing import List, Dict, Any, Optional
 
15
  import requests
16
  from urllib.parse import urlparse
17
 
18
- from smolagents import CodeAgent, DuckDuckGoSearchTool, PythonInterpreterTool, tool
 
 
 
 
 
 
19
 
20
  # --------------------------------------------------------------------------- #
21
- # Constants & helpers
22
  # --------------------------------------------------------------------------- #
23
  DEFAULT_API_URL = os.getenv(
24
  "GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space"
@@ -33,99 +43,17 @@ def _download_file(file_id: str) -> bytes:
33
  return resp.content
34
 
35
  # --------------------------------------------------------------------------- #
36
- # Direct Claude model implementation with litellm
37
- # --------------------------------------------------------------------------- #
38
- class DirectClaudeModel:
39
- """
40
- Direct interface to Claude via litellm that works with smolagents
41
- This avoids the message format issues by keeping things very simple
42
- """
43
-
44
- def __init__(
45
- self,
46
- api_key: Optional[str] = None,
47
- temperature: float = 0.1
48
- ):
49
- """Initialize the Claude model"""
50
- self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
51
- if not self.api_key:
52
- raise ValueError("No Anthropic API key provided")
53
-
54
- self.temperature = temperature
55
- self.model_name = "anthropic/claude-3-5-sonnet-20240620"
56
-
57
- print(f"Initialized DirectClaudeModel with {self.model_name}")
58
-
59
- # Sleep random amount to avoid race conditions with many queries
60
- time.sleep(random.uniform(1, 3))
61
-
62
- def __call__(self, prompt: str, **kwargs) -> str:
63
- """
64
- Simple call method that works with smolagents
65
-
66
- Args:
67
- prompt: The user prompt
68
- **kwargs: Additional parameters (ignored)
69
-
70
- Returns:
71
- Claude's response as a string
72
- """
73
- # Import here to avoid any circular imports
74
- from litellm import completion
75
-
76
- # Use a simple format: system message + user message
77
- messages = [
78
- {
79
- "role": "system",
80
- "content": """You are a concise, highly accurate assistant specialized in solving challenges.
81
- Your answers should be precise, direct, and exactly match the expected format.
82
- All answers are graded by exact string match, so format carefully!"""
83
- },
84
- {
85
- "role": "user",
86
- "content": prompt
87
- }
88
- ]
89
-
90
- # Add delay to avoid rate limits
91
- time.sleep(random.uniform(0.5, 2.0))
92
-
93
- try:
94
- # Make API call with simple format
95
- response = completion(
96
- model=self.model_name,
97
- messages=messages,
98
- temperature=self.temperature,
99
- max_tokens=1024,
100
- api_key=self.api_key
101
- )
102
-
103
- # Extract and return the text content only
104
- return response.choices[0].message.content
105
-
106
- except Exception as e:
107
- # If it's a rate limit error, wait and retry
108
- if "rate_limit" in str(e).lower():
109
- print(f"Rate limit hit, waiting 30 seconds: {e}")
110
- time.sleep(30)
111
- return self.__call__(prompt, **kwargs)
112
- else:
113
- print(f"Error: {str(e)}")
114
- raise
115
-
116
- # --------------------------------------------------------------------------- #
117
- # Tools section - All tools used by the agent
118
  # --------------------------------------------------------------------------- #
119
  @tool
120
  def gaia_file_reader(file_id: str) -> str:
121
  """
122
  Download a GAIA attachment and return its contents.
123
-
124
  Args:
125
- file_id: The identifier of the file to download from GAIA API.
126
-
127
  Returns:
128
- The content of the file as a string (text files) or base64-encoded (binary files).
 
129
  """
130
  try:
131
  raw = _download_file(file_id)
@@ -136,17 +64,21 @@ def gaia_file_reader(file_id: str) -> str:
136
  except Exception as exc:
137
  return f"ERROR downloading {file_id}: {exc}"
138
 
 
 
 
139
  @tool
140
  def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
141
  """
142
  Save content to a temporary file and return the path.
 
143
 
144
  Args:
145
- content: The content to save to the file.
146
- filename: Optional filename, will generate a random name if not provided.
147
 
148
  Returns:
149
- Path to the saved file.
150
  """
151
  temp_dir = tempfile.gettempdir()
152
  if filename is None:
@@ -155,64 +87,11 @@ def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
155
  else:
156
  filepath = os.path.join(temp_dir, filename)
157
 
 
158
  with open(filepath, 'w') as f:
159
  f.write(content)
160
 
161
- return f"File saved to {filepath}."
162
-
163
- @tool
164
- def analyze_csv_file(file_path: str, query: str) -> str:
165
- """
166
- Analyze a CSV file using pandas and answer questions about it.
167
-
168
- Args:
169
- file_path: Path to the CSV file to analyze.
170
- query: A question or instruction about what to analyze in the file.
171
-
172
- Returns:
173
- Analysis results as text.
174
- """
175
- try:
176
- import pandas as pd
177
- df = pd.read_csv(file_path)
178
-
179
- result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
180
- result += f"Columns: {', '.join(df.columns)}\n\n"
181
- result += "Summary statistics:\n"
182
- result += str(df.describe())
183
-
184
- return result
185
- except ImportError:
186
- return "Error: pandas is not installed."
187
- except Exception as e:
188
- return f"Error analyzing CSV file: {str(e)}"
189
-
190
- @tool
191
- def analyze_excel_file(file_path: str, query: str) -> str:
192
- """
193
- Analyze an Excel file using pandas and answer questions about it.
194
-
195
- Args:
196
- file_path: Path to the Excel file to analyze.
197
- query: A question or instruction about what to analyze in the file.
198
-
199
- Returns:
200
- Analysis results as text.
201
- """
202
- try:
203
- import pandas as pd
204
- df = pd.read_excel(file_path)
205
-
206
- result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
207
- result += f"Columns: {', '.join(df.columns)}\n\n"
208
- result += "Summary statistics:\n"
209
- result += str(df.describe())
210
-
211
- return result
212
- except ImportError:
213
- return "Error: pandas and openpyxl are not installed."
214
- except Exception as e:
215
- return f"Error analyzing Excel file: {str(e)}"
216
 
217
  @tool
218
  def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
@@ -220,11 +99,11 @@ def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
220
  Download a file from a URL and save it to a temporary location.
221
 
222
  Args:
223
- url: The URL to download from.
224
- filename: Optional filename, will generate one based on URL if not provided.
225
 
226
  Returns:
227
- Path to the downloaded file.
228
  """
229
  try:
230
  # Parse URL to get filename if not provided
@@ -259,10 +138,10 @@ def extract_text_from_image(image_path: str) -> str:
259
  Extract text from an image using pytesseract (if available).
260
 
261
  Args:
262
- image_path: Path to the image file to extract text from.
263
 
264
  Returns:
265
- Extracted text from the image.
266
  """
267
  try:
268
  # Try to import pytesseract
@@ -281,134 +160,410 @@ def extract_text_from_image(image_path: str) -> str:
281
  except Exception as e:
282
  return f"Error extracting text from image: {str(e)}"
283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284
  # --------------------------------------------------------------------------- #
285
- # ClaudeAgent - Main class for GAIA challenge
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
  # --------------------------------------------------------------------------- #
287
  class ClaudeAgent:
288
- """A simplified Claude agent for the GAIA challenge"""
289
 
290
  def __init__(self):
291
- """Initialize the agent with Claude"""
292
  try:
293
  # Get API key
294
  api_key = os.getenv("ANTHROPIC_API_KEY")
295
  if not api_key:
296
  raise ValueError("ANTHROPIC_API_KEY environment variable not found")
297
 
298
- print("✅ Initializing ClaudeAgent")
299
-
300
- # Create the model with direct implementation
301
- model = DirectClaudeModel(api_key=api_key, temperature=0.1)
302
 
303
- # Set up tools
304
- tools = [
305
- DuckDuckGoSearchTool(),
306
- PythonInterpreterTool(),
307
- save_and_read_file,
308
- analyze_csv_file,
309
- analyze_excel_file,
310
- gaia_file_reader,
311
- download_file_from_url,
312
- extract_text_from_image
313
- ]
314
-
315
- # Create the CodeAgent
316
- self.agent = CodeAgent(
317
- tools=tools,
318
- model=model,
319
- additional_authorized_imports=["pandas", "numpy", "json", "re", "math"],
320
- executor_type="local",
321
- verbosity_level=2
322
  )
323
-
324
- print("Agent initialized successfully")
325
-
326
  except Exception as e:
327
- print(f"Error initializing ClaudeAgent: {e}")
328
  raise
329
 
330
  def __call__(self, question: str) -> str:
331
- """Process a question and return the answer"""
 
 
 
 
 
 
 
 
332
  try:
333
- print(f"Processing question: {question[:100]}..." if len(question) > 100 else question)
334
 
335
- # Add a small delay between questions
336
- time.sleep(random.uniform(1.0, 3.0))
 
 
337
 
338
- # Handle file references
339
  file_match = re.search(r"<file:([^>]+)>", question)
340
  if file_match:
341
  file_id = file_match.group(1)
342
- print(f"Detected file: {file_id}")
343
 
344
- # Download file
345
  try:
346
  file_content = _download_file(file_id)
 
 
347
  temp_dir = tempfile.gettempdir()
348
  file_path = os.path.join(temp_dir, file_id)
349
 
 
350
  with open(file_path, 'wb') as f:
351
  f.write(file_content)
352
 
 
 
353
  # Remove file tag from question
354
  clean_question = re.sub(r"<file:[^>]+>", "", question).strip()
355
 
356
- # Build prompt with file context
357
- prompt = f"""
358
- Question: {clean_question}
359
- There is a file available at path: {file_path}
360
- Use appropriate tools to analyze this file if needed.
361
- Answer the question directly and precisely.
362
- """
363
  except Exception as e:
364
- print(f"Error downloading file: {e}")
365
- prompt = question
366
- else:
367
- # Handle reversed text separately
368
- if question.startswith(".") or ".rewsna eht sa" in question:
369
- prompt = f"""
370
- This question is in reversed text. Here's the normal version:
371
- {question[::-1]}
372
- Answer the question directly and precisely.
373
- """
374
- else:
375
- prompt = question
376
-
377
- # Execute agent with prompt
378
- answer = self.agent.run(prompt)
379
-
380
- # Clean up response
381
- answer = self._clean_answer(answer)
382
-
383
- print(f"Generated answer: {answer}")
384
- return answer
385
 
 
 
 
386
  except Exception as e:
387
- print(f"Error: {str(e)}")
388
- return f"Error processing question: {str(e)}"
 
389
 
390
- def _clean_answer(self, answer: any) -> str:
391
- """Clean up the answer for exact matching"""
392
- if not isinstance(answer, str):
393
- return str(answer)
394
-
395
- # Normalize spacing
396
- answer = answer.strip()
397
-
398
- # Remove common prefixes
399
- prefixes = [
400
- "The answer is ", "Answer: ", "Final answer: ",
401
- "The result is ", "Based on the information provided, "
402
- ]
403
-
404
- for prefix in prefixes:
405
- if answer.startswith(prefix):
406
- answer = answer[len(prefix):].strip()
407
-
408
- # Remove quotes
409
- if (answer.startswith('"') and answer.endswith('"')) or (
410
- answer.startswith("'") and answer.endswith("'")
411
- ):
412
- answer = answer[1:-1].strip()
413
 
 
 
 
 
 
 
 
414
  return answer
 
1
  """
2
+ agent.py Claude-smolagents based solution for GAIA challenge
3
  -----------------------------------------------------------
4
+ Environment
5
+ -----------
6
+ ANTHROPIC_API_KEY – API key from Anthropic (set in Hugging Face space secrets)
7
+ GAIA_API_URL – (optional) override for the GAIA scoring endpoint
8
  """
9
 
10
+ from __future__ import annotations
11
+
12
  import base64
13
  import mimetypes
14
  import os
15
  import re
16
  import tempfile
 
 
17
  from typing import List, Dict, Any, Optional
18
+ import json
19
  import requests
20
  from urllib.parse import urlparse
21
 
22
+ from smolagents import (
23
+ CodeAgent,
24
+ DuckDuckGoSearchTool,
25
+ PythonInterpreterTool,
26
+ LiteLLMModel,
27
+ tool,
28
+ )
29
 
30
  # --------------------------------------------------------------------------- #
31
+ # constants & helpers
32
  # --------------------------------------------------------------------------- #
33
  DEFAULT_API_URL = os.getenv(
34
  "GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space"
 
43
  return resp.content
44
 
45
  # --------------------------------------------------------------------------- #
46
+ # custom tool: fetch GAIA attachments
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  # --------------------------------------------------------------------------- #
48
  @tool
49
  def gaia_file_reader(file_id: str) -> str:
50
  """
51
  Download a GAIA attachment and return its contents.
 
52
  Args:
53
+ file_id: identifier that appears inside a <file:...> placeholder.
 
54
  Returns:
55
+ base64-encoded string for binary files (images, PDFs, ) or decoded
56
+ UTF-8 text for textual files.
57
  """
58
  try:
59
  raw = _download_file(file_id)
 
64
  except Exception as exc:
65
  return f"ERROR downloading {file_id}: {exc}"
66
 
67
+ # --------------------------------------------------------------------------- #
68
+ # additional tool functions
69
+ # --------------------------------------------------------------------------- #
70
  @tool
71
  def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
72
  """
73
  Save content to a temporary file and return the path.
74
+ Useful for processing files from the GAIA API.
75
 
76
  Args:
77
+ content: The content to save to the file
78
+ filename: Optional filename, will generate a random name if not provided
79
 
80
  Returns:
81
+ Path to the saved file
82
  """
83
  temp_dir = tempfile.gettempdir()
84
  if filename is None:
 
87
  else:
88
  filepath = os.path.join(temp_dir, filename)
89
 
90
+ # Write content to the file
91
  with open(filepath, 'w') as f:
92
  f.write(content)
93
 
94
+ return f"File saved to {filepath}. You can read this file to process its contents."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  @tool
97
  def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
 
99
  Download a file from a URL and save it to a temporary location.
100
 
101
  Args:
102
+ url: The URL to download from
103
+ filename: Optional filename, will generate one based on URL if not provided
104
 
105
  Returns:
106
+ Path to the downloaded file
107
  """
108
  try:
109
  # Parse URL to get filename if not provided
 
138
  Extract text from an image using pytesseract (if available).
139
 
140
  Args:
141
+ image_path: Path to the image file
142
 
143
  Returns:
144
+ Extracted text or error message
145
  """
146
  try:
147
  # Try to import pytesseract
 
160
  except Exception as e:
161
  return f"Error extracting text from image: {str(e)}"
162
 
163
+ @tool
164
+ def analyze_csv_file(file_path: str, query: str) -> str:
165
+ """
166
+ Analyze a CSV file using pandas and answer a question about it.
167
+
168
+ Args:
169
+ file_path: Path to the CSV file
170
+ query: Question about the data
171
+
172
+ Returns:
173
+ Analysis result or error message
174
+ """
175
+ try:
176
+ import pandas as pd
177
+
178
+ # Read the CSV file
179
+ df = pd.read_csv(file_path)
180
+
181
+ # Run various analyses based on the query
182
+ result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
183
+ result += f"Columns: {', '.join(df.columns)}\n\n"
184
+
185
+ # Add summary statistics
186
+ result += "Summary statistics:\n"
187
+ result += str(df.describe())
188
+
189
+ return result
190
+ except ImportError:
191
+ return "Error: pandas is not installed. Please install it with 'pip install pandas'."
192
+ except Exception as e:
193
+ return f"Error analyzing CSV file: {str(e)}"
194
+
195
+ @tool
196
+ def analyze_excel_file(file_path: str, query: str) -> str:
197
+ """
198
+ Analyze an Excel file using pandas and answer a question about it.
199
+
200
+ Args:
201
+ file_path: Path to the Excel file
202
+ query: Question about the data
203
+
204
+ Returns:
205
+ Analysis result or error message
206
+ """
207
+ try:
208
+ import pandas as pd
209
+
210
+ # Read the Excel file
211
+ df = pd.read_excel(file_path)
212
+
213
+ # Run various analyses based on the query
214
+ result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
215
+ result += f"Columns: {', '.join(df.columns)}\n\n"
216
+
217
+ # Add summary statistics
218
+ result += "Summary statistics:\n"
219
+ result += str(df.describe())
220
+
221
+ return result
222
+ except ImportError:
223
+ return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
224
+ except Exception as e:
225
+ return f"Error analyzing Excel file: {str(e)}"
226
+
227
  # --------------------------------------------------------------------------- #
228
+ # GAIAAgent class
229
+ # --------------------------------------------------------------------------- #
230
+ class GAIAAgent:
231
+ def __init__(
232
+ self,
233
+ api_key: Optional[str] = None,
234
+ temperature: float = 0.1,
235
+ verbose: bool = False,
236
+ system_prompt: Optional[str] = None
237
+ ):
238
+ """
239
+ Initialize a GAIAAgent with Claude model
240
+
241
+ Args:
242
+ api_key: Anthropic API key (fetched from environment if not provided)
243
+ temperature: Temperature for text generation
244
+ verbose: Enable verbose logging
245
+ system_prompt: Custom system prompt (optional)
246
+ """
247
+ # Set verbosity
248
+ self.verbose = verbose
249
+ self.system_prompt = system_prompt or """You are a concise, highly accurate assistant specialized in solving challenges for the GAIA benchmark.
250
+ Unless explicitly required, reply with ONE short sentence.
251
+ Your answers should be precise, direct, and exactly match the expected format.
252
+ All answers are graded by exact string match, so format carefully!"""
253
+
254
+ # Get API key
255
+ if api_key is None:
256
+ api_key = os.getenv("ANTHROPIC_API_KEY")
257
+ if not api_key:
258
+ raise ValueError("No Anthropic token provided. Please set ANTHROPIC_API_KEY environment variable or pass api_key parameter.")
259
+
260
+ if self.verbose:
261
+ print(f"Using Anthropic token: {api_key[:5]}...")
262
+
263
+ # Initialize Claude model
264
+ self.model = LiteLLMModel(
265
+ model_id="anthropic/claude-3-5-sonnet-20240620", # Use Claude 3.5 Sonnet
266
+ api_key=api_key,
267
+ temperature=temperature
268
+ )
269
+
270
+ if self.verbose:
271
+ print(f"Initialized model: LiteLLMModel - anthropic/claude-3-5-sonnet-20240620")
272
+
273
+ # Initialize default tools
274
+ self.tools = [
275
+ DuckDuckGoSearchTool(),
276
+ PythonInterpreterTool(),
277
+ save_and_read_file,
278
+ download_file_from_url,
279
+ analyze_csv_file,
280
+ analyze_excel_file,
281
+ gaia_file_reader
282
+ ]
283
+
284
+ # Add extract_text_from_image if PIL and pytesseract are available
285
+ try:
286
+ import pytesseract
287
+ from PIL import Image
288
+ self.tools.append(extract_text_from_image)
289
+ if self.verbose:
290
+ print("Added image processing tool")
291
+ except ImportError:
292
+ if self.verbose:
293
+ print("Image processing libraries not available")
294
+
295
+ if self.verbose:
296
+ print(f"Initialized with {len(self.tools)} tools")
297
+
298
+ # Setup imports allowed
299
+ self.imports = ["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
300
+
301
+ # Initialize the CodeAgent
302
+ self.agent = CodeAgent(
303
+ tools=self.tools,
304
+ model=self.model,
305
+ additional_authorized_imports=self.imports,
306
+ executor_type="local",
307
+ verbosity_level=2 if self.verbose else 0
308
+ )
309
+
310
+ if self.verbose:
311
+ print("Agent initialized and ready")
312
+
313
+ def answer_question(self, question: str, task_file_path: Optional[str] = None) -> str:
314
+ """
315
+ Process a GAIA benchmark question and return the answer
316
+
317
+ Args:
318
+ question: The question to answer
319
+ task_file_path: Optional path to a file associated with the question
320
+
321
+ Returns:
322
+ The answer to the question
323
+ """
324
+ try:
325
+ if self.verbose:
326
+ print(f"Processing question: {question}")
327
+ if task_file_path:
328
+ print(f"With associated file: {task_file_path}")
329
+
330
+ # Create a context with file information if available
331
+ context = question
332
+ file_content = None
333
+
334
+ # If there's a file, read it and include its content in the context
335
+ if task_file_path:
336
+ try:
337
+ with open(task_file_path, 'r', errors='ignore') as f:
338
+ file_content = f.read()
339
+
340
+ # Determine file type from extension
341
+ import os
342
+ file_ext = os.path.splitext(task_file_path)[1].lower()
343
+
344
+ context = f"""
345
+ Question: {question}
346
+ This question has an associated file. Here is the file content:
347
+ ```{file_ext}
348
+ {file_content}
349
+ ```
350
+ Analyze the file content above to answer the question.
351
+ """
352
+ except Exception as file_e:
353
+ try:
354
+ # Try to read in binary mode
355
+ with open(task_file_path, 'rb') as f:
356
+ binary_content = f.read()
357
+
358
+ # For image files
359
+ if file_ext.lower() in ['.jpg', '.jpeg', '.png', '.gif', '.bmp']:
360
+ context = f"""
361
+ Question: {question}
362
+ This question has an associated image file. Please use the extract_text_from_image tool to process it.
363
+ File path: {task_file_path}
364
+ """
365
+ else:
366
+ context = f"""
367
+ Question: {question}
368
+ This question has an associated file at path: {task_file_path}
369
+ This is a binary file. Use appropriate tools to analyze it.
370
+ """
371
+ except Exception as binary_e:
372
+ context = f"""
373
+ Question: {question}
374
+ This question has an associated file at path: {task_file_path}
375
+ However, there was an error reading the file: {file_e}
376
+ You can still try to answer the question based on the information provided.
377
+ """
378
+
379
+ # Check for special cases that need specific formatting
380
+ # Reversed text questions
381
+ if question.startswith(".") or ".rewsna eht sa" in question:
382
+ context = f"""
383
+ This question appears to be in reversed text. Here's the reversed version:
384
+ {question[::-1]}
385
+ Now answer the question above. Remember to format your answer exactly as requested.
386
+ """
387
+
388
+ # Add a prompt to ensure precise answers
389
+ full_prompt = f"""{context}
390
+ When answering, provide ONLY the precise answer requested.
391
+ Do not include explanations, steps, reasoning, or additional text.
392
+ Be direct and specific. GAIA benchmark requires exact matching answers.
393
+ For example, if asked "What is the capital of France?", respond simply with "Paris".
394
+ """
395
+
396
+ # Run the agent with the question
397
+ answer = self.agent.run(full_prompt)
398
+
399
+ # Clean up the answer to ensure it's in the expected format
400
+ # Remove common prefixes that models often add
401
+ answer = self._clean_answer(answer)
402
+
403
+ if self.verbose:
404
+ print(f"Generated answer: {answer}")
405
+
406
+ return answer
407
+ except Exception as e:
408
+ error_msg = f"Error answering question: {e}"
409
+ if self.verbose:
410
+ print(error_msg)
411
+ return error_msg
412
+
413
+ def _clean_answer(self, answer: any) -> str:
414
+ """
415
+ Clean up the answer to remove common prefixes and formatting
416
+ that models often add but that can cause exact match failures.
417
+
418
+ Args:
419
+ answer: The raw answer from the model
420
+
421
+ Returns:
422
+ The cleaned answer as a string
423
+ """
424
+ # Convert non-string types to strings
425
+ if not isinstance(answer, str):
426
+ # Handle numeric types (float, int)
427
+ if isinstance(answer, float):
428
+ # Format floating point numbers properly
429
+ # Check if it's an integer value in float form (e.g., 12.0)
430
+ if answer.is_integer():
431
+ formatted_answer = str(int(answer))
432
+ else:
433
+ # For currency values that might need formatting
434
+ if abs(answer) >= 1000:
435
+ formatted_answer = f"${answer:,.2f}"
436
+ else:
437
+ formatted_answer = str(answer)
438
+ return formatted_answer
439
+ elif isinstance(answer, int):
440
+ return str(answer)
441
+ else:
442
+ # For any other type
443
+ return str(answer)
444
+
445
+ # Now we know answer is a string, so we can safely use string methods
446
+ # Normalize whitespace
447
+ answer = answer.strip()
448
+
449
+ # Remove common prefixes and formatting that models add
450
+ prefixes_to_remove = [
451
+ "The answer is ",
452
+ "Answer: ",
453
+ "Final answer: ",
454
+ "The result is ",
455
+ "To answer this question: ",
456
+ "Based on the information provided, ",
457
+ "According to the information: ",
458
+ ]
459
+
460
+ for prefix in prefixes_to_remove:
461
+ if answer.startswith(prefix):
462
+ answer = answer[len(prefix):].strip()
463
+
464
+ # Remove quotes if they wrap the entire answer
465
+ if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
466
+ answer = answer[1:-1].strip()
467
+
468
+ return answer
469
+
470
+ # --------------------------------------------------------------------------- #
471
+ # GeminiAgent class - Wrapper around GAIAAgent
472
  # --------------------------------------------------------------------------- #
473
  class ClaudeAgent:
474
+ """Claude-enhanced agent for GAIA challenge"""
475
 
476
  def __init__(self):
477
+ # Try to initialize GAIAAgent with Claude
478
  try:
479
  # Get API key
480
  api_key = os.getenv("ANTHROPIC_API_KEY")
481
  if not api_key:
482
  raise ValueError("ANTHROPIC_API_KEY environment variable not found")
483
 
484
+ print("✅ Initializing GAIAAgent with Claude")
 
 
 
485
 
486
+ # Create GAIAAgent instance
487
+ self.agent = GAIAAgent(
488
+ api_key=api_key,
489
+ temperature=0.1, # Use low temperature for precise answers
490
+ verbose=True, # Enable verbose logging
 
 
 
 
 
 
 
 
 
 
 
 
 
 
491
  )
 
 
 
492
  except Exception as e:
493
+ print(f"Error initializing GAIAAgent: {e}")
494
  raise
495
 
496
  def __call__(self, question: str) -> str:
497
+ """
498
+ Process a GAIA question and return the answer
499
+
500
+ Args:
501
+ question: The question to answer
502
+
503
+ Returns:
504
+ The answer to the question
505
+ """
506
  try:
507
+ print(f"Received question: {question[:100]}..." if len(question) > 100 else f"Received question: {question}")
508
 
509
+ # Detect reversed text
510
+ if question.startswith(".") or ".rewsna eht sa" in question:
511
+ print("Detected reversed text question")
512
+ # GAIAAgent handles reversed text internally
513
 
514
+ # Detect if there's a file
515
  file_match = re.search(r"<file:([^>]+)>", question)
516
  if file_match:
517
  file_id = file_match.group(1)
518
+ print(f"Detected file reference: {file_id}")
519
 
520
+ # Download the file
521
  try:
522
  file_content = _download_file(file_id)
523
+
524
+ # Create temporary file for the file
525
  temp_dir = tempfile.gettempdir()
526
  file_path = os.path.join(temp_dir, file_id)
527
 
528
+ # Save file content
529
  with open(file_path, 'wb') as f:
530
  f.write(file_content)
531
 
532
+ print(f"File downloaded to: {file_path}")
533
+
534
  # Remove file tag from question
535
  clean_question = re.sub(r"<file:[^>]+>", "", question).strip()
536
 
537
+ # Process question with file path
538
+ answer = self.agent.answer_question(clean_question, file_path)
539
+ return self._clean_answer(answer)
 
 
 
 
540
  except Exception as e:
541
+ print(f"Error processing file: {e}")
542
+ # Fall back to processing without file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543
 
544
+ # Process standard question
545
+ answer = self.agent.answer_question(question)
546
+ return self._clean_answer(answer)
547
  except Exception as e:
548
+ print(f"Error processing question: {e}")
549
+ error_msg = f"Unable to process question: {str(e)}"
550
+ return error_msg
551
 
552
+ def _clean_answer(self, answer: str) -> str:
553
+ """
554
+ Final cleanup of answer to ensure correct format
555
+ Reuses GAIAAgent's cleaning method
556
+ """
557
+ # Already cleaned in GAIAAgent, but do additional checks
558
+ if isinstance(answer, str):
559
+ # Remove any trailing periods and whitespace
560
+ answer = answer.rstrip(". \t\n\r")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561
 
562
+ # Ensure it's not too long an answer - GAIA usually needs concise responses
563
+ if len(answer) > 1000:
564
+ # Try to find the first sentence or statement of the answer
565
+ sentences = answer.split('. ')
566
+ if len(sentences) > 1:
567
+ return sentences[0].strip()
568
+
569
  return answer