# rag/embedder.py from sentence_transformers import SentenceTransformer import numpy as np class Embedder: def __init__(self, model_name="all-MiniLM-L6-v2"): # "all-mpnet-base-v2" self.model = SentenceTransformer(model_name) def embed(self, texts): """ Embed a list of texts into vectors. Args: texts (list of str): Texts to embed. Returns: numpy.ndarray: Embeddings. """ if isinstance(texts, str): texts = [texts] embeddings = self.model.encode(texts, convert_to_numpy=True) return embeddings