Spaces:
Running
Running
File size: 613 Bytes
a2c10b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
# rag/embedder.py
from sentence_transformers import SentenceTransformer
import numpy as np
class Embedder:
def __init__(self, model_name="all-MiniLM-L6-v2"): # "all-mpnet-base-v2"
self.model = SentenceTransformer(model_name)
def embed(self, texts):
"""
Embed a list of texts into vectors.
Args:
texts (list of str): Texts to embed.
Returns:
numpy.ndarray: Embeddings.
"""
if isinstance(texts, str):
texts = [texts]
embeddings = self.model.encode(texts, convert_to_numpy=True)
return embeddings |