Spaces:
Running
Running
# rag/embedder.py | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
class Embedder: | |
def __init__(self, model_name="all-MiniLM-L6-v2"): # "all-mpnet-base-v2" | |
self.model = SentenceTransformer(model_name) | |
def embed(self, texts): | |
""" | |
Embed a list of texts into vectors. | |
Args: | |
texts (list of str): Texts to embed. | |
Returns: | |
numpy.ndarray: Embeddings. | |
""" | |
if isinstance(texts, str): | |
texts = [texts] | |
embeddings = self.model.encode(texts, convert_to_numpy=True) | |
return embeddings |