real-jiakai commited on
Commit
09c80e8
Β·
verified Β·
1 Parent(s): c1d3919

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +504 -115
agent.py CHANGED
@@ -1,9 +1,9 @@
1
  """
2
- agent.py – Gemini-smolagents baseline using google-genai SDK
3
  -----------------------------------------------------------
4
  Environment
5
  -----------
6
- GOOGLE_API_KEY – API key from Google AI Studio
7
  GAIA_API_URL – (optional) override for the GAIA scoring endpoint
8
  """
9
 
@@ -13,15 +13,17 @@ import base64
13
  import mimetypes
14
  import os
15
  import re
16
- from typing import List
17
-
18
- import google.genai as genai
19
  import requests
20
- from google.genai import types as gtypes
 
21
  from smolagents import (
22
- CodeAgent,
23
- DuckDuckGoSearchTool,
24
  PythonInterpreterTool,
 
25
  tool,
26
  )
27
 
@@ -40,61 +42,6 @@ def _download_file(file_id: str) -> bytes:
40
  resp.raise_for_status()
41
  return resp.content
42
 
43
- # --------------------------------------------------------------------------- #
44
- # model wrapper
45
- # --------------------------------------------------------------------------- #
46
- class GeminiModel:
47
- """
48
- Minimal adapter around google-genai.Client so the instance itself is
49
- callable (required by smolagents).
50
- """
51
-
52
- def __init__(
53
- self,
54
- model_name: str = "gemini-2.0-flash",
55
- temperature: float = 0.1,
56
- max_tokens: int = 128,
57
- ):
58
- api_key = os.getenv("GOOGLE_API_KEY")
59
- if not api_key:
60
- raise EnvironmentError("GOOGLE_API_KEY is not set.")
61
- self.client = genai.Client(api_key=api_key)
62
-
63
- self.model_name = model_name
64
- self.temperature = temperature
65
- self.max_tokens = max_tokens
66
-
67
- # internal helper -------------------------------------------------------- #
68
- def _genai_call(
69
- self,
70
- contents,
71
- system_instruction: str,
72
- ) -> str:
73
- resp = self.client.models.generate_content(
74
- model=self.model_name,
75
- contents=contents,
76
- config=gtypes.GenerateContentConfig(
77
- system_instruction=system_instruction,
78
- temperature=self.temperature,
79
- max_output_tokens=self.max_tokens,
80
- ),
81
- )
82
- return resp.text.strip()
83
-
84
- # public helpers --------------------------------------------------------- #
85
- def __call__(self, prompt: str, system_instruction: str, **__) -> str:
86
- """Used by CodeAgent for plain-text questions."""
87
- return self._genai_call(prompt, system_instruction)
88
-
89
- def call_parts(
90
- self,
91
- parts: List[gtypes.Part],
92
- system_instruction: str,
93
- ) -> str:
94
- """Multimodal path used by GeminiAgent for <file:…> questions."""
95
- user_content = gtypes.Content(role="user", parts=parts)
96
- return self._genai_call([user_content], system_instruction)
97
-
98
  # --------------------------------------------------------------------------- #
99
  # custom tool: fetch GAIA attachments
100
  # --------------------------------------------------------------------------- #
@@ -102,10 +49,8 @@ class GeminiModel:
102
  def gaia_file_reader(file_id: str) -> str:
103
  """
104
  Download a GAIA attachment and return its contents.
105
-
106
  Args:
107
  file_id: identifier that appears inside a <file:...> placeholder.
108
-
109
  Returns:
110
  base64-encoded string for binary files (images, PDFs, …) or decoded
111
  UTF-8 text for textual files.
@@ -116,65 +61,509 @@ def gaia_file_reader(file_id: str) -> str:
116
  if mime.startswith("text") or mime in ("application/json",):
117
  return raw.decode(errors="ignore")
118
  return base64.b64encode(raw).decode()
119
- except Exception as exc: # pragma: no cover
120
  return f"ERROR downloading {file_id}: {exc}"
121
 
122
  # --------------------------------------------------------------------------- #
123
- # final agent
124
  # --------------------------------------------------------------------------- #
125
- class GeminiAgent:
126
- """Instantiated once in app.py; called once per question."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
- SYSTEM_PROMPT = (
129
- "You are a concise, highly accurate assistant. "
130
- "Unless explicitly required, reply with ONE short sentence. "
131
- "Use the provided tools if needed. "
132
- "All answers are graded by exact string match."
133
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
- def __init__(self):
136
- self.model = GeminiModel()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  self.agent = CodeAgent(
 
138
  model=self.model,
139
- tools=[
140
- PythonInterpreterTool(),
141
- DuckDuckGoSearchTool(),
142
- gaia_file_reader,
143
- ],
144
- verbosity_level=0,
145
  )
146
- print("βœ… GeminiAgent initialised.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
148
- # --------------------------------------------------------------------- #
149
- # main entry point
150
- # --------------------------------------------------------------------- #
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  def __call__(self, question: str) -> str:
152
- file_ids = FILE_TAG.findall(question)
153
-
154
- # ---------- multimodal branch (images / files) -------------------- #
155
- if file_ids:
156
- parts: List[gtypes.Part] = []
157
-
158
- text_part = FILE_TAG.sub("", question).strip()
159
- if text_part:
160
- parts.append(gtypes.Part.from_text(text_part))
161
-
162
- for fid in file_ids:
 
 
 
 
 
 
 
 
 
 
 
 
 
163
  try:
164
- img_bytes = _download_file(fid)
165
- mime = mimetypes.guess_type(fid)[0] or "image/png"
166
- parts.append(
167
- gtypes.Part.from_bytes(data=img_bytes, mime_type=mime)
168
- )
169
- except Exception as exc:
170
- parts.append(gtypes.Part.from_text(f"[FILE {fid} ERROR: {exc}]"))
171
-
172
- answer = self.model.call_parts(parts, system_instruction=self.SYSTEM_PROMPT)
173
-
174
- # ---------- plain-text branch ------------------------------------- #
175
- else:
176
- # Prepend system prompt to make sure CodeAgent->model sees it.
177
- prompt = f"{self.SYSTEM_PROMPT}\n\n{question}"
178
- answer = self.agent.model(prompt, system_instruction=self.SYSTEM_PROMPT)
179
-
180
- return answer.rstrip(" .\n\r\t")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """
2
+ agent.py – Claude-smolagents based solution for GAIA challenge
3
  -----------------------------------------------------------
4
  Environment
5
  -----------
6
+ ANTHROPIC_API_KEY – API key from Anthropic (set in Hugging Face space secrets)
7
  GAIA_API_URL – (optional) override for the GAIA scoring endpoint
8
  """
9
 
 
13
  import mimetypes
14
  import os
15
  import re
16
+ import tempfile
17
+ from typing import List, Dict, Any, Optional
18
+ import json
19
  import requests
20
+ from urllib.parse import urlparse
21
+
22
  from smolagents import (
23
+ CodeAgent,
24
+ DuckDuckGoSearchTool,
25
  PythonInterpreterTool,
26
+ LiteLLMModel,
27
  tool,
28
  )
29
 
 
42
  resp.raise_for_status()
43
  return resp.content
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  # --------------------------------------------------------------------------- #
46
  # custom tool: fetch GAIA attachments
47
  # --------------------------------------------------------------------------- #
 
49
  def gaia_file_reader(file_id: str) -> str:
50
  """
51
  Download a GAIA attachment and return its contents.
 
52
  Args:
53
  file_id: identifier that appears inside a <file:...> placeholder.
 
54
  Returns:
55
  base64-encoded string for binary files (images, PDFs, …) or decoded
56
  UTF-8 text for textual files.
 
61
  if mime.startswith("text") or mime in ("application/json",):
62
  return raw.decode(errors="ignore")
63
  return base64.b64encode(raw).decode()
64
+ except Exception as exc:
65
  return f"ERROR downloading {file_id}: {exc}"
66
 
67
  # --------------------------------------------------------------------------- #
68
+ # additional tool functions
69
  # --------------------------------------------------------------------------- #
70
+ @tool
71
+ def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
72
+ """
73
+ Save content to a temporary file and return the path.
74
+ Useful for processing files from the GAIA API.
75
+
76
+ Args:
77
+ content: The content to save to the file
78
+ filename: Optional filename, will generate a random name if not provided
79
+
80
+ Returns:
81
+ Path to the saved file
82
+ """
83
+ temp_dir = tempfile.gettempdir()
84
+ if filename is None:
85
+ temp_file = tempfile.NamedTemporaryFile(delete=False)
86
+ filepath = temp_file.name
87
+ else:
88
+ filepath = os.path.join(temp_dir, filename)
89
+
90
+ # Write content to the file
91
+ with open(filepath, 'w') as f:
92
+ f.write(content)
93
+
94
+ return f"File saved to {filepath}. You can read this file to process its contents."
95
+
96
+ @tool
97
+ def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
98
+ """
99
+ Download a file from a URL and save it to a temporary location.
100
+
101
+ Args:
102
+ url: The URL to download from
103
+ filename: Optional filename, will generate one based on URL if not provided
104
+
105
+ Returns:
106
+ Path to the downloaded file
107
+ """
108
+ try:
109
+ # Parse URL to get filename if not provided
110
+ if not filename:
111
+ path = urlparse(url).path
112
+ filename = os.path.basename(path)
113
+ if not filename:
114
+ # Generate a random name if we couldn't extract one
115
+ import uuid
116
+ filename = f"downloaded_{uuid.uuid4().hex[:8]}"
117
+
118
+ # Create temporary file
119
+ temp_dir = tempfile.gettempdir()
120
+ filepath = os.path.join(temp_dir, filename)
121
+
122
+ # Download the file
123
+ response = requests.get(url, stream=True)
124
+ response.raise_for_status()
125
+
126
+ # Save the file
127
+ with open(filepath, 'wb') as f:
128
+ for chunk in response.iter_content(chunk_size=8192):
129
+ f.write(chunk)
130
+
131
+ return f"File downloaded to {filepath}. You can now process this file."
132
+ except Exception as e:
133
+ return f"Error downloading file: {str(e)}"
134
 
135
+ @tool
136
+ def extract_text_from_image(image_path: str) -> str:
137
+ """
138
+ Extract text from an image using pytesseract (if available).
139
+
140
+ Args:
141
+ image_path: Path to the image file
142
+
143
+ Returns:
144
+ Extracted text or error message
145
+ """
146
+ try:
147
+ # Try to import pytesseract
148
+ import pytesseract
149
+ from PIL import Image
150
+
151
+ # Open the image
152
+ image = Image.open(image_path)
153
+
154
+ # Extract text
155
+ text = pytesseract.image_to_string(image)
156
+
157
+ return f"Extracted text from image:\n\n{text}"
158
+ except ImportError:
159
+ return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
160
+ except Exception as e:
161
+ return f"Error extracting text from image: {str(e)}"
162
 
163
+ @tool
164
+ def analyze_csv_file(file_path: str, query: str) -> str:
165
+ """
166
+ Analyze a CSV file using pandas and answer a question about it.
167
+
168
+ Args:
169
+ file_path: Path to the CSV file
170
+ query: Question about the data
171
+
172
+ Returns:
173
+ Analysis result or error message
174
+ """
175
+ try:
176
+ import pandas as pd
177
+
178
+ # Read the CSV file
179
+ df = pd.read_csv(file_path)
180
+
181
+ # Run various analyses based on the query
182
+ result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
183
+ result += f"Columns: {', '.join(df.columns)}\n\n"
184
+
185
+ # Add summary statistics
186
+ result += "Summary statistics:\n"
187
+ result += str(df.describe())
188
+
189
+ return result
190
+ except ImportError:
191
+ return "Error: pandas is not installed. Please install it with 'pip install pandas'."
192
+ except Exception as e:
193
+ return f"Error analyzing CSV file: {str(e)}"
194
+
195
+ @tool
196
+ def analyze_excel_file(file_path: str, query: str) -> str:
197
+ """
198
+ Analyze an Excel file using pandas and answer a question about it.
199
+
200
+ Args:
201
+ file_path: Path to the Excel file
202
+ query: Question about the data
203
+
204
+ Returns:
205
+ Analysis result or error message
206
+ """
207
+ try:
208
+ import pandas as pd
209
+
210
+ # Read the Excel file
211
+ df = pd.read_excel(file_path)
212
+
213
+ # Run various analyses based on the query
214
+ result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
215
+ result += f"Columns: {', '.join(df.columns)}\n\n"
216
+
217
+ # Add summary statistics
218
+ result += "Summary statistics:\n"
219
+ result += str(df.describe())
220
+
221
+ return result
222
+ except ImportError:
223
+ return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
224
+ except Exception as e:
225
+ return f"Error analyzing Excel file: {str(e)}"
226
+
227
+ # --------------------------------------------------------------------------- #
228
+ # GAIAAgent class
229
+ # --------------------------------------------------------------------------- #
230
+ class GAIAAgent:
231
+ def __init__(
232
+ self,
233
+ api_key: Optional[str] = None,
234
+ temperature: float = 0.1,
235
+ verbose: bool = False,
236
+ system_prompt: Optional[str] = None
237
+ ):
238
+ """
239
+ Initialize a GAIAAgent with Claude model
240
+
241
+ Args:
242
+ api_key: Anthropic API key (fetched from environment if not provided)
243
+ temperature: Temperature for text generation
244
+ verbose: Enable verbose logging
245
+ system_prompt: Custom system prompt (optional)
246
+ """
247
+ # Set verbosity
248
+ self.verbose = verbose
249
+ self.system_prompt = system_prompt or """You are a concise, highly accurate assistant specialized in solving challenges for the GAIA benchmark.
250
+ Unless explicitly required, reply with ONE short sentence.
251
+ Your answers should be precise, direct, and exactly match the expected format.
252
+ All answers are graded by exact string match, so format carefully!"""
253
+
254
+ # Get API key
255
+ if api_key is None:
256
+ api_key = os.getenv("ANTHROPIC_API_KEY")
257
+ if not api_key:
258
+ raise ValueError("No Anthropic token provided. Please set ANTHROPIC_API_KEY environment variable or pass api_key parameter.")
259
+
260
+ if self.verbose:
261
+ print(f"Using Anthropic token: {api_key[:5]}...")
262
+
263
+ # Initialize Claude model
264
+ self.model = LiteLLMModel(
265
+ model_id="anthropic/claude-3-5-sonnet-20240620", # Use Claude 3.5 Sonnet
266
+ api_key=api_key,
267
+ temperature=temperature
268
+ )
269
+
270
+ if self.verbose:
271
+ print(f"Initialized model: LiteLLMModel - anthropic/claude-3-5-sonnet-20240620")
272
+
273
+ # Initialize default tools
274
+ self.tools = [
275
+ DuckDuckGoSearchTool(),
276
+ PythonInterpreterTool(),
277
+ save_and_read_file,
278
+ download_file_from_url,
279
+ analyze_csv_file,
280
+ analyze_excel_file,
281
+ gaia_file_reader
282
+ ]
283
+
284
+ # Add extract_text_from_image if PIL and pytesseract are available
285
+ try:
286
+ import pytesseract
287
+ from PIL import Image
288
+ self.tools.append(extract_text_from_image)
289
+ if self.verbose:
290
+ print("Added image processing tool")
291
+ except ImportError:
292
+ if self.verbose:
293
+ print("Image processing libraries not available")
294
+
295
+ if self.verbose:
296
+ print(f"Initialized with {len(self.tools)} tools")
297
+
298
+ # Setup imports allowed
299
+ self.imports = ["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
300
+
301
+ # Initialize the CodeAgent
302
  self.agent = CodeAgent(
303
+ tools=self.tools,
304
  model=self.model,
305
+ additional_authorized_imports=self.imports,
306
+ executor_type="local",
307
+ verbosity_level=2 if self.verbose else 0
 
 
 
308
  )
309
+
310
+ if self.verbose:
311
+ print("Agent initialized and ready")
312
+
313
+ def answer_question(self, question: str, task_file_path: Optional[str] = None) -> str:
314
+ """
315
+ Process a GAIA benchmark question and return the answer
316
+
317
+ Args:
318
+ question: The question to answer
319
+ task_file_path: Optional path to a file associated with the question
320
+
321
+ Returns:
322
+ The answer to the question
323
+ """
324
+ try:
325
+ if self.verbose:
326
+ print(f"Processing question: {question}")
327
+ if task_file_path:
328
+ print(f"With associated file: {task_file_path}")
329
+
330
+ # Create a context with file information if available
331
+ context = question
332
+ file_content = None
333
+
334
+ # If there's a file, read it and include its content in the context
335
+ if task_file_path:
336
+ try:
337
+ with open(task_file_path, 'r', errors='ignore') as f:
338
+ file_content = f.read()
339
+
340
+ # Determine file type from extension
341
+ import os
342
+ file_ext = os.path.splitext(task_file_path)[1].lower()
343
+
344
+ context = f"""
345
+ Question: {question}
346
+ This question has an associated file. Here is the file content:
347
+ ```{file_ext}
348
+ {file_content}
349
+ ```
350
+ Analyze the file content above to answer the question.
351
+ """
352
+ except Exception as file_e:
353
+ try:
354
+ # Try to read in binary mode
355
+ with open(task_file_path, 'rb') as f:
356
+ binary_content = f.read()
357
+
358
+ # For image files
359
+ if file_ext.lower() in ['.jpg', '.jpeg', '.png', '.gif', '.bmp']:
360
+ context = f"""
361
+ Question: {question}
362
+ This question has an associated image file. Please use the extract_text_from_image tool to process it.
363
+ File path: {task_file_path}
364
+ """
365
+ else:
366
+ context = f"""
367
+ Question: {question}
368
+ This question has an associated file at path: {task_file_path}
369
+ This is a binary file. Use appropriate tools to analyze it.
370
+ """
371
+ except Exception as binary_e:
372
+ context = f"""
373
+ Question: {question}
374
+ This question has an associated file at path: {task_file_path}
375
+ However, there was an error reading the file: {file_e}
376
+ You can still try to answer the question based on the information provided.
377
+ """
378
+
379
+ # Check for special cases that need specific formatting
380
+ # Reversed text questions
381
+ if question.startswith(".") or ".rewsna eht sa" in question:
382
+ context = f"""
383
+ This question appears to be in reversed text. Here's the reversed version:
384
+ {question[::-1]}
385
+ Now answer the question above. Remember to format your answer exactly as requested.
386
+ """
387
+
388
+ # Add a prompt to ensure precise answers
389
+ full_prompt = f"""{context}
390
+ When answering, provide ONLY the precise answer requested.
391
+ Do not include explanations, steps, reasoning, or additional text.
392
+ Be direct and specific. GAIA benchmark requires exact matching answers.
393
+ For example, if asked "What is the capital of France?", respond simply with "Paris".
394
+ """
395
+
396
+ # Run the agent with the question
397
+ answer = self.agent.run(full_prompt)
398
+
399
+ # Clean up the answer to ensure it's in the expected format
400
+ # Remove common prefixes that models often add
401
+ answer = self._clean_answer(answer)
402
+
403
+ if self.verbose:
404
+ print(f"Generated answer: {answer}")
405
+
406
+ return answer
407
+ except Exception as e:
408
+ error_msg = f"Error answering question: {e}"
409
+ if self.verbose:
410
+ print(error_msg)
411
+ return error_msg
412
+
413
+ def _clean_answer(self, answer: any) -> str:
414
+ """
415
+ Clean up the answer to remove common prefixes and formatting
416
+ that models often add but that can cause exact match failures.
417
+
418
+ Args:
419
+ answer: The raw answer from the model
420
+
421
+ Returns:
422
+ The cleaned answer as a string
423
+ """
424
+ # Convert non-string types to strings
425
+ if not isinstance(answer, str):
426
+ # Handle numeric types (float, int)
427
+ if isinstance(answer, float):
428
+ # Format floating point numbers properly
429
+ # Check if it's an integer value in float form (e.g., 12.0)
430
+ if answer.is_integer():
431
+ formatted_answer = str(int(answer))
432
+ else:
433
+ # For currency values that might need formatting
434
+ if abs(answer) >= 1000:
435
+ formatted_answer = f"${answer:,.2f}"
436
+ else:
437
+ formatted_answer = str(answer)
438
+ return formatted_answer
439
+ elif isinstance(answer, int):
440
+ return str(answer)
441
+ else:
442
+ # For any other type
443
+ return str(answer)
444
+
445
+ # Now we know answer is a string, so we can safely use string methods
446
+ # Normalize whitespace
447
+ answer = answer.strip()
448
+
449
+ # Remove common prefixes and formatting that models add
450
+ prefixes_to_remove = [
451
+ "The answer is ",
452
+ "Answer: ",
453
+ "Final answer: ",
454
+ "The result is ",
455
+ "To answer this question: ",
456
+ "Based on the information provided, ",
457
+ "According to the information: ",
458
+ ]
459
+
460
+ for prefix in prefixes_to_remove:
461
+ if answer.startswith(prefix):
462
+ answer = answer[len(prefix):].strip()
463
+
464
+ # Remove quotes if they wrap the entire answer
465
+ if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
466
+ answer = answer[1:-1].strip()
467
+
468
+ return answer
469
 
470
+ # --------------------------------------------------------------------------- #
471
+ # GeminiAgent class - Wrapper around GAIAAgent
472
+ # --------------------------------------------------------------------------- #
473
+ class ClaudeAgent:
474
+ """Claude-enhanced agent for GAIA challenge"""
475
+
476
+ def __init__(self):
477
+ # Try to initialize GAIAAgent with Claude
478
+ try:
479
+ # Get API key
480
+ api_key = os.getenv("ANTHROPIC_API_KEY")
481
+ if not api_key:
482
+ raise ValueError("ANTHROPIC_API_KEY environment variable not found")
483
+
484
+ print("βœ… Initializing GAIAAgent with Claude")
485
+
486
+ # Create GAIAAgent instance
487
+ self.agent = GAIAAgent(
488
+ api_key=api_key,
489
+ temperature=0.1, # Use low temperature for precise answers
490
+ verbose=True, # Enable verbose logging
491
+ )
492
+ except Exception as e:
493
+ print(f"Error initializing GAIAAgent: {e}")
494
+ raise
495
+
496
  def __call__(self, question: str) -> str:
497
+ """
498
+ Process a GAIA question and return the answer
499
+
500
+ Args:
501
+ question: The question to answer
502
+
503
+ Returns:
504
+ The answer to the question
505
+ """
506
+ try:
507
+ print(f"Received question: {question[:100]}..." if len(question) > 100 else f"Received question: {question}")
508
+
509
+ # Detect reversed text
510
+ if question.startswith(".") or ".rewsna eht sa" in question:
511
+ print("Detected reversed text question")
512
+ # GAIAAgent handles reversed text internally
513
+
514
+ # Detect if there's a file
515
+ file_match = re.search(r"<file:([^>]+)>", question)
516
+ if file_match:
517
+ file_id = file_match.group(1)
518
+ print(f"Detected file reference: {file_id}")
519
+
520
+ # Download the file
521
  try:
522
+ file_content = _download_file(file_id)
523
+
524
+ # Create temporary file for the file
525
+ temp_dir = tempfile.gettempdir()
526
+ file_path = os.path.join(temp_dir, file_id)
527
+
528
+ # Save file content
529
+ with open(file_path, 'wb') as f:
530
+ f.write(file_content)
531
+
532
+ print(f"File downloaded to: {file_path}")
533
+
534
+ # Remove file tag from question
535
+ clean_question = re.sub(r"<file:[^>]+>", "", question).strip()
536
+
537
+ # Process question with file path
538
+ answer = self.agent.answer_question(clean_question, file_path)
539
+ return self._clean_answer(answer)
540
+ except Exception as e:
541
+ print(f"Error processing file: {e}")
542
+ # Fall back to processing without file
543
+
544
+ # Process standard question
545
+ answer = self.agent.answer_question(question)
546
+ return self._clean_answer(answer)
547
+ except Exception as e:
548
+ print(f"Error processing question: {e}")
549
+ error_msg = f"Unable to process question: {str(e)}"
550
+ return error_msg
551
+
552
+ def _clean_answer(self, answer: str) -> str:
553
+ """
554
+ Final cleanup of answer to ensure correct format
555
+ Reuses GAIAAgent's cleaning method
556
+ """
557
+ # Already cleaned in GAIAAgent, but do additional checks
558
+ if isinstance(answer, str):
559
+ # Remove any trailing periods and whitespace
560
+ answer = answer.rstrip(". \t\n\r")
561
+
562
+ # Ensure it's not too long an answer - GAIA usually needs concise responses
563
+ if len(answer) > 1000:
564
+ # Try to find the first sentence or statement of the answer
565
+ sentences = answer.split('. ')
566
+ if len(sentences) > 1:
567
+ return sentences[0].strip()
568
+
569
+ return answer